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Abstract

The problem of Bayes sequential estimation of the unknown parameter in a particular
exponential family of distributions is considered under LINEX loss function for estimation
error and a fixed cost for each observation. Instead of fully sequential sampling, a two-
stage sampling technique is introduced to solve the problem in this paper. The proposed
two-stage procedure is robust in the sense that it does not depend on the parameters of
the conjugate prior. It is shown that the two-stage procedure is asymptotically pointwise

optimal and asymptotically optimal for a large class of the conjugate priors.
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1. Introduction

The Bayes sequential estimation problem is to seek an optimal sequential procedure
which includes an optimal stopping time and a Bayes estimate. The Bayes estimate is
usually obtained in the problem. Hence the Bayes sequential estimation problem is reduced
to finding an optimal stopping time.

It is well known that the optimal stopping time exists in Bayes sequential estimation
problem in certain case under mild regularity conditions. However, the exact determination
of optimal stopping time appears to be a formidable task, in practice; see, e.g., Chow,
Robbins and Siegmund (1971). Due to this difficulty in finding explicit optimal rules, some
procedures have been proposed with the goal of finding ”asymptotically” optimal rules.
For instance, Bickel and Yahav (1967) provided a simple but very attractive large sample
approximation to optimal rules, namely ”asymptotically pointwise optimal” (APO) rules.
Since Bickel and Yahav’s initiation of this idea, many papers have envolved on developing
APO rules in various different contexts; see, e.g. Bickel and Yahav (1968), Gleser and
Kunte (1976), Woodroofe (1981), Martinsek (1987), Ghosh and Hoekstra (1995), Hwang
(2001) and Hwang and Karunamuni (2008), among others.

From the practical standpoint, purely sequential procedures suffer, especially when
money and time are important design factors. Multistage methods of sampling techniques
are used in statistical inference. The idea of group sampling done in two stages from a
normal population is proposed by Stein (1945). Cox (1952) extended the double sam-
pling techniques to cover a wider class of problems. Within the classical non-Bayesian
framework, Mukhopadhyay (1980) and Ghosh and Mukhopadhyay (1981) proposed two-
stage procedures instead of purely sequential procedures in sequential interval and point
estimation problems. The two-stage sampling techniques are applied to Bayes sequential
estimation for the exponential distribution under the squared error loss by Hwang (1999).

In this paper, the problem of Bayes sequential estimation of the unknown parameter
in a particular exponential family of distributions with LINEX loss function and fixed
cost for each observation is considered. Given a conjugate prior, Jokiel-Rokita (2011)
derived an APO procedure depending on the parameters of the prior distribution, and it

is shown to be asymptotically optimal (AO). Instead of fully sequential sampling, a two-



stage sampling technique is introduced to solve the problem in Section 2. The proposed
two-stage procedure is robust in the sense that it does not depend on the parameters of
the prior distribution. It is shown that the two-stage procedure also shares the asymptotic
properties with the APO procedure. The proofs of some auxiliary lemmas in order to

obtain main theorems in Section 2 are given in Section 3.
2. Two-stage procedure and its asymptotic properties

Let Xy, X5, -+ be a sequence of independent and identically distributed random vari-
ables from a particular exponential family of distributions with a density function of the

form

with respect to some o-finite measure, where 6 > 0 is an unknown parameter, k£ is a
positive constant, and s(z) is a nonnegative function. The particular exponential family
of distributions was introduced by Rahman and Gupta (1993). In the case k is a positive
integer, the family is called transformed chi-square family. Some distributions belong to
the particular exponential family, for example, the normal distribution with known mean,
the gamma distribution with known shape parameter and the Pareto distribution with
known scale parameter. More details can be referred to Table 1 of Jokiel-Rokita (2011).

Suppose that we are interested in estimating 6. Having recorded n observations Xy, - - -,
X,,, we assume that the loss incurred in estimating 6 by d,, = d,(Xy, -+, X,,) is L(6,d,) +
cn, where

L(0,d,) = exp (a(d, — 0)) —a(d, —0) — 1, a # 0,

is the LINEX loss and ¢ > 0 is the cost for each observation. One notes that bL(0,d,)
with b > 0 is a general form of the LINEX loss function, hence ¢ can also be regarded as
a relative weight with respect to the general form of the LINEX loss. The LINEX loss
function was first introduced by Varian (1975). It is a very useful asymmetric loss function
that increases approximately exponentially on one side of zero and approximately linearly
on the other side. In the case a < 0, the loss function indicates that underestimation is
more costly than overestimation. The opposite is true when a > 0.

Suppose that 6 has a gamma prior distribution I'(«, \) with a density function of the



form
B /\oa@oz—l
()

where & > 0 and A > 0. For convenience, we denote F,, = o(Xy, -+, X,,), S, = >0, s(X5)

7(0) e 0 >0,

and S, = % for all n > 1. One notes that for given 6, s(X;) has a gamma distribution
I'(%,6) and then S, has a gamma distribution I'("4*, nd). It is easy to see that the posterior
distribution of € given F,, is the gamma distribution I'(a,, A\,), where a,, = a + %k and
An = A+ 5,. By straightforward calculations and assume a > —\, we can obtain that for
a given stopping time 7', the optimal estimate is the Bayes estimate

éT:%log(lei).

a )\T

Then the Bayes risk of the Bayes sequential procedure (7T, éT) is equal to

ac a
E{ )\TT—aTlog<1+>\—T>+cT}.

Hence , finding an optimal Bayes sequential procedure for the sequential problem is equiv-

alent to constructing an optimal stopping time for the sequence {L,(c);n > 1}, where

L,(c) =Y, 4+ cn and

An An
Bickel and Yahav (1967, 1968) described methods for finding a family of stopping times

Y, = 30n — ay, log (1—1—&).

{te; ¢ > 0} which is APO with respect to {Y,, + cn;n > 1}, that is,

, Yi, +cle
im
c—0 inf, E(Y, + cn)

=1 a.s.

They also showed that this family of stopping times is AO, that is,
E(Y,, + ct.)

lim =1,

c—0 infT E(YT + CT)

where the infimum extends over all F,,-stopping times 7.

To this case, Jokiel-Rokita (2011) showed that the sequence {L,(c);n > 1} satisfies
the conditions of Theorem 2.1 in Bickel and Yahav (1967) and Theorem 3.1 in Bickel and
Yahav (1968). Hence Jokiel-Rokita (2011) obtained that under the condition a > —A, the

family of stopping times {N.; ¢ > 0} defined by
. 4
chlnf{nz [E] +1:Yn§cn}, c>0,
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with [z] denoting the integer part of z, is APO and AO with respect to the sequence
{L,(c);n > 1}.

The sequential procedure (N, éNC) depends on the known parameters of the gamma
prior. When the parameters of the prior distribution are misspecified or unknown, the
procedure is not appropriate. Hence, we would like to propose a procedure, which is
independent of prior parameters, but at the same time it still possesses some asymptotic
properties. Here we concentrate on a two-stage procedure instead of purely sequential

procedure for the sake of simplicity and economy.

Notice that the result nY,, — ¢ ,f a.s. obtained by Jokiel-Rokita (2011) and S,, — 25 a.s.
assured by the strong law of large numbers. Now we describe the two-stage procedure. The
procedure, by means of the definition of N, takes an initial sample of size ny = ng(c) =

[6c™7] 41 for some 6 > 0 and for some 0 < v < 3, a second sample to bring the sample

T, = max {no, [2‘3/’5\2'1] + 1} )

Then 6 can be estimated by 07, = k/(2(Sy, +br,)), where Sy, = Tic STe s(X;) and by, =

size to

b
T.
with a fixed constant b > 0. Here the proposed two-stage procedure (T, QTC) is robust in

the sense that it does not depend on the parameters of the gamma prior.

Let the posterior risk of the estimator 6, be

Y* = E(L@,0,)

a+/\ 2B +b) A

where b, = £ for all n > 1. Then the performance of the two-stage procedure (T, Or.) will

be measured by its Bayes risk
R(T,,0r.,) = BE(L(0,0r,) + cT.) = E(Y;, + cT.).

The family of the two-stage stopping times {7T; ¢ > 0} and the two-stage procedure (T, éTC)
are APO and AO for a large class of gamma prior distributions in the following Theorem
2.1 and Theorem 2.2, respectively. The proofs for the two main theorems will be given in
Section 3.

Theorem 2.1. (i) {7T,;c > 0} is APO with respect to {Y,,+cn;n > 1} and {Y," +cn;n > 1}.

() Y;C—&-CTC

— —
Ya ol las. asc 0.




Theorem 2.2. If either A <a <0or0<a<ba>1\>a, then the Bayes risk of

the two-stage procedure (T, éTC) is

R(T,.0r.) = irTle{L(O,éT)+cT}+o(\/E)

i\/g%\/z—l- o(v/¢) asc— 0,

where the infimum extends over all F,,-stopping times 7.
3. Proof

In order to prove Theorem 2.1 and Theorem 2.2, we will develop some auxiliary results,
whereas the proofs of the lemmas will be omitted in here.

Lemma 3.1. We have /cT. — % a.s. as ¢ — 0.

a?6?

Lemma 3.2. We have nY} —

a.s. as n — OQ.

Lemma 3.3. For any given p > 1, there exists an integrable random variable that domi-

nates (/cT.)? for all sufficiently small c.

Lemma 3.4. For any given p > 1, there exists an integrable random variable that domi-

nates (6Sr,)~ for all sufficiently small c.

-p
Lemma 3.5. For any p > 1, {(@Tc> ;c > O} is uniformly integrable.
Lemma 3.6. If p > 0 and either the case a < 0 and A\ + ap > 0 or the other case
a>0,a>1and XA > ap-max{1, %}, then {e"”7e;c > 0} is uniformly integrable, where 1,
is between 0 and a(k/(2(St, + br.)) — 0).

Proof of Theorem 2.1.

It follows from the definition of the APO rule N, and the result nY,, — “2k92 a.s. in

Jokiel-Rokita (2011) that ¢N? — “2k92 a.s. Hence, by Lemma 3.1, we have %C — 1 as.

Then, by the Remark of Theorem 2.1 in Bickel and Yahav (1967), we obtain {7};c > 0} is

APO with respect to {Y,, + cn;n > 1}.



Using the fact that Y, > Y, a.s., we obtain the following inequalities

Yi+cl, _ Yu+eNe Yi+cl,
~inf,(Y*+en) ~ inf, (Y, +cn) Yy, +cN.

Hence, by Lemmas 3.1 and 3.2, we have

Yi+ ¢l  TYi +cI2 N,

- e L qas.
Yn, +cN,  NYy +eN2 T, 0 %F

Then, by the results of the APO rule N,

Y7 +cT. ]
— —— —1as.
inf,, (Y + cn) a5
that is, {T.;c > 0} is APO with respect to {Y,* + cn;n > 1}. The part (i) thus follows,

and the proof of the part (ii) is also complete. [J

Proof of Theorem 2.2.
It follows from Lemmas 3.1 and 3.3 that

B(eT) - ﬁ\'%'EMo(ﬁ)
 lda
= fAf ¢+ o(ve).

Using Taylor’s theorem, we obtain

1 R 1 a? k 2
_L 9 0 == e — T]Tc— _— - 9
Ve (6, 0z.) \/Ee 2 <2(5Tc+ch) )
2

a’k VTSt + br, — £)
— enTc — ,
4\/ETC(STC + ch)2 k
\/ 202

where 7, is between 0 and a(k/(2(S7, + br,)) — 0). It follows from the fact , — 0 a.s.,

Anscombe’s theorem and Slutsky’s theorem that

1 |a]

7[/(0 0Tc) \/E

where G is defined by G(y) = EF. e(g) for all y € R, and F,2 denotes the chi-squared

—G,

distribution function with one degree of freedom.



On the other hand, we can rewrite

L(0.6 n a’6” 5 by F 2

1 \2/ 6 \? L s(XG) — &
N, - 2 i ? 20
O(1)e (QSTC) (\/ETC) Vb + | e E — =

=1 262

L
NG

2

IN

It follows from Lemma 2.3 of Hwang (1999) and Lemma 3.3 that for all sufficiently small
P
c, (0411 ZTC M) is uniformly integrable for any given p > 2. Together with Lemmas

=1 [k
262

3.4, 3.5 and 3.6, we obtain for all sufficiently small c, \/LEL(G, éTC) is uniformly integrable.
The conditions are needed here. Hence we have

EL(6,07) — ﬁ%mm(ﬁ)
= Mg C (0] C
= Jpvetovo.

The proof is thus complete. [
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