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中 文 摘 要 ： 貝氏的架構下，考慮研究使用非對稱的 LINEX(linear 

exponential)損失函數來估計特殊一維指數族(one-

parameter exponential family)分佈的平均值並且每個觀察

值有一固定成本的序列估計問題。本研究計畫對 LINEX 損失

函數的貝氏序列估計問題，在給定事先分佈(prior 

distribution)下，提出二階段法則(two-stage procedure)

並證明它具有漸近點最優(asymptotically pointwise 

optimal)和漸近最佳(asymptotically optimal)性質。除此

之外，將提出一個具有穩健性(robust)的二階段法則，此法

則與資料的分佈、事先分佈無關，並將證明在某些條件下的

事先分佈，它如同給定事先分佈下的漸近點最優法則所具有

的漸近性質。 

中文關鍵詞： 漸近最佳性，漸近點最優，LINEX 損失函數，序列估計，二

階段法則。 

英 文 摘 要 ：  

英文關鍵詞：  
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Abstract

The problem of Bayes sequential estimation of the unknown parameter in a particular

exponential family of distributions is considered under LINEX loss function for estimation

error and a fixed cost for each observation. Instead of fully sequential sampling, a two-

stage sampling technique is introduced to solve the problem in this paper. The proposed

two-stage procedure is robust in the sense that it does not depend on the parameters of

the conjugate prior. It is shown that the two-stage procedure is asymptotically pointwise

optimal and asymptotically optimal for a large class of the conjugate priors.
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1. Introduction

The Bayes sequential estimation problem is to seek an optimal sequential procedure

which includes an optimal stopping time and a Bayes estimate. The Bayes estimate is

usually obtained in the problem. Hence the Bayes sequential estimation problem is reduced

to finding an optimal stopping time.

It is well known that the optimal stopping time exists in Bayes sequential estimation

problem in certain case under mild regularity conditions. However, the exact determination

of optimal stopping time appears to be a formidable task, in practice; see, e.g., Chow,

Robbins and Siegmund (1971). Due to this difficulty in finding explicit optimal rules, some

procedures have been proposed with the goal of finding ”asymptotically” optimal rules.

For instance, Bickel and Yahav (1967) provided a simple but very attractive large sample

approximation to optimal rules, namely ”asymptotically pointwise optimal” (APO) rules.

Since Bickel and Yahav’s initiation of this idea, many papers have envolved on developing

APO rules in various different contexts; see, e.g. Bickel and Yahav (1968), Gleser and

Kunte (1976), Woodroofe (1981), Martinsek (1987), Ghosh and Hoekstra (1995), Hwang

(2001) and Hwang and Karunamuni (2008), among others.

From the practical standpoint, purely sequential procedures suffer, especially when

money and time are important design factors. Multistage methods of sampling techniques

are used in statistical inference. The idea of group sampling done in two stages from a

normal population is proposed by Stein (1945). Cox (1952) extended the double sam-

pling techniques to cover a wider class of problems. Within the classical non-Bayesian

framework, Mukhopadhyay (1980) and Ghosh and Mukhopadhyay (1981) proposed two-

stage procedures instead of purely sequential procedures in sequential interval and point

estimation problems. The two-stage sampling techniques are applied to Bayes sequential

estimation for the exponential distribution under the squared error loss by Hwang (1999).

In this paper, the problem of Bayes sequential estimation of the unknown parameter

in a particular exponential family of distributions with LINEX loss function and fixed

cost for each observation is considered. Given a conjugate prior, Jokiel-Rokita (2011)

derived an APO procedure depending on the parameters of the prior distribution, and it

is shown to be asymptotically optimal (AO). Instead of fully sequential sampling, a two-
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stage sampling technique is introduced to solve the problem in Section 2. The proposed

two-stage procedure is robust in the sense that it does not depend on the parameters of

the prior distribution. It is shown that the two-stage procedure also shares the asymptotic

properties with the APO procedure. The proofs of some auxiliary lemmas in order to

obtain main theorems in Section 2 are given in Section 3.

2. Two-stage procedure and its asymptotic properties

Let X1, X2, · · · be a sequence of independent and identically distributed random vari-

ables from a particular exponential family of distributions with a density function of the

form

fθ(x) = θ
k
2 e−s(x)θ, x ∈ R,

with respect to some σ-finite measure, where θ > 0 is an unknown parameter, k is a

positive constant, and s(x) is a nonnegative function. The particular exponential family

of distributions was introduced by Rahman and Gupta (1993). In the case k is a positive

integer, the family is called transformed chi-square family. Some distributions belong to

the particular exponential family, for example, the normal distribution with known mean,

the gamma distribution with known shape parameter and the Pareto distribution with

known scale parameter. More details can be referred to Table 1 of Jokiel-Rokita (2011).

Suppose that we are interested in estimating θ. Having recorded n observations X1, · · · ,

Xn, we assume that the loss incurred in estimating θ by dn = dn(X1, · · · , Xn) is L(θ, dn)+

cn, where

L(θ, dn) = exp (a(dn − θ))− a(dn − θ)− 1, a 6= 0,

is the LINEX loss and c > 0 is the cost for each observation. One notes that bL(θ, dn)

with b > 0 is a general form of the LINEX loss function, hence c can also be regarded as

a relative weight with respect to the general form of the LINEX loss. The LINEX loss

function was first introduced by Varian (1975). It is a very useful asymmetric loss function

that increases approximately exponentially on one side of zero and approximately linearly

on the other side. In the case a < 0, the loss function indicates that underestimation is

more costly than overestimation. The opposite is true when a > 0.

Suppose that θ has a gamma prior distribution Γ(α, λ) with a density function of the
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form

π(θ) =
λαθα−1

Γ(α)
e−λθ, θ > 0,

where α > 0 and λ > 0. For convenience, we denote Fn = σ(X1, · · · , Xn), Sn =
∑n

i=1 s(Xi)

and S̄n = Sn

n
for all n ≥ 1. One notes that for given θ, s(Xi) has a gamma distribution

Γ(k
2
, θ) and then S̄n has a gamma distribution Γ(nk

2
, nθ). It is easy to see that the posterior

distribution of θ given Fn is the gamma distribution Γ(αn, λn), where αn = α + nk
2

and

λn = λ + Sn. By straightforward calculations and assume a > −λ, we can obtain that for

a given stopping time T , the optimal estimate is the Bayes estimate

θ̃T =
α

T

a
log

(
1 +

a

λT

)
.

Then the Bayes risk of the Bayes sequential procedure (T, θ̃T ) is equal to

E

{
aα

T

λT

− α
T

log

(
1 +

a

λT

)
+ cT

}
.

Hence , finding an optimal Bayes sequential procedure for the sequential problem is equiv-

alent to constructing an optimal stopping time for the sequence {Ln(c); n ≥ 1}, where

Ln(c) = Yn + cn and

Yn =
aαn

λn

− αn log

(
1 +

a

λn

)
.

Bickel and Yahav (1967, 1968) described methods for finding a family of stopping times

{tc; c > 0} which is APO with respect to {Yn + cn; n ≥ 1}, that is,

lim
c→0

Ytc + ctc
infn E(Yn + cn)

= 1 a.s.

They also showed that this family of stopping times is AO, that is,

lim
c→0

E(Ytc + ctc)

infT E(YT + cT )
= 1,

where the infimum extends over all Fn-stopping times T .

To this case, Jokiel-Rokita (2011) showed that the sequence {Ln(c); n ≥ 1} satisfies

the conditions of Theorem 2.1 in Bickel and Yahav (1967) and Theorem 3.1 in Bickel and

Yahav (1968). Hence Jokiel-Rokita (2011) obtained that under the condition a > −λ, the

family of stopping times {Nc; c > 0} defined by

Nc = inf

{
n ≥

[
4

k

]
+ 1 : Yn ≤ cn

}
, c > 0,
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with [x] denoting the integer part of x, is APO and AO with respect to the sequence

{Ln(c); n ≥ 1}.

The sequential procedure (Nc, θ̂Nc) depends on the known parameters of the gamma

prior. When the parameters of the prior distribution are misspecified or unknown, the

procedure is not appropriate. Hence, we would like to propose a procedure, which is

independent of prior parameters, but at the same time it still possesses some asymptotic

properties. Here we concentrate on a two-stage procedure instead of purely sequential

procedure for the sake of simplicity and economy.

Notice that the result nYn → a2θ2

k
a.s. obtained by Jokiel-Rokita (2011) and S̄n → k

2θ
a.s.

assured by the strong law of large numbers. Now we describe the two-stage procedure. The

procedure, by means of the definition of Nc, takes an initial sample of size n0 = n0(c) =

[δc−γ] + 1 for some δ > 0 and for some 0 < γ < 1
2
, a second sample to bring the sample

size to

Tc = max

{
n0,

[
|a|
√

k

2
√

cS̄n0

]
+ 1

}
.

Then θ can be estimated by θ̂Tc = k/(2(S̄Tc +bTc)), where S̄Tc = 1
Tc

∑Tc

i=1 s(Xi) and bTc = b
Tc

with a fixed constant b > 0. Here the proposed two-stage procedure (Tc, θ̂Tc) is robust in

the sense that it does not depend on the parameters of the gamma prior.

Let the posterior risk of the estimator θ̂n be

Y ∗
n = E(L(θ, θ̂n)|Fn)

=

(
λn

a + λn

)αn

eak/(2(S̄n+bn)) − ak

2(S̄n + bn)
+

aαn

λn

− 1,

where bn = b
n

for all n ≥ 1. Then the performance of the two-stage procedure (Tc, θ̂Tc) will

be measured by its Bayes risk

R(Tc, θ̂Tc) = E(L(θ, θ̂Tc) + cTc) = E(Y ∗
Tc

+ cTc).

The family of the two-stage stopping times {Tc; c > 0} and the two-stage procedure (Tc, θ̂Tc)

are APO and AO for a large class of gamma prior distributions in the following Theorem

2.1 and Theorem 2.2, respectively. The proofs for the two main theorems will be given in

Section 3.

Theorem 2.1. (i) {Tc; c > 0} is APO with respect to {Yn+cn; n ≥ 1} and {Y ∗
n +cn; n ≥ 1}.

(ii)
Y ∗

Tc
+cTc

YNc+cNc
→ 1 a.s. as c → 0.
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Theorem 2.2. If either −λ < a < 0 or 0 < a < b, α ≥ 1, λ > a, then the Bayes risk of

the two-stage procedure (Tc, θ̂Tc) is

R(Tc, θ̂Tc) = inf
T

E{L(θ, θ̃T ) + cT}+ o(
√

c)

=
2|a|√

k

α

λ

√
c + o(

√
c) as c → 0,

where the infimum extends over all Fn-stopping times T .

3. Proof

In order to prove Theorem 2.1 and Theorem 2.2, we will develop some auxiliary results,

whereas the proofs of the lemmas will be omitted in here.

Lemma 3.1. We have
√

cTc → |a|θ√
k

a.s. as c → 0.

Lemma 3.2. We have nY ∗
n → a2θ2

k
a.s. as n →∞.

Lemma 3.3. For any given p > 1, there exists an integrable random variable that domi-

nates (
√

cTc)
p for all sufficiently small c.

Lemma 3.4. For any given p > 1, there exists an integrable random variable that domi-

nates (θS̄Tc)
−p for all sufficiently small c.

Lemma 3.5. For any p > 1,

{(√
cTc

θ

)−p

; c > 0

}
is uniformly integrable.

Lemma 3.6. If p > 0 and either the case a < 0 and λ + ap > 0 or the other case

a > 0, α ≥ 1 and λ > ap ·max{1, λ
b
}, then {epη

Tc ; c > 0} is uniformly integrable, where η
Tc

is between 0 and a(k/(2(S̄Tc + bTc))− θ).

Proof of Theorem 2.1.

It follows from the definition of the APO rule Nc and the result nYn → a2θ2

k
a.s. in

Jokiel-Rokita (2011) that cN2
c → a2θ2

k
a.s. Hence, by Lemma 3.1, we have Tc

Nc
→ 1 a.s.

Then, by the Remark of Theorem 2.1 in Bickel and Yahav (1967), we obtain {Tc; c > 0} is

APO with respect to {Yn + cn; n ≥ 1}.
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Using the fact that Y ∗
n ≥ Yn a.s., we obtain the following inequalities

1 ≤
Y ∗

Tc
+ cTc

infn(Y ∗
n + cn)

≤ YNc + cNc

infn(Yn + cn)
·

Y ∗
Tc

+ cTc

YNc + cNc

.

Hence, by Lemmas 3.1 and 3.2, we have

Y ∗
Tc

+ cTc

YNc + cNc

=
TcY

∗
Tc

+ cT 2
c

NcYNc + cN2
c

· Nc

Tc

→ 1 a.s.

Then, by the results of the APO rule Nc,

Y ∗
Tc

+ cTc

infn(Y ∗
n + cn)

→ 1 a.s.,

that is, {Tc; c > 0} is APO with respect to {Y ∗
n + cn; n ≥ 1}. The part (i) thus follows,

and the proof of the part (ii) is also complete. �

Proof of Theorem 2.2.

It follows from Lemmas 3.1 and 3.3 that

E(cTc) =
√

c
|a|√

k
Eθ + o(

√
c)

=
|a|√

k

α

λ

√
c + o(

√
c).

Using Taylor’s theorem, we obtain

1√
c
L(θ, θ̂Tc) =

1√
c
eη

Tc
a2

2

(
k

2(S̄Tc + bTc)
− θ

)2

= eη
Tc

a2k

4
√

cTc(S̄Tc + bTc)
2

√
Tc(S̄Tc + bTc − k

2θ
)√

k
2θ2

2

,

where η
Tc

is between 0 and a(k/(2(S̄Tc + bTc)) − θ). It follows from the fact η
Tc
→ 0 a.s.,

Anscombe’s theorem and Slutsky’s theorem that

1√
c
L(θ, θ̂Tc)

D−→ |a|√
k
G,

where G is defined by G(y) = EFχ2
1
(y

θ
) for all y ∈ R, and Fχ2

1
denotes the chi-squared

distribution function with one degree of freedom.
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On the other hand, we can rewrite

1√
c
L(θ, θ̂Tc) = eη

Tc
a2θ2

2
√

c(S̄Tc + bTc)
2

(
S̄Tc + bTc −

k

2θ

)2

≤ O(1)eη
Tc

(
1

θS̄Tc

)2 (
θ√
cTc

)2

√cθ2 +

c
1
4

Tc∑
i=1

s(Xi)− k
2θ√

k
2θ2

2 .

It follows from Lemma 2.3 of Hwang (1999) and Lemma 3.3 that for all sufficiently small

c,

(
c

1
4

∑Tc

i=1

s(Xi)− k
2θ√

k
2θ2

)p

is uniformly integrable for any given p ≥ 2. Together with Lemmas

3.4, 3.5 and 3.6, we obtain for all sufficiently small c, 1√
c
L(θ, θ̂Tc) is uniformly integrable.

The conditions are needed here. Hence we have

EL(θ, θ̂Tc) =
√

c
|a|√

k
Eθ + o(

√
c)

=
|a|√

k

α

λ

√
c + o(

√
c).

The proof is thus complete. �
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技轉：□已技轉 □洽談中 ■無 

其他：（以 100 字為限） 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 

 


