第一章 緒論

1.1 研究背景

因應人類對於物質生活的需求日益增加,使得科技日漸昌明但也衍 生出許多的污染問題及對人體及環境有害的汙染物質產生;酚及酚類衍生 物變為其中一例子,由於酚溶於水會產生較強的氫鍵,因此酚及酚類衍生 物會伴隨著水而汙染到水中生物及滲透到土壤中,造成較嚴重之環境汙 染,因此如何處理此類污染物是一重要之課題。

酚主要源於工業廢水的排放,在文獻(Peiró et al., 2001; Iliev, 2002) 中指出:酚及其衍生物主要排放來源有石化燃料業、染整業、紡織業和煉 油業及化學藥品製造業等。雖其毒性較殺蟲劑及重金屬來得低,但其濃度 在廢水中往往都常高達數千 mg L⁻¹,且酚類分子具有羥基(OH 基),使得 酚類化合物都能溶於水中並和水形成氫鍵,能在水中轉移其形態,對於水 體中的環境及生物都會造成極大影響,且酚會與水中的氯形成氯酚類化合 物,使水產生異味,而飲用被酚類汙染的水亦會有致癌之可能。

近年來,高級氧化程序做為汙染去除之方式已被廣泛研究以及應 用,並且具有可處理較大量的汙染物、時間短等優點。而最常廣泛應用之 方式為光催化程序,此程序主要利用UV燈管做為激發光源,將光觸媒價帶 上的電子激發後躍升至傳導帶,形成與污染物進行氧化還原反應以達到破 壞 污 染 物 之 目 的 。 光 觸 媒 材 料 (photocatalyst) 多 半 為 半 導 體 (semiconductor),常使用的光觸媒有二氧化鈦 (titanium dioxide)、氧化 鋅(zinc oxide)、氧化鋁(aluminum oxide)、硫化鎘(cadmium sulfide)等, 因二氧化鈦對紫外光的吸收能力及催化效果較佳,且無毒性,成本也較 低,因此許多學者也都選用二氧化鈦作為主要使用的光觸媒。

本研究選用商用光觸媒二氧化鈦來進行光催化實驗,探討操作參數 對有機污染物礦化之影響,並找出最佳之操作參數。此外,酚經光催化氧 反應氧化後,會先形成鄰-苯二酚 (ortho-dihydroxybenzene, o-DHB)、對-

苯二酚 (para-dihydroxybenzene, p-DHB)及對-苯醌 (1,4-Benzoquinone, 1,4-BQ)等三種主要中間產物,會再進一步氧化形成順式丁烯二酸、反式 丁烯二酸、草酸以及甲酸,最後可礦化形成二氧化碳及水等最終產物。為 確定酚之礦化程度,本研究也著手於反應時之 phenol 礦化程度之監測,以 評估以二氧化鈦對酚之光催化降解之可行性。

1.2 研究目的

本實驗中使用商用光觸媒二氧化鈦對酚進行光催化並尋找最佳化參 數,並監測中間產物形成,最後再與磁性奈米光觸媒進行光催化效果及總 有機碳礦化結果之比較。本研究之目的如下:

- 1. 利用溶膠-凝膠法進行磁性載體及磁性奈米光觸媒合成。
- 2. 進行酚之氣提試驗以確定在光催化降解過程中揮發之影響。
- 3. 建立商用光觸媒二氧化鈦之等溫吸附曲線。
- 4. 探討不同操作條件對酚光催化降解及礦化之影響。
- 5. 建立酚光催化降解之反應動力式。
- 6. 比較不同光源之中間產物。
- 7. 計算最佳操作條件下之量子產率。
- 8. 磁性載體及磁性奈米光觸媒之物化鑑定。
- 9. 商用及磁性奈米光觸媒光催化效率及總有機碳礦化率之比較。

1.3 研究流程

本研究之整體流程圖,如Figure 1.1 所示。

Figure 1.1. Flow diagram in this study.

第二章 文獻回顧

2.1 高級氧化程序總論

高級氧化處理程序(advanced oxidation processes, AOPs)為一種製造氫氧自由基(hydroxyl radical)並利用氫氧自由基進行電子傳遞進而與污染物進行氧化還原反應而達到污染物分解的目的。常見的高級氧化程序有利用UV及過氧化氫(UV+H₂O₂)、Fenten反應(UV+H₂O₂+Fe(II))、光催化反應(UV+TiO₂+O₂)以及結合臭氧及UV或過氧化氫(H₂O₂+O₃+UV、O₃+UV)等不同程序來製造氫氧自由基。

水處理之光化學程序可以分成三類,分別為光氧化 (photo-oxidation reaction)、光還原 (photo-reduction reaction)及直接光降解 (direct photo-degradation)。一般藉由 UV/VIS 照射誘導 (photo-induced reactions) 之光還原反應程序通常包含添加電子至電子激發物種或物質之光化學加 氫作用。至於光起始還原反應 (photo-initiate reduction)通常指的是物質本 身未處於電子激發態。

而高級氧化法中又分為光氧化反應(photo-oxidation reactions)及光催化反應(photo-catalytic reactions)兩種。以下將介紹此兩種不同的光化學反應。

2.1.1 光氧化反應 (photo-oxidation reaction)

光氧化反應指的是一種藉由UV/VIS輻射所驅使之氧化程序,根據 Verhoeven(1996)的研究,可將此反應分為三類,即光導氧化反應 (photo-induced oxidation reactions)、光起始氧化反應 (photo-initiated oxidations)以及光加氧反應 (photo-oxygenation reactions), 說明如下。

2.1.1.1 光誘導氧化反應 (photo-induced oxidation reactions)

光誘導氧化反應,此反應就像是反應物分子M吸收電磁輻射能量照

後,進行光離子化之反應,反應可由三種方式進行(Figure 2.1之反應式 1-3):

- 激發態(excited state)之反應物分子M^{*},再進行電子放射之後將 形成一陽離子自由基M^{·+},如式1。
- 若是光誘導氧化反應在有氧氣環境下使用UV/VIS照射反應物質 M時,如式2。在這樣的情況下,光氧化反應是由電子激發態之 反應物分子M所誘導的。這些反應通常隱含了電子激發態M*將電 子轉移至基態氧分子。
- 此外,吸收VUV能量後並藉由中間體氧原子所進行之光化學反應 也屬於光誘導氧化反應,如式3。

2.1.1.2 光起始氧化反應 (photo-initiated oxidations)

光起始氧化反應中,所利用的是吸收能量而激發的輔助氧化劑分子 N,而不是一般光化學反應中的反應物M或氧分子。輔助氧化劑分子N吸收 能量後進而形成反應性之過渡物種(reactive species)如氫氧自由基等,並 在有氧氣環境下藉由該反應性物種與反應物M進行氧化還原反應,如式4。 高級氧化程序一般都是利用此形式之光氧化反應,常見的氧化輔助劑N如 過氧化氫(H₂O₂)或臭氧(O₃)等。此外水分子吸收VUV範圍之能量後也 會形成電子激發態。

2.1.1.3 光加氧反應 (photo-oxygenation reactions)

光加氧反應是在光照環境中將氧分子中的一個或兩個氧原子引入化 合物中,此種反應通常較為複雜並有互相競爭之反應途徑,不同反應途徑 所產生之光加氧產物也不相同,主要分為三種類型,分別說明如下:

 Type I產物的形成是藉由來自於光化反應產生之自由基或自由基 離子與基態分子氧(triplet ground state oxygen,三態氧,³O₂)反 應所產生之中間超氧自由基(M-O-O[•])。產物的分子結構通常與 Type II的不同,如式5。

- 2. Type II則是指敏化光氧化劑 (photosensitizer) 藉由其所產生的單 態氧 (singlet state oxygen, 1O₂),進行光加氧反應,如式6。與 三態氧比較,單態氧可能因空軌域較多,其他電子較易填進去, 本身具親電子特性。而三態氧為典型的雙自由基,因此Type I與 Type II所產生的產物大不同。很多光敏化劑都可以用來產生單態 氧,最常用的是有機染料分子 (organic dye),該分子在反應中僅 做為電子或能量的轉移劑,通常不會在光反應中消耗。
- Type III是指過氧陰離子自由基(superoxide radical anions, O₂^{••})
 與分子M進行反應,如式7。其中過氧陰離子自由基之化學反應 性視其鹼度、氧化/還原性質、及親核性質而定。

經由上述介紹可知大部份之高級氧化程序皆依賴光起始氧化反應 (見Figure 2.1,式4)。但是,在特殊的情況下,使用AOP處理空氣中或是 水中之污染時,光誘導氧化反應及光加氧反應之處理效果可能比光起始反 應要好得多。

2.1.2 光催化反應

廣義光催化反應定應中可分為兩類:光產生催化反應(photogenerated catalysis)及催化光解反應(catalyzed photolysis)兩部分,分別敘述如下。

2.1.2.1 光產生催化反應 (photogenerated catalysis)

光產生催化反應之光觸媒及反應物分子皆處於基態(Figure 2.2,情況1),而在催化的過程中會放出能量,是一種自然熱力現象。觸媒乃包含前驅物分子M所進行之光反應所產生的。當觸媒經由光照反應產生後,此反應則不再需要光源照射。觸媒在催化過程後會再生,且加速了動力上不利性反應之進行並形成特定產物的速度。因此,此類的反應乃以為"入射光子數目進行催化",也就是反應物分子M吸收光子之後,以特定量子產率製造觸媒分子。觸媒進行催化反應時具有特定的"轉換率"(turn over number, TON),而傳統TON是一個催化循環中轉換率的量測值。在光產生

催化中,產物的量子產率 (Φ_{product}) 值會大於1,這也證實了光產生催化反應是一種光導自由基連鎖反應。

2.1.2.2 催化光解反應 (catalyzed photolysis)

在催化光解反應中,觸媒分子(Figure 2.2,情況2)及基質分子(Figure 2.2,情況3)在光催化反應過程中處於電子激發態。處於電子激發態之觸 媒分子是來自於觸媒吸收光所產生的(Figure 2.2,情況2),且基質經由催 化反應形成產物的反應與電子激發態物種之濃度相關,此類反應屬於非光 子催化反應,因此須要連續的光源照射才得以維持催化循環,反應之量子 產率之值會等於或小於1。二氧化鈦則是此類反應中最被廣泛使用的光觸 媒,說明了觸媒必須受光激發後形成具有反應性的電子電洞對。結合 UV/VIS輻射及適當的光觸媒所進行的基質氧化反應通常被稱為光催化氧 化(photo-catalytic oxidation)。

Figure 2.1. Nomenclature of photooxidaiton reactions (Verhoeven, 1996). The term "photo" denotes the wavelength ranges of VUV, UV and VIS. M and N represent substrate molecules, Sens = photosensitizer.

Figure 2.2. Nomenclature used in photocatalysis. (Kisch and Hennig, 1983)

2.2 光觸媒 (photocatalyst)

理想光觸媒應具有化學穩定性、成本低、無毒性及具有較高的光反 應性。常用之光觸媒如二氧化鈦(titanium dioxide, TiO₂)、氧化鋅(znic oxide, ZnO)、三氧化鎢(tungstic oxide, WO₃)、硫化鎘(cadmium sulfide, CdS)、 二氧化錫(tin oxide, SnO₂)及硫化鋅(znic sulfide, ZnS)等。由於WO₃、 CdS及ZnS等半導體材料光催化活性不如ZnO及TiO₂,因此較少人應用 此類光觸媒。氧化鋅雖然和二氧化鈦一樣具有較寬之能隙(3.2 eV),但在 溶液中進行光催化時,ZnO 會不穩定而發生光腐蝕而降低氧化鋅光觸媒之 活性。此外,SnO₂雖然能隙為3.5 eV,但需要更強的能量才可激發而進行 光催化降解反應(Muruganandham and Swaminathan, 2004)。

半導體材料具有導體及絕緣體之特性,只要能給予激發能量,電子 就能從價帶(valance band)激發躍升至傳導帶(conductive band)且具有 強還原力,而在價帶的電洞則有強氧化力(Hidaka *et al.*, 2003),簡單的光 觸媒反應機制見 Figure 2.4。光觸媒(SC Particle)受到光源(UV/VIS Radiation)照射並吸收大於能隙(E_{bg})之能量(hv)後,價帶之電子(Electron, e⁻)受到激發而躍升至傳導帶,價帶上會產生一個缺少電子的電洞(Electron hole, h⁺)。傳導帶上的電子和價帶上的電子分別擴散至觸媒表面進行表面 捕捉(Surface trap),或是在觸媒晶格中利用晶格捕捉(Lattice trap)方式 分別與反應物分子(A_{ads}及 D_{ads})接觸進行還原及氧化反應達到污染物分 解之目的,因此可應用在環境污染物處理上(Granados *et al.*, 2005; Tryba *et al.*, 2006)。

2.2.1 二氧化鈦簡介及使用情形 (Titanium Dioxide)

二氧化鈦廣泛應用於工業顏料中,鈦白為白色顏料最基本之材料, 可用於塗料、繪具、印刷油墨、醫藥品等。在牙膏、化妝品及食物中的人 工色素中也有二氧化鈦的添加。

二氧化鈦 (Titanium Dioxide, TiO₂) 為 N 型半導體, 是半導體材料

中具有較大之能隙(Band gap energy)者,如 Figure 2.3 所示,約為 3.2 eV。 並具有高化學穩定性、反應過程中無毒性、製造容易以及價格便宜(Xu et al., 2005; Kryukova et al., 2007)等優點,為最被廣泛應用於光催化材料者, 例如燃料電池(Hara et al., 2001)、能源儲存(Peng et al., 2000)、太陽能之 轉換(Vichi et al., 2000)和環境污染物破壞(Florentina et al., 2007)。

學者 Serpone et al. (1995)利用二氧化鈦(P-25, Degussa)、氧化鋅、 氧化鎬、硫化鎘、二氧化錫及氧化鐵等多種觸媒及共觸媒的方式對酚、2-氯酚及五氯酚進行光催化降解的研究,研究成果顯示 P-25 在不同實驗條件 下獨自降解污染物時,能力優於其他光觸媒。此外, Sun et al. (2005)利 用三種不同商用光觸媒(P25、HK及HT0100)對六價鉻離子及4-氯酚類 進行光催化測試,研究結果顯示 P25 具有最佳的催化及總有機碳礦化效 果。爾後許多學者(Kartal et al., 2001; Chiou et al., 2008; Tasbihi et al., 2007) 亦選用 P-25 光觸媒針對有機污染物光催化降解之研究,因此選用 P25 作為 本研究之商用光觸媒, Table 2.1 為 P25 二氧化鈦之物化特性。

由於傳統二氧化鈦僅能利用短波之紫外線能量(λ<380 nm)作為 激發光源進行光催化降解,而太陽光中僅有 5%為紫外線之範圍。Figure 2.5 為不同波長之光源;UV-C 波段範圍波長為 200-280 nm,UV-B 為 280-315 nm,UV-A 為 315-380 nm。波長超過 380 nm 為可見光部分,範圍為 380-780 nm,波長超過 780 以上則為紅外光部分 (infrared)。為了能夠更加充分利 用其他波長的能量,許多學者亦著手於可吸收可見光之改質型二氧化鈦材 料之研發。改質方式以摻雜金屬元素、非金屬元素、表面敏化等三大方向 進行,分別敘述如下。

改質之第一方向是以掺雜過渡金屬及貴金屬離子為主。有學者(Choi et al., 1994)使用 21 種金屬離子(鐵、鉬、釩、鈷、鎳、錯等)掺雜於二 氧化鈦觸媒中。研究結果中顯示,以 Fe³⁺、Mo⁵⁺、V⁴⁺掺雜之二氧化鈦其光 催化能力優於未摻雜之觸媒,並且可延長電子-電洞對再結合速率。此外, 也指出利用金屬離子摻雜之光觸媒進行光催化降解時,其活性決定於摻雜

在觸媒上之金屬離子與觸媒能否同時利用電子電洞對進行汙染物之捕捉,因為摻雜於觸媒上之金屬,可做為電子或電洞之捕捉者,提供更多活性捕捉位置,也較易吸收長波能量激發而進行光催化降解反應。而後有許多學者使用鐵(Adań et al., 2006; Nahar et al., 2006)、鉻(Fan et al., 2008)、 釠(Yang et al., 2004)等過渡金屬元素及金(Centeno et al., 2008)及鉑 (Ohtani et al., 1997; Park et al., 2006; Kryukova et al., 2007)等貴金屬元素 作為摻雜元素,在可見光下對有機污染物進行光催化降解皆有良好去除效 果

第二方向係利用非金屬元素進行摻雜改質,因摻雜金屬之觸媒會隨 著反應次數增加導致熱穩定性降低(Choi et al., 1994)並且會因電子結合 中心結合能力增加而降低活性(Yamashita et al., 1998)。因此有學者利用碘 (Hong et al., 2005)、氮(Asahi et al., 2001)、碳(Yang et al., 2004)、硫 (Umebayashi et al., 2002)、氟(Yu et al., 2002)、氯及溴(Luo et al., 2004) 等作為摻雜元素,改質後之觸媒可利用長波(λ>400 nm)之可見光作為 激發光源並有效對汙染物酚進行光催化降解反應,而在紫外線及可見光 下,對酚及總有機碳礦化上皆有90%之去除率及礦化率。

第三方向則以使用光敏感性高之敏化染劑,將感光性高染劑分子鍵 結在觸媒表面上進行表面敏化之修飾及改質,因染劑分子可吸收可見光能 量,激發染劑分子並產生電子進而轉移至二氧化鈦之傳導帶上,在二氧化 鈦上之電子可與氧分子結合而形成超氧基陰離子或與污染物進行還原反 應而達到光催化降解之作用。較常使用敏化染劑有酞花青素、酞花青-M(M 為金屬元素,如銅、鋅及鐵等)等染劑。有學者(Iliev et al., 2002)以酞 花青銅染劑作為表面敏化劑對商用光觸媒加以改質後,可利用可見光能量 成功對酚進行光催化降解。

2.2.2 晶體種類介紹

常見之二氧化鈦礦相分別為銳鈦礦相(Anatase)、金紅石相(Rutile)

以及板鈦礦相(Brookite)三種,以下將分別介紹三種礦相。

- (1) 銳鈦礦相:自然界中常伴隨其他鈦類礦石出現,為正方晶系、黑灰色 或深藍色、透明至半透明之礦物,無輻射性。在光催化反應中,具有 較高之活性,可接收紫外光源激發價帶電子並躍升至傳導帶進而達到 光催化效果。
- (2) 金紅石相:又稱尖晶石,於高溫高壓環境下出現,常見於火成岩及片 麻岩中之副礦物,為四方晶系、紅棕色、透明至半透明之礦物,不具 輻射性,在光催化反應中其活性較銳鈦礦相低。可用於提煉鈦和製造 鈦白顏料等,陶瓷工業中用作栗色顏料、無線電工業中用作檢波器。
- (3) 板鈦礦相:為斜方晶系,呈褐色、紅棕色,半透明至不透明之礦物。 在光催化反應中不具有任何活性。

Synonyms	Titanium dioxide
Chemical formula	TiO ₂
Particle size	25 nm
BET surface area	$50 \text{ m}^2 \text{ g}^{-1}$
Density (water = 1)	$3.9 \text{ g cm}^3 (20^{\circ}\text{C})$
pH _{pzc}	6.25
Band gap	3.2 eV
Crystalloid phase	Anatase 75%, Rutile 25%

Table 2.1 Physicochemical properties of Degussa P-25 titanium dioxide

Figure 2.3. Diagram depicting the redox potentials of the valence and conduction bands and the band gap energies for various semiconductor particulates estimated at pH 7. (Serpone *et al.*, 1995)

Figure 2.4. Schematic representation of some photophysical and photochemical processes in and on a semiconductor particle (SC). E_{bg} : band gap energy; VB: valance band; CB: conduction band; h^+ : electron hole; e⁻: photoelectron in the conduction band; LT: lattice trap; ST: surface trap; A_{ads} , D_{ads} : chemical species adsorbed on the surface of the SC particle with A being an electron acceptor and D an electron donor. (Böttcher 1991 and Serpone 1996).

Figure 2.5. Classification of electromagnetic radiation in the wavelength range below λ of 1200 nm as bands with specific names, and the interaction with molecules M (VUV: vacuum-UV).

2.3 酚及其副產物

在自然水體中酚的濃度極低,主要汙染來源多為工業廢水的排放。 文獻(Iliev, 2002)中指出酚及其衍生物主要排放來源有石化燃料業、染整 業、紡織業和煉油業及化學藥品製造業等。酚及其衍生物和殺蟲劑及重金 屬比起來毒性較低。

酚類化合物中以苯酚毒性最大,煉焦、生產煤氣、煉油等行業所排 廢水中以苯酚為主。酚又稱為石碳酸,此類化合物接觸到人體有三種途 徑,有吸入、食入和接觸,若不慎吸入或食入大量的酚會造成昏迷和死亡; 皮膚接觸酚液後,可引起嚴重灼傷,局部呈灰白色,起皺、軟化,繼而轉 化為紅色、棕紅色以致黑色,因其滲透力強,可使局部大片組織壞死,因 此本研究將酚類化合物列為目標處理汙染物。Table 2.2 為酚的物理化學特 性資料表。酚之分子量為94.11 g mol⁻¹,外觀為透明無色或是淡粉色,未調 整pH值之酚溶液酸鹼值為6。酚之亨利常數為3.33×10⁻⁷ atm m³ mol⁻¹,不會 因氣提作用而容易揮發。

根據行政院環保署水汙染防制法所提及,一般事業、污水下水道系統及建築物污水處理設施之廢污水放流水中,酚含量需低於1.0 mg L⁻¹,而 飲用水標準針對飲用水源則規定必須低於0.001 mg L⁻¹;而在土壤及地下水 汙染整治法中則規定第一類(飲用水水源保護區之地下水)必須低於0.014 mg L⁻¹,第二類(第一類以外之地下水)低於0.14 mg L⁻¹;海洋放流水則需 低於1 mg L⁻¹(Table 2.3)。

學者(Leyva *et al.*, 1998; Peiró *et al.*, 2001; Ortiz-Gomez *et al.*, 2007) 文獻中提及酚經由光催化分解後會形成主要三種中間產物,分別為鄰-苯二 酚(ortho-dihydroxybenzene, o-DHB)、對-苯二酚(para-dihydroxybenzene, p-DHB)及對-苯醌(1,4-benzoquinone, 1,4-BQ)。

鄰-苯二酚又名兒茶酚其 CAS 號碼為 120-80-9, 化學式為 C₆H₄(OH)₂,為主要用於紡織業、染整業、化學製造業及脂肪及油類工業 上,也會用於化妝品及染髮劑中。

對-苯二酚為鄰-苯二酚之同分異構物,是三種化合物中還原性最強的 一種,極易被氧化成為對-苯醌,此現象也在文獻中被證明(Leyva *et al.*, 1998)。此物種主要用於照相顯影劑、橡膠防老劑、單體聚阻劑及油脂抗 氧劑等用途。

對-苯醌化學式為 C₆H₄O₂,本身具有毒性,但在酚的光催化過程中形成量較少,主要可做為製備對-苯二酚、染料及氧化劑之原料。而文獻 (Ortiz-Gomez *et al.*, 2007)中也提及在酚光催化反應時所形成之副產物還 有 1,2,4-三羧基苯酚(1,2,4-trihydroxybenzene, 1,2,4-THB)及甲酸(Formic acid)、草酸(Oxalic acid)、順式丁烯二酸(Maleic acid)及反式丁烯二酸 (Furmaic acid)等四種酸類,Table 2.4列出酚經光催化降解後可能形成之 中間產物。Table 2.5 為國外學者以光催化降解酚之實驗參數整理結果。

Table 2.2 Physicochemical properties of phenol (Toxicology Data Network	ς,
http://toxnet.nlm.nih.gov/, 2007)	

Synonyms	Carbolic acid
Common name	phenol
Chemical structure	OH
Molecular weight	94.11
Appearance	colorless to light pink crystalline
	solid
Vapor pressure at 25°C	0.35 mm Hg
рН	6.0 (aqueous solution)
pKa at 25℃	10
Henry's Law constant	3.33×10^{-7} atm m ³ mol ⁻¹ at 25°C ^a
Solubility	
• Water at 25° C	90 g L ⁻¹
• Benzene	83 g L^{-1}

a. Gaffney et al., 1987.

法規	適用對象	限制項目	最大限值	單位
飲用水源水	地面水體或地下水體	酚類	0.01	mg L ⁻¹
質標準	作為自來水及簡易自			
	來水之飲用水水源者			
飲用水水質	影響適飲性物質	酚類	0.001	$mg L^{-1}$
標準				
放流水標準	事業、污水下水道系統	酚類	1.0	$mg L^{-1}$
	及建築物污水處理設			
	施之廢污水共同適用			
地下水污染	第一類:飲用水水源水	總酚	0.014	$mg L^{-1}$
管制標準	質保護區內之地下水			
地下水污染	第二類:第一類以外之	總酚	0.14	$mg L^{-1}$
管制標準	地下水			
海洋放流水	甲類	酚類	1.0	$mg L^{-1}$
標準				
海洋放流水	乙類	酚類	1.0	mg L ⁻¹
標準				

Table 2.3 The limitation of phenol of various environmental laws (http://www.epa.gov.tw/index.aspx)

Name	Acronyms	CAS	Chemical structure
		number	
Ortho-dihydroxybenzene	o-DHB	120-80-9	ОН
Para-dihydroxybenzene	p-DHB	123-31-9	НООН
1,4-benzoquinone	1,4-BQ	106-51-4	00
1,2,4-trihydroxybenzene	1,2,4-THB	533-73-3	НО ОН
Formic acid	MeAc	64-18-6	О С——ОН
Oxalic acid	OxAc	144-62-7	О НО — С — С — ОН
Maleic acid	MeAc	110-16-7	HO ₂ C CO ₂ H
Furmaic acid	FuAc	110-17-8	HO ₂ C

Table 2.4 Names and acronyms employed in the text and chemical structure of chemical species involved in this study

Authors	Experimental conditions	Objectives of study	Optimal parameters
Wei and Wan	Lamp wavelength: < 300 nm	Heterogeneous	Dose of catalyst: 1-3 g L ⁻¹
(1661)	Species of catalyst: TiO ₂ (anatase)	photocatalytic	pH: 6.5
	Temperature: 35 °C	oxidation of phenol	Flow rate: 2 L min ⁻¹
	pH condition: $1 \sim 13$	with Titanium dioxide	Concentration of NaOH: 1.5 N
	Atmospheric conditions: O ₂	powders	Concentration of phenol: $0-500 \text{ g m}^{-3}$
Serpone et al.	Lamp wavelength: < 355 nm	Exploiting the	Dose of catalyst: 1.6 g L^{-1} TiO ₂ and
(1995)	Species of catalyst: TiO ₂ (anatase), CdS, ZnO,	interparticle electron	TiO_2/CdS
	SnO_2 , WO_3 , WS_2 and Fe_2O_3	transfer process in the	pH: natural for phenol
	Temperature: 35 °C	photocatalysed	Concentration of phenol: 23.5 g m^{-3}
	pH condition: 5.8, 8.2, 12.2	oxidation of phenol,	
	Air conditions: O,	2-chlorophenol and	
		pentachlorophenol:	
		chemical evidence for	
		electron and hole	
		transfer between	
		coupled	
		semiconductors	

Authors	Fxnerimental conditions	Objectives of study	Ontimal narameters
Peiró et al.	Lamp wavelength: < 355 nm	TiO ₂ -photocatalyzed	Dose of catalyst: 1.5 g L ⁻¹
(2001)	Species of catalyst: P-25 TiO ₂	degradation of phenol	pH: 3
	Temperature: 25°C	and ortho-substituted	Temperature: 25 °C
	pH condition: 3, 4, 6, 8 and 10	phenolic compounds	Concentration of phenol: 94 g m^{-3}
	Air conditions: O ₂		
Chitose et al.	Lamp wavelength: γ -irradiation, electron beam	Radiolysis of aqueous	Dose of catalyst: 10 g L ⁻¹
(2003)	irradiation and UV irradiation ($\lambda < 300 \text{ nm}$)	phenol solutions with	pH: 3
	Species of catalyst: TiO ₂	nanoparticles.	Temperature: 25 °C
	Temperature: natural	1. Phenol degradation	Concentration of phenol: 94 g m ⁻³
	pH condition: 4.1 and 6.7	and TOC removal in	Irradiation resource: electron beam
	Air conditions: air	solutions containing	
		TiO ₂ induced by UV,	
		c-ray and electron beams	
Sun <i>et al</i> .	Lamp wavelength: $< 320 \text{ nm}$	Role of platinum	Dose of catalyst: 0.25 g L ⁻¹
(2003)	Species of catalyst: Pt deposited P-25 and	deposited on TiO ₂ in	Percentage of Pt: 1 wt%
	UV100 TiO ₂	phenol photocatalytic	Temperature: 12.5 °C
	Temperature: 12.5 °C	oxidation	Concentration of phenol: 100 g m ⁻³
	pH condition: natural		
	Air conditions: O ₂		

Authors	Experimental conditions	Objectives of study	Optimal parameters
Granados et al.	Lamp wavelength: $< 355 \text{ nm}$	Photocatalytic degradation	Dose of catalyst: 1 g L ⁻¹
(2005)	Species of catalyst: P-25, Pt/TiO ₂ , TcPcM/TiO ₂ ,	of phenol on TiO ₂ and	Percentage of Pt: 0.2 wt%
	TcPcM/TiO ₂ /Pt (M=Co and Zn)	TiO ₂ /Pt sensitized with	Optimum of dye: TcPcCo
	Temperature: 20 °C	metallophthalocyanines	Temperature: 20 °C
	pH condition: natural		Concentration of phenol: 20 g m^{-3}
	Air conditions: O ₂		
Barakat <i>et al</i> .	Lamp wavelength: $< 365 \text{ nm}$	Hydrogen	Dose of catalyst: 10 g L ⁻¹
(2005)	Species of catalyst: DuPont and P25 TiO ₂	peroxide-assisted	pH: 7
	(anatase)	photocatalytic oxidation of	Concentration of H_2O_2 : 10 ⁻² mol
	Temperature: 25 °C	phenolic compounds	L ⁻¹
	pH condition: 7		Concentration of phenol: 94 g m^{-3}
	Air conditions: O_2 and N_2		Atmospheric condition: O ₂
Zhang <i>et</i>	Lamp wavelength: < 253.7 nm	Pathways and kinetics on	Dose of catalyst: 10 g L ⁻¹
al.(2006)	Species of catalyst: TP2 TiO ₂	photocatalytic destruction	pH: natural
	Temperature: natural	of aqueous phenol	Concentration of phenol: 50 g m^{-3}
	pH condition: natural		Atmospheric condition: air
	Air conditions: air		

Authors	Experimental conditions	Objectives of study	Optimal parameters
Silva <i>et al</i> .	Lamp wavelength: $< 366 \text{ nm}$	Effect of key operating	Dose of catalyst: 0.75 g L ⁻¹
(2007)	Species of catalyst: P-25, UV-100, PC-500,	parameters on phenols	pH: 8
	A-TiO ₂ , TA-K-1 and TR-HP-2	degradation during	intensity of irradiation: 400 W
	Temperature: 32 °C	H ₂ O ₂ -assisted TiO ₂	Concentration of H_2O_2 : 4 g m ⁻⁵
	pH condition: 3.5. 6. 8	photocatalytic treatment of	Concentration of phenol: 163 g
	Air conditions: air	simulated and actual olive	m ⁻³
		mill wastewaters	Atmospheric condition: air
Ortiz-Gomez et	Lamp wavelength: $< 365 \text{ nm}$	Photocatalytic oxidation of	Dose of catalyst: 0.14 g L ⁻¹
al. (2007)	Species of catalyst: P25 TiO ₂ (anatase)	phenol: reaction network,	pH: 3.2
	Temperature: 30 °C	kinetic modeling, and	Concentration of phenol: 20-50 g
	pH condition: 3.2	parameter estimation	m ⁻³
	Air conditions: air		Atmospheric condition: air
			Flow rate: 6 L min ⁻¹

Authors	Experimental conditions	Objectives of study	Optimal parameters
u <i>et</i>	Lamp wavelength: $253.7 \sim 577$ nm	Influence of operation	Dose of catalyst: 1 g L ⁻¹
008)	Lamp intensity: 20, 100 and 400 W	parameters on	Concentration of H_2O_2 : 4.08 g m ⁻³
	Species of catalyst: P25	photocatalytic degradation	pH: 6.8
	Temperature: 25 $^{\circ}$ C	of phenol in UV/TiO ₂	lamp intensity: 400 W
	pH condition: $2.45 \sim 13.0$	process	Concentration of phenol: 12.22 -
	Air conditions: air		94.94 g m ⁻³
			Atmospheric condition: air
et al.	Lamp wavelength: $\lambda > 410 \text{ nm}$	Visible-light-driven	Dose of catalyst: 1 g L ⁻¹
8)	Lamp intensity: 150 W	titania/silica photocatalyst	Optimal catalyst:
	Species of catalyst: P25, B/Fe/TiO ₂	co-doped with boron and	B(0.01)/Fe(0.01)/TiO ₂ -600
	Temperature: 30 °C	ferrum	Optimal calcinations temperature:
	calcination condition: 500-700 °C		200°C
	Air conditions: air		Concentration of phenol: 50 g m^{-3}
			Atmospheric condition: air

2.4 光催化實驗影響因子

光催化系統中,影響處理之重要因子分為兩大類,一是外在因子 (extrinsic parameters),另一則為內在因子 (intrinsic parameters)。外在因 子有氣態環境、觸媒劑量、光源以及溶液 pH 值等,而內在因子則為觸媒 晶相、比表面積以及觸媒顆粒之大小,以下分別進行探討。

2.4.1 外在因子 (extrinsic parameters)

2.4.1.1 氣態環境

由於光催化反應中,氧氣的存在對光催化降解效率有很大的影響, 許多光催化降解有機污染物的文獻在實驗過程中均是以有氧環境下進行 實驗。有文獻 (Sun et al., 2005)利用三種不同的商用二氧化鈦對六價鉻進 行不同氣態的光催化反應,結論顯示出在氧氣環境下的效果優於氮氣以及 不曝氣的環境。因為氧氣的存在會與受激發後的電子結合生成具有強反應 性的超氧基陰離子。因此氧氣在光催化反應中扮演著電子傳遞的重要角 色。而在後續的文獻中 (Barakat et al., 2005; Chiou et al., 2008) 也應證了 氧氣的重要性。

2.4.1.2 輔助劑

學者額外添加過氧化氫(H₂O₂)形成反應性物種如'OH 來提升光催 化降解效果。研究結果顯示,在任何氣態環境中過氧化氫的存在皆可提升 光催化效果;過氧化氫濃度的增加,在反應過程中所生成具有強氧化能力 的氫氧自由基量也隨之增加,進而提升了反應的速率及光催化降解的效率 (Barakat *et al.*, 2005; Hu *et al.*, 2006; Silva *et al.*, 2007; Rupa *et al.*, 2007)。

2.4.1.3 光源環境

由於光觸媒必須經由吸收光源輻射的能量來進行催化分解的反應,因此光源能量的強度則是格外的重要,而商用二氧化鈦則僅能吸收紫 外線範圍(激發波長小於380nm)能量進行分解。有學者利用紫外線、γ 射線以及電子束做為激發光源對酚進行光催化降解測試。實驗結果顯示在 無光觸媒存在時,電子束及γ射線對酚都具有良好的光分解能力,但若以 總有機碳水質項目作為指標時,則是以電子束激發 TiO₂ 後具有最佳之礦化 能力 (Chitose *et al.*, 2003)。

也有學者(Hong et al., 2005; Zhu et al., 2007; Ling et al., 2008)利用 可見光之光源進行光催化降解實驗。研究結果顯示,在可見光下,未改質 光觸媒之光催化降解活性則較低。而分別利用摻雜碘(Hong et al., 2005)、 鐵(Zhu et al., 2007)及硼和鐵共摻雜(Ling et al., 2008)改質後光觸媒在 全波長光譜上有明顯紅移現象(red shift),並在酚之光催化降解上皆有明 顯的光催化降解效果,並優於未改質之光觸媒。

2.4.1.4 溶液 pH 值環境

隨著在不同 pH 值溶液環境中,光觸媒表面之電性也不相同,進而 影響到光催化效果。許多研究中指出,在不同 pH 環境下對酚進行光催化 實驗,酸性環境中光催化降解及礦化皆有最佳效率,而在鹼性環境下效率 則最差 (Peiró *et al.*, 2001; Adán *et al.*, 2007; Lin et al., 2007; Ortiz-Gomez *et al.*, 2007; Tasbihi *et al.*, 2007)。

2.4.1.5 觸媒劑量

在光催化實驗中添加光觸媒劑量的多寡也影響到最終光催化效 果。學者們分別嘗試不同光觸媒劑量,皆發現在某一特定觸媒劑量時 有最佳分解效果;學者(Barakat *et al.*, 2005; Chiou *et al.*, 2008)提出超 過特定劑量時,會因劑量高而提升濁度產生遮蔽效應(Shielding effect) 降低了觸媒可吸收的能量,進而降低了光降解速率。

2.4.2 內在因子 (intrinsic parameters)

2.4.2.1 光觸媒晶相 (crystalloid phase)

許多學者 (Sun et al., 2005; Kryukova et al., 2007; Mishra and

Srivastava, 2008) 致力於應用二氧化鈦於有機汙染物的光降解結果中發現,最具催化效果的晶相為銳鈦礦相。但也有學者(Sun et al., 2005) 測試後發現,利用 100%之銳鈦礦相二氧化鈦光觸媒之催化效果不如有金紅石相及銳鈦礦相之混晶二氧化鈦觸媒。是因為金紅石相有較低之能隙,容易受能量較低之光激發後將電子傳遞至銳鈦礦相,並且可以降低電子電洞對再結合之速率。

2.4.2.2 比表面積 (specific surface area, S_A)

觸媒顆粒大小對光催化活性的影響在於觸媒的比表面積。若觸媒的 尺寸越小,則會有較大的比表面積,預期會有較佳的反應性。因為表面積 增加時,會增加觸媒表面活性位置,同時也增加了對汙染物的吸附量及吸 附能力。但文獻(Sun et al., 2005)中指出在可見光下使用具較高比表面積 之HK 光觸媒,其對六價絡及 4-氯酚之光降解能力卻不如混晶相且具較低 S_A之 P-25 光觸媒。HK 觸媒本身晶相為 100%之銳鈦礦相,而 P-25 為 75 %銳鈦礦及 25%金紅石相,因此 P25 中的金紅石相(ebg=3.0 eV, Diwald et al., 2004)之電子吸收到可見光而受到激發,並將電子轉傳遞至能階較低的銳 鈦礦相晶格並被捕捉進而在傳遞至六價鉻離子上(Hurum et al., 2003)。而 金紅石在可見光下可形成電子電洞對,而電子會轉移至六價絡上進行還原 反應,因此相同組成之觸媒,其比表面積與光催效果不一定成正比。此外, 研究(Ao et al., 2008)中指出當觸媒經熱處理程序時,材料比表面基會降 低,且觸媒晶體變大以及礦相會轉,但其中以礦相轉換對觸媒光催化的特 性具有較大之影響。

2.5 磁性材料介紹

近年來由於高級氧化程序已被廣泛利用於污染物去除中,而在處理 程序上觸媒使用後能否再利用則關係著處理技術的成本。由於傳統的光觸 媒在進行光催化降解後,回收作業上僅能利用離心方式將觸媒收集下來, 但此方式卻會造成額外成本之支出。為了將光觸媒使用後回收再利用,有 許多學者著手於將光觸媒批覆於不同的基材上,如沙、玻璃珠、矽膠、活 性碳纖維及石英光學纖維等。但是因為將觸媒批覆在基材來處理水溶液之 污染物時,觸媒和光接觸面積會減少,而觸媒表面積與溶液體積之比值會 降低,致使光觸媒降解效果不佳。但將觸媒批覆於磁性載體或是光反應性 氧化物上時則不會有此現象發生,因此也有許多學者著手於磁性奈米材料 的開發 (Shchukin *et al.*, 2002)。

磁性分離技術是利用磁場作用的驅動力,將帶有磁性的物質從非磁 性混合物質中利用磁性吸引力分離出來的一種技術。理想的磁性分離材料 應該具有超順磁性(superparamegnetic)、高比飽和磁化度、化學穩定性好、 良好機械強度、製作方便且成本低等特性。而超順磁性之材料在室溫下且 無磁場作用力時,材料本身無殘磁性,因此不會產生材料團聚或聚集之情 形,而回收再使用後也可均勻分散於溶液中,而近年來已有多篇研究著手 磁性分離材料的研發及應用。

學者(Beydoun and Amal, 2002)利用氧化鐵(Fe₃O₄)為磁性核心, 並於外層批覆二氧化鈦來作為磁性光觸媒。。該研究指出以空氣鍛燒時, 材料本身除了有 Fe₃O₄的鐵磁礦(magnetite),尚會因升溫而氧化為 Fe₂O₃ 之磁赤鐵礦(maghemite, γ -Fe₂O₃)及赤鐵礦(hematite, α -Fe₂O₃)。而根據 磁力特性的結果顯示,以鐵磁礦的飽和磁化度 84 emu g⁻¹,而 Fe₂O₃之磁赤 鐵礦為 74 emu g⁻¹,赤鐵礦則為 0.57 emu g⁻¹,顯示溫度會影響到材料的飽 和磁化度及磁力特性。而在氮氣下鍛燒之材料,僅有在 550°C 時所形成之 赤鐵礦之訊號,並與氧氣下鍛燒之材料相比,飽和磁化度較低之赤鐵礦形 成量較少,較能保有較多之磁力特性。

另外其他學者(Ao et al., 2008)利用氧化鐵(γ-Fe₂O₃)為磁性核心, 並將活性碳加入氧化鐵膠體中,再以四丁基鈦醇鹽(TBOT)進行二氧化 鈦合成而批覆於磁性活性碳表面。並於製程結束後,以真空旋轉乾燥機於 75℃下進行乾燥,並未以高溫鍛燒,而在 XRD 結果中顯示此方式合成之 二氧化鈦晶相為具光催化活性的銳鈦礦相。文中提及活性碳的存在,在光 催化反應時會將污染物吸附後並濃縮而轉移到受光激發的二氧化鈦後被 快速光催化降解所產生協同效應而促進光催化效果。

此外另一學者(Xu et al., 2008)也使用低溫方式製備磁性光觸媒, 與其他學者(Beydoun and Amal, 2002)進行比較,發現其他研究中所製備 之經高溫鍛燒磁性光觸媒其光催化活性都較商用觸媒低,而以低溫製備的 磁性觸媒光催化活性卻優於商用觸媒。該學者提出是因為觸媒經高溫鍛燒 後,會減少材料表面含有活性的官能基量如OH-,並且降低了比表面積而 降低了吸附污染物的能力以致於光催化降解較果較差。該文中也指出,若 是僅以二氧化鈦批覆於氧化鐵載體上,在光催化降解時磁性核心之鐵離子 會躍升至表面的二氧化鈦層,進而改變了原始二氧化鈦的表面電性,而會 使二氧化鈦表面的官能基物種有所減少,進而降低光催化效果。而此兩篇 研究(Ao et al., 2008, Xu et al., 2008)中所製備的磁性材料經回收再進行光 催化實驗,對酚的光催化降解在第六次實驗(第五次回收)效果仍有 80 %以上。

亦有多篇研究進行磁性材料的開發,如 Shchukin 等學者以(Shchukin et al., 2004)製備鎳-鋅-氧化鐵之複合磁性載體所製備之磁性觸媒應用於二 氧化硫的氧化分解、Fu 等學者(Fu et al., 2006)以不銹鋼鐵-麻田散鐵 (Martensite, FeC₃)為核心,並使用矽烷偶合劑 3-甲氧基矽基-丙基胺 (3-(Trimethoxysilyl)-propylamine, MPTS)做為核心與殼層之架橋,再以四 乙基氧矽烷(tetraethyl ortho-silicate, TEOS)進行二氧化矽殼層的包覆所製 成之均勻的磁性材料以及分別以鉑(Panella et al., 2009)及鈀(Liu et al., 2008)批覆於磁性載體所製成的磁性催化劑,而在回收再使用上皆分別保

有 90% (回收使用八次) 及 88% (回收使用八次) 的轉化率,顯示磁性 材料的確具有可回收再利用的價值及減少處理成本的優點。

其後學者(Chang et al., 2006)利用氧化鐵核心及二氧化矽包覆製成之核-殼之磁性載體,並在外層包覆鋁鹽製成超順磁性吸附劑(MASG)並對氟 離子進行吸附去除。研究結果顯示,在不同 pH 值條件下進行吸附測試時, 材料可能會因為酸鹼值而致使吸附劑之 Fe、Si 及 Al 等離子溶出,因此將 實驗控制於 pH=6 下為最佳,並對氟離子有最佳之吸附量(q_L=38 g kg⁻¹)。 其後更研發出超順磁性錯鹽吸附劑(SPMZ)(Chang et al., 2008)及超順 磁性鋁矽酸鹽吸附劑(SPAMs)(Chang et al., 2009)等新穎磁性材料,並 將超順磁性錯鹽吸附劑應用於硫酸鹽之吸附,顯示超順磁性複合材料具有 廣泛的應用性。

第三章 實驗材料與方法

3.1 實驗藥品

- 酚 (Phenol, C₆H₅OH)
 99.5 %, reagent grade, Riedel-de Haën, Seelze, Germany。
- 商用二氧化鈦 P-25 (Tatanium dioxide, TiO₂)
 99.5 % TiO₂, 75 % anatase +25 % rutile, Evonik Industries Degussa, Essen, Germany。
- 3. 鄰苯二甲酸氫鉀 (Potassium hydrogen phthalate, KHP, $KHC_8H_2O_4$), Elementar, Hana, Germany。
- 乙腈(Acetonitrile, CH₃CN)
 99.9%, Merck, Darmstadt, Germany。
- 5. 鹽酸 (hydrochloric acid)
 32%, reagent grade, Merck, Darmstadt, Germany。
- 氫氧化鈉 (sodium hydroxide)
 99%, reagent grade, Merck, Darmstadt, Germany。
- 7. 氯化鐵 (Iron(III) chloride hexahydrate, FeCl₃ 6H₂O) reagent grade, Merck, Darmstadt, Germany。。
- 8. 氯化亞鐵 (Iron(II) chloride tetrahydrate, FeCl₂ 4H₂O) reagent grade, Merck, Darmstadt, Germany。
- 四乙基氧矽(Tetraethyl orthosilicate, C₈H₂₀O₄Si)
 99%, reagent grade, Fluka, Buchs SG, Switzerland。
- 10. 氨水 (Ammonia hydroxide, NH₄OH) 25%, reagent grade, Merck, Darmstadt, Germany。
- 異丙醇(Isopropyl alcohol, CH₃CH(OH)CH₃)
 99%, reagent grade, Merck, Darmstadt, Germany。

- 12. 無水乙醇 (Ethyl Alcohol, C₂H₅OH)
 99.5%, reagent grade, Shimakyu's pure chemicals, Osaka, Japan。
- 氟化鈉 (Natriumfluorid, NaF)
 99%, reagent grade, Riedel-de Haën, Seelze, Germany。
- 14. 氟離子標準溶液(Fluoride standard, NaF solution)
 100ppm F⁻, Thermo electron corporation, surrey, UK。
- 15. 鄰-苯二酚 (ortho-dihydroxybeneze, o-DHB)
 99%, reagent grade, Merck, Darmstadt, Germany。
- 16. 對-苯二酚 (para-dihydroxybeneze, p-DHB)
 99.5%, reagent grade, Merck, Darmstadt, Germany。
- 17. 對-苯醌 (1,4-benzoquinone, 1,4-BQ)99.5%, reagent grade, Merck, Darmstadt, Germany。

3.2 實驗設備

- 數位電磁加熱攪拌器 (digital Magnetic stirrer)
 型號為 G-150ROM-T, Shin Kwang, Taipei, Taiwan。
- 質量流量控制器(Mass flow controller)
 型號為 KD-4000, Kao Duen Technology Corporation, Taipei, Taiwan。
- 酸鹼/ORP 控制器 (pH/ORP controller)
 型號為 PC-300, SUNTEX, Taipei, Taiwan。。
- 紫外光分光光度計(UV-vis spectrophotometer)
 型號為 S-3150, Scinco, Seoul, Korea。
- 高效能液相層析儀(high performance liquid chromatography, HPLC) 幫浦型號為 PC680A, UV-vis detector 型號為 UVD 170U, Dionex Corporation, Sunnyvale, USA。
- 6. 精密天平

型號為 BT 224S, Sartorius, Göttingen, Germany。

- 超純水製造機
 型號為 D4641, Barnstead, Worcester, USA。
- 8. N₂鋼瓶

高純度 99.99%氮氣,大統氧氣行, Taichung, Taiwan。

9. O₂ 鋼瓶

高純度 99.99%氧氣,大統氧氣行, Taichung, Taiwan。

10. 零級空氣

純度 99.99%空氣,飛越科技, Taoyuan, Taiwan。

11. 針筒過濾器

孔徑 0.45、0.22 µm, MILLIPORE, Billerica, USA。

總有機碳分析儀(Total organic carbon, TOC)
 型號為 liquiTOCII, Elementar, Hana, Germany。
13. 蠕動幫浦 (pump)

型號為 Master Flex model NO:7553-70, Cole-Parmer, Illinois, USA。

- 14. 紫外線燈管-白(UV₂₁₃₋₄₆₈)
 型號為TUV 16W,波長範圍為 213-468 nm, Philips, Eindhoven, Holland。
- 15. 紫外線燈管-黑(UV₂₇₅)
 型號為UVA-13W,波長為275 nm,和裕公司,Taipei,Taiwan。
- 光偵測系統(Miniature Fiber Optic Spectrometer)
 型號為 EPP2000, StellarNet, Florida, USA。
- 17. 高效能液相層析儀分離管柱(Column)型號為 ODP-50 HPLC Column, Supelco, PA, USA。
- 導電度計(conductivity)
 型號為 SC-120, SUNTEX, Taipei, Taiwan。

3.3 反應溶液之製備

3.3.1 儲備溶液之製備

- 取1gphenol加入1000mL定量瓶中,溶解後再加入超純水定量至1000mL後,放置於磁石攪拌器上並置入磁石,以400rpm 攪拌30分鐘。
- 將攪拌後之溶液,倒入 1L 之玻璃血清瓶中,並以鋁箔紙將玻璃血清瓶 完全包覆以防止 phenol 光解,完成 phenol 儲備溶液,此時濃度為 1000 g m⁻³。
- 配製 phenol 標準溶液並繪製標準檢量線,濃度範圍 0-100 g m⁻³,其相關係數 (correlation coefficient, r²) 值為 0.9985。

3.3.2 反應溶液之製備

- 取 40 mL 儲備溶液加入 1000 mL 定量瓶中,再加入 0.76 L 去離子水, 並放入磁石,以 400 rpm 轉速攪拌 30 分鐘,攪拌完成後反應溶液濃度 為 50 g m⁻³。
- 攪拌後之反應溶液,以針筒採樣器採集樣品並以高效能液相層析儀分析樣品濃度。

3.4 酚光催化實驗

3.4.1 不同氣提流量對酚揮發影響之測試實驗

預先配製 50gm⁻³之酚溶液,倒入光催化反應器中,如 Figure 3.1, 並以 50-800 mL min⁻¹之流速進行氣提試驗,以確定氣提流量對酚揮發量之 影響。反應時間 180 分鐘,採樣體積以不超過總體積之 5%為原則。樣品 分析定量使用紫外光-可見光光譜儀進行分析。

3.4.2 P25 TiO2 及 M-TiO2 對酚進行等溫吸附測試實驗

預先配製 30-100gm⁻³之酚溶液,倒入光催化反應器中,並以 200 mL min⁻¹之氧氣進行曝氣,反映蓉憶體積為 0.8 L,再加入精秤好之 1 gL⁻¹ P25 TiO₂ 加入反應器中進行吸附測試。反應時間 30 分鐘,採樣體積以不超過 總體積之 5%為原則。樣品分析定量使用高效能液相層析儀進行分析。

3.4.3 P25 TiO2 及 M-TiO2 對酚進行光催化實驗

預先配製 $0.8 L \cdot 50 \text{ g m}^{-3}$ 之酚溶液,倒入光催化反應器中,並以 200、 500 及 800 mL min⁻¹之三種流量,使用氧氣及氮氣進行曝氣以釐清純氧及純氮氣環境下之光催化效果,再加入精秤好之 $0-2 \text{ g L}^{-1}$ 觸媒加入反應器中進行光催化測試。加入觸媒後先進行 30 分鐘吸附實驗,30 分鐘過後再將 $UV_{213-468}$ 或 UV_{275} 燈管插入反應器中,進行 180 分鐘之光催化降解實驗。 採樣體積以不超過總體機之 5%為原則。樣品分析定量使用高效能液相層 析儀進行分析,分析波長為 269 nm,流洗液配比為水:乙晴以體積比 3:1 混合,流速為 1 mL min⁻¹。樣品分析前都先使用 $0.22 \text{ Q } 0.45 \ \mu\text{m}$ 針筒過濾 器進行觸媒過濾,以免導致液相層析儀管柱堵塞。並配製濃度介於 $0-100 \text{ g m}^{-3}$ 檢量線,並以此檢量線進行樣品濃度定量。

光催化反應實驗及樣品分析條件如 Table 3.1 所示, Figure 3.1 為實驗 裝置, Figure 3.2 反應流程圖, 實驗步驟如下列敘述:

 將反應溶液到入光催化反應器後,將氣體鋼瓶(N₂/O₂)接上固定氣體 流量控制器並接上反應器,曝氣3分鐘以趕出反應器內之空氣,並將 UV 燈光源預熱 30 分鐘。

- 取一定光觸媒劑量(0、0.2、0.5gL⁻¹)後,加入反應容器中,再將以 預熱好的 UV light 插入反應器中,開始進行光催化反應。
- 反應時間3小時,採樣時間分別為5、10、15、20、30、40、60、90、
 135和180分鐘進行採樣。
- 4. 針筒採樣器採樣之樣品,先以針筒過濾器(0.22 μm)將樣品過濾乾淨
 後,注入 HPLC UV-detector 及 TOC 分析光催化降解及礦化效果。

3.4.4 不同 pH 值之 P25 TiO2 對酚吸附測試實驗

預先配製 0.8 L、50 g m⁻³之酚溶液,倒入光催化反應器中,並以 200 mL min⁻¹之氧氣進行曝氣。再以 0.1N 之氫氧化鈉以及鹽酸進行溶液酸鹼值 調整後,再加入精秤好之 0.2 g L⁻¹ P25 TiO₂ 加入反應器中進行吸附測試。 反應時間 180 分鐘,全程反應控制在要求之 pH 值,採樣體積以不超過總 體積之 5%為原則。樣品分析定量使用高效能液相層析儀進行分析,分析 波長為 269 nm,流洗液配比為水:乙晴以體積比 3:1 混合,流速為 1 mL min⁻¹。樣品分析前都先使用 0.22 及 0.45 µm 過濾器進行觸媒過濾,以免導 致液相層析儀管柱堵塞。並配製濃度介於 0-100 g m⁻³檢量線,並以此檢量 線進行樣品濃度定量。

3.4.5 P25 TiO2 對酚光催化動力學探討測試

預先配製濃度介於 10-100g m⁻³之反應溶液, 倒入光催化反應器中, 通以 200 mL min⁻¹之氧氣, 並以 UV₂₁₃₋₄₆₈ 燈管做為照射光源, 再加入精秤 之 0.2 g L⁻¹ P25 TiO₂ 進入反應器中, 並進行 30 分鐘之吸附實驗。吸附實驗 結束後, 再將 UV₂₁₃₋₄₆₈ 燈管插入反應器中進行不同初始濃度光催化降解實 驗。採樣體積以不超過總反應體積 5%為主。

3.4.6 P25 TiO2 對酚光催化中間產物降解之測定

配製 50 g m⁻³之鄰-苯二酚 (o-dihydroxybeneze, o-DHB) 及對-苯二酚

(p-dihydroxybeneze, p-DHB), 並稀釋濃度為 0-10 g m⁻³。流洗液配比為水: 乙晴以體積比 3:1 混合, 流速為 1 mL min⁻¹。鄰-苯二酚之分析波長為 274 nm, 對-苯二酚分析波長則為 288 nm。

對-苯醌(1,4-benzoquinone, 1,4-BQ)檢量線配置則預先配製好 50 g m⁻³之儲備溶液,在取出稀釋配製為 0-10 g m⁻³,其分析波長為 244 nm。流 洗液配比為水:乙晴以體積比 3:1 混合,流速為 1 mL min⁻¹。Table 3.2 為 分、鄰苯二酚、對苯二酚及對-苯醌之檢量線及相關係數。

Table 3.1 Experimental conditions for photocatalytic degradation of phenol in this study

Experimental conditions	Photocatalysis system
Initial concentration (C_0) of phenol, g m ⁻³	10-100
Gaseous flow rate, cm ³ min ⁻¹	0, 50, 100, 200, 500, 800
Species of atmosphere,	O ₂ , N ₂
Dose of photocalalysts, g L^{-1}	0, 0.05, 0.1, 0.2, 1, 2
wavelength of irradiation lamp (λ), nm	UV ₂₁₃₋₄₆₈ : 213-468 nm
	UV ₂₇₅ : 275 nm
Temperature, °C	Room temperature
pН	5.9

Compound	Wavelength,	Range of	Standard calibration	Correlation
	nm	concentration,	curve	coefficient, r ²
		g m ⁻³		
Phenol	269	0-100	y=1.0172x-1.1234	0.9992
o-DHB	274	0-10	y=1.0396x-0.2906	0.9962
p-DHB	288	0-10	y=1.0221x-0.1622	0.9993
1,4 - BQ	244	0-10	y=1.019x-0.139	0.9992

Table 3.2 Analytical conditions of phenol and intermediates of photocatalytic degradation experiments in HPLC

Figure 3.1 Schematic diagram of the apparatus in this study. 1: UV lamp, 2: mass flow controller, 3: air steel cylinder, 4: pH/ORP meter, 5: pump, 6: air stripping head, 7: sampling syringe.

Figure 3.2. Flow diagram for photocatalytic system of phenol in this study.

3.5 紫外燈管波長測定實驗

由於光催化反應中,光源強度對光催化效果也顯著的影響。為確定 燈管波長,使用光偵測系統進行光源波長測定。UV₂₁₃₋₄₆₈及 UV₂₇₅ 燈管波 長測定,實驗示意圖如 Figure 3.3。波長測定實驗步驟如下:

- 1. 將反應器架設完畢後,將光偵測感應器對準光源,並先做好暗室校正。
- 2. 燈管開啟後,紀錄光譜。
- 3. 並依照實驗條件不同偵測燈管光譜,紀錄後加以比對。
- 4. 彙整後之資料,繪製成圖。

Figure 3.3 The schematic diagram of detection of UV lamp. 1. UV lamp, 2. mass flow controller, 3. steel cylinder, 4. miniature fiber optic spectrometer, 5. fiber of optic spectrometer, 6. digital signals received system.

3.6 磁性奈米光觸媒製備

- 3.6.1 超順磁性載體 (SiO₂/Fe₃O₄) 製備步驟
- 秤取 FeCl₂ 8.60 g、FeCl₃ 23.50 g,並以2升定量瓶裝 2000 mL 之去離 子水,並曝氮氣。
- 將電磁加熱攪拌器設定升溫至 75℃,並將預先秤取的 FeCl₂ 及 FeCl₃
 混合並加入水混合後倒入反應槽內(設定轉速為 500 rpm)。
- 再將溫度由 75 升溫至 85℃,在 84℃時加入 NH₄OH,並持續攪拌三 分鐘。
- 攪拌結束後先使用強力磁鐵進行磁性分離,並多餘將溶液倒除後再使 用曝氮氣後之去離子水清洗磁性材料(於第三次清洗時將磁性材料置 入反應槽中)。
- 加入116 mL 水、392 mL NH₄OH 及並以異丙醇定量至2000 mL,並 加入有磁性材料的反應槽並密封。
- 6. 將密封後之反應槽以超音波震盪 30 min。
- 超音波震盪結束後維持40℃及500 rpm之轉速進行恆溫攪拌,並將60
 ml TEOS 以蠕動幫浦加入反應槽中。加入完畢後持續攪拌5小時。
- 攪拌結束後先以強力磁鐵進行固液分離,再將分離後之膠體以紅外線 燈罩進行隔夜乾燥。
- 9. 乾燥後之粉末再置入高溫爐中並以400℃鍛燒(通入氮氣)。
- 將鍛燒後取出之磁性載體利用去離子水進行清洗,並清洗直到上澄液 與超純水導電度值相同為止。
- 使用烘箱於100℃下乾燥24h,乾燥後取出後立用氟離子測試鐵之溶 出值。

3.6.2 超順磁性光觸媒 (TiO₂/SiO₂/Fe₃O₄) 製備步驟

- 取 2.5g磁性載體溶於 50 ml 無水乙醇中,並以超音波震盪 30 min,震 盪結束後將混合物倒入反應槽中
- 2. 將定量的水及 50 ml 無水乙醇加入反應槽後, 再以超音波震盪 30 min。
- 取 17 ml 四異丙基鈦醇鹽(TTIP)溶入 40 ml 無水乙醇中,再加入反 應槽內。
- 4. 將反應槽至於超音波震盪槽中將水溫維持20℃,進行5小時的熟化。
- 熟化結束後利用強力磁鐵將多餘的上澄溶液倒除,並倒入鍛燒皿中並 以紅外線燈罩隔夜乾燥。
- 乾燥完畢之材料,先研磨成粉末後再使用高溫爐中以 450℃進行鍛
 焼,並維持不同停留時間以做比對。
- 利用去離子水清洗鍛燒後之磁性光觸媒,直到上澄液之導電度值與去 離子水相同為止。
- 8. 清洗過後之磁性光觸媒置入烘箱中以70℃乾燥備用。

3.6.3 超順磁性光觸媒 (TiO₂/SiO₂/Fe₃O₄) 對酚光催化實驗

預先配製 50gm⁻³之酚溶液,倒入光催化反應器中,並以 200 mL min⁻¹ 之三種流量,使用氧氣進行曝氣,再加入精秤好之 0.2gL⁻¹ M-TiO₂ 加入燒 杯中並加入去離子水置入超音波震盪機中震盪 10 分鐘,震盪完畢後再以 強力磁鐵進行固液分離並將 M-TiO₂ 反應器中進行光催化測試。加入觸媒 後先進行 30 分鐘吸附實驗, 30 分鐘過後在將 UV₂₁₃₋₄₆₈ 燈管插入反應器中, 進行 180 分鐘之光催化降解實驗。採樣體積以不超過總體機之 5%為原則。

樣品分析定量使用高效能液相層析儀進行分析,分析波長為 269 nm,流洗液配比為水:乙晴以體積比3:1 混合,流速為1 mL min⁻¹。樣品 分析前都先使用 0.22 及 0.45 μm 針筒過濾器進行觸媒過濾,以免導致液 相層析儀管柱堵塞。並配製濃度介於 0-100 g m⁻³檢量線,並以此檢量線進 行樣品濃度定量。實驗步驟如下列敘述:

 將反應溶液到入光催化反應器後,將氣體鋼瓶(O₂)接上固定起體流 量控制器並接上反應器,曝氣3分鐘以趕出反應器內之空氣,並將UV燈 光源預熱30分鐘。

2. 取一定光觸媒劑量(0-2gL⁻¹)先放入燒杯並加入去離子水,置入超音 波震盪機震盪 10 分鐘後,在以強力磁鐵進行磁性固液分離後,將多餘液 體倒除後,加入反應容器中,再將以預熱好的 UV 燈管插入反應器中,開 始進行光催化反應。

反應時間3小時,採樣時間分別為5、10、15、20、30、40、60、90、
 135和180分鐘進行採樣。

4. 針筒採樣器採樣之樣品,先以針筒過濾器(0.22 μm)將樣品過濾乾
 淨後,注入 HPLC UV-detector 及 TOC 分析光催化降解及礦化效果。

50

四、結果與討論

4.1 照射光源鑑定

本研究中利用各種不同波長之紫外光燈做為照射光源,為確定其波長範 圍,因此利用光偵測系統對兩支燈管於不同條件下偵測穿透之光譜。偵測 圖譜結果如 Table 4.1-4.2 及 Figure 4.1 - 4.6 所示。由 Figure 4.1 及 4.2 可看 出 UV₂₁₃₋₄₆₈燈管為多波長燈管,強度最強波峰為靠近 VUV 範圍之 213nm, 波長範圍為 213~468 nm;而 UV₂₇₅之主要波長為 275nm。由 Table 4.1-4.2 及 Figure 4.3 及 4.4 可發現在反應器各位置所測得的光源穿透會隨著距離增 加而降低;以 UV₂₁₃₋₄₆₈燈管作為光源並於反應器中添加酚後,波長 245nm 之波峰強度下降;添加 P25 後波長小於 300 nm 之光源完全被吸收,而剩 餘的光源強度也被觸媒吸收而僅有部分 300nm 以上波長穿透。以 UV₂₇₅燈 管作為光源並於反應器中添加酚後,主要波長 275nm 穿透強度大幅下降; 添加 P25 後 275 nm 之波峰幾乎完全被吸收之光源完全被吸收,僅測得有 少量穿透代表剩餘的光源強度已被觸媒吸收。

	213 nm	242 nm	273 nm	301 nm	325 nm	431 nm	468 nm
a	100 %	100 %	100 %	100 %	100 %	100 %	100 %
b	0 %	8.43 %	99.2 %	98.2 %	100 %	99.1 %	98.2 %
с	0 %	8.11 %	98.2 %	95.7 %	98.8 %	97.5 %	98.1 %
d	0 %	5.61 %	94.7 %	94.6 %	93.1 %	95.1 %	90.2 %
e	0 %	0 %	0 %	32.6 %	58.3 %	72.7 %	46.4 %

Table 4.1 Percentage of transimission under $UV_{213-468}$ irriadation with various conditions

Table 4.2 Percentage of transimission under UV_{275} irriadation with various conditions

Figure 4.1 The spectrum of $UV_{213-468}$ lamp measured at condition (a) by fiber optic spectrometer.

Figure 4.2 The spectrum of UV_{275} lamp measured at condition (a) by fiber optic spectrometer.

Figure 4.3 The spectrum of $UV_{213-468}$ lamp measured by fiber optic spectrometer with various positions. (b) measured at 1.3 cm, (c) measured at 3.6 cm, (d) measured at 3.6 cm with phenol and (e) measured at 3.6 cm with phenol and P25 TiO₂ suspension.

Figure 4.4 The spectrum of UV_{275} lamp measured by fiber optic spectrometer with various positions. (b) measured at 1.3 cm, (c) measured at 3.6 cm, (d) measured at 3.6 cm with phenol and (e) measured at 3.6 cm with phenol and P25 TiO₂ suspension.

Figure 4.5 The spectrum of $UV_{213-468}$ lamp measured by fiber optic spectrometer with various positions. (a) measured at 0 cm, (b) measured at 1.3 cm, (c) measured at 3.6 cm, (d) measured at 3.6 cm with phenol and (e) measured at 3.6 cm with phenol and P25 TiO₂ suspension.

Figure 4.6 The spectrum of UV_{275} lamp measured by fiber optic spectrometer with various positions. (a) measured at 0 cm, (b) measured at 1.3 cm, (c) measured at 3.6 cm, (d) measured at 3.6 cm with phenol and (e) measured at 3.6 cm with phenol and P25 TiO₂ suspension.

4.2 商用二氧化鈦光觸媒之物化特性鑑定

由於 P25 光觸媒晶相為混晶相,包含銳鈦礦相及金紅石相;利用 BET 進行比表面積分析其比表面積為 48.284 m² g⁻¹,和文獻 (Sun *et al.*, 2005) 中所指之 50 m² g⁻¹ 相差不大。P25 二氧化鈦在紫外光下有良好的光催化效 果,因此為確定其吸收波長為紫外線範圍內,而使用 UV-vis-NIR 光譜儀進 行吸光值之測定,結果如 Figure 4.7 所示。可看出 P25 光觸媒其吸收波長 接在紫外線範圍波長之內 (λ<400 nm)。在可見光部分並無任何一吸收 值。利用能隙 (energy band gap) 計算公式進行商用光觸媒能隙計算,計 算方式如下:

$$\alpha = \left(\frac{A_b \times \ln 10}{d}\right) \tag{$\frac{1}{2}$} (\frac{1}{3}, 4-1-1)$$

$$E = h \times \upsilon = \frac{h \times c_0}{\lambda} \tag{\pounds 4-1-2}$$

 α :吸收係數 (absorbance coefficient)

 A_b : 吸收度 (measured values of absorbance)

E:吸收不同波長之光能量

h: 浦朗克常數 (Plank's constant, 6.626×10⁻³⁴ J s or 4.135×10⁻¹⁵ eV s)

υ:吸收光頻率(Hz)

d:進行吸收值測定時樣品填充厚度(thickness of sample)

 λ :入射光波長

利用式 4-1-1 計算出光吸收係數之後,因二氧化鈦電子傳遞為直接傳 遞,所以將(αE)²對 E 做圖,並利用外插法即可求得能隙大小其結果如 Figure 4.8 所示。P25 TiO₂ 能隙為 3.25eV,與 Table 4.3 中所列其他文獻 (Tasbihi *et al.*, 2007, Zhu *et al.*, 2007) 中列出之 3.23 及 3.2eV 相差不大。

Table 4.3 Energy band gap of P25 TiO_2 with various studies

Figure 4.7 The UV-vis spectra of the P25 TiO_2 .

Figure 4.8 The corresponding plot of photon energy of P25 TiO_2 .

4.3 酚等温吸附之探討

為了瞭解商用光觸媒對目標汙染物酚之等溫吸附量,而配製初始濃 度為25、35、50、80、90及100gm⁻³之酚溶液且反應溶液體積為0.8L, 並添加1gL⁻¹之商用光觸媒在未照光下,曝氣條件為氧氣進行等溫吸附型 為探討。將測試所得之數據,以Langmuir及Freundlich isotherm 來進行模 擬,以了解商用光觸媒對於酚之吸附行為。

Langmuir isotherm 唯一理論公式,其等溫吸附方程式如下:

$$q_{e} = \frac{q_{L} \times K_{L} \times C_{e}}{1 + K_{L} \times C_{e}}$$
(式 4-3-1)

$$q_{e} : B ang M gene ang R gene gene$$

利用 1/qe 對 1/Ce 作圖,由截距與斜率可以求得 qL 及 KL 值。

 Freundlich isotherm 為一經驗公式,其等溫吸附方程式如下:

 $q_e = k_F \times C_e^{1/n_F}$ (式 4-3-3)

 q_e : 固相吸附平衡濃度 (g kg⁻¹)

 C_e : 液相吸附平衡濃度 (g m⁻³)

 k_F : Freundlich 等溫吸附方程式之常數 ((g kg⁻¹)/(mg dm⁻³)n_F⁻¹)

n_F:異質性 (heterogeneity factor)

其中 k_F 值越高代表吸附位置越多; $n_F>1$ 則利於吸附(favorable), $n_F=1$ 呈線性關係(linear), $n_F<1$ 代表不利於吸附(non favorable)。將式 4-3-3 兩邊取對數後,可改寫成式 4-3-4:

$$\ln q_e = \ln k_F + \frac{1}{n_F} \times \ln C_e \qquad (\not \exists 4-3-4)$$

利用 lnq_e 對 lnC_e 作圖,利用線性迴歸直線求得直線之斜率及截距以計算 $n_F \mathcal{D} k_F$ 值。

在固定初始pH值 (pH_0 值為5.9) 之下,進行P25對Phenol之等溫吸附 實驗,實驗結果如Table 4.4-5及Figure 4.9與所示。反應平衡之pH值為5.5, 顯示在吸附的過程中對溶液之pH值影響不大,可視為在固定pH值下進行實 驗。此外,Langmuir isotherm模擬結果明顯偏低,且決斷係數值為-2.249, 代表模擬結果不佳,顯示以P25進行酚之吸附並不適用Langmuir isotherm進 行模擬;Freundlich isotherm實驗之異質性 n_F 值為0.767,顯然P25二氧化鈦 對酚為不利性吸附。

Langmuir isotherm				
	$q_L, g kg^{-1}$	$k_{\rm L}, {\rm m}^3{\rm g}^{-1}$	r^2	\mathbb{R}^2
Phenol	0.976	0.398	0.93	-2.249

Table 4.4 The parameters of Langmuir isotherm of phenol

Table 4.5 The parameters of Freundlich isotherm of phenol

		Freundlich isotherm		
	n _F , -	$k_{\rm F}$, (g kg ⁻¹)/(mg dm ⁻³)n _F ⁻¹)	r^2	R^2
Phenol	0.767	0.022	0.97	0.995

r²: Correlation coefficients for linear regressions.

R²: Determination coefficients.

Figure 4.9 Simulation of Freundlich isotherm (-) of phenol on P25. \bigcirc : Experimental data of phenol adsorption on P25 TiO₂. The dose of TiO₂ is 2 g L⁻¹ and the volume of solution is 0.8 L.

4.4 商用二氧化鈦光觸媒之光催化探討

4.4.1 氣提對酚之影響

配製 phenol 初始濃度 (C_0) 為 50 g m⁻³,並在無照光環境下,採用五種不 同氣提流量 $(F_{N2}, 氮氣流量分別為 50 \times 100 \times 200 \times 500 及 800 \text{ cm}^3 \text{ min}^{-1})$, 探討在不同氣提流量下酚逸散量之多寡,並使用紫外光可見光分光光度計 (S-3100, Scinco)分析酚在水溶液中之濃度,結果如 Figure 4.10 所示。酚 經過 3 小時曝氣之後,在所有探討的氣提流量下,溶液中酚濃度在 0 到 5 % 之間上下變化,因此氣提量與初始濃度相比較下甚少。此外亦有學者 (Gaffney et al., 1987; Lyman et al., 1990)提出酚溶於水後之揮發性可由其 亨利常數來判斷。酚之亨利常數在 25 °C 下為 3.33×10^{-7} atm m³ mol⁻¹,為低 揮發性有機物,因此濃度變化應不為自身揮發而造成。總而言之,因氣提 所造成逸散量在本研究中可忽略不計。

Figure 4.10 The dependence of C/C_0 on time for phenol at various gaseous flow rates analyzed by HPLC. The volume of solution is 0.8 L, and the C_0 of phenol is 50 g m⁻³. \diamondsuit , \Box , \triangle , \bigcirc and O: F_{N2} of 50, 100, 200, 500, and 800 cm³ min⁻¹, respectively.

4.4.2 光源種類之影響

配製 phenol 初始濃度 (C_0)為 50 g m⁻³,初始溶氧 (DO)為 7.75 g m⁻³, 在不同種類氣態環境中 (氧氣、氮氣及無曝氣),使用不同波長之燈管 ($UV_{213-468}$ 燈管,波長範圍 λ =213~468 nm,燈管強度為 16W; UV_{275} 燈管 波長為 λ = 275 nm,燈管強度為 13W),進行在各種條件下不同能量之酚光 降解探討,並分別使用高效能液相層析儀分析酚在水溶液中之濃度以及總 有機碳分析儀分析礦化之程度,結果如 Figure 4.11 所示。不進行氣提條件 下, $UV_{213-168}$ 及 UV_{275} 對酚純光解能力分別為 58 %及 5.8 %,可明顯看出 兩支燈管能量差別。在氮氣氣提 (F_{N2} of 200 cm³ min⁻¹) 惰性環境之下, $UV_{213-468}$ 照射能量下,酚有 40%被光分解。利用 UV_{275} 照射時,卻僅有 5.2 %的酚被光分解。可能原因為 $UV_{213-168}$ 之燈管之波峰強度最高之波長為 213nm,酚受到強烈的能量照射而利於光分解的進行。

在曝氧氣操作條件下 (F₀₂ of 200 cm³ min⁻¹), UV₂₁₃₋₄₆₈ 及 UV₂₇₅ 之光 降解率分別為 80%及 6%, 顯示 UV₂₁₃₋₄₆₈ 燈管在氧氣的環境中, 可將部分 氧分子激發, 並利於進行光照分解, 降解率較氮氣環境中提升 42%。其原 因可能為當在光源強度較強的情況下, 酚較不穩定而吸收能量而被分解 (Chitose *et al.*, 2003); 另一原因則可能為多波長燈管中可能含有 200 nm 以下之 VUV 存在, 而這些 VUV 再當水中存在溶氧時, 高能量之 VUV 可 將溶氧分子激發, 並進而和酚反應進行光分解作用, 反應式如式 4-3-3 所 示:

而 UV₂₇₅的能量較低,在各種進行曝氣以及不曝氣的環境之下,光照 分解能力僅有 5 %均低於 UV₂₁₃₋₄₆₈ 燈管之效率。代表 UV₂₇₅ 燈管能量較低 無法將氧分子激發,因此無論是在哪種氣態環境之下,降解的效果皆不明 顯。

69

Figure 4.11 The dependence of C/C₀ on time for phenol under various gaseous flow rates, various atmospheric environment and UV irradiation analyzed by HPLC. The volume of solution is 0.8 L, and the C₀ of phenol is 50 g m⁻³. \diamond , and \bigcirc : F₀₂ of 0 and 200, F_{N2} of 200 cm³ min⁻¹ under UV₂₁₃₋₄₆₈, respectively; \blacklozenge , \blacksquare and \spadesuit : F₀₂ of 0 and 200, F_{N2} of 200 cm³ min⁻¹ under UV₂₁₃₋₄₆₈, UV₂₇₅ irradiation, respectively.

4.4.3 氣提流量之影響

配製 phenol 初始濃度 (C_0) 為 50 g m⁻³,在 UV₂₁₃₋₄₆₈ 照射下進行不同 氣提流量 $(F_{02} 分別為 50 \times 100 \times 200 \times 500 \ Q 800 \ cm^3 \ min^{-1})$ 對酚光降解 效果影響之探討,並使用高效能液相層析儀分析酚在水溶液中之濃度,實 驗結果如 Figure 4.12 所示。在使用 UV₂₁₃₋₄₆₈ 燈管照射時,不管在何種氣體 流量條件之下,皆有 80%的酚已被光照分解。可知不同流量之氧氣在本實 驗中並無明顯效果差異,由此可知,使用 200 cm³ min⁻¹ 之氣提量就已能提 供光降解反應進行時所需要的溶氧值。

Figure 4.12 The dependence of C/C₀ on time for phenol at various gaseous flow rates under UV₂₁₃₋₄₆₈ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0 g L⁻¹ of P-25 TiO₂, and the C₀ of phenol is 50 g m₋₃. \diamondsuit , \Box , \triangle , \bigcirc and \bigstar : F_{O2} of 50, 100, 200, 500, and 800 cm³ min⁻¹, respectively.
4.4.4 氟態環境之影響

由小節 4.3.3 中得知在 UV₂₇₅ 光源下,氣態環境對酚降解效果影響不大,因此在此氣態環境影響之探討,乃以 UV₂₁₃₋₄₆₈ 作為光源進行氣態環境 ($O_2 \not Q \ N_2$)及光觸媒存在與否對光降解效果之影響。同樣配製 phenol 初 始濃度 (C_0)為 50 g m⁻³,在 UV₂₁₃₋₄₆₈ 燈管照射下進行純光照分解以及添 加光觸媒之下 (劑量為 $0.2 g L^{-1}$),進行對酚的光催化反應,結果如 Figure 4.13 所示。反應式如式 4-4-1 及 4-4-5 所示。

$$TiO_2 \xrightarrow{h_U} e_{cb}^- + h_{vb}^+ \tag{\ddagger 4-4-1)}$$

$$h_{\nu b}^{+} + H_2 O \to H^{+} + \bullet OH \tag{\ddagger 4-4-2$}$$

$$e_{cb}^- + O_2 \to O_2 \bullet^- \tag{\ddagger 4-4-3}$$

$$O_2 \bullet^- + OH^- \to O_2 + \bullet OH \tag{\pounds 4-4-4}$$

Phenol + •*OH* → Oxidation products
$$(\ddagger 4-4-5)$$

在UV₂₁₃₋₄₆₈ 光源照射下及氮氣環境中,雖然在觸媒的存在下可促進酚 的初始降解速率,但是無論是否有觸媒存在其最終的降解效率約為40%。 代表氮氣環境下,氦氣分子無法傳遞觸媒表面上受激發之電子。而在氧氣 環境中,觸媒的存在下亦可促進酚的初始降解速率且可將降解率提升至 100%,此外其降解效率也因觸媒的存在與否存在較大的差別。比較在觸 媒存在下,氧氣與氮氣環境之酚降解率,氧氣的環境可使光催化降解效率 大大的提升。主要原因乃在UV₂₁₃₋₄₆₈ 光源照射下激發了TiO₂的電子,使電 子從價帶躍昇至傳導帶形成電子電洞對(式4-4-1);水接觸到觸媒表面上 的電洞,形成氫氧自由基並及超氧基陰離子(式4-4-2及4-4-3);而超氧 自由基陰離子會和溶液中之氫氧根離子作用後而形成氫氧自由基(式 4-4-4),氫氧自由基會再進一步與酚進行氧化反應(式4-4-5),在氧氣環 境下,O₂做為電子接受者,進而抑制電子電動對再結合,使光催化降解速 率及最終去除率均優於氦氣環境。

Figure 4.13 The dependence of C/C_0 on time for phenol with various gaseous conditions and various dosages of TiO₂ under UV₂₁₃₋₄₆₈ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the gaseous flow rate is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. • and •: 0 and 0.2 g L⁻¹ under O₂; • and \bigcirc : 0 and 0.2 g L⁻¹ under N₂, respectively.

4.5 反應環境酸鹼值不同之影響

由 Table 2.1 中得知 P-25 二氧化鈦之等電位點(pH_{pzc})為 6.25,在酸 鹼值不同的反應環境中,二氧化鈦表面電荷也會不同進而影響到光催化降 解的效率。因此本小節討論反應溶液酸鹼值不同的影響乃在該操作條件下 進行探討。配製 phenol 初始濃度(C₀)為 50 g m⁻³,在 UV₂₁₃₋₄₆₈ 光照並通 以氧氣的環境下,並使用 HCl 及 NaOH 作為酸鹼值調整之用。

Figure 4.14 及 Figure 4.15 為不同酸鹼值下吸附及光照分解之效果。從 圖中可得知,不同酸鹼值之吸附效果趨勢大致相同,而在光分解部分則可 看出明顯差異。在 pH=3 環境下,吸附效果為 10%,和中性環境 (pH=7) 及未調整時 (pH=5.9)相近;而在鹼性環境時因此在 pH≧10 時,酚大多 以離子狀態存在,因此導致在 pH=10 時吸附效果較差,此結果與 Pecchi (Pecchi et al., 2001)等學者符合。而光照分解的部分在酸性環境及中性環 境下,氫離子濃度較鹼性高,因此可受光能量激發形成較多的氫氧自由基 而提升光照分解效果,也比在中性及鹼性環境下效果較佳,此結果也與 Stafford 及 Esplugas (Stafford et al., 1994; Esplugas et al., 2002)等學者之 結果相符。

當在不同 pH 值時,二氧化鈦表面電荷也有所不同,反應式如下:

 $pH < pH_{pzc} TiOH + H^+ \rightarrow TiOH_2^+ \qquad (\ddagger 4-5-1)$

 $pH > pH_{pzc} TiOH + OH^{-} \rightarrow TiO^{-} + H_2O \qquad (\vec{\mathfrak{X}} 4-5-2)$

當 pH < pH_{pzc} 時,二氧化鈦以 TiOH₂⁺存在; pH = pH_{pzc} 時,二氧 化鈦以 TiOH 存在,而 pH > pH_{pzc} 時,二氧化鈦以 TiO⁻存在。因此在不 同 pH 值時,二氧化鈦存在型態也不同。由於酚之酸解離常數(pka)為 10, 因此在 pH \geq 10 時,酚大多以離子狀態存在,因此導致在 pH=10 時吸附效 果較差。Figure 4.16 為不同 pH 值時,酚在不同溶液 pH 值中存在之型態。

有文獻指出在偏中性 (pH=5-6, Wei and Wan, 1991; Pardeshi and Patil, 2008) 及酸性 (pH=3.5~3.2, Okamoto *et al.*, 1985; Silva and Faria, 2009) 的 環境中,光催化效果較佳,因此又測試了 pH=4.5 及 pH=6 的光催化效果

來進行比較。結果如 Figure 4.17 所示,可明顯看出在鹼性情況之下,光 催化最終去除效率為 93 %,效果不如其他環境好有文獻(Sugiarto et al., 2003; Wang et al., 2006)提及再當反應溶液 pH 值大於 7 時,所產生之氫 氧自由基會無選擇性的與有機物分解所產生的碳酸鹽離子(carbonate ions)反應,進而降低光催化效果。在 pH6 及未調整(pH=5.9)的實驗組 為光催化降解趨勢最快的二組,因此可得知本實驗系統在未調整酸鹼值 (pH=5.9)之環境下有最好的光催化分解效率。Figure 4.18 為 pH=4.5、 未調整及 pH=6 環境下光催化降解後總有機碳礦化結果。可看出在酸性環 境下之總有機碳礦化效果和自然酸鹼值環境之結果差異不大;在 pH=6 時 因為光催化過程中酚分解為酸類產物而降低 pH,而酸鹼控制器自動加入 鹼維持酸鹼在 pH=6,因而減少了氫離子濃度,也減少了氫氧自由基形成 量而造成礦化不如酸性及未調整環境。

Figure 4.14 The dependence of C/C_0 on time for adsorption of phenol with various pH by P-25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L⁻¹, the C₀ of phenol is 50 g m⁻³, the dosage is 0.2 g L⁻¹ TiO₂, the gaseous flow rate is 200 cm³ min⁻¹ and the pH₀ is 5.9. \bigcirc , \diamondsuit , \square and O: pH3, pH7, pH10 and unadjusted, respectively.

Figure 4.15 The dependence of C/C₀ on time for phenol under various pH and UV₂₁₃₋₄₆₈ irradiation analyzed by HPLC. The volume of solution is 0.8 L⁻¹, the F_{02} is 200 cm³ min⁻¹, the C₀ of phenol is 50 g m⁻³, and the pH₀ is 5.9. \bigcirc , \diamondsuit , \bigcirc and O: pH3, pH7, pH10 and unadjusted, respectively.

Figure 4.16 The plot of phenol under various pH.

Figure 4.17 The dependence of C/C₀ on time for phenol under various pH and UV₂₁₃₋₄₆₈ irradiation analyzed by HPLC. The volume of solution is 0.8 L⁻¹, the F₀₂ is 200 cm³ min⁻¹, the dosage is 0.2 g L⁻¹ TiO₂, the C₀ of phenol is 50 g m⁻³, and the pH₀ is 5.9. \bigcirc , \blacklozenge , \blacklozenge , \blacksquare , \diamondsuit and \square : pH3, pH4.5, unadjusted, pH6, pH7 and pH10, respectively.

Figure 4.18 The dependence of TOC/TOC₀ on time for phenol under various pH and UV₂₁₃₋₄₆₈ irradiation analyzed by TOC analyzer. The volume of solution is 0.8 L⁻¹, the F₀₂ is 200 cm³ min⁻¹, the dosage is 0.2 g L⁻¹ TiO₂, the C₀ of phenol is 50 g m⁻³, and the pH₀ is 5.9. \blacklozenge , \blacklozenge and \blacksquare : pH4.5, unadjusted and pH6, respectively.

4.6 初始濃度對反應速率之影響

為了解不同初始濃度,酚的光催化降解速率之影響,故設定酚濃度 範圍為 100-10 g m⁻³間進行光催化實驗。所使用之光觸媒為 P-25 商用光觸 媒,選用 UV₂₁₃₋₄₆₈ 為燈管光源並在曝氧氣環境下,不調整溶液酸鹼值,並 在實驗開始前將觸媒加入溶液中進行 30 分鐘的吸附,在達吸附平衡後進 行光催化降解實驗。酚濃度與時間變化如 Figure 4.19 所示。本實驗以擬一 階反應式 (Pseudo first-order rate reaction) 模擬不同初始濃度酚與反應時間 關係,進而了解不同初始濃度的酚之光催化速率。

Langmuir-Hinshelwood (L-H)模式之基本假設(李氏, 2006)如下:

- 1. 於平衡時,可供吸附位置之數量為固定。
- 2. 每個吸附位置僅可吸附一個分子(及單層覆蓋)。
- 3. 每個位置對吸附分子之親和力相等且與吸附質覆蓋率無關。
- 4. 每個鄰近之吸附分子不會互相作用。
- 5. 吸附質之表面吸附速率大於之後產生之化學反應速率。

利用假設所導出之方程式如式 4-6-1 所示:

$$\frac{1}{r_0} = \frac{1 + K_L \times C_0}{k \times K_L \times C_0} = \frac{1}{k \times K_L} \times \frac{1}{C_0} + \frac{1}{k}$$
(式 4-6-1)

將式 4-6-1 改寫則可得到式 4-6-2:

$$r_0 = -\frac{dC}{dt} = K_{obs} \times C_0 = \frac{k \times K_L \times C_0}{1 + K_L \times C_0}$$
(£ 4-6-2)

式中 C_0 :酚初始濃度(gm⁻³)

r₀:反應速率 (g m⁻³ min⁻¹)

t:反應時間(min)

 K_{obs} : 觀察到之擬一階方程式常數 (min⁻¹)

 K_L :擬一階方程式常數 (min⁻¹)

先將不同初始濃度之實驗所得數據以吸附平衡點為初始濃度並將 UV 照射時間與濃度變化之關係作圖後,可迴歸得一線性直線,再由此直 線求得其方程式,其中 kobs 值為方程式斜率。將得到之 Kobs 值和初始濃度 利用式 4-6-1 相乘即可得到該初始濃度之反應速率 r₀。並將初始濃度及反 應速率取倒數後作圖(即 1/C₀對 1/r₀作圖),並求所得曲線之方程式,其 中k值為趨勢線截距之倒數,K_L為趨勢線方程式之截距除以斜率之值,即 可得到 k 及 K_L值。

將所得到之 k 及 K_L 值及初始濃度帶入式 4-6-2 中,即可得到模擬在 不同 C₀之初始反應速率 r₀,並以初始濃度對初始反應速率作圖(即 C₀對 r₀作圖),即可得到實驗及模擬值之比較圖。此外,並可利用決斷係數來求 得模擬值與實驗值之相關性。決斷係數計算方式如下:

$$R^{2} = 1 - \left[\frac{\sum (y_{e} - y_{c})^{2}}{\sum (y_{e} - y_{m})^{2}}\right]$$
(£ 4-6-2)

y_e: 實驗之反應速率 (g m⁻³ min⁻¹)

y_c:模式預測之反應速率 (g m⁻³ min⁻¹)

y_m:實驗之平均反應速率 (g m⁻³ min⁻¹)

實驗結果如 Table 4.6 及 Figures 4.20-4.22 所示由模擬結果得知,實驗數據結果與模擬值相當接近,決斷係數值為 0.946,顯示出實驗數據與模擬值有相當良好的相關性。

C_0 of phenol, g m ⁻³	r_0 of experimental data, g m ⁻³ min ⁻¹	r_0 of L-H model, g m ⁻³ min ⁻¹	Determine coefficient, r ²
10	0.784	0.788	0.946
25	0.8725	0.884	
35	0.915	0.906	
50	0.917	0.923	
75	0.93	0.937	
100	0.96	0.945	

Table 4.6 Kinetic parameters for phenol on TiO_2 with various C_0

Figure 4.19 The dependence of C/C_0 on time for phenol with various C_0 under $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the dosage is 0.2 g L⁻¹ TiO₂. \blacklozenge , \blacksquare , \blacklozenge , \diamondsuit , \square and \bigcirc :100, 75, 50, 35, 25 and 10 g m⁻³ of phenol, respectively.

Figure 4.20 The dependence of $-\ln(C/C_0)$ on time for phenol with various C_0 under UV₂₁₃₋₄₆₈ irradiation. The volume of solution is 0.8 L, the F₀₂ is 200 cm³ min⁻¹ and the dosage is 0.2g L⁻¹ TiO_{2.} \blacklozenge , \blacksquare , \blacklozenge , \bigcirc , \bigcirc and \bigcirc :100, 75, 50, 35, 25 and 10 g m⁻³ of phenol, respectively.

Figure 4.21 Langmuir-Hinshelwood plot of $1/r_0$ vs. $1/C_0$ for phenol with various C_0 under UV₂₁₃₋₄₆₈ irradiation. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the dosage is 0.2g L⁻¹ TiO₂. \bigcirc : experimental data.

Figure 4.22 Langmuir-Hinshelwood plot of r_0 vs. C_0 for phenol with various C_0 under UV₂₁₃₋₄₆₈ irradiation. The volume of solution is 0.8 L⁻¹, the F_{O2} is 200 cm³ min⁻¹ and the dosage is 0.2g L⁻¹ TiO₂. \bigcirc : experimental data, (--): prediction with Langmuir-Hinshelwood model.

4.7 觸媒劑量之影響

由先前小節得知在 UV213-468 及 UV275 與氧氣環境下, 觸媒的存在會影 響酚光催化降解效率,因此本小節討論觸媒劑量的影響乃在該操作條件下 進行探討。配製 phenol 初始濃度 (C_0) 為 50 g m⁻³,在 UV₂₁₃₋₄₆₈ 光照並通 光催化效果影響之探討,其結果如 Figure 4.23 及 Figure 4.24 所示;反應速 率則利用式 4-6-2, Langmuir-Hinshelwood (L-H)進行模擬假一階反應速率, 線性化結果如 Figure 4.25 及 Figure 4.26 所示, 模擬結果如 Table 4.7 及 Figure 4.27 所示。在氧氣環境並使用 UV213-468 光源照射下,添加觸媒對光降解效 果有顯著提升,反應速率由未添加觸媒時的 1.11 增加至 $1g L^{-1}$ 的 2.015; 但隨著觸媒劑量的增加效果卻無明顯差異,顯示僅使用 0.2 g L⁻¹之劑量就 可將酚的降解效率提升至100%。有學者(Chiou et al., 2007)提出適當觸 媒劑量可增加電子-電洞對產生的速率;但過多觸媒的添加可能導致電子-電洞對結合率提高,此外使溶液濁度提高,反而降低紫外光穿透率而導致 光催化效果降低而形成遮蔽效應 (Shielding effect),因此觸媒劑量提升反 而無明顯效益。以 Langmuir-Hinshelwood 模式模擬不同觸媒劑量之反應速 率,決斷係數為0.922,顯示模擬值和實驗值有相當良好之相關性。此外, 學者(Barakat et al., 2005)提出在氦氣中觸媒的添加造成濁度提高,反而 降低紫外光穿透率而導致光催化效果降低。

為了證明增加觸媒劑量造成的遮蔽效應,因此配製 phenol 初始濃度 (C_0)為50gm⁻³,在UV₂₁₃₋₄₆₈光照並通以氧氣的環境下,進行不同觸媒 劑量($0 \times 0.2 \times 0.5 \times 1 \times 2 \times 4$ gL⁻¹P-25TiO₂)對光穿透度之探討,結果如 Tables 4.8-9及 Figures 4.28-29所示。

Figure 4.28 為添加觸媒劑量為0及0.2gL⁻¹之穿透光圖譜,不添加 觸媒時所穿透光圖譜主要波長為242、272、301、324、431及468 nm。而 加入0.2gL⁻¹觸媒後,主要穿透波長則為301、324、431及468 nm,發現 波長小於300 nm 以內之訊號皆被吸收,而無明顯之穿透光背光偵測感應

器所接收。

Figure 4.29 為將觸媒添加劑量由 0.5 g L⁻¹提升至 4g L⁻¹。當劑量為 0.5 及 1.0 g L⁻¹所穿透出主要波長為 242、272、301、324、431 及 468 nm。 當劑量提升至 1.5 及 2.0 g L⁻¹時,波長 242 nm 之訊號已被吸收,僅剩下 272、301、324、431 及 468 nm 穿透出來。當添加劑量為 4 g L⁻¹時,波長 小於 300 之訊號已被吸收,僅剩下 301、324、431 及 468 nm。曾有文獻(Chiou *et al.*, 2008) 中提及觸媒劑量的增加會形成遮蔽效應 (Shielding effect) 而 降低光穿透度,由 Tables 4.8-9 可明顯觀察到劑量提升對於穿透率之影響及 Figure 4.28-29 之圖譜則可驗證此論點。

	. .	_	
Dosage of TiO ₂ ,	r ₀ of experimental data,	r ₀ of L-H model,	Determine
$g L^{-1}$	$g m^{-3} min^{-1}$	$g m^{-3} min^{-1}$	coefficient, r ²
0	1.11	0	0.922
0.05	1.38	1.381	
0.1	1.635	1.623	
0.2	1.76	1.778	
1	2.015	1.926	
2	1.875	1.947	

Table 4.7 Kinetic parameters for phenol on TiO_2 with various dose of TiO_2

Dose of P25	213 nm	242 nm	273 nm	301 nm	325 nm	431 nm	468 nm
0 g L ⁻¹	100 %	100 %	100 %	100 %	100 %	100 %	100 %
0.2 g L^{-1}	0 %	0 %	0 %	32.6 %	58.3 %	72.7 %	46.4 %
0.5 g L^{-1}	0 %	0 %	0 %	0 %	0 %	0 %	0 %

Table 4.8 Percentage of transimission under $\mathrm{UV}_{213\text{-}468}$ irriadation with dose of P25 TiO_2

Table 4.9 Percentage of transimission under $UV_{213-468}$ irriadation with dose of P25 TiO₂

Dose of	213 nm	242 nm	273 nm	301 nm	325 nm	431 nm	468 nm
P25							
0.5 g L ⁻¹	100 %	100 %	100 %	100 %	100 %	100 %	100 %
1 g L ⁻¹	97 %	41.1 %	47.9 %	100 %	100 %	99.9 %	100 %
1.5 g L ⁻¹	26.4 %	5.49 %	45.6 %	77.7 %	94.1 %	95.7 %	87.9 %
2 g L^{-1}	0 %	6.74 %	15.9 %	59.2 %	90.2 %	91.5 %	72.2 %
4 g L ⁻¹	0 %	0 %	10 %	17.9 %	61.4 %	79 %	33.5 %

Figure 4.23 The dependence of removal efficiency on dosage of TiO_2 for phenol with various dosages of TiO_2 under $UV_{213-468}$ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the C_0 of phenol is 50 g m⁻³, and the dosage of catalyst 0, 0.2, 1, and 2 g L⁻¹ P-25 TiO₂.

Figure 4.24 The dependence of C/C_0 on time for phenol with various dosages of TiO₂ under UV₂₁₃₋₄₆₈ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the C₀ of phenol is 50 g m⁻³. \diamondsuit , \Box , \triangle , \bigcirc , \blacklozenge and \blacksquare : 0, 0.05, 0.1, 0.2, 1, and 2 g L⁻¹ P-25 TiO₂, respectively.

Figure 4.25 The dependence of $-\ln(C/C_0)$ on time for phenol with various dosages of TiO₂ under UV₂₁₃₋₄₆₈ irradiation. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the C₀ of phenol is 50 g m⁻³. \diamond , \Box , \triangle , \bigcirc , \blacklozenge and \blacksquare : 0, 0.05, 0.1, 0.2, 1, and 2 g L⁻¹ P-25 TiO₂, respectively.

Figure 4.26 Langmuir-Hinshelwood plot of $1/r_0$ vs. $1/d_0$ for phenol with various dosage of TiO₂ under UV₂₁₃₋₄₆₈ irradiation. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. \bigcirc : experimental data.

Figure 4.27 Langmuir-Hinshelwood plot of r_0 vs. d_0 for phenol with various dose of TiO₂ under UV₂₁₃₋₄₆₈ irradiation. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ is 50 g m⁻³. \bigcirc : experimental data, (--): Langmuir-Hinshelwood data.

Figure 4.28 The spectrum of transmission under $UV_{213-468}$ irradiation with 0 (-) and 0.2 (--) g L⁻¹ P-25 TiO₂ detected by fiber optic spectrometer.

Figure 4.29 The spectrum of transmission of $UV_{213-468}$ irradiation with 0.5, 1, 1.5, 2 and 4 g L⁻¹ P-25 TiO₂ detected by fiber optic spectrometer.

4.8 不同光強度對副產物產生之影響

當酚經由光催化降解後,其物種降解程度大於礦化程度,則表示有 中間產物之形成。有學者(Ortiz-Gomez et al., 2007)提出酚主要降解後中 間產物為鄰-苯二酚(o-dihydroxybeneze, o-DHB)、對-苯二酚 (p-dihydroxybeneze, p-DHB)、對-苯醌(1,4-benzoquinone, 1,4-BQ)、三氫 氧基苯二酚(1,2,4-trihydroxybenzene, 1,2,4-THB)、草酸(Oxalic acid)、甲 酸(Formic acid)、順丁烯二酸(Maleic acid)以及反丁烯二酸(Fumaric acid),並在文中提及三氫氧基苯二酚、草酸、甲酸、順丁烯二酸以及反丁 烯二酸濃度較低。因此本研究僅針對鄰-苯二酚、間-苯二酚、對-苯醌三種 作為中間產物進行濃度監測,及釐清光強度及觸媒添加對中間產物的影 響,以降解效果最佳之商用觸媒劑量作為代表實驗組進行中間產物鑑定。 實驗條件為配置初始濃度 50 g m⁻³ 酚溶液,添加觸媒劑量為 0 及 0.2 g L⁻¹, 氧氟流量為 200 ml min⁻¹,光源強度則使用兩種不同之 UV₂₁₃₋₄₆₈及 UV₂₇₅ 燈管進行實驗。

使用 UV₂₁₃₋₄₆₈ 燈管進行未添加觸媒及添加觸媒之實驗結果如 Figure 4.30 及 4.31 所示,可看出觸媒的添加,不僅對酚的降解有幫助,對酚總有 機碳的礦化也有相當程度的效益增進。未添加觸媒時,雖然光解對酚有約 80%降解,但是中間產物仍無明顯的降解,且在總有機碳的礦化程度僅有 8%,表示僅有光分解的能量,並無法將酚及中間產物等有效的降解及礦 化。當未加觸媒時,反應結束後溶液呈現如粉玫瑰色之溶液,有學者指出, 此時溶液顏色轉變是因酚及副產物並未完全礦化,而副產物中的對-苯二酚 和對-苯醌作用而形成半醌類錯合物 (semiquinone complex)所產生的顏 色,此現象也在其他研究 (Sun and Smirniotis, 2003) 中發現。而中間產物 有反應結束時所監測之濃度分別如 Table 4.9 所示。未添加觸媒之前,副產 物形成的濃度隨反應時間拉長而增加,並在反應結束時監測到濃度形成之 最高值。添加觸媒後,中間產物量形成最大量的時間由純光照的 180 min 提前至 60 min。而當酚的降解量為 80%,中間產物形成量最大。在添加觸

媒的結果中也顯示出,雖然酚和中間產物都已降解完畢,但總有機碳仍有 20%還未完全礦化,代表溶液中除了酚和 o-DHB、p-DHB 及 1,4-BQ 等, 仍有其他中間產物如甲酸、草酸及丁烯二酸類等還未完全礦化為 CO₂ 和 水,因此要完全礦化仍須再延長反應時間。Figure 4.32 及 4.33 分別未添加 觸媒及已添加 0.2 g L⁻¹ 降解直條圖。

為對照光源強度對副產物產生之影響,因此利用 UV275 燈管對酚進 行純光照分解及添加觸媒之光催化降解,其結果如 Figure 4.34 及 4.35 所 示,中間產物濃度形成則如 Table 4.10 所示。雖然由先前小節中以得知 UV275 燈管能量較弱,無法憑燈管本身能量將酚進行光照分解,光照分解 降解量僅為5%,在中間產物部分僅監測到微量之1,4-BQ存在, o-DHB 及 p-DHB 都並未測得,代表僅有少量的酚分子被燈管能量分解後形成 1,4-BQ。有學者(Subramanian and Kannan, 2008)研究指出,光源強度強 弱會影響副產物的產生,而在該研究中也指出,在低光強度的條件下,較 易形成對-苯醌。在 Table 4.10 中可明顯看出中間產物所形成之濃度小於 Table 4.9,表示燈管能量之差異也可影響中間產物之形成。再添加觸媒後, 光催化降解效率從未添加觸媒的5%提升至60%,顯示光觸媒之存在為使 用低能量燈管進行光催化降解時之重要因素之一。因光觸媒接收到能量後 將酚分子加以氧化後進而形成副產物,因此主汙染物酚開始降解,副產物 也會形成。但在總有機碳之部分,則可發現燈管能量較弱時總有機碳降解 率由 UV213-468 的 80% 銳減至 UV275 的 15%, 顯示 UV275 燈管在即使添加光 觸媒之環境下,仍無法順利降解。Figure 4.36 及 4.37 為分別未添加觸媒及 已添 $m 0.2 g L^{-1}$ 降解直條圖。

為得知在光催化反應中整體碳濃度之平衡,並假設在反應過程中並 無因揮發所造成之濃度變化,可利用式 4-9-1 進行碳平衡之計算:

mineralized ratio =
$$\frac{\Delta \text{TOC}}{\text{TOC}_0}$$
 (£ 4-9-1)

其中,TOC 為整體反應中總有機碳之濃度,而△TOC 為反應中, TOC 之變化量,即為礦化之 TOC;而在剩餘尚未礦化 TOC 中,由剩餘之 酚、所監測之副產物如 o-DHB、p-DHB 及 1,4-BQ 等 (intermediates) 及未 監測之副產物 (unknown intermediates)所構成,再經由式 4-9-1 計算即可 得到不同條件之碳濃度平衡圖,如 Figure 4.38-41 所示。

經由碳濃度平衡圖可發現,除了所監測到的酚及副產物如 o-DHB、 p-DHB 及 1,4-BQ 等(intermediates)之外,還有大量的其他為監測副產物 (unknown intermediates)生成如順式、反式丁烯二酸及草酸等生成。而在 未添加觸媒條件下,這些酸類副產物可能因為酚及 o-DHB、p-DHB 及 1,4-BQ 等主要副產物由光分解後形成,因此未測副產物較濃度約占 55 %, 比已測副產物的 15.8 %要高,剩餘酚濃度占 21.67 %,整體反應礦化率為 7.59 %,代表僅有少部分的酚礦化成二氧化碳。添加光觸媒後,除了酚快 速被光催化降解(0%),在反應終點時主要副產物的濃度也幾乎降解完畢 (0%),而在未礦化物種中僅剩下未測副產物,約占整體反應 16.1%,而 整體反應礦化率為 83.9%。

使用 UV₂₇₅ 燈管照射之碳平衡濃度圖如 Figures 4.40-41 所示。可發現,在未添加光觸媒時,主要污染物酚僅有少量的被光所分解約占整體碳濃度 10.9 %;副產物中也僅有少量的 1,4-BQ 的形成,占整體碳濃度 0.15 %;未測副產物則為 1.8 %,整體反應礦化率為 8 %,代表僅有少部分的酚礦化成二氧化碳。添加光觸媒後,在反應結束時,酚剩餘量占整體碳濃度 37 %,主要副產物的碳濃度為 14.9 %,而未測副產物則因為添加觸媒後使得酚及主要副產物被光催化降解而形成較多的未測副產物,占整體碳濃度 33 %,整體反應礦化率為 14.42 %。

經由以上結果可知,光源強度較強(UV₂₁₃₋₄₆₈)情況之下,對主污染物酚有較強的分解能力並且可將酚轉化為副產物及未測副產物;當光源 強度較弱(UV₂₇₅)時,對酚光解能力大幅降低,僅少部分之酚被分解而產 生少量的 1,4-B,Q 及未測副產物。當觸媒添加之後,在光強度較強 (UV₂₁₃₋₄₆₈)之環境中,不僅有效提升酚及主要副產物之降解,對於未測 副產物之碳濃度也由光解的 55%降低至 16.1%,對未測副產物具有一定程

度的降解能力,礦化程度也由 7.59%大幅提升至 83.9 %。在光強度較弱 (UV₂₇₅)情況中,酚降解程度由光解之 10.1%提升至 63%,副產物也 0.15 %提升至 14.9%,未測副產物部份則 1.8%提升至 33%,礦化率則 8%增加 至 14.42 %。顯示在光催化反應中,在不同光源強度環境下,觸媒的添加 對於污染物及副產物的降解、整體反應的礦化率都有很大的幫助。

UV ₂₁₃₋₄₆₈					UV ₂₁₃₋₄₆₈ +P25				
t, min	Phenol,	o-DHB	p-DHB	1,4 - BQ	Phenol,	o-DHB	p-DHB	1,4-BQ	
	g m-3	, g m- ³	, g m- ³	, g m- ³	g m-3	, g m- ³	, g m- ³	, g m-3	
0	50.873	0	0	0	46.554	0	0	0	
5	44.816	0.538	0.397	0.228	40.645	0.947	1.645	0.518	
10	40.089	0.997	0.524	0.240	36.975	1.702	2.634	0.689	
15	39.533	1.688	0.641	0.239	34.711	2.107	3.381	0.942	
20	35.070	2.128	0.739	0.228	30.864	2.625	4.218	0.846	
30	32.706	2.690	0.908	0.207	26.193	3.783	5.226	0.952	
40	30.248	3.069	0.941	0.225	23.038	4.006	6.144	1.053	
60	25.852	4.070	1.141	0.291	14.023	3.594	6.169	0.926	
90	22.542	5.541	1.409	0.355	6.532	3.065	5.433	0.825	
135	15.381	6.434	1.652	0.422	1.056	1.045	2.193	0.441	
180	11.028	7.287	1.635	0.526	0	0	0	0	

Table 4.9 The concentration of phenol and by-products form photocatalytic degradation under $UV_{213-468}$ irradiation with various dosage of P25 TiO₂

UV ₂₇₅					UV ₂₇₅ + P25			
t, min	phenol,	o-DHB	p-DHB	1,4 - BQ	phenol,	o-DHB	p-DHB	1,4-BQ
	g m-3	, g m- ³	, g m- ³	, g m- ³	g m-3	, g m- ³	, g m- ³	, g m- ³
0	47.590	0	0	0	45.306	0	0	0
5	47.193	0	0	0.0207	42.994	0.300	0	0.074
10	46.966	0	0	0.0231	41.359	0.435	0.243	0.145
15	46.906	0	0	0.0326	40.751	0.552	0.419	1.401
20	46.861	0	0	0.0265	38.699	0.637	0.480	1.701
30	46.206	0	0	0.0448	38.555	0.757	0.716	2.301
40	45.856	0	0	0.043	35.950	0.838	0.837	2.775
60	45.359	0	0	0.0726	33.425	0.959	1.096	3.477
90	45.333	0	0	0.0927	29.555	1.107	1.175	4.087
135	45.052	0	0	0.0667	22.532	1.266	1.425	5.007
180	44.932	0	0	0.1415	18.511	1.444	1.268	5.846

Table 4.10 The concentration of phenol and by-products form photocatalytic degradation under UV_{275} irradiation with various dosage of P25 TiO₂

Figure 4.30 The concentration profiles of phenol and by-products under UV₂₁₃₋₄₆₈ irradiation analyzed by HPLC and TOC analyzer. The volume of solution is 0.8 L, the dosage is 0 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. \diamondsuit , \Box , \triangle , \bigcirc and O: phenol, o-DHB (o-dihydroxylbenzene), p-DHB (p-dihydroxylbenzene), 1,4-BQ (benzoquinone) and TOC, respectively.

Figure 4.31 The concentration profiles of phenol and by-products under $UV_{213-468}$ irradiation analyzed by HPLC and TOC analyzer. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. \diamondsuit , \Box , \bigtriangleup , \bigcirc and O: phenol, o-DHB (o-dihydroxylbenzene), p-DHB (p-dihydroxylbenzene), 1,4-BQ (benzoquinone) and TOC, respectively.

Figure 4.32 The concentration profiles of phenol and by-products under $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

Figure 4.33 The concentration profiles of phenol and by-products under $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

Figure 4.34 The concentration profiles of phenol and by-products under UV₂₇₅ irradiation analyzed by HPLC and TOC analyzer. The volume of solution is 0.8 L, the dosage is 0 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. \diamond , \Box , \triangle , \odot and \bullet : phenol, o-DHB (o-dihydroxylbenzene), p-DHB (p-dihydroxylbenzene), 1,4-BQ (benzoquinone) and TOC, respectively.

Figure 4.35 The concentration profiles of phenol and by-products under UV₂₇₅ irradiation analyzed by HPLC and TOC analyzer. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. \diamond , \Box , \triangle , \odot and \bullet : phenol, o-DHB (o-dihydroxylbenzene), p-DHB (p-dihydroxylbenzene), 1,4-BQ (benzoquinone) and TOC, respectively.

Figure 4.36 The concentration profiles of phenol and by-products under UV_{275} irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

Figure 4.37 The concentration profiles of phenol and by-products under UV_{275} irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of P-25 TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

Figure 4.38 The plot of mineralization ratio of phenol under $UV_{213-468}$ irradiation with 0 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

Figure 4.39 The plot of mineralization ratio of phenol under $UV_{213-468}$ irradiation with 0.2 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

Figure 4.40 The plot of mineralization ratio of phenol under UV_{275} irradiation with 0 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

Figure 4.41 The plot of mineralization ratio of phenol under UV_{275} irradiation with 0.2 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³.

4.9 磁性載體 (SiO₂/Fe₃O₄) 及磁性奈米光觸媒 (TiO₂/SiO₂/Fe₃O₄) 物理 化學特性鑑定

利用掃描式電子顯微鏡(scanning electron microscopy, SEM)、X 光繞 射儀(X-ray diffraction)、紫外光可見光吸收光譜儀(UV-vis-NIR spectrometer)、超導量子干涉磁量儀(Superconducting QUantum Interference Device, SQUID)以及界達電位(Zeta potential)等儀器來鑑定本研究合成 磁性光觸媒之物化特性,結果分述如下。

4.9.1 表面結構觀察

首先利用掃描電子顯微鏡 (scanning electron microscopy, SEM)進行 磁性載體 (SiO₂/Fe₃O₄)及磁性奈米光觸媒 (TiO₂/SiO₂/Fe₃O₄)表面鑑定及 元素分析,分析結果如 Figure 4.42-4.46 所示。

從 Figure 4.42-43 為鍛燒前後之磁性載體,由圖中可發現,鍛燒前後 對顆粒大小並無明顯的影響,在放大倍率為 10 K (a) 及 30 K (b) 時,可 看到表面有許多細小顆粒散布均匀的情形,顯示顆粒並無明顯團聚現象。 當放大倍率提高至 100 K (c) 時,可觀察到粒徑約為 40-50 nm 之顆粒。 由 SEM-EDS 分析結果可發現樣品表面上元素分布 Si 占約 10-12%, O 為 56-60%, Fe 則占 8-9%,可知鍛燒過程對材料之組成影響不大,但C 含量 減少比例較大,主要原因可能是在鍛燒過程中有部分 C 被氧化為二氧化碳 所致。

Figure 4.44-4.48 分別為使用掃描式電子顯微鏡觀察經過 450℃鍛燒

而停留時間分別為 0、20、60、120 及 180 分鐘之磁性奈米光觸媒,由圖 中可發現,在 10 K 及 30 K (a,b) 的觀察下可觀察到磁性奈米光觸媒表面 皆呈現均勻散佈之現,而在 30K 時可觀察到材料表面有較大的顆粒產生。 再將放大倍率提高至 100 K(c)時,可觀察到有許多粒徑不同之大小顆粒, 顆粒較大之粒徑約為 50 nm。在 SEM-EDS 的觀察中,可發現樣品表面上 元素分布 Si 占約 8%, O 為 71-77%, Fe 占 2.5-5%, Ti 則占約 12-15%。

Element	Weight%	Atomic%
СК	14.76	24.16
O K	46.15	56.72
Si K	15.35	10.75
Fe K	23.75	8.36
Totals	100.00	

Figure 4.42 the SEM and SEM-EDS pictures of uncalcinated SiO_2/Fe_3O_4 with various conditions. (a) ×10 K, (b) ×30 K, (c) ×100 K and (d) SEM-EDS.

(d)

Element	Weight%	Atomic%
СК	10.11	17.27
O K	47.54	60.97
Si K	17.09	12.48
Fe K	25.26	9.28
Totals	100.00	

Figure 4.43 the SEM and SEM-EDS pictures of calcinated SiO_2/Fe_3O_4 with various conditions. (a) ×10 K, (b) ×30 K, (c) ×100 K and (d) SEM-EDS.

Element	Weight%	Atomic%
O K	48.33	71.59
Si K	10.16	8.57
Ti K	31.46	15.57
Fe K	10.06	4.27
Totals	100.00	

Figure 4.44 the SEM and SEM-EDS pictures of M-TiO₂ ($TiO_2/SiO_2/Fe_3O_4$) with various conditions. (a) ×10 K, (b) ×30 K, (c) ×100 K and (d) SEM-EDS with calcinaiton for 0 mins.

Element	Weight%	Atomic%
O K	50.89	73.52
Si K	10.62	8.74
Ti K	26.41	12.74
Fe K	12.08	5.00
Totals	100.00	

Figure 4.45 The SEM and SEM-EDS pictures of $M-TiO_2$ ($TiO_2/SiO_2/Fe_3O_4$) with various conditions. (a) ×10 K, (b) ×30 K, (c) ×100 K and (d) SEM-EDS with calcination for 20 mins.

Element	Weight%	Atomic%
O K	55.76	77.06
Si K	9.05	7.12
Ti K	28.81	13.30
Fe K	6.38	2.53
Totals	100.00	

Figure 4.46 The SEM and SEM-EDS pictures of $M-TiO_2$ ($TiO_2/SiO_2/Fe_3O_4$) with various conditions. (a) ×10 K, (b) ×30 K, (c) ×100 K and (d) SEM-EDS with calcinaiton for 60 mins.

(d)

Element	Weight%	Atomic%
СК	1.75	3.20
O K	53.38	73.35
Si K	10.44	8.18
Ti K	26.20	12.03
Fe K	8.22	3.24
Totals	100.00	

Figure 4.47 The SEM and SEM-EDS pictures of M-TiO₂ (TiO₂/SiO₂/Fe₃O₄) with various conditions. (a) ×10 K, (b) ×30 K, (c) ×100 K and (d) SEM-EDS with calcinaiton for 120 mins.

Element	Weight%	Atomic%
C K	3.37	6.54
O K	45.20	65.78
Si K	10.03	8.32
Ti K	30.48	14.81
Fe K	10.92	4.55
Totals	100.00	

Figure 4.48 The SEM and SEM-EDS pictures of M-TiO₂ ($TiO_2/SiO_2/Fe_3O_4$) with various conditions. (a) ×10 K, (b) ×30 K, (c) ×100 K and (d) SEM-EDS with calcinaiton for 180 mins.

4.9.2 XRD 晶相鑑定

為鑑定磁性載體及磁性光觸媒之晶相而本實驗之 XRD 係委託東海 大學共同貴重儀器中心使用 X 光繞射儀 (X-ray Diffraction meter)進行分 析。比較鍛燒前後磁性載體結果如 Figure 4.49 所示。由結果可發現,以化 學 共 沉澱 法 及 溶 膠 凝 膠 法 所 製 備 的 SiO₂/Fe₃O₄ 主 要 晶 型 為 鐵 磁 礦 (Magnetite),利用 JCPDS 資料庫進行比對後,Fe₃O₄之特徵線的角度(2 theta)分別為 35.422、62.515、30.095、56.942、43.052;而在 20-28 度之 間為載台基板(載玻片)訊號所形成及 SiO₂薄膜所貢獻之波包;經過鍛燒 後,波峰強度降低,代表晶型不明顯,顯示鐵磁礦晶型經鍛燒後會減弱晶 型強度,也間接影響到鍛燒前後之磁力強度(如 Ttable 4.12 及 Figure 4.53)。

本研究也利用 XRD 來觀察鍛燒前後及不同鍛燒停留時間對磁性光 觸媒晶型的影響,結果如 Figure 4.50 所示。TiO₂主要特徵線角度(2 theta) 為 25.22、37.76、47.96、53.85、54.97 及 68.86 為銳鈦礦相之特徵線;而 35.42、74.97 及 82.63 為金紅石相之特徵線;特徵角度為 30.77、43.14 及 57.1 則為鐵磁礦之特徵線。隨著鍛燒停留時間由 0 分鐘增加至三小時的增 加,鐵磁礦、銳鈦礦及金紅石相的晶型也越顯著,特徵線強度也逐漸增強, 也與其他學者 (Beydoun and Amal, 2002)的結果一致。

	Percentage of rutile, %	Percentage of anatase, %
Uncalcinated	19.58	80.42
0	11.46	88.54
20	9.31	90.59
60	9.19	90.81
120	8.89	91.11
180	8.66	91.34

Table 4.11 Phase Structure of M-TiO_2 with various duration calcinated 450 $^\circ\!C$

Figure 4.49 XRD pattern of SiO_2/Fe_3O_4 , uncalcinated and calcinated SiO_2/Fe_3O_4 . M: magnetite.

Figure 4.50 XRD pattern of uncalcinated and calcinated under 450 $^{\circ}$ C with various retention time of M-TiO₂ (TiO₂/SiO₂/Fe₃O₄). M, A and R: magnetite, anatase and rutile.

4.9.3 不同鍛燒停留時間對吸收波長的影響

為得知鍛燒停留時間對 M-TiO₂ 光學特性而利用全波長吸收光譜進 行測量,並與 Fe₃O₄及 SiO₂/Fe₃O₄一起進行比較,結果如 Figure 4.51 所示, 由上至下為停留時間 SiO₂/Fe₃O₄、Fe₃O₄、0、60、120、180 及 20 分鐘 M-TiO₂。

由結果顯示,磁性核心 Fe₃O₄在 200-800 nm 範圍之光源皆可全部吸收並有良好吸收值,而批覆 SiO₂後之磁性載體 SiO₂/Fe₃O₄在短波 UV 範圍中仍具有良好吸收能力,可見光範圍則有明顯下降趨勢。

在 M-TiO₂部分,圖中可觀察到除了停留時間為 20 分鐘之外,其餘 停留時間之差異對全波長吸光值影響並不顯著,而從紫外線輻射範圍到紅 外光 (200-1000 nm),都有一定吸收值。而磁性光觸媒經過 450℃鍛燒後 在可見光範圍 400-700 nm 有一穩定之吸光值,而 P25 光觸媒僅能吸收短波 長紫外輻射和 M-TiO₂ 明顯不同。

為了得知 M-TiO₂ 在 UV₂₁₃₋₄₆₈ 燈管之波長範圍中吸收光之強度,將數 據選取出來,結果如 Figure 4.52 所示由上至下為停留時間 0、60、180、120 及 20 分鐘。在 200-470 nm 中,吸收值由高至低分別是停留時間 0、60、 180、120 及 20 分鐘,顯示停留時間 0 分鐘之觸媒在此波段中,有最佳吸 光值,而停留時間 60 分鐘則其次;在停留時間為 120 及 180 分鐘則大致 相同;停留時間 20 分鐘之觸媒在 200-360 nm 時和其他材料之差異並不大, 但波長紅移時,吸收值則越低,和其他條件有較明顯之差別,代表此波段 需要更強的能量才可激發。

Figure 4.51 The UV-vis spectra of the with Fe_3O_4 , calcinated SiO_2/Fe_3O_4 and various duration of M-TiO₂.

Figure 4.52 The UV-vis spectra (from 200-470 nm) of the with Fe_3O_4 , calcinated SiO_2/Fe_3O_4 and various duration of M-TiO₂.

4.9.4 磁性光觸媒磁力特性

利用超導量子干涉磁量儀來分析以溶膠凝膠法製備之 SiO₂/F₃O₄及 不同條件之 M-TO₂,分析條件為室溫下,外加磁場為0至±10K Gauss。磁 場強度為±7.0 Tesla (±70000 Gauss),磁矩範圍為 5×10⁻⁸-300 emu。本實驗 之 SQUID 係委託台灣大學理學院貴重儀器使用中心進行分析。

實驗結果如 Table 4.6 及 Figure 4.53 所示,未鍛燒的 SiO₂/Fe₃O₄之飽 和磁化度為 25.4,經過鍛燒後則為 17.8 emu g⁻¹,而由 Figure 4.49 之 XRD 之結果可發現鍛燒前後晶型強度有明顯差異,未鍛燒之材料晶型特徵線強 度較鍛燒後更為強,顯示未鍛燒材料上之鐵磁礦晶相較鍛燒後為明顯,致 使鍛燒後材料飽和磁化度較低之因素。鍛燒溫度停留時間的不同,在磁力 特性上也有影響,如 Table 4.6 及 Figure 4.54 中,以 450 度鍛燒,停留時間 為0分鐘時,MTiO₂之飽和磁化度為 12.1 emu g⁻¹;停留時間延長至 60 分 鐘時飽和磁化度則為 8.93 emu g⁻¹。而 MTiO₂ 經過光催化實驗後,其磁力 並不會有所改變, 飽和磁化度皆有 12.1-12.7 emu g⁻¹, 仍具有穩定之磁性, 如 Table 4.12 及 Figure 4.55 所示。本研究以溶膠凝膠法所製備之磁性載體 及磁性光觸媒皆為超順磁性材料 (superparamagnetic), 而超順磁性的材料 可輕易的利用外加磁場或是磁鐵進行固液分離。而殘留磁化度較低,樣品 也不會因為磁力而聚集在一起,因此回收後可容易均匀分布於反應溶液 中。

134

	Saturation magnetization, emu g ⁻¹	%
SiO ₂ /Fe ₃ O ₄	25.4	-
SiO_2/Fe_3O_4 -calcinated	17.8	100
M-TiO ₂ (450°C, 0 min)	12.1	67.97
M-TiO ₂ (450°C, 60 min)	8.93	50.17
M-TiO ₂ -ext (450°C, 0 min)	12.7	71.35

Table 4.12 Saturation magnetization of various magnetic particles

Figure 4.53 Magnetization curves of various magnetic particles. \diamondsuit and \square : SiO₂/Fe₃O₄ and calcinated SiO₂/Fe₃O₄.

Figure 4.54 Magnetization curves of various $M-TiO_2$ with various retention time. \bigcirc and \triangle : $M-TiO_2$ with 0 and 60 min of retention time.

Figure 4.55 Magnetization curves of various M-TiO₂ with various conditions. \Box and \diamondsuit : before experimented and after experimented.

4.9.5 磁性光觸媒之界達電位

用界達電位計來進行量測磁性光觸媒之等電位點,其結果如 Figure 4.56 所示。由 Figure 4.54 可發現所製備的超順磁性奈米光觸媒之 pHpzc 為 5.6。而在進行光催化實驗時,酚之初始 pH 值為 5.9, M-TiO₂ 加入後 pH 值則為 5.5。

Figure 4.56 The zeta potential of M-TiO₂ as function of pH values under various ionic strengths. \diamondsuit and \square : ionic strength = 0.01 and 0.1 N NaCl.

4.10 磁性奈米光觸媒對酚光催化降解效果

4.10.1 不同劑量對光催化降解效果之影響

為確定磁性奈米光觸媒對酚之光催化效果,因此配製初始濃度為50gm⁻³酚溶液,氣提氧氣流量為200mlmin⁻¹,改變(0-2gL⁻¹)觸媒添加的劑量,並在UV₂₁₃₋₄₆₈燈管照射下來求得最佳操作條件,其實驗結果如Fgure 4.57 所示。

未添加觸媒之純光解去除率約為80%,添加劑量為0.2-2g L⁻¹去除 效果分別為88%、66%、52%及53%。光催化降解效果隨著觸媒劑量的 增加而降低,可能原因為觸媒劑量過多造成遮蔽效應(Shielding effect)降 低光穿透度而導致光催化降解效果隨觸媒劑量提升而下降。因此利用光偵 測系統對不同觸媒劑量所穿透之光源進行量測如Figure 4.58-4.60所示。由 結果可發現觸媒添加 0.2 g L⁻¹後,光穿透強度因被觸媒所吸收而大幅下 降。當劑量由 0.5 g L⁻¹ 再增加至 1 g L⁻¹時,穿透強度也有明顯的下降情形, 而再添加更高劑量 (0.2 g L⁻¹)則無明顯差別。

Figure 4.57 The dependence of C/C_0 on time for phenol with various dosage of M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. \diamond , \Box , \bigcirc , \triangle and \blacklozenge : 0, 0.2, 0.5, 1 and 2 g L⁻¹ M-TiO₂, respectively.

Figure 4.58 The spectrum of transmission under $UV_{213-468}$ irradiation with 0 g L^{-1} M-TiO₂ detected by fiber optic spectrometer.

Figure 4.59 The spectrum of transmission under $UV_{213-468}$ irradiation with 0.2 g L^{-1} M-TiO₂ detected by fiber optic spectrometer.

Figure 4.60 The spectrum of transmission under $UV_{213-468}$ irradiation with various dosages of M-TiO₂ detected by fiber optic spectrometer.

4.10.2 不同鍛燒溫度停留時間對光觸媒活性之影響

欲了解鍛燒溫度的停留時間對光觸媒活性的影響,本研究將所使用之 磁性光觸媒經過450℃高溫鍛燒後並分別維持停留時間0分鐘、20分鐘、 60分鐘、120分鐘及180分鐘五種不同停留時間來分別測試其光催化降解 及總有機碳礦化效果,並由五組中選取出最佳組來進行磁力回收後的再利 用光催化實驗。

為確定不同停留時間對磁性光觸媒光催化降解活性的影響,因此配 製初始濃度為 50gm⁻³酚溶液,氣提流量為 200 ml min⁻¹,氣體環境則為氧 氣的狀況下,觸媒添加劑量為 0.2gL⁻¹,並在 UV₂₁₃₋₄₆₈ 燈管照射下來求得 最佳操作條件,其光催化降解實驗結果如 Table 4.13及 Figure 4.61 所示。 實驗結果顯示,停留時間由 0 到 180 分鐘的光催化降解率分別為 85.4、 86.4、85、92.5及 80%,皆優於無添加觸媒的 78.4%。

再利用總有機碳分析儀來測定不同停留時間磁性光觸媒的礦化效 果,其結果如 Table 4.14 及 Figure 4.62 所示。在總有機碳分析結果中,五 種不同停留時間之礦化率則有明顯之差異,0、20、60、120 及 180 五種停 留時間總有機碳礦化率分別為 40.6 %、27.3 %、31.9 %、27.1 %及 23.5 %。 在第一次實驗之結果中可發現利用停留時間 2 小時之材料進行酚之光降解 有最佳之 92.5 %降解率,而礦化則是以 0 分鐘之效果尤佳,不僅反應末點 時最終礦化率達到 40.6 %,整體礦化趨勢都較其他條件好,停留時間為 120 min 則次之。

Figure 4.63-67 為不同停留時間材料進行催化後所得到之酚及副產

146

物濃度光降解圖,由圖中可發現,當停留時間越長,副產物之濃度也降解 的越快速,可知磁性光觸媒也可將酚分解為副產物後再進行礦化。而所監 測到的副產物中以 o-DHB 濃度為最高(5.2787 g m⁻³),而 p-DHB 及 1,4-BQ 則為 4.4966 及 4.7906 g m⁻³。在反應中段時(反應時間 60-135 分鐘),副產 物濃度已達最高值,再繼續反應副產物則開始分解,顯示酚及其副產物已 開始礦化為二氧化碳。

Figure 4.68-72 為五種不同停留時間之 M-TiO₂之碳平衡圖,由圖可 發現,當停留時間增加時,對酚的光降解皆有良好效果(停留時間由0至 180分鐘,酚占整體碳濃度約85-90%)。而在以測副產物濃度部份,會隨 著停留時間的增加而降低(停留時間由0至120分鐘,以測副產物占整體 碳濃度約13.5-2.9%),顯示停留時間增加有助於以測副產物降解,而未測 副產物比例也隨之增加(停留時間由0至120分鐘,未測副產物占整體碳 濃度30.9-61.3%),礦化率部分則是以停留時間為0(40.5%)及120(26.3 %)分鐘時較佳。

為了釐清鍛燒停留時間的不同對觸媒材料穩定性之影響,進行回收 再催化之活性探討的實驗,因此配製初始濃度為50gm⁻³酚溶液,氣提流 量為200mlmin⁻¹,氣體環境則為氧氣的狀況下,觸媒添加劑量為0.2gL⁻¹, 並使用 UV₂₁₃₋₄₆₈ 燈管照射求得最佳操作條件,其光催化降解實驗結果如 Table 4.13-14 及 Figure 4.73-82 所示,實驗結果顯示,鍛燒停留時間較長, 對材料穩定性較佳。在進行三次實驗後,鍛燒停留時間為120分鐘之礦化 分別為27.1、27.4 及26.8%,較其他條件穩定;停留時間0分鐘雖然在第

147

一次實驗有較佳之礦化能力,但隨著再利用次數增加,礦化率明顯衰減為 21.4及18.2%,其他條件也皆有明顯的衰減現象,僅有120min之材料最 為穩定;而在本實驗中鍛燒停留時間較長,其光催化活性則較佳,因此選 定最佳條件為以450℃進行鍛燒且停留時間為120min之材料。

	Only UV	0 min	20 min	60 min	120 min	180 min
1^{st}	78.4 %	85.4 %	86.4 %	85 %	92.5 %	80.2 %
2^{nd}		90.4 %	84.6 %	87.3 %	90.1 %	87.2 %
3rd		87 %	87.5 %	85.5 %	87.1 %	85 %

Table 4.13 The efficiency of photocatalytic degradation of phenol with various $M-TiO_2$

Table 4.14 The efficiency of mineralization of phenol with various $M-TiO_2$

	Only UV	0 min	20 min	60 min	120 min	180 min
1^{st}	7.6 %	40.6 %	27.3 %	31.9 %	27.1 %	23.5 %
2^{nd}		21.4 %	25.7 %	22.9 %	27.4 %	26 %
3rd		18.2 %	17.3 %	23.2 %	26.8 %	14.2 %

Figure 4.61 The dependence of C/C₀ on time for phenol with various retention time of M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. \Diamond , \Box , \triangle , \bigcirc , \bigtriangledown and O: retention time with 0, 20, 60, 120, 180 min and only UV irradiation, respectively.

Figure 4.62 The dependence of TOC/TOC₀ on time for phenol with various retention time of M-TiO₂ analyzed by TOC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. \diamondsuit , \Box , \triangle , \bigcirc , \bigtriangledown and \bullet : retention time with 0, 20, 60, 120, 180 min and only UV irradiation, respectively.

Figure 4.63 The concentration profiles of phenol and by-products umder $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of M-TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of M-TiO₂ is 0 min.

Figure 4.64 The concentration profiles of phenol and by-products umder $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of M-TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of M-TiO₂ is 20 min.

Figure 4.65 The concentration profiles of phenol and by-products umder $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of M-TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of M-TiO₂ is 60 min.

Figure 4.66 The concentration profiles of phenol and by-products umder $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of M-TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of M-TiO₂ is 120 min.

Figure 4.67 The concentration profiles of phenol and by-products umder $UV_{213-468}$ irradiation analyzed by HPLC. The volume of solution is 0.8 L, the dosage is 0.2 g L⁻¹ of M-TiO₂, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of M-TiO₂ is 180 min.

Figure 4.68 The plot of mineralization ratio of phenol under $UV_{213-468}$ irradiation with 0.2 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of calcination is 0 min and the temperature of calcination is 450 °C.

Figure 4.69 The plot of mineralization ratio of phenol under $UV_{213-468}$ irradiation with 0.2 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of calcination is 20 min and the temperature of calcination is 450 °C.

Figure 4.70 The plot of mineralization ratio of phenol under $UV_{213-468}$ irradiation with 0.2 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of calcination is 60 min and the temperature of calcination is 450 °C.

Figure 4.71 The plot of mineralization ratio of phenol under $UV_{213-468}$ irradiation with 0.2 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of calcination is 120 min and the temperature of calcination is 450 °C.

Figure 4.72 The plot of mineralization ratio of phenol under $UV_{213-468}$ irradiation with 0.2 g L⁻¹ of P25 TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹ and the C₀ of phenol is 50 g m⁻³. The duration of calcination is 180 min and the temperature of calcination is 450 °C.

Figure 4.73 The dependence of C/C₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 0 min and the temperature of calcinaiton is 450 °C. \Diamond , \Box , \triangle and \bigcirc : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.74 The dependence of TOC/TOC_0 on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 0 min and the temperature of calcination is 450 °C. \blacklozenge , \blacksquare , \blacktriangle and \blacklozenge : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.75 The dependence of C/C₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 20 min and the temperature of calcination is 450 °C. \diamondsuit , \Box , \triangle and \bigcirc : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.76 The dependence of TOC/TOC₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 20 min and the temperature of calcination is 450 °C. \blacklozenge , \blacksquare , \blacktriangle and \blacklozenge : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.77 The dependence of C/C₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 60 minand the temperature of calcinaiton is 450 °C. \diamondsuit , \Box , \triangle and \bigcirc : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.78 The dependence of TOC/TOC₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 60 min and the temperature of calcination is 450 °C. \blacklozenge , \blacksquare , \blacktriangle and \blacklozenge : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.79 The dependence of C/C₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 120 min and the temperature of calcination is 450 °C. \diamondsuit , \Box , \triangle and \bigcirc : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.80 The dependence of TOC/TOC₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 120 min and the temperature of calcination is 450 °C. \blacklozenge , \blacksquare , \blacktriangle and \blacklozenge : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.81 The dependence of C/C₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 180 min and the temperature of calcinaiton is 450 °C. \Diamond , \Box , \triangle and \bigcirc : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

Figure 4.82 The dependence of TOC/TOC₀ on time for phenol with various times of reuse experiment with M-TiO₂ analyzed by HPLC. The volume of solution is 0.8 L, the F_{O2} is 200 cm³ min⁻¹, the dosage of M-TiO₂ is 0.2 g L⁻¹ and the C₀ of phenol is 50 g m⁻³. The retention time of calcination is 180 min and the temperature of calcination is 450 °C. \blacklozenge , \blacksquare , \blacktriangle and \blacklozenge : 1St, 2nd and 3rd time of experiment and only UV irradiation, respectively.

第五章 結論與建議

5.1 結論

依照本研究中所進行對酚之光催化實驗以及磁性光觸媒合成並應 用所得結論如下:

- UV₂₁₃₋₄₆₈ 燈管能量較強,對酚有良好之光分解作用;UV₂₇₅ 燈管光分解 能力則較差。
- 本研究中,氣態環境的不同,對光催化反應有明顯的影響。溶氧為光 降解最主要之因素;觸媒之添加對光催化降解及總有機碳 TOC 之礦化 有顯著影響。
- 不同氣提流量對酚無明顯揮發產生;在光分解實驗中,氣提流量不同 對光分解效果影響不大。
- P25 觸媒添加劑量的多寡,對最終去除效果影響不大,大多在135分 鐘皆有100%之去除。
- 利用等溫吸附實驗並以 Freundlich isotherm 進行模擬並有良好模擬效果(決斷係數為 0.995),並可得知商用 P25 光觸媒不利於吸附酚(n_F= 0.767<1)。
- 6. 以 Langmuir-Hinshelwood 模式進行光催化降解動力式之探討及模擬, 顯示初始濃度高於 50 g m⁻³時初始反應速率已趨於平緩,而以 L-H 模 式模擬實驗結果具有良好之模擬效果(決斷係數為 0.946)。而添加觸 媒劑量高於 0.2 g L⁻¹時,初始反應速率也趨於緩慢,以 L-H 模式對實 驗值進行模擬也可得到良好的模擬效果(決斷係數為 0.922)。
- 不同酸鹼值不僅影響酚所存在於反應溶液中之型態,也進一步影響
 P25 二氧化鈦表面電性,進而影響光催化效果及總有機碳礦化效果。
 本研究中以不調整之自然酸鹼值(pH=5.9)有最佳效果。
- 在 UV₂₁₃₋₄₆₈ 光源下,未添加觸媒時,酚去除效果及總有機碳礦化率為 80%及8%,中間產物則還未被降解;添加觸媒後酚及中間產物都完

全被光催化分解,而總有機碳礦化率則為80%,代表還有其他種類之 中間產物尚未完全礦化。而在UV₂₇₅光源下,未添加觸媒時,酚去除 效果及總有機碳礦化率為5%及8%,中間產物僅測得1,4-BQ;添加 觸媒後酚去除效果及總有機碳礦化率為60%及15%,顯示低能量燈 管不利對酚進行光催化降解。

- 9. 當以 UV₂₁₃₋₄₆₈ 燈管照射時,酚的剩餘濃度(21.6%)及總副產物產(70.8%)皆優 UV₂₇₅時(分別為10.9%及1.95%);由碳濃度平衡圖可發現在未添加觸媒時,光源強度對光催化反應之影響程度。添加光觸媒之後,以 UV₂₁₃₋₄₆₈ 燈管照射時酚剩餘濃度及總副產物產由為添加觸媒之21.6及70.8%減少至0及16.1%,整體礦化率也由光解之7.59提升至83.9%顯示出觸媒對於酚及副產物有良好的降解效果,此結果在 UV₂₇₅實驗組中也可觀察到。
- 10. 以化學共沉澱法及溶膠凝膠法製備出之磁性載體(SiO₂/Fe₃O₄)及磁性 光觸媒(TiO₂/SiO₂/Fe₃O₄)皆為超順磁性。所合成之磁性光觸媒晶相 主要為銳鈦礦、金紅石及鐵磁礦相。
- 磁性光觸媒在波長 200-700 nm 皆有一定吸收值,顯示出有可見光應用 之潛力,而磁性光觸媒等電位點為 pH=5.5。
- 12. 不同停留時間之磁性光觸媒對酚之光降解去除效率皆有 85%以上;總 有機碳礦化率會因為再利用次數增加而降低總有機碳礦化能力,但光 降解能力仍沒有太大的變化。
- 13. 在 M-TiO₂之碳濃度平衡圖中,不同停留時間之 M-TiO₂ 對酚皆有良好 光降解效果(停留時間由 0 至 180 分鐘, 酚占整體碳濃度約 85-90 %); 在整體礦化率部分以 0 以停留時間為 0 (40.5 %) 及 120 (26.3 %) 分 鐘時較佳;停留時間 120 min 之 M-TiO₂ 對以測副產物有較佳的降解能 力。
- 14. 以不同停留時間進行多次光催化降解後,可發現停留時間越長,對材料活性之穩定性有較大的影響,當停留時間為120 min 時,不僅酚有

最佳降解率,副產物剩餘濃度及礦化穩定性皆優於其他停留時間,且 觸媒活性並不會隨著在使用次數增加而衰減,因此本研究最佳之材料 為以450℃進行鍛燒且停留時間120min之磁性光觸媒。

5.2 建議

- 本研究在不控制環境之溫度下探討如氣態環境、氣體流量、光源強度、 觸媒劑量及環境酸鹼值等反應參數對於光催化系統之影響,應可於定 溫環境下做一逐步試驗已得知溫度在此系統之影響。
- 副產物監測部分,本研究僅在 pH=5.9 時監測不同光源強度下鄰-苯二酚、間-苯二酚及對-苯醌等副產物之形成,應可於其他不同酸鹼質環境、氣態環境中進行副產物形成之監測。並可針對其他副產物如草酸、順式、反式丁烯二酸及甲酸等產物進行監測。
- 可嘗試利用不同種類之光觸媒如氧化鋅或不同晶相之二氧化鈦來探討 觸媒種類及晶相不同對光催化系統之影響,以期有更佳之光催化處理 效率。
- 可著手進行二氧化鈦之改質,來探討在較弱之光源環境(UV275、可見 光)下以及氮氧環境下對光催化系統之影響並能有更佳之光催化效果。
- 可嘗試利用可回收式觸媒來進行光催化系統之試驗,並可進行改質以 期在不同光源強度及氣態環境中能有最佳之光催化效率,也可降低處 理成本。
- 可添加過氧化氫等輔助劑來探討在光催化系統中之影響,並可比較在 不同酸鹼值環境下輔助劑存在對光催化效率、副產物形成及光降解、 總有機碳之礦化之影響,以得到最佳之實驗參數。
- 7. 可藉由調整磁性光觸媒之合成條件(合成方式、前驅物濃度及種類調整、添加水及溶劑量之多寡)及熱處裡程序(如鍛燒溫度、停留時間)來探討對光催化效果之影響,並延長再利用次數以期能有更佳之礦化能力且活性穩定可多次利用之磁性光觸媒。

參考文獻

Adan, C.; Bahamonde, A.; Fernandez-Garcia, M.; Martinez-Arias, A., Structure and activity of nanosized iron-doped anatase TiO₂ catalysts for phenol photocatalytic degradation. *Applied Catalysis B-Environmental*, 72 (1-2), 11-17 (2007).

Alapi, T.; Gajda-Schrantz, K.; Ilisz, I.; Mogyorsi, K.; Sipos, P.; Dombi, A., Comparison of UV- and UV/VUV-induced photolytic and heterogeneous photocatalytic degradation of phenol, with particular emphasis on the intermediates. *Journal of Advanced Oxidation Technologies*, 11(3), 519-528 (2008).

Allah, T.A.G.; Kato, S.; Satokawa, S.; Kojima, T., Effect of carbon coating of TiO₂/Fe₃O₄ particles on their photocatalytic activity. *International Journal of Chemical Reactor Engineering*, 6, A15(2008).

Ao, Y.H.; Xu, J.J.; Fu, D.G.; Shen, X.W.; Yuan, C.W., A novel magnetically separable composite photocatalyst: Titania-coated magnetic activated carbon. *Separation and Purification Technology*, 61(3), 436-441 (2008).

Ao, Y.H.; Xu, J.J.; Shen, X.W.; Fu, D.G.; Yuan, C.W., Magnetically separable composite photocatalyst with enhanced photocatalytic activity. *Journal of Hazardous Materials*, 160(2-3), 295-300 (2008).

Arana, J.; Rodriguez Lopez, V.M.; Pulido Melian, E.; Suarez Reyes, M.I.; Dona Rodriguez, J.M.; Gonzalez Diaz, O., Comparative study of phenolic compounds mixtures. *Catalysis Today*, 129(1-2), 177-184 (2007).

Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. *Science*, 293(5528), 269-271 (2001).

Azevedo, E.B.; Neto, F.R.D.; Dezotti, M., TiO₂-photocatalyzed degradation of phenol in saline media: lumped kinetics, intermediates, and acute toxicity. *Applied Catalysis B-Environmental*, 54(3), 165-173 (2004).

Balazs, N.; Mogyorosi, K.; Sranko, D.F.; Pallagi, A.; Alapi, T.; Oszko, A.; Dombi, A.; Sipos, P., The effect of particle shape on the activity of nanocrystalline TiO₂ photocatalysts in phenol decomposition. *Applied Catalysis B-Environmental*, 84(3-4), 356-362 (2008).

Barakat, M.A.; Tseng, J.M.; Huang, C.P., Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. *Applied Catalysis B-Environmental*, 59(1-2), 99-104 (2005).

Beydoun, D., Development of Magnetic Photocatalyst. Preparation, Characterisation and Implication for Organic Degradation in Aqueous System. *thesis for the degree of Doctor of Philosophy*, school of chemical engineering and industrial chemistry, the university of New South Wales, 2000.

Beydoun, D.; Amal, R., Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst. *Materials Science and Engineering B-Solid State Materials for Advanced Technology*, 94(1), 71-81 (2002).

Böttcher, H., Technical Applications of Photochemistry, *Deutscher Verlag für Grundstoffindustrie GmbH*, Leipzig, (1991).

Centeno, M.A.; Hidalgo, M.C.; Dominguez, M.I.; Navio, J.A.; Odriozola, J.A., Titania-supported gold catalysts: Comparison between the photochemical phenol oxidation and gaseous CO oxidation performances. *Catalysis Letters*, 123(3-4), 198-206 (2008).

Chang, C.F.; Chang, C.Y.; Hsu, T.L., Preparation and adsorptive application of novel superparamagnetic zirconia material. *Colloids and Surfaces a-Physicochemical and Engineering Aspects*, 327(1-3), 64-70 (2008).

Chang, C.F.; Lin, P.H.; Holl, W., Aluminum-type superparamagnetic adsorbents: Synthesis and application on fluoride removal. *Colloids and Surfaces a-Physicochemical and Engineering Aspects*, 280(1-3), 194-202 (2006).

Chang, C.F.; Wu, Y.L.; Hou, S.S., Preparation and characterization of superparamagnetic nanocomposites of aluminosilicate/silica/magnetite. *Colloids and Surfaces a-Physicochemical and Engineering Aspects*, 336(1-3), 159-166 (2009).

Chen, F.; Deng, Z.G.; Li, X.P.; Zhang, J.L.; Zhao, J.C., Visible light detoxification by 2,9,16,23-tetracarboxyl phthalocyanine copper modified amorphous titania. *Chemical Physics Letters*, 415(1-3), 85-88 (2005).

Chiou, C.H.; Wu, C.Y.; Juang, R.S., Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO₂ process. *Chemical Engineering Journal*, 139(2), 322-329 (2008).

Chitose, N.; Ueta, S.; Seino, S.; Yamamoto, T.A., Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO_2 induced by UV, gamma-ray and electron beams. *Chemosphere*, 50(8), 1007-1013 (2003).

Choi, W.Y.; Termin, A.; Hoffmann, M.R., The role of metal-ion dopants in quantum-sized TiO₂-correlation between photoreactivity and charge-carrier recombination dynamics. *Journal of Physical Chemistry*, 98(51), 13669-13679 (1994).

Diwald, O.; Thompson, T.L.; Zubkov, T.; Goralski, E.G.; Walck, S.D.; Yates, J.T., Photochemical activity of nitrogen-doped rutile TiO₂(111) in visible light. *Journal of Physical Chemistry B*, 108(19), 6004-6008 (2004).

Esplugas, S.; Gimenez, J.; Contreras, S.; Pascual, E.; Rodriguez, M., Comparison of different advanced oxidation processes for phenol degradation. *Water Research*, 36(4), 1034-1042 (2002).

Fan, X.X.; Chen, X.Y.; Zhu, S.P.; Li, Z.S.; Yu, T.; Ye, J.H.; Zou, Z.G., The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO₂. *Journal of Molecular Catalysis a-Chemical*, 284(1-2), 155-160 (2008).

Florentina Caliman, A.; Betianu, C.; Robu, B.M.; Gavrilescu, M.; Poulios, I. In Study concerning the influence of oxidizing agents on heterogeneous photocatalytic degradation of persistent organic pollutants. *Environmental Engineering and Management Journal*, 6(6), 483-489 (2007).

Fu, W.Y.; Yang, H.B.; Hari, B.; Liu, S.K.; Li, M.H.; Zou, G.T., Preparation and magnetic characterization of core-shell structure stainless steel/silica nanoparticles. *Materials Letters*, 60(13-14), 1728-1732 (2006).

Granados, G.; Paez, C.A.; Martinez, F.; Paez-Mozo, E.A. In Photocatalytic degradation of phenol on TiO_2 and TiO_2/Pt sensitized with metallophthalocyanines. Catalysis Today, 107-08, 589-594 (2005).

Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H., A coumarin-derivative dye sensitized nanocrystalline TiO₂ solar cell having a high solar-energy conversion efficiency up to 5.6%. *Chemical Communications*, 6, 569-570 (2001).

Hong, X.T.; Wang, Z.P.; Cai, W.M.; Lu, F.; Zhang, J.; Yang, Y.Z.; Ma, N.; Liu, Y.J., Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. *Chemistry of Materials*, 17(6), 1548-1552 (2005).

Hosseini, S.N.; Borghei, S.M.; Vossoughi, M.; Taghavinia, N., Immobilization of TiO₂ on perlite granules for photocatalytic degradation of phenol. *Applied Catalysis B-Environmental*, 74(1-2), 53-62 (2007).

Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C., Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO₂ using EPR. *Journal of Physical Chemistry B*, 107(19), 4545-4549 (2003).

Iliev, V., Phthalocyanine-modified titania - catalyst for photooxidation of phenols by irradiation with visible light. *Journal of Photochemistry and Photobiology a-Chemistry*, 151(1-3), 195-199 (2002).

Ilisz, I.; Dombi, A., Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO_2 suspensions. II. Effect of charge-trapping species on product distribution. *Applied Catalysis a-General*, 180(1-2), 35-45 (1999).

Irie, H.; Watanabe, Y.; Hashimoto, K., Carbon-doped anatase TiO₂ powders as a visible-light sensitive photocatalyst. *Chemistry Letters*, 32(8), 772-773 (2003). Kartal, O.E.; Erol, M.; Oguz, H., Photocatalytic destruction of phenol by TiO₂ powders. *Chemical Engineering & Technology*, 24(6), 645-649 2001.
Kryukova, G.N.; Zenkovets, G.A.; Shutilov, A.A.; Wilde, M.; Gunther, K.; Fassler, D.; Richter, K., Structural peculiarities of TiO_2 and Pt/TiO_2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light. *Applied Catalysis B-Environmental*, 71(3-4), 169-176 (2007).

Leuenberger, C.; Ligocki, M. P.; Pankow, J. F., Trace organic-compounds in Rain .4. identities, concentrations, and scavenging mechanisms for phenols in urban air and rain. *Environmental Science & Technology*, 19(11), 1053-1058 (1985).

Leyva, E.; Moctezuma, E.; Ruiz, M.G.; Torres-Martinez, L., Photodegradation of phenol and 4-chlorophenol by BaO-Li₂O-TiO₂ catalysts. *Catalysis Today*, 40(4), 367-376 (1998).

Liao, Z.H.; Chen, J.J.; Yao, K.F.; Zhao, F.H.; Li, R.X., Preparation and characterization of nanometer-sized magnetic photocatalyst TiO₂/SiO₂/Fe₃O₄. *Journal of Inorganic Materials*, 19 (4), 749-754 (2004).

Lin, C.F.; Wu, C.H.; Onn, Z.N., Degradation of 4-chlorophenol in TiO₂, WO₃, SnO₂, TiO₂/WO₃ and TiO₂/SnO₂ systems. *Journal of Hazardous Materials*, 154 (1-3), 1033-1039 (2008).

Ling, Q.C.; Sun, J.Z.; Zhou, Q.Y.; Ren, H.; Zhao, Q., Visible-light-driven titania/silica photocatalyst co-doped with boron and ferrum. *Applied Surface Science*, 254(21), 6731-6735 (2008).

Liu, J.M.; Peng, X.G.; Sun, W.; Zhao, Y.W.; Xia, C.G., Magnetically separable Pd catalyst for carbonylative Sonogashira coupling reactions for the synthesis of alpha,beta-alkynyl ketones. *Organic Letters*, 10 (18), 3933-3936 (2008).

Lukes, P.; Clupek, M.; Sunka, P.; Peterka, F.; Sano, T.; Negishi, N.; Matsuzawa, S.; Takeuchi, K. In Degradation of phenol by underwater pulsed corona discharge in combination with TiO₂ photocatalysis. *Research on Chemical Intermediates*, 31(4-6), 285-294 (2005).

Luo, H.M.; Takata, T.; Lee, Y.G.; Zhao, J.F.; Domen, K.; Yan, Y.S., Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. *Chemistry of Materials*, 16(5), 846-849 (2004).

Lyman, W.J. *et al.*; Handbook of chemical property estimation methods, Washington, DC: *American Chemistry Society* (1990).

Magalhaes, A.A.C.; Nunes, D.L.; Robles-Dutenhefner, P.A.; de Sousa, E.M.B.; In Catalytic activity of porous TiO₂ obtained by sol-gel process in the degradation of phenol, *Journal of Non-crystalline solids*, 348, 185-189 (2004).

Mishra, P.R.; Srivastava, O.N. In On the synthesis, characterization and photocatalytic applications of nanostructured TiO₂, *Bulletin of materials science*, 31(3), 545-550 (2008).

Muruganandham, M.; Swaminathan, M., Solar photocatalytic degradation of a reactive azo dye in TiO₂-suspension. *Solar Energy Materials and Solar Cells*, 81 (4), 439-457 (2004).

Nahar, S.; Hasegawa, K.; Kagaya, S., Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO₂ particles. *Chemosphere*, 65(11), 1976-1982 (2006).

Ohtani, B.; Iwai, K.; Nishimoto, S.; Sato, S., Role of platinum deposits on titanium(IV) oxide particles: Structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. *Journal of Physical Chemistry B*, 101(17), 3349-3359 (1997).

Ortiz-Gomez, A.; Serrano-Rosales, B.; Salaices, M.; de Lasa, H., Photocatalytic oxidation of phenol: Reaction network, kinetic modeling, and parameter estimation. *Industrial & Engineering Chemistry Research*, 46(23), 7394-7409 (2007).

Ozcan, O.; Yukruk, F.; Akkaya, E.U.; Uner, D. In Dye sensitized CO₂ reduction over pure and platinized TiO₂, *Topics in catalysis*, 44(4), 523-528 (2007).

Panella, B.; Vargas, A.; Baiker, A., Magnetically separable Pt catalyst for asymmetric hydrogenation. *Journal of Catalysis*, 261(1), 88-93 (2009).

Pardeshi, S.K.; Patil, A.B., A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. *Solar Energy*, 82(8), 700-705 (2008).

Park, H.W.; Lee, J.S.; Choi, W.Y. In Study of special cases where the enhanced photocatalytic activities of Pt/TiO₂ vanish under low light intensity. *Catalysis today*, 111(3-4), 259-265 (2006).

Pecchi, G.; Reyes, P.; Sanhueza, P.; Villasenor, J., Photocatalytic degradation of pentachlorophenol on TiO_2 sol-gel catalysts. *Chemosphere*, 43(2), 141-146 (2001).

Peiro, A.M.; Ayllon, J.A.; Peral, J.; Domenech, X., TIO₂-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds. *Applied Catalysis B-Environmental*, 30(3-4), 359-373 (2001).

Peng, Z.Y.; Shi, Z.; Liu, M.L., Mesoporous Sn-TiO₂ composite electrodes for lithium batteries. *Chemical Communications*, (21), 2125-2126 (2000).

Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H., Exploiting the interparticle electron-transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol - chemical evidence for electron and hole transfer between coupled semiconductors. *Journal of Photochemistry and Photobiology a-Chemistry*, 85(3), 247-255 (1995).

Serpone, N., Photocatalysis, in: Encyclopedia of Chemical Technology, 4th ed., *John Wiley & Sons*, New York, 18, 820-837 (1996).

Shchukin, D.G.; Kulak, A.I.; Sviridov, D.V., Magnetic photocatalysts of the core-shell type. *Photochemical & Photobiological Sciences*, 1(10), 742-744 (2002).

Shchukin, D.G.; Ustinovich, E.A.; Sviridov, D.V.; Kulak, A.I., Titanium and iron oxide-based magnetic photocatalysts for oxidation of organic compounds and sulfur dioxide. *High Energy Chemistry*, 38(3), 167-173 (2004).

Silva, A.M.T.; Nouli, E.; Xekoukoulotakis, N.P.; Mantzavinos, D., Effect of key operating parameters on phenols degradation during H_2O_2 -assisted TiO₂ photocatalytic treatment of simulated and actual olive mill wastewaters. *Applied Catalysis B-Environmental*, 73(1-2), 11-22 (2007).

Silva, C.G.; Faria, J.L., Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel TiO_2 under UV irradiation. *Journal of Molecular Catalysis a-Chemical*, 305(1-2), 147-154 (2009).

Srinivasan, S.S.; Wade, J.; Stefanakos, E.K., Visible light photocatalysis via CdS/TiO₂ nanocomposite materials. *Journal of Nanomaterials*, Sp. Iss. 2, 87326(2006).

Stafford, U.; Gray, K. A.; Kamat, P. V., Radiolytic and TIO₂-Assisted Photocatalytic Degradation of 4-Chlorophenol - A Comparative-study. *Journal of Physical Chemistry*, 98 (25), 6343-6351 (1994).

Subramanian, M.; Kannan, A., Effect of dissolved oxygen concentration and light intensity on photocatalytic degradation of phenol. *Korean Journal of Chemical Engineering*, 25(6), 1300-1308 (2008).

Sugiarto, A.T.; Ito, S.; Ohshima, T.; Sato, M.; Skalny, J.D., Oxidative decoloration of dyes by pulsed discharge plasma in water. *Journal of Electrostatics*, 58(1-2), 135-145 (2003).

Sun, B.; Smirniotis, P.G., Interaction of anatase and rutile TiO_2 particles in aqueous photooxidation. *Catalysis today*, 88(1-2), 49-59(2003).

Sun, B.; Vorontsov, A.V.; Smirniotis, P.G., Role of platinum deposited on TiO_2 in phenol photocatalytic oxidation. *Langmuir*, 19(8), 3151-3156 (2003).

Sun, X.Y.; Wang, L.J.; Wang, J.; Li, J.S.; Li, X.; Wang, J.D., Preparation and characterization of magnetic photocatalysts TiO₂/Fe₃O₄. *Spectroscopy and Spectral Analysis*, 27(4), 777-780 (2007).

Suryaman, D.; Hasegawa, K.; Kagaya, S., Combined biological and photocatalytic treatment for the mineralization of phenol in water. *Chemosphere*, 65(11), 2502-2506 (2006).

Tasbihi, M.; Ngah, C.R.; Aziz, N.; Mansor, A.; Abdullah, A.Z.; Teong, L.K.; Mohamed, A.R., Lifetime and regeneration studies of various supported TiO₂ photocatalysts for the degradation of phenol under UV-C light in a batch reactor. *Industrial & Engineering Chemistry Research*, 46(26), 9006-9014 (2007).

Tryba, B.; Morawski, A.W.; Inagaki, M.; Toyoda, M., The kinetics of phenol decomposition under UV irradiation with and without H_2O_2 on TiO_2 , Fe-TiO₂ and Fe-C-TiO₂ photocatalysts. *Applied Catalysis B-Environmental*, 63(3-4), 215-221 (2006).

Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K., Band gap narrowing of titanium dioxide by sulfur doping. *Applied Physics Letters*, 81(3), 454-456 (2002).

Verhoeven, J.W., Glossary of Terms Used in photochemistry, 2nd ed., *pure appl. Chem.*, 68, No. 12: 2223-2286.

Vichi, F. M.; Tejedor-Tejedor, M.I.; Anderson, M.A., Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide. *Chemistry of Materials*, 12(6), 1762-1770 (2000).

Wang, H.J.; Li, J.; Quan, X.; Wu, Y.; Li, G.F.; Wang, F.Z., Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO₂ photocatalysis. *Journal of Hazardous Materials*, 141(1), 336-343 2007.

Wei, T.Y.; Wan, C.C., Heterogeneous photocatalytic oxidation of phenol with titanium-dioxide powders. *Industrial & Engineering Chemistry Research*, 30(6), 1293-1300 (1991).

Xu, J.J.; Ao, Y.H.; Fu, D.G.; Yuan, C.W., Low-temperature preparation of anatase titanic-coated magnetite. *Journal of Physics and Chemistry of Solids*, 69 (8), 1980-1984. (2008)

Xu, M.W.; Bao, S.J.; Zhang, X.G., Enhanced photocatalytic activity of magnetic TiO_2 photocatalyst by silver deposition. *Materials Letters*, 59(17), 2194-2198 (2005).

Yamashita, H.; Honda, M.; Harada, M.; Ichihashi, Y.; Anpo, M.; Hirao, T.; Itoh, N.; Iwamoto, N., Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. *Journal of Physical Chemistry B*, 102(52), 10707-10711 (1998).

Yang, X.; Cao, C.; Hohn, K.; Erickson, L.; Maghirang, R.; Hamal, D.; Klabunde, K., Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. Journal of Catalysis 2007, 252 (2), 296-302.

Yang, Y.; Guo, Y.H.; Hu, C.W.; Wang, Y.H.; Wang, E.B., Preparation of surface modifications of mesoporous titania with monosubstituted Keggin units and their catalytic performance for organochlorine pesticide and dyes under UV irradiation. *Applied Catalysis a-General*, 273(1-2), 201-210 (2004).

Yu, J.C.; Yu, J.G.; Ho, W.K.; Jiang, Z.T.; Zhang, L.Z., Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO₂ powders. *Chemistry of Materials*, 14(9), 3808-3816 (2002).

Zhang, L.F.; Kanki, T.; Sano, N.; Toyoda, A., Pathways and kinetics on photocatalytic destruction of aqueous phenol. *Environmental Monitoring and Assessment*, 115(1-3), 395-403 (2006).

Zhu, J.; Ren, J.; Huo, Y.N.; Bian, Z.F.; Li, H.X., Nanocrystalline Fe/TiO₂ visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol-gel route. *Journal of Physical Chemistry C*, 111(51), 18965-18969 (2007).

Environmental Protection Administration Executive Yuan, ROC, Taiwan, http://www.epa.gov.tw/index.aspx, (2008).

Toxnet Toxicology Data Network, <u>http://toxnet.nlm.nih.gov</u>, (2007).