## A Quasi-Three-Dimensional Allocation Algorithm for Space Scheduling Problems

By Shiuan-Wen Chiou

Advisor: Dr. Chyuang Perng Dr. Yi-Chiuan Lai

A Thesis

Submitted to the Institute of Industrial Engineering and Enterprise Information at Tunghai University in Partial Fulfillment of the Requirements for the Degree of Master of Science in

Industrial Engineering and Enterprise Information

June 2009 Taichung , Taiwan , Republic of China

東 海 大 學

# 工業工程與經營資訊研究所

# 碩士論文

# 擬似三維配置演算法 在空間排程問題的應用

# 研究生: 邱鉉文 指導教授: 彭泉博士 賴奕銓博士

# 中華民國九十八年六月

## A Quasi-Three-Dimensional Allocation Algorithm for Space Scheduling Problems

Student: Shiuan-Wen Chiou

Advisor: Dr. Chyuang Perng Dr. Yi-Chiuan Lai

### Department of Industrial Engineering and Enterprise Information Tunghai University

#### ABSTRACT

A space scheduling problem is an important issue of work efficiency for high-tech equipment manufacturers. The existing approaches to solve a space scheduling problem always cause orders (jobs) to be completed too late or too early. It brings huge financial penalties to manufacturers.

In this study, the purpose of this research is to find a schedule to r total penalties (early and tardy penalties) for a space scheduling problem. A new space allocation algorithm, namely, Quasi-Three-Dimensional Space Allocation Algorithm (QTDSA) was developed. We compared its performance for different performance indicators with those of the Northwest Algorithm (NWA) and Longest Contact Edge Algorithm (LCEA) by different dispatching rules.

In addition, randomized block designs and factorial designs were employed for statistical analysis. The results demonstrated that the QTDSA is more effective than the other space allocation algorithms in reducing total penalties. It also has better performances for some other performance indicators (i.e. number of early jobs and total earliness) than the other algorithms. The performance of the QTDSA and the other algorithms are about the same for the other performance indicators (makespan, number of tardy jobs, total tardiness and space utilization). In the final part of the research, suggested dispatching rules and suggested space allocation algorithms for each performance indicator were also provided.

#### Keywords: Scheduling problems, Quasi-Three-dimensional, Space allocation, Space scheduling problem, Dispatching rules, Early and tardy penalty

### 擬似三維配置演算法在空間排程問題的應用

學生:邱鉉文

#### 指導教授:彭 泉博士

#### 賴奕銓 博士

東海大學工業工程與經營資訊研究所

#### 摘要

空間排程問題對於高科技設備製造商的工作效率來說是一個重要的議題,現存解決 空間排程問題的方法總是會造成訂單延遲或過早被完成,這為製造商帶來巨大的財務上 的懲罰。

本研究針對此問題發展出一新的空間配置演算法,命名為「擬似三維空間配置演算法」,並與西北演算法和最大接觸法,運用不同的派工法則,比較各項績效指標的表現。 本研究目的為對空間排程問題,找到一個排程計畫來減少總懲罰(提早與延遲懲罰)。

根據隨機集區實驗與因子實驗結果分析,本研究證明擬似三維概念空間配置法相較 於以前的空間配置演算法可更有效降低提早與延遲訂單的懲罰成本。它在其它一些績效 指標也比其他演算法有更好的表現(提早訂單數、提早總天數),且它在其餘績效指標 的表現也不輸給其他演算法(製距、延遲工作數、總延遲天數、空間利用率)。雖然此演 算法並沒有在所有的績效指標都有突出的表現,但它對於整個問題有更完整的思考性。 在研究最後,針對不同績效指標建議採用的派工法則和空間配置演算法也在實驗中被獲 得。

#### 關鍵字詞:排程問題、擬似三維、空間配置、空間排程問題、派工法則、

提早懲罰和延遲懲罰

#### 致謝

本論文可以順利完成,首先必須要感謝我的兩位指導老師,彭泉老師 和賴奕銓老師,感謝老師們花費許多時間與我討論並指點研究方向,老師 們寶貴的知識與智慧,讓我在研究和待人處事方面都獲益良多。接著,要 感謝的是研究室的各位老師,蔡禎騰老師、林水順老師、邱文志老師、邱 創鈞老師和莊淑惠老師,感謝你們在研究室會議中,悉心聆聽我的論文報 告,並給予許多研究上的建議與指導。亦要感謝邱文志老師與鄭豐聰老師 在口試時提出的建議與看法,這些建言讓本論文更加地完善與嚴謹。

另外,感謝何子平學長和博士班學長姐的關心與照顧,你們在於我撰 寫論文期間,提供許多幫助與論文結構上的建議,這是此篇論文能完成的 關鍵。還有系上助理,素卿、宏華、玉玲、雅慧、韋霖和清爽助教,感謝 你們在碩士班期間,對我種種的協助和照顧。另一方面,研究室的同學們, 任志、美瑜、玠昀和珈綸,以及學弟妹們,益泓、冠豪、佳興、良州、子 芳和正哲,感謝你們帶給研究室許許多多的歡樂,讓我的研究生活充滿許 多美好的回憶。最後,謹以這份研究獻給我的家人和女友育佳,感謝你們 給予我不斷的支持和鼓勵,讓我無後顧之憂的完成此論文。

邱鉉文 謹誌於

東海大學工業工程與經營資訊研究所

中華民國九十八年六月

iii

## Contents

| ABSTRACT                                                             | I   |
|----------------------------------------------------------------------|-----|
| 摘要                                                                   | II  |
| 致謝                                                                   | III |
| CONTENTS                                                             | IV  |
| LIST OF TABLES                                                       | VI  |
| LIST OF FIGURES                                                      | XI  |
| CHAPTER 1 INTRODUCTION                                               | 1   |
| 1.1 Background                                                       | 1   |
| 1.2 MOTIVATION FOR THE RESEARCH                                      | 1   |
| 1.3 Objectives of the research                                       | 3   |
| 1.4 Organization of this Thesis                                      | 3   |
| CHAPTER 2 LITERATURE REVIEW                                          | 4   |
| 2.1 Scheduling Problems                                              | 4   |
| 2.2 SPACE ALLOCATION PROBLEMS                                        | 5   |
| 2.3 Early and Tardy Penalties                                        | 9   |
| 2.4 Space Scheduling Problems                                        | 10  |
| CHAPTER 3 RESEARCH METHODOLOGY                                       | 12  |
| 3.1 PROBLEM ASSUMPTIONS AND NOTATIONS                                | 12  |
| 3.2 QUASI-THREE-DIMENSIONAL SPACE ALLOCATION ALGORITHM               | 15  |
| 3.2.1 Introduction                                                   | 15  |
| 3.2.2 Overview of quasi-three-dimensional space allocation algorithm | 16  |
| 3.2.3 The Quasi-Three-Dimensional Space Allocation Algorithm         | 23  |
| CHAPTER 4 DESIGN OF EXPERIMENT                                       | 35  |
| 4.1 Experimental data                                                | 35  |
| 4.2 THE FIRST DESIGN OF EXPERIMENT                                   |     |
| 4.3 The Second Design of Experiment                                  | 40  |
| CHAPTER 5 RESULTS AND DISCUSSION                                     | 43  |
| 5.1 RESULTS OF THE FIRST EXPERIMENT                                  | 43  |
| 5.2 Results of the Second Experiment                                 | 52  |
| 5.3 SUMMARY                                                          | 63  |
| CHAPTER 6 CONCLUSION AND SUGGESTION                                  | 66  |

| 6.1 CONCLUSION                                | 66 |
|-----------------------------------------------|----|
| 6.2 SUGGESTIONS                               | 67 |
| REFERENCES                                    | 68 |
| APPENDIX                                      | 72 |
| A. THE OTHER ANALYSES OF THE FIRST EXPERIMENT | 72 |
| A.1 The Analysis for Makespan                 |    |
| A.2 The Analysis for Space Utilization        | 76 |
| A.3 The Analysis for Total Tardiness          |    |
| A.4 The Analysis for Total Earliness          |    |
| A.5 The Analysis for Tardy Jobs               |    |
| A.6 The Analysis for Early Jobs               |    |

## **List of Tables**

| TABLE 4.1 AN EXAMPLE OF ORDERS' DATA                                      |    |
|---------------------------------------------------------------------------|----|
| TABLE 4.2 AN EXAMPLE OF ORDERS' SIZE REQUIREMENTS                         |    |
| TABLE 4.3 AN OBSERVATION TABLE UNDER THE SPT RULE FOR MAKESPAN            |    |
| TABLE 4.4 AN EXAMPLE OF ANOVA TABLE IN THE FIRST EXPERIMENT               |    |
| TABLE 4.5 HYPOTHESIS AND CRITICAL REGION IN THE FIRST EXPERIMENT          |    |
| TABLE 4.6 AN OBSERVATION TABLE FOR MAKESPAN                               | 41 |
| TABLE 4.7 AN EXAMPLE OF ANOVA TABLE IN THE SECOND EXPERIMENT              | 42 |
| TABLE 4.8 HYPOTHESIS AND CRITICAL REGION IN THE SECOND EXPERIMENT         | 42 |
| TABLE 5.1 ANOVA UNDER THE SPT RULE FOR TOTAL PENALTIES                    | 43 |
| TABLE 5.2 THE 95% CI UNDER THE SPT RULE FOR TOTAL PENALTIES               | 44 |
| TABLE 5.3 THE COMPARISON UNDER THE SPT RULE FOR TOTAL PENALTIES           | 44 |
| TABLE 5.4 ANOVA UNDER THE LPT RULE FOR TOTAL PENALTIES                    | 44 |
| TABLE 5.5 THE 95% CI UNDER THE LPT RULE FOR TOTAL PENALTIES               | 45 |
| TABLE 5.6 THE COMPARISON UNDER THE LPT RULE FOR TOTAL PENALTIES           | 45 |
| TABLE 5.7 ANOVA UNDER THE FCFS RULE FOR TOTAL PENALTIES                   | 45 |
| TABLE 5.8 THE 95% CI UNDER THE FCFS RULE FOR TOTAL PENALTIES              | 46 |
| TABLE 5.9 THE COMPARISON UNDER THE FCFS RULE FOR TOTAL PENALTIES          | 46 |
| TABLE 5.10 ANOVA UNDER THE EDD RULE FOR TOTAL PENALTIES                   | 46 |
| TABLE 5.11 THE 95% CI UNDER THE EDD RULE FOR TOTAL PENALTIES              | 47 |
| TABLE 5.12 THE COMPARISON UNDER THE EDD RULE FOR TOTAL PENALTIES          | 47 |
| TABLE 5.13 ANOVA UNDER THE SSR RULE FOR TOTAL PENALTIES                   | 47 |
| TABLE 5.14 THE 95% CI UNDER THE SSR RULE FOR TOTAL PENALTIES              | 48 |
| TABLE 5.15 THE COMPARISON UNDER THE SSR RULE FOR TOTAL PENALTIES          | 48 |
| TABLE 5.16 ANOVA UNDER THE LSR RULE FOR TOTAL PENALTIES                   | 48 |
| TABLE 5.17 THE 95% CI UNDER THE LSR RULE FOR TOTAL PENALTIES              | 49 |
| TABLE 5.18 THE COMPARISON UNDER THE LSR RULE FOR TOTAL PENALTIES          | 49 |
| TABLE 5.19 PERFORMANCES OF THE APPROACHES FOR TOTAL PENALTIES             | 49 |
| TABLE 5.20 PERFORMANCES OF THE APPROACHES FOR MAKESPAN                    |    |
| TABLE 5.21 PERFORMANCES OF THE APPROACHES FOR SPACE UTILIZATION           |    |
| TABLE 5.22 PERFORMANCES OF THE APPROACHES FOR TOTAL TARDINESS             |    |
| TABLE 5.23 PERFORMANCES OF THE APPROACHES FOR TOTAL EARLINESS             | 51 |
| TABLE 5.24 PERFORMANCES OF THE APPROACHES FOR TARDY JOBS                  | 51 |
| TABLE 5.25 PERFORMANCES OF THE APPROACHES FOR EARLY JOBS                  | 51 |
| TABLE 5.26 TWO-WAY ANOVA FOR TOTAL PENALTIES                              |    |
| TABLE 5.27 THE 95% CI OF THE RULES' PERFORMANCES FOR TOTAL PENALTIES      |    |
| TABLE 5.28 THE 95% CI OF THE APPROACHES' PERFORMANCES FOR TOTAL PENALTIES | 53 |

| TABLE 5.29 THE COMPARISON OF THE APPROACHES FOR TOTAL PENALTIES                 | 53 |
|---------------------------------------------------------------------------------|----|
| TABLE 5.30 Two-way ANOVA FOR MAKESPAN                                           | 53 |
| TABLE 5.31 THE 95% CI OF THE RULES' PERFORMANCES FOR MAKESPAN                   | 54 |
| TABLE 5.32 THE 95% CI OF THE APPROACHES' PERFORMANCES FOR MAKESPAN              | 54 |
| TABLE 5.33 TWO-WAY ANOVA FOR SPACE UTILIZATION                                  | 55 |
| TABLE 5.34 THE 95% CI OF THE RULES' PERFORMANCES FOR SPACE UTILIZATION          | 55 |
| TABLE 5.35 THE 95% CI OF THE APPROACHES' PERFORMANCES FOR SPACE UTILIZATION     | 55 |
| TABLE 5.36 THE COMPARISON OF APPROACHES FOR SPACE UTILIZATION                   | 55 |
| TABLE 5.37 TWO-WAY ANOVA FOR TOTAL TARDINESS                                    | 56 |
| TABLE 5.38 THE 95% CI OF THE RULES' PERFORMANCES FOR TOTAL TARDINESS            | 56 |
| TABLE 5.39 THE 95% CI OF THE APPROACHES' PERFORMANCES FOR TOTAL TARDINESS       | 57 |
| TABLE 5.40 TWO-WAY ANOVA FOR TOTAL EARLINESS                                    | 57 |
| TABLE 5.41 THE 95% CI OF THE RULES' PERFORMANCES FOR TOTAL EARLINESS            | 58 |
| TABLE 5.42 THE 95% CI OF THE APPROACHES' PERFORMANCES FOR TOTAL EARLINESS       | 58 |
| TABLE 5.43 THE COMPARISON OF THE APPROACHES FOR TOTAL EARLINESS                 | 58 |
| TABLE 5.44 TWO-WAY ANOVA FOR TARDY JOBS                                         | 59 |
| TABLE 5.45 THE 95% CI OF THE RULES' PERFORMANCES FOR TARDY JOBS                 | 59 |
| TABLE 5.46 THE 95% CI OF THE APPROACHES' PERFORMANCES FOR TARDY JOBS            | 59 |
| TABLE 5.47 TWO-WAY ANOVA FOR EARLY JOBS                                         | 60 |
| TABLE 5.48 THE 95% CI OF THE RULES' PERFORMANCES FOR EARLY JOBS                 | 60 |
| TABLE 5.49 THE 95% CI OF THE APPROACHES' PERFORMANCES FOR EARLY JOBS            | 60 |
| TABLE 5.50 THE COMPARISON OF THE APPROACHES FOR EARLY JOBS                      | 61 |
| TABLE 5.51 PERFORMANCES OF THE APPROACHES FOR EACH PERFORMANCE INDICATOR        | 61 |
| TABLE 5.52 PERFORMANCES OF THE DISPATCHING RULES FOR EACH PERFORMANCE INDICATOR | 62 |
| TABLE 5.53 SUGGESTED COMBINATION OF APPROACHES AND RULES FOR TOTAL PENALTIES    | 63 |
| TABLE 5.54 SUGGESTED COMBINATION OF APPROACHES AND RULES FOR MAKESPAN           | 63 |
| TABLE 5.55 SUGGESTED COMBINATION OF APPROACHES AND RULES FOR SPACE UTILIZATION  | 64 |
| TABLE 5.56 SUGGESTED COMBINATION OF APPROACHES AND RULES FOR TOTAL TARDINESS    | 64 |
| TABLE 5.57 SUGGESTED COMBINATION OF APPROACHES AND RULES FOR TOTAL EARLINESS    | 64 |
| TABLE 5.58 SUGGESTED COMBINATION OF APPROACHES AND RULES FOR TARDY JOBS         | 65 |
| TABLE 5.59 SUGGESTED COMBINATION OF APPROACHES AND RULES FOR EARLY JOBS         | 65 |
| TABLE 5.60 SUGGESTED SCHEMES FOR DIFFERENT PERFORMANCE MEASUREMENTS             | 65 |
| TABLE A-1 ANOVA UNDER THE SPT RULE FOR MAKESPAN                                 | 72 |
| TABLE A-2 THE 95% CI UNDER THE SPT RULE FOR MAKESPAN                            | 72 |
| TABLE A-3 ANOVA UNDER THE LPT RULE FOR MAKESPAN                                 | 72 |
| TABLE A-4 THE 95% CI UNDER THE LPT RULE FOR MAKESPAN                            | 73 |
| TABLE A-5 THE COMPARISON UNDER THE LPT RULE FOR MAKESPAN                        | 73 |
| TABLE A-6 ANOVA UNDER THE FCFS RULE FOR MAKESPAN                                | 73 |
| TABLE A-7 THE 95% CI UNDER THE FCFS RULE FOR MAKESPAN                           | 73 |
| TABLE A-8 THE COMPARISON UNDER THE FCFS RULE FOR MAKESPAN                       | 74 |

| TABLE A-9 ANOVA UNDER THE EDD RULE FOR MAKESPAN                     | 74 |
|---------------------------------------------------------------------|----|
| TABLE A-10 THE 95% CI UNDER THE EDD RULE FOR MAKESPAN               | 74 |
| TABLE A-11 ANOVA UNDER THE SSR RULE FOR MAKESPAN                    | 74 |
| TABLE A-12 THE 95% CI UNDER THE SSR RULE FOR MAKESPAN               | 75 |
| TABLE A-13 THE COMPARISON UNDER THE SSR RULE FOR MAKESPAN           | 75 |
| TABLE A-14 ANOVA UNDER THE LSR RULE FOR MAKESPAN                    | 75 |
| TABLE A-15 THE 95% CI UNDER THE LSR RULE FOR MAKESPAN               | 75 |
| TABLE A-16 ANOVA UNDER THE SPT RULE FOR SPACE UTILIZATION           | 76 |
| TABLE A-17 THE 95% CI UNDER THE SPT RULE FOR SPACE UTILIZATION      | 76 |
| TABLE A-18 THE COMPARISON UNDER THE SPT RULE FOR SPACE UTILIZATION  | 76 |
| TABLE A-19 ANOVA UNDER THE LPT RULE FOR SPACE UTILIZATION           | 76 |
| TABLE A-20 THE 95% CI UNDER THE LPT RULE FOR SPACE UTILIZATION      | 77 |
| TABLE A-21 THE COMPARISON UNDER THE LPT RULE FOR SPACE UTILIZATION  | 77 |
| TABLE A-22 ANOVA UNDER THE FCFS RULE FOR SPACE UTILIZATION          | 77 |
| TABLE A-23 THE 95% CI UNDER THE FCFS RULE FOR SPACE UTILIZATION     | 77 |
| TABLE A-24 THE COMPARISON UNDER THE FCFS RULE FOR SPACE UTILIZATION | 78 |
| TABLE A-25 ANOVA UNDER THE EDD RULE FOR SPACE UTILIZATION           | 78 |
| TABLE A-26 THE 95% CI UNDER THE EDD RULE FOR SPACE UTILIZATION      | 78 |
| TABLE A-27 ANOVA UNDER THE SSR RULE FOR SPACE UTILIZATION           | 78 |
| TABLE A-28 THE 95% CI UNDER THE SSR RULE FOR SPACE UTILIZATION      | 79 |
| TABLE A-29 THE COMPARISON UNDER THE SSR RULE FOR SPACE UTILIZATION  | 79 |
| TABLE A-30 ANOVA UNDER THE LSR RULE FOR SPACE UTILIZATION           | 79 |
| TABLE A- 31 THE 95% CI UNDER THE LSR RULE FOR SPACE UTILIZATION     | 79 |
| TABLE A-32 ANOVA UNDER THE SPT RULE FOR TOTAL TARDINESS             | 80 |
| TABLE A-33 THE 95% CI UNDER THE SPT RULE FOR TOTAL TARDINESS        | 80 |
| TABLE A-34 THE COMPARISON UNDER THE SPT RULE FOR TOTAL TARDINESS    | 80 |
| TABLE A-35 ANOVA UNDER THE LPT RULE FOR TOTAL TARDINESS             | 80 |
| TABLE A-36 THE 95% CI UNDER THE LPT RULE FOR TOTAL TARDINESS        | 81 |
| TABLE A-37 THE COMPARISON UNDER THE LPT RULE FOR TOTAL TARDINESS    | 81 |
| TABLE A-38 ANOVA UNDER THE FCFS RULE FOR TOTAL TARDINESS            | 81 |
| TABLE A-39 THE 95% CI UNDER THE FCFS RULE FOR TOTAL TARDINESS       | 81 |
| TABLE A-40 THE COMPARISON UNDER THE FCFS RULE FOR TOTAL TARDINESS   | 82 |
| TABLE A-41 ANOVA UNDER THE EDD RULE FOR TOTAL TARDINESS             | 82 |
| TABLE A-42 THE 95% CI UNDER THE EDD RULE FOR TOTAL TARDINESS        | 82 |
| TABLE A-43 ANOVA UNDER THE SSR RULE FOR TOTAL TARDINESS             | 82 |
| TABLE A-44 THE 95% CI UNDER THE SSR RULE FOR TOTAL TARDINESS        | 83 |
| TABLE A-45 THE COMPARISON UNDER THE SSR RULE FOR TOTAL TARDINESS    | 83 |
| TABLE A-46 ANOVA UNDER THE LSR RULE FOR TOTAL TARDINESS             | 83 |
| TABLE A-47 THE 95% CI UNDER THE LSR RULE FOR TOTAL TARDINESS        | 83 |
| TABLE A-48 THE COMPARISON UNDER THE LSR RULE FOR TOTAL TARDINESS    | 84 |

| TABLE A-49 ANOVA UNDER THE SPT RULE FOR TOTAL EARLINESS           | 84 |
|-------------------------------------------------------------------|----|
| TABLE A-50 THE 95% CI UNDER THE SPT RULE FOR TOTAL EARLINESS      | 84 |
| TABLE A-51 THE COMPARISON UNDER THE SPT RULE FOR TOTAL EARLINESS  | 84 |
| TABLE A-52 ANOVA UNDER THE LPT RULE FOR TOTAL EARLINESS           | 85 |
| TABLE A-53 THE 95% CI UNDER THE LPT RULE FOR TOTAL EARLINESS      | 85 |
| TABLE A-54 THE COMPARISON UNDER THE LPT RULE FOR TOTAL EARLINESS  | 85 |
| TABLE A-55ANOVA UNDER THE FCFS RULE FOR TOTAL EARLINESS           | 85 |
| TABLE A-56 THE 95% CI UNDER THE FCFS RULE FOR TOTAL EARLINESS     | 86 |
| TABLE A-57 THE COMPARISON UNDER THE FCFS RULE FOR TOTAL EARLINESS | 86 |
| TABLE A-58 ANOVA UNDER THE EDD RULE FOR TOTAL EARLINESS           | 86 |
| TABLE A-59 THE 95% CI UNDER THE EDD RULE FOR TOTAL EARLINESS      | 86 |
| TABLE A-60 THE COMPARISON UNDER THE EDD RULE FOR TOTAL EARLINESS  | 87 |
| TABLE A-61 ANOVA UNDER THE SSR RULE FOR TOTAL EARLINESS           | 87 |
| TABLE A-62 THE 95% CI UNDER THE SSR RULE FOR TOTAL EARLINESS      | 87 |
| TABLE A-63 THE COMPARISON UNDER THE SSR RULE FOR TOTAL EARLINESS  | 87 |
| TABLE A-64 ANOVA UNDER THE LSR RULE FOR TOTAL EARLINESS           | 88 |
| TABLE A-65 THE 95% CI UNDER THE LSR RULE FOR TOTAL EARLINESS      | 88 |
| TABLE A-66 THE COMPARISON UNDER THE LSR RULE FOR TOTAL EARLINESS  | 88 |
| TABLE A-67 ANOVA UNDER THE SPT RULE FOR TARDY JOBS                | 88 |
| TABLE A-68 THE 95% CI UNDER THE SPT RULE FOR TARDY JOBS           | 89 |
| TABLE A-69 THE COMPARISON UNDER THE SPT RULE FOR TARDY JOBS       | 89 |
| TABLE A-70 ANOVA UNDER THE LPT RULE FOR TARDY JOBS                | 89 |
| TABLE A-71 THE 95% CI UNDER THE LPT RULE FOR TARDY JOBS           | 89 |
| TABLE A-72 THE COMPARISON UNDER THE LPT RULE FOR TARDY JOBS       | 90 |
| TABLE A-73 ANOVA UNDER THE FCFS RULE FOR TARDY JOBS               | 90 |
| TABLE A-74 THE 95% CI UNDER THE FCFS RULE FOR TARDY JOBS          | 90 |
| TABLE A-75 THE COMPARISON UNDER THE FCFS RULE FOR TARDY JOBS      | 90 |
| TABLE A-76 ANOVA UNDER THE EDD RULE FOR TARDY JOBS                | 91 |
| TABLE A-77 THE 95% CI UNDER THE EDD RULE FOR TARDY JOBS           | 91 |
| TABLE A-78 THE COMPARISON UNDER THE EDD RULE FOR TARDY JOBS       | 91 |
| TABLE A-79 ANOVA UNDER THE SSR RULE FOR TARDY JOBS                | 91 |
| TABLE A-80 THE 95% CI UNDER THE SSR RULE FOR TARDY JOBS           | 92 |
| TABLE A-81 THE COMPARISON UNDER THE SSR RULE FOR TARDY JOBS       | 92 |
| TABLE A-82 ANOVA UNDER THE LSR RULE FOR TARDY JOBS                | 92 |
| TABLE A-83 THE 95% CI UNDER THE LSR RULE FOR TARDY JOBS           | 92 |
| TABLE A-84 THE COMPARISON UNDER THE LSR RULE FOR TARDY JOBS       | 93 |
| TABLE A-85 ANOVA UNDER THE SPT RULE FOR EARLY JOBS                | 93 |
| TABLE A-86 THE 95% CI UNDER THE SPT RULE FOR EARLY JOBS           | 93 |
| TABLE A-87 THE COMPARISON UNDER THE SPT RULE FOR EARLY JOBS       | 93 |
| TABLE A-88 ANOVA UNDER THE LPT RULE FOR EARLY JOBS                | 94 |

| TABLE A-89 THE 95% CI UNDER THE LPT RULE FOR EARLY JOBS      | 94 |
|--------------------------------------------------------------|----|
| TABLE A-90 THE COMPARISON UNDER THE LPT RULE FOR EARLY JOBS  | 94 |
| TABLE A-91 ANOVA UNDER THE FCFS RULE FOR EARLY JOBS          | 94 |
| TABLE A-92 THE 95% CI UNDER THE FCFS RULE FOR EARLY JOBS     | 95 |
| TABLE A-93 THE COMPARISON UNDER THE FCFS RULE FOR EARLY JOBS | 95 |
| TABLE A-94 ANOVA UNDER THE EDD RULE FOR EARLY JOBS           | 95 |
| TABLE A-95 THE 95% CI UNDER THE EDD RULE FOR EARLY JOBS      | 95 |
| TABLE A-96 THE COMPARISON UNDER THE EDD RULE FOR EARLY JOBS  | 96 |
| TABLE A-97 ANOVA UNDER THE SSR RULE FOR EARLY JOBS           | 96 |
| TABLE A-98 THE 95% CI UNDER THE SSR RULE FOR EARLY JOBS      | 96 |
| TABLE A-99 THE COMPARISON UNDER THE SSR RULE FOR EARLY JOBS  | 96 |
| TABLE A-100 ANOVA UNDER THE LSR RULE FOR EARLY JOBS          | 97 |
| TABLE A-101 THE 95% CI UNDER THE LSR RULE FOR EARLY JOBS     | 97 |
| TABLE A-102 THE COMPARISON UNDER THE LSR RULE FOR EARLY JOBS | 97 |

# **List of Figures**

| FIGURE 1.1 AN EXAMPLE OF SPACE CONSTRAINTS                               | 2  |
|--------------------------------------------------------------------------|----|
| FIGURE 1.2 ALLOCATION OF A NEW ORDER                                     | 2  |
| FIGURE 3.1 AN EXAMPLE OF BOXES REPRESENTING SPACE REQUIREMENTS OF ORDERS | 12 |
| FIGURE 3.2 THE SHOP FLOOR BECOMES A QUASI-THREE-DIMENSIONAL SPACE        | 15 |
| FIGURE 3.3 AN EXAMPLE OF A SPACE SCHEDULING PROBLEM                      | 16 |
| FIGURE 3.4 A RESULT OF TWO-DIMENSIONAL SPACE ALLOCATION                  | 16 |
| FIGURE 3.5 A RESULT OF QUASI-THREE-DIMENSIONAL SPACE ALLOCATION          | 16 |
| FIGURE 3.6 THE BEST SCENARIO (A PUNCTUAL CASE)                           | 17 |
| FIGURE 3.7 THE NEXT BEST SCENARIO (AN EARLY CASE)                        |    |
| FIGURE 3.8 THE WORST SCENARIO (A TARDY CASE)                             | 19 |
| FIGURE 3.9 TWO-DIMENSIONAL SPACE ALLOCATIONS                             | 19 |
| FIGURE 3.10 THE PLANE OF THE JOB BECOMES A CUBOID.                       | 20 |
| FIGURE 3.11 THE NEW JOB OVERLAPS WITH AN ASSIGNED JOB                    | 20 |
| FIGURE 3.12 AN EXAMPLE OF A PUNCTUAL CASE                                | 21 |
| FIGURE 3.13 AN EXAMPLE OF AN EARLY CASE                                  | 22 |
| FIGURE 3.14 AN EXAMPLE OF A TARDY CASE                                   | 22 |
| FIGURE 3.15 THE MAIN FLOWCHART OF THE QTDSA                              |    |
| FIGURE 3.16 THE SUB-FLOWCHART OF STEP 3                                  | 29 |
| FIGURE 3.17 THE SUB-FLOWCHART OF STEP 6                                  |    |
| FIGURE 3.18 THE SUB-FLOWCHART OF STEP 8                                  | 31 |
| FIGURE 3.19 THE MAIN FUNCTION OF QTDSA                                   |    |
| FIGURE 3.20 THE SUB-FUNCTION FOR LOADING THE LAYOUT OF THE FACTORY       |    |
| FIGURE 3.21 THE SUB-FUNCTION FOR FINDING THE REFERENCE POINT             |    |
| FIGURE 3.22 THE SUB-FUNCTION FOR CHECKING OVERLAPS                       |    |
| FIGURE 4.1 THE INITIAL LAYOUTS OF FACTORIES                              |    |

## **Chapter 1 Introduction**

#### 1.1 Background

In recent years, the high-tech industries of Taiwan have had an outstanding performance in the international environment. In order to reduce production costs, the high-tech industries, such as TFT-LCD (Thin Film Transistor-Liquid Crystal Display) and semiconductor manufacturers began to purchase automation equipments and parts of non-critical manufacturing equipments from local manufacturers. For these equipment manufacturers, the building expenses of a factory are much higher than traditional machinery manufacturers. In addition, a huge space is needed for machinery assembly. Therefore, the space of the shop floor becomes a very important resource. Because the machines for high-tech equipments are huge and not easy to move, utilizing the space of the shop floor efficiently becomes a significant issue.

In Taiwan, most high-tech equipment manufacturers schedule orders (jobs) in a manual way. The production personnel decide a sequence for handling jobs and appropriate working spaces by themselves. But scheduling and space allocation of a large number of orders is too complicated. The production personnel have no idea how to do these efficiently. They need a useful rule and tool which can help them solve the complex scheduling problem quickly and efficiently. Perng *et al.* (2007, 2008a, 2008b, 2008c, 2009) defined it as a space scheduling problem and indicated that the job sequence and space allocation of jobs will determine the performance of a schedule.

#### **1.2 Motivation for the research**

In the space scheduling problem, the machine assembly process requires a certain amount of complete space on the shop floor in the factory for a period of time. The sizes of the shop floor and machines will determine the number of machines which can be assembled simultaneously. If the factory has not enough space to contain a new arrival job, the new job must wait for a space which is

currently occupied by existing jobs to become available. As shown in Figure 1.1, job D2 can't be assigned into the factory due to limited space and has to wait until other jobs on the shop floor are completed. Figure 1.2 shows that job B1 is done and left and there is enough space to contain job D2. In this research, we assume that the shape of spaces required by all orders is rectangular.



Figure 1.1 An example of space constraints



Figure 1.2 Allocation of a new order

According to previous literature (Perng *et al.*, 2007, 2008a, 2008b, 2008c, 2009), we found that the existing allocation approaches for the space scheduling problem always cause jobs to be completed too late or too early. If orders are completed too early, the manufacturer has to find extra space to store those finish products until the due date. If orders are completed too late, the

manufacturer will not only have to pay financial penalties but also damage its reputation.

### **1.3** Objectives of the research

Both tardy and early jobs bring financial penalties to manufacturers. In order to reduce early and tardy penalties (i.e. total penalties), an approach to solve this problem must be developed.

The objectives of this research are to minimize the total earliness and total tardiness in a space scheduling problem. A new space allocation algorithm, namely, Quasi-Three-Dimensional Space Allocation Algorithm (QTDSA) will be developed. We will compare performance measurements, namely, makespan, total tardiness, total earliness, space utilization, the number of tardy jobs, and the number of early jobs, among the Northwest Algorithm's (NWA), Longest Contact Edge Algorithm's (LCEA), and our proposed QTDSA. In addition, suggestions will be made under different scenarios for management.

#### **1.4 Organization of this Thesis**

The remainder of this dissertation is organized into six chapters. In Chapter 2, previous work related to this research is reviewed. Chapter 3 introduces research methodology. It includes descriptions of Quasi-Three-Dimensional Space Allocation Algorithm. Chapter 4 describes the design of experiments. Chapter 5 presents results and discussions. These include the results obtained from QTDSA and comparisons among different allocation algorithms. Finally, conclusions for this research are presented in Chapter 6.

## **Chapter 2 Literature Review**

Space scheduling problems are scheduling problems with limited space capacity. In this chapter, we will first review literatures for scheduling problems. Next, space allocation approaches in the previous researches will be examined. In the final section of this chapter, literatures related to the objectives of this study (i.e. early and tardy penalties) and previous researches for space scheduling problems will also be reviewed.

#### 2.1 Scheduling Problems

Pinedo (2002) defined that the goal of production scheduling is to maximize the efficiency of the operation and reduce costs. Chretienne *et al.* (1995) defined a scheduling problem as a triplet  $\alpha | \beta | \gamma$ . The  $\alpha$  field describes the resource environment. The  $\beta$  field shows characteristics and constraints of production processes. The  $\gamma$  field is the objective of the scheduling problem. Haynes *et al.* (1973) proposed three heuristic rules in production sequencing and examined their effectiveness. In their research, they scheduled *n* jobs in a single production facility. The objective was to minimize the downtime due to setup changes. This research indicated that job sequence could affect the scheduling performance.

Axelrod (1976) found that each job has its submission time in a computer system. If a job can not acquire the resource it requires, it will be held until a completion of a previous job. It can be defined as a resource-constrained scheduling problem. Machines and process flows were not considered in this problem. In their research, sequencing rules were also developed for solving this problem. Hardin *et al.* (2008) proposed a time-indexed formulation for a resource-constrained scheduling problem. In the problem, each job's resource requirements were constant over its processing time. The effectiveness of this formulation was also proved in their research.

The other factors for scheduling problems are dispatching rules. Dispatching rules play an important role in determining the sequence of jobs. Holthaus and Rajendran (1997) stated that dispatching rules normally help

determine which job should be processed when the machine becomes free. They also categorized dispatching rules into four classifications as follows. (1) The rules based on process time, such as SPT (shortest process-time rule) and LPT (longest process-time rule) belong to this category. (2) The rules based on due date, such as EDD (earliest due date) belongs to this category. (3) The combinative rules, for example, least slack rule belongs to this category. (4) The rules which are neither process-time based nor due-date based, for instance, WINO rule (total work-content of jobs in the queue of next operation of a job) belongs to this category. Pugazhendhi (2004) stated that the performance of a dispatching rule would be influenced by various parameters. He also proposed that no single rule has been found to be the best for all conditions. Mizrak and Bayhan (2006) investigated the performance of dispatching rules in a real-life job shop environment. They compared dispatching rules and provided suggested rules which were effective for this type of systems. The rules includes FCFS (first come first serve), SPT (shortest processing time), WSPT (weighted SPT), WLWKR (weighted least work remaining), EDD (earliest due date), MDD (modified due date), SLACK (least slack), CR (critical ratio), S/OPN (slack per remaining operation), MDSPRO (modified slack per remaining operation), S/RPT (slack per remaining processing time), ODD (operation due date), OSLACK (operation slack), OCR (operation critical ratio), ATC (apparent tardiness cost), COVERT (cost over time), SB (shifting bottleneck) and WINQ (work in next queue). They also provided guidance to determine effective dispatching rules for this job shop scheduling problem in their research. In this study, four typical dispatching rules (SPT, LPT, FCFS, and EDD) were employed with space allocation algorithms for space scheduling problems.

### 2.2 Space allocation problems

In this study, the space allocation approach is also an important factor which will affect the utilization of the shop floor in a factory. Space allocation problems are extensively related to many science problems, such as printed circuit board design, layout design of buildings, computer memory control, and warehouse problems. Space allocation problems can be looked back on a knapsack problem. This problem supposes that a hiker has to fill up the knapsack by selecting among various possible objects which have different weights and values, and he or she should maximize total value of the knapsack without unacceptable total weight (Martello and Toth, 1990). Dantzig (1957) gave an efficient approach to determine the solution to the continuous relaxation of the problem, and he started a serious study on the knapsack problem. Gilmore and Gomory (1965) investigated the dynamic programming approach for the knapsack problem and other similar problems. Johnson (1973) proposed heuristic algorithms for finding approximate solutions to various polynomial complete optimization problems including the knapsack problem.

In space scheduling problems, the jobs on the shop floor change at different time. It is similar to the dynamic layout problems (DLP). Erel et al. (2003) defined the dynamic layout problem as the situation where the alterations of the traffic among the various units within a facility occurred over time. Its objective was to determine a layout for each period and minimize the total material flow and the relocation costs. They proposed a new heuristic scheme to solve this problem. Balakrishnan et al. (2003) found that an optimal solution method based on dynamic programming can not solve the large dynamic plant layout problems (DPLPs) practically. So they created a hybrid genetic algorithm based on the use of genetic algorithms and proved this proposed algorithm was effective for the problems. Dunker et al. (2005) combined dynamic programming with genetic search and proposed a new algorithm for solving a dynamic facility layout problem. A model which can deal with the problem of unequal sizes that may change form in different periods was described in their research. Mckendall and Shang (2006) developed hybrid ant systems (HASs) for the dynamic facility layout problem (DFLP). They used two data sets which were from the literature to test the performance of the meta-heuristics. The efficiency of the HASs for solving the DFLP was proved in their research.

In a space scheduling problem, orders which are appropriate to be assembled at the same time are assigned on the shop floor as many as possible.

It is similar to a bin packing problem or a container loading problem (CLP). A bin packing problem determined how to put the most objects in the least number of fixed space bins. More formally, a partition and assignment of a set of objects was found such that a constraint was satisfied or an objective function was minimized (or maximized) (Johnson, 1974). Sleator (1980) developed a bin packing problem into a 2D bin packing problem and proposed a 2.5 times optimal algorithm to solve it. Ikonen et al. (1997) investigated a unique 3D bin-packing problem with non-convex parts having holes and cavities and employed a genetic algorithm (GA) as the solution approach for it. Lewis *et al.* (2005) developed a distributed chromosome genetic algorithm to improve the genetic algorithm for rapid prototyping (GARP). Their objective was to reduce the execution time of GARP for the 3D bin packing problem. They used multiple CPUs to help solve the problem and investigate the efficiency of this distributed GA. Bischoff (2006) focused on the development of a new heuristic approach for a 3D bin packing problem where the cargo had varying degrees of load bearing strength. The results demonstrated that the approach was better than other approaches which had been proposed for this problem. Sciomachen and Tanfani (2007) investigated the approach to optimize stowage plans for containers in a ship. It is a master bay plan problem (MBPP). They made use of the relation with the 3D bin packing problem to develop a heuristic method for this problem. Their objectives were to minimize the total loading time and maximize the efficiency of the quay equipment. Puchinger and Raidl (2007) proposed new integer linear programming formulations which included models of a restricted version and an original version for the three-stage two-dimensional bin packing problem (2BP). The experiments of their research documented the benefits of the new approaches. The model of the restricted version could obtain near-optimal solutions quickly, and the model of the unrestricted version was more expensive to obtain the computation. Gehring and Bortfeldt (1997) proposed a genetic algorithm to solve the CLP. They produced a set of box towers from a strongly heterogeneous set of boxes and arranged the box towers into a single container according to a given optimization criterion. They demonstrated that the GA was efficient for the CLP

7

by comparing the GA and several other procedures. Eley (2002) used a greedy heuristic and improved it by a tree search for solving the heterogeneous single and multiple container loading problems. In the research, he also considered load stability and weight distribution within the container. Bortfeldt et al. (2003) developed a parallel tabu search algorithm based on the concept of multi-search threads for a CLP with a single container. In their research, they focused on the case of a weakly heterogeneous load. The performance of the algorithm was demonstrated by comparing it with other loading procedures from the literatures. Lee and Hsu (2007) stated that pre-arrangement of the containers could improve the operational efficiency which was affected by the need to re-shuffle containers so they developed a mathematical model to minimize the number of container movements for the container pre-marshalling problem. Several possible variations of the model are also discussed in their research. Cumulative resource constrained job scheduling problem (CRCJSP) was applied to a container loading problem (Kovacs and Beck, 2008). In their integer programming mathematical model, the boxes must to be located inside the container, and an overlap must not occur between boxes. They proved that the model was efficient for reducing the search space, and it could find better solutions or the same solutions faster.

Some layout researches are also highly related to this study. Tsai *et al.* (1993) developed a standard mixed 0-1 integer programming model for the three-dimensional pallet loading problem. Barbosa-Povoa *et al.* (2001) proposed a mathematical model to optimize the two-dimensional layout of industrial facilities by minimizing the connectivity cost. A Mixed-Integer Linear Problem (MILP) was developed in their research. In the MILP, binary variables which characterized topological choices and continuous variables which described the distances and locations were presented. Barbosa-Povoa *et al.* (2002) converted and extend a Mixed Integer Linear Programming (MILP) formulation which they had proposed for a two-dimensional layout problem to solve a 3D multi-floor continuous space layout problem. A set of representative examples was used to demonstrate the applicability of their model.

However, this research found that a space scheduling problem has two

characteristics which make it differ from other space allocation problems. One of the characteristics is that each order has it own space requirement and appropriate time when order can be assembled without any penalties in a space scheduling problem. The other characteristic is that the purpose of the space scheduling problem is to determine a scheduling scheme to optimize performance measurements instead of only choosing objects to optimize the space utilization.

### 2.3 Early and Tardy Penalties

The earliness and tardiness (ET) problem was called the minimum weighted absolute deviation problem previously until it has been referred to as the ET problem in about 1990 (Ahmed, 1990). Liaw (1999) applied a branch-and-bound algorithm to minimize the sum of weighted earliness and weighted tardiness without considering machine idle time for the problem of scheduling a given set of independent jobs on a single machine. Wan and Yen (2002) believed that either a tardy job or an early job brought extra costs in just-in-time (JIT) manufacturing. The objective function of a schedule should include both job earliness and tardiness as penalties. In their research, a tabu search (TS) procedure was used with the optimal timing algorithm to find final schedules for minimizing total weighted earliness and tardiness in a single machine scheduling problem. Lauff and Werner (2004) extend the objective function to multi-stage environments from a single-stage scheduling problem by two main approaches they proposed. In their research, if the jobs were completed early, the intermediate storage costs were brought. Their research was a starting point to develop appropriate algorithms for multi-stage scheduling problems with earliness and tardiness penalties. Thiagarajan and Rajendran (2005) found that the jobs which were completed early must be held as finished-goods inventory until their due dates in many manufacturing systems so earliness costs were incurred. Similarly, the tardy completions of jobs brought penalty. They minimized the sum of earliness and tardiness of jobs by the dispatching rules because earliness and tardiness of the jobs influenced the performance of a schedule with respect to cost greatly in dynamic assembly job-shops. Pathumnakul and Egbelu (2006) stated that a job in the shop had a tree product structure consisting of components and sub-assemblies which may need additional processing until the end product was assembled. In their research, a heuristic was developed to minimizing the weighted earliness penalty in assembly job shops. Schaller and Gupta (2008) developed a heuristic algorithm based on the concept which grouped jobs into families to let orders as close as possible to their due dates on a single machine with family setup times. Their objective was minimizing total earliness and tardiness of jobs. Su (2009) stated that the total earliness and tardiness about a common due date are minimized according to the minimum total flow time in an identical parallel machine system. He proposed a streamlined binary integer programming model and proved that the model outperformed the existing optimization algorithm for the problem.

The purpose of the earliness and tardiness problem is to force jobs to be completed as close to their due dates as possible because both early and tardy penalties bring commercial cost. The idle time is also a factor which needs to be avoided for machines with high operating costs because the cost of keeping the machine running is higher than the earliness cost made by completing a job early. In this study, high-tech equipment manufacturers focus their work on assembling large machines on a shop floor. Idle time was not an effective factor on the whole problem so the loss of idle time was not considered.

### 2.4 Space Scheduling Problems

Perng *et al.* (2007, 2008a, 2008b, 2008c, 2009) defined a job scheduling problem with space resource constraints as a space scheduling problem. It is a newly risen research, and it includes several different studies such as resource constraint, scheduling and space allocation problems. A space scheduling problem is different from other scheduling or space allocation problems, appropriate approaches need to be developed for satisfying different objectives.

There are few literatures about solving space scheduling problems.

However, these researches have rudimentary achievements. Perng *et al.* (2007) proposed two new dispatching rules, namely, small space requirement first (SSR) and large space requirement first (LSR), to solve a space scheduling problem. They also developed the Northwest Algorithm to allocate jobs on the shop floor. A space scheduling problem with space obstacles was proposed (Perng *et al.*, 2008a) later. The obstacles represent pillars and the space which can not be used on the shop floor. Perng *et al.* (2008b) applied container loading problem (CLP) heuristics into a space scheduling problem. Perng *et al.* (2008c) proposed a new algorithm based on NWA, namely, Longest Contact Edge Algorithm (LCEA). It was more efficient than NWA for obtaining better performances. Perng *et al.* (2009) developed an algorithm, Northwest corner searching algorithm to schedule jobs into the shop floor. The objective of the research was to minimize early and tardy costs in space scheduling problems.

According to literature, this study found that the existing approaches to solve a space scheduling problem always cause jobs to be completed too late or too early so tardy and early jobs bring financial penalties to manufacturers. In order to reduce early and tardy penalties, a new approach was developed for reducing early and tardy costs in the next chapter.

## **Chapter 3 Research Methodology**

#### 3.1 Problem assumptions and notations

In a space scheduling problem, each order (job) has its arrival time, processing time, and due date, and they need a certain amount of space to be assembled on the shop floor. In order to simplify this problem, this research proposed several assumptions as follows:

- 1. The shape of all orders' space requirements is a rectangle.
- 2. After assigning an order, the order's location on the shop floor won't be moved until completion of processing.
- 3. This research doesn't consider heights of spaces which the orders require.
- 4. An order can't share its working space with others. In other words, a working area can't be occupied by more than one order at the same time.

For this problem, a space which an order requires was represented by a box Let  $a_k$  denote the width of job k. Let  $b_k$  denote the length of job k.  $a_k$  and  $b_k$  represent the length and width of a box. Let  $p_k$  denote the processing time of job k. In this research,  $p_k$  represents the depth of a box. Figure 3.1 shows an example of boxes representing working space requirements of orders.



Figure 3.1 An example of boxes representing space requirements of orders

In this research, *n* orders need to be assigned into the shop floor. We let *N* denote a set of *n* jobs and  $r_k$  denote the job arrival date of job *k*. Let  $d_k$  denote the due date of job *k*. Let  $s_k$  denote the start time of job *k*. Let  $f_k$  denote the finish date of job *k* (where  $f_k = s_k + p_k - 1$ ). Let *Q* denote an arbitrary sequence for assigning orders. Let  $E_k$  denote earliness of job *k*. Let  $T_k$  denote tardiness of job *k*. Let  $\alpha$  denote the unit early penalty for an early job and  $\beta$  denote the unit tardy penalty for a tardy job. All notations are summarized as follows:

#### Sets

N: a set of *n* jobs

Q: a set of arbitrary sequence

#### Parameters

- $a_k$ : the width of job k
- $b_k$ : the length of job k
- $p_k$ : processing time of job k
- $r_k$ : arrival date of job k
- $d_k$ : due date of job k
- $\alpha$ : unit earliness penalty
- $\beta$ : unit tardiness penalty

Variables

- $s_k$ : start date of job k ( $s_k = f_k p_k + 1$ )
- $f_k$ : finish date of job k
- $E_k$ : an earliness of job k
- $T_k$ : a tardiness of job k

$$E_k = \operatorname{Max}\{d_k - f_k, 0\}$$

 $T_k = \operatorname{Max}\{f_k - d_k, 0\}$ 

f(Q): total penalty cost of Q processing sequence

The objective is to minimize the total penalty cost. That is

**Min** 
$$f(Q) = \alpha \sum_{k=1}^{n} E_k + \beta \sum_{k=1}^{n} T_k - (1)$$

Furthermore, we assume that if a job has been completed early, the job will be moved to storage. Thus, an earliness penalty will occur. If a job has been completed late, the manufacturers have to pay a tardiness penalty for violating the contract. In function (1),  $\alpha$  and  $\beta$  are unit early penalty and tardy penalty costs, respectively.

### 3.2 Quasi-Three-Dimensional Space Allocation Algorithm

#### 3.2.1 Introduction

In our approach, we employ the grid system from previous researches (Perng *et al.*, 2007, 2008a, 2008b, 2008c, 2009). In the grid system, a shop floor is divided into many unit grids to represent unit areas. These grids will be the basis of our search approach.

As shown in Figure 3.2, we add the time axis to the original two-dimensional shop floor as the third axis. We call this new coordinate system as a quasi-three-dimensional space. The plane in any time unit will represent the shop floor at the time. We, therefore, will search the quasi-three dimensional space instead of two-dimensional plane in previous researches (Perng *et al.*, 2007, 2008a, 2008b, 2008c, 2009).



Figure 3.2 The shop floor becomes a quasi-three-dimensional space

Figure 3.3 shows an example of a space scheduling problem. Figure 3.4 and Figure 3.5 exhibit results from previous approaches and our proposed approach, respectively. Jobs are allocated into the shop floor with forward scheduling technique in Figure 3.4 while the proposed approach assigns jobs into the shop floor with backward scheduling in Figure 3.5.



Figure 3.3 An example of a space scheduling problem



Figure 3.4 A result of two-dimensional space allocation



Figure 3.5 A result of quasi-three-dimensional space allocation

### 3.2.2 Overview of quasi-three-dimensional space allocation algorithm

A job sequence is determined by traditional dispatching rules, namely, Shortest Processing Time, Longest Processing Time, First Come First Serve, and Earliest Due Date. In addition, a space related dispatching rules, Smallest Space Requirement and Largest Space Requirement (Perng *et al.* 2007), are also included. The sequence determines the order of job allocation on the shop floor.

The Quasi-Three-Dimensional Space Allocation Algorithm (QTDSA) is based on two-dimensional space allocation approaches, such as northwest algorithm (NWA, Perng *et al.* 2007) or longest contact edge algorithm (LCEA, Perng *et al.* 2008). In the QTDSA, it is supposed that a job completing on the due date is the best scenario (a punctual case), a job completing early is the next best scenario (an early case), and the worst scenario is completed late (a tardy case). Figures 3.6 to 3.8 show a punctual case, an early case, and a tardy case, respectively.



Figure 3.6 The best scenario (a punctual case)



Figure 3.7 The next best scenario (an early case)

When a new job needs to be assigned on the shop floor, first, start date and finish date of the new job should be found from above three cases in proper sequence. Secondly, in order to find a plane (finish date) to contain the new job, a two-dimensional space allocation algorithm is employed for search space on the plane to determine the job's finish date, as shown in Figure 3.9. If the whole plane has no space to contain this job, new finish date of the job will be determined and a two-dimensional space allocation algorithm will be executed again until a free space is found. When the complete space is found on the start plane, this complete space will be examined between this plane and the plane of the job's start date, which equals to the due date minus the processing time of the job. If this complete space could be found, the shape of the job will be a cuboid. Figure 3.10 exhibits a cuboid shape of a job. If this cuboid does not overlap with the other cuboids previously assigned into the shop floor, the new job will be assigned to this space. If an overlap occurs like situation in Figure 3.11, the above steps will be repeated until a suitable space is found.



Figure 3.8 The worst scenario (a tardy case)



Figure 3.9 Two-dimensional Space Allocations



Figure 3.10 The plane of the job becomes a cuboid.



Figure 3.11 The new job overlaps with an assigned job

Figures 3.12 to 3.14 show specific rules to assign a new job into the shop floor. In the punctual case, the finish date of a new job will be the due date of the job. The start date of the job will be due date minus the processing time of the job. However, if a space can't be found to fit a new job, it will turn to the early case scenario to find a free space. In the early case, the new job's finish date (less than the due date of the new job) is used as a base line. Spaces between the base line and the arrival date of the new job will be examined. If free spaces cannot be found, it will indicate that finishing the job early will be impossible and this job will have a late completion date. Opposed to the early case, the new job's start date is used as a base line in the tardy case, and the spaces later than the base line will be examined.



Figure 3.12 An example of a punctual case



Figure 3.13 An example of an early case



Figure 3.14 An example of a tardy case

#### 3.2.3 The Quasi-Three-Dimensional Space Allocation Algorithm

After illustrating the concepts of QTDSA, notations, procedures, flowcharts, and pseudo code for the QTDSA are presented as follows.

#### **Notations**

#### Sets

- $T^s$ : a set of dates on which the assigned jobs will start to be assembled
- $T^{f}$ : a set of dates on which the assigned jobs will be finished and leave the factory
- T: a set of dates on which the layout of the factory will be changed  $(T = T^s \cup T^f)$
- $I_k$ : a set of dates obtained from  $T^s$ , and they are earlier than or equal to the due date of job k
- $O_k$ : a set of dates obtained from  $T^f$ , and they are later than the latest start date of job k
- $A^{\prime}$ : a set of assigned jobs
- J : a temporary set to store assigned jobs

#### Parameters

- k: a job number of the job which is ready to be assigned (k = 1, 2, ..., n)
- j: a job number of any assigned job (j = 1, 2, ..., n)
- $M_{IK}$ : the latest date of  $I_k$
- $m_{OK}$ : the earliest date of  $O_k$
- L: the length of the factory
- W: the width of the factory

#### Integer variables

- $X_k$ : the X dimensional value of reference point (top left corner point) to place job k on the factory plane
- $Y_k$ : the Y dimensional value of reference point to place job k on the factory plane
- $Z_k$ : job k's finish date
$(X_k, Y_k, Z_k)$ : the reference point to place job *k* on the factory

(X, Y, Z): any grid in the quasi-three-dimensional space

 $grid(X,Y,Z) = \begin{cases} 0, \text{ a free space of the factory plane} \\ \text{Otherwise, the space occupied by any job or obstacle} \end{cases}$ 

### Binary variables

 $ol_{xkj} = \begin{cases} 1, \text{ if there is an overlap between job } k \text{ and job } j \text{ on X Dimension,} \\ 0, \text{ Otherwise.} \end{cases}$ 

 $ol_{Ykj} = \begin{cases} 1, \text{ if there is an overlap between job } k \text{ and job } j \text{ on Y Dimension,} \\ 0, \text{ Otherwise.} \end{cases}$ 

 $ol_{Zkj} = \begin{cases} 1, \text{ if there is an overlap between job } k \text{ and job } j \text{ on time Dimension,} \\ 0, \text{ Otherwise.} \end{cases}$ 

 $rp = \begin{cases} 1, \text{ if a space is found to contain job } k \text{ on the factory on } f_k \\ 0, \text{ Otherwise.} \end{cases}$ 

### Procedures of the QTDSA algorithm

The steps of the QTDSA algorithm are shown below:

Step 1 : Initialization

Set  $T^s = \emptyset$ ,  $T^{f} = \emptyset$ , and  $T = \emptyset$ . Obtain Q from the dispatching rule.

Step 2 : Choose the job to allocate

Choose the first job from *Q* and remove the job from *Q*. Set  $f_k = d_k$ .

Select the dates which are earlier than or equal to  $f_k$  from  $T^s$  to evaluate  $I_k$ .

Select the dates which are later than  $s_k$  from  $T^f$  to evaluating  $O_k$ .

Step 3 : Load the layout of the factory on  $f_k$ .

Step 3.1 :

If *T* has a value which is equal to  $f_k$ , then **go to** Step 3.2.

Otherwise, **go to** Step 3.3.

Step 3.2 :

**Load** the layout of the factory on  $f_k$ , then **go to** Step 4.

Step 3.3 :

If *T* has a value which is earlier than  $f_k$ , then **go to** Step 3.4. Otherwise, **go to** Step 3.5.

Step 3.4 :

Find the maximum of the dates earlier than  $f_k$  from T

Load the layout of the factory on this date. Go to Step 4.

Step 3.5 :

Load the initial layout of the factory. Go to Step 4.

Step 4 : **Execute** a two-dimensional space allocation approach on the factory plane on  $f_k$ .

Set rp = 0. In order to find a space to contain job k, the algorithm search grid (X, Y, Z) one by one  $(X = 1, 2, ..., W; Y = 1, 2, ..., L; Z = f_k)$  to find a reference point, if the algorithm find a space to contain job k on the factory on  $f_k$ , then rp = 1.

Step5 : Is there a space available to contain job k on the factory floor on  $f_k$ ?

If rp = 1, then extend the space to the plane on  $s_k$ . Find a cuboid composed of eight coordinates. Calculate the six values ( $X_k$ ,  $Y_k$ ,  $X_k+a_k$ ,  $Y_k+b_k$ ,  $f_k$ ,  $s_k$ ) of the coordinates and **go to** Step 6. Otherwise, **go to** Step 7.

Step 6 : Are there any overlaps between job k and the assigned jobs? Set  $J = A^{J}$ .

Step 6.1 :

Select any job from *J* as job *j*. Remove it from *J*.

Step 6.2 : Is there an overlap between job *k* and job *j* on X Dimension? If either (1), (2) or (3) situations occur, then  $ol_{Xkj}=1$ . Otherwise,  $ol_{Xkj}=0$ .

$$(1)X_{k} \leq X_{j} \leq X_{k} + a_{k}$$
$$(2)X_{k} \leq X_{j} + a_{j} \leq X_{k} + a_{k}$$
$$(3)X_{j} \leq X_{k} \text{ and } X_{i} + a_{j} \geq X_{k} + a_{k}$$

Step 6.3 : Is there an overlap between job *k* and job *j* on Y Dimension? If either (4), (5) or (6) situations occur, then  $ol_{Ykj}=1$ . Otherwise,  $ol_{Ykj}=0$ .

$$(4)Y_k \leq Y_j \leq Y_k + b_k$$
  

$$(5)Y_k \leq Y_j + b_j \leq Y_k + b_k$$
  

$$(6)Y_j \leq Y_k \text{ and } Y_j + b_j \geq Y_k + b_k$$

Step 6.4 : Is there an overlap between job *k* and job *j* on time dimension? If either (7), (8) or (9) situations occur, then  $ol_{Zkj}=1$ . Otherwise,  $ol_{Zkj}=0$ .

(7) 
$$s_k \leq s_j \leq f_k$$
  
(8)  $s_k \leq f_j \leq f_k$   
(9)  $s_j \leq s_k$  and  $f_j \geq f_k$ 

Step 6.5 : Is there an overlap between job k and job j?

If  $ol_{Xkj}=1$ ,  $ol_{Ykj}=1$  and  $ol_{Zkj}=1$ , then **go to** Step 7. Otherwise, **go to** Step 6.6.

Step 6.6 : Is there any assigned job unchecked?

If  $J = \emptyset$ , then find an available space and **go to** Step 9.

Otherwise, go to Step 6.1.

Step 7 : Is the whole plane on the job k's finish date searched?

If  $X_k = W$ ,  $Y_k = L$  and  $Z = f_k$  then **go to** Step 8. Otherwise, **go to** Step 4.

Step 8 : Redetermine new finish date to search for spaces.

Step 8.1 :

If  $I_k$  is a null set, then go to Step 8.5. Otherwise, **go to** Step 8.2.

Step 8.2 :

Set  $f_k = M_{IK} - 1$ , and remove  $M_{IK}$  from  $I_k$ .

Step 8.3 :

If  $f_k$  is earlier than the earliest finish date  $(r_k + p_k - 1)$ , in other words,  $s_k$  is earlier than  $r_k$ , then **go to** Step 8.4. Otherwise, **go to** Step 3.

Step 8.4 :

Remove all elements from  $I_k$ . Go to Step 8.1.

Step 8.5 :

Set  $s_k = m_{OK}$ . Calculate the value of  $f_k$  according to  $s_k$ .

Remove  $m_{OK}$  from  $O_k$ . Go to Step 3.

Step 9 : Allocate the job k.

Add job k in  $A^{J}$ . Record the coordinates of job k's cuboid.

Add the dates when the layout of the factory is changed in T.

Add  $s_k$  in  $T^s$  and Add  $f_k+1$  in  $T^f$ .

Step 10 : Are there any unassigned jobs?

If  $Q \neq \emptyset$ , then **go to** Step2. Otherwise, all jobs are allocated to appropriate spaces.



Figure 3.15 The main flowchart of the QTDSA



Figure 3.16 The sub-flowchart of step 3



Figure 3.17 The sub-flowchart of step 6



Figure 3.18 The sub-flowchart of step 8

```
Function QTDSA()
 For number = 1 to n
                                // Allocate n orders
    k = Q (number) //Choose the first job from the sequence
               //Let job k's finish date equal its due date
   f_k = d_k
   find = false // If a space to contain job k is found, the variable, find, will be true.
      For i = 1 to the number of T^{s} // Obtain I_k from assigned jobs'start date
         If T^{s}(i) \leq d_{k} then
                               // The date is earlier than the latest finish time
          Add T^{s}(i) into I_{k}
         End if
      Next
      For i = 1 to the number of T^{f} // Obtain O^{k} from assigned jobs' finish date
        If T'(i) > f_k - p_k + 1 then // The date is later than the latest start time
         Add T^{f}(i) into O_{k}
       End if
      Next
 Call function LoadLayout (f_k) //Load the layout of the factory
 Call function findspace // Find a suitable space in the quasi-three-dimensional space
  If (find = false) and (I_k \neq \emptyset) then
                                          // Early case
    fk = M_{IK} -1 // M_{IK}: the maximal element in I_k
   Remove (M_{IK}, I_k) // Remove M_{IK} from I_k
  end if
  //When f_k is later than the earliest finish date, early case may occur.
  While (find= false) and (f_k \ge r_k + p_k - 1)
        Call function LoadLayout (f_k)
        Call function findspace
        If I_k \neq \emptyset Then
          f_k = M_{IK} - 1
          Remove (M_{IK}, I_k)
       End If
  Wend
  While (find= false) and (O_k \neq \emptyset) //Tardy case
                   // m_{OK}: the minimal element in O_k
     s_k = m_{OK}
     f_k = s_k + p_k - 1
       Call function LoadLayout (f_k)
       Call function findspace
        Remove (m_{OK}, O_k)
  Wend
 Next
End Function
```



| Function LoadLayout $(f_k)$                                               |
|---------------------------------------------------------------------------|
| If $T \neq \emptyset$ Then                                                |
| For $j = 1$ to the number of $T$                                          |
| If $T(\mathbf{j}) = f_k$ Then                                             |
| Load the layout of the factory on $f_k$                                   |
| Else                                                                      |
| If <i>T</i> have an element which is earlier than $f_k$ then              |
| Set $f_k$ = the maximum of the dates which is earlier than $f_k$ from $T$ |
| Load the layout of the factory on $f_k$                                   |
| Else                                                                      |
| Load the initial layout of the factory                                    |
| End if                                                                    |
| End If                                                                    |
| Next                                                                      |
| Else                                                                      |
| Load the initial layout of the factory                                    |
| End If                                                                    |
| End Function                                                              |
|                                                                           |

Figure 3.20 The sub-function for loading the layout of the factory

```
Function findspace()

//Execute a two-dimensional space allocation algorithm

//Search all grid on the factory

For X = 1 to W //W : the width of the factory

For Y = 1 to L // L : the length of the factory

If (X,Y, f_k) is a reference point then // (X_k, Y_k, Z_k):the reference point on the factory

Call function CheckOverlap (X_k, Y_k, Z_k)

End if

Next

Next

End Function
```

Figure 3.21 The sub-function for finding the reference point

```
Function CheckOverlap(X_k, Y_k, f_k)
 Let job k's coordinates value = (X_k, Y_k, X_k+a_k, Y_k+b_k, f_k, s_k)
 // a_k: the width of job k; b_k: the length of job k
 Let overlap = false
  For i = 1 to the number of J
    Load job j's coordinates value (X_i, Y_i, X_i+a_i, Y_i+b_i, f_i, s_i)
    // Use the coordinates values to judge whether there is an overlap
    If there is an overlap between job k and job j on X dimension then
     ol_{Xki} = true
    End if
    If there is an overlap between job k and job j on Y dimension then
     ol_{Yki} = true
    End if
    If there is an overlap between job k and job j on time dimension then
     ol_{Zkj} = true
    End if
    If (ol_{Xkj} = \text{true}) and (ol_{Ykj} = \text{true}) and (ol_{Zkj} = \text{true}) then
     overlap = true
    End if
  Next
  If overlap = false then
    Assign job k and record data of the coordinates and the dates
    Return find = true
  End if
End Function
```

Figure 3.22 The sub-function for checking overlaps

# **Chapter 4 Design of Experiment**

There are two experimental designs in this research. The purpose of the first experiment is to demonstrate the QTDSA outperform the previous approaches, namely, the northwest algorithm and the longest contact edge algorithm in different performance measurements. On the other hand, the second experiment tend to find the best combination of dispatching rules and space allocation algorithms for different performance measurements. In this chapter, we first present experimental data. Then, the designs of two experiments are described.

### 4.1 Experimental data

Data were obtained from a real company located in central Taiwan. The company has 50 orders approximately in a year. We consider three different numbers of jobs (i.e. 25, 50, and 75) in our research. The case of 25 jobs represents a situation of few orders. The case of 50 jobs represents a normal situation of job number. The case of 75 jobs represents that a large number of orders were received. The raw data of jobs were acquired from the OR-Library (Beasley, 1990, 2008) and previous research (Taillard, 1993) because real data were insufficient for overall testing. However, the job size requirements for the scheduling problem were not available in the OR-Library. The job size requirements were obtained from a company located in central Taiwan. Tables 4.1 and 4.2 show an example of a data set.

| Job number | Shape | Job arrival time | Processing time | Due date |
|------------|-------|------------------|-----------------|----------|
| 1          | С     | 5                | 25              | 30       |
| 2          | В     | 10               | 40              | 50       |
| 3          | А     | 10               | 35              | 50       |
| 4          | D     | 5                | 35              | 45       |
| 5          | D     | 5                | 30              | 40       |
| 6          | В     | 5                | 20              | 35       |

Table 4.1 An example of orders' data

Table 4.2 An example of orders' size requirements

| Shape | Width | Length |
|-------|-------|--------|
| А     | 6     | 6      |
| В     | 4     | 9      |
| С     | 8     | 5      |
| D     | 7     | 9      |

Three different factories were considered in the experiments. Figure 4.1 shows the initial layouts of factories. The initial layout of factory A originated from the factory of a company located in central Taiwan. This research also hypothesized the other two factories (B and C). Their initial layouts are different from factory A.



Figure 4.1 The initial layouts of factories

Six dispatching rules (SPT, LPT, FCFS, EDD, SSR and LSR) were employed to decide the sequence which determines the priorities for order allocation in this study. Two new approaches, namely, QTD-NWA and QTD-LCEA, were included in this study. QTD-NWA represents the combination of the QTDSA (three-dimensional) and the NWA (two-dimensional) algorithms. In the same way, QTD-LCEA represents the combination of the QTDSA (three-dimensional) and the LCEA (two-dimensional) algorithms. Two previous approaches, namely, the northwest algorithm and the longest contact edge algorithm were also employed in the experiments.

## 4.2 The First Design of Experiment

In the first experiment, the randomized block design was employed to compare QTDSA with the others space allocation approaches under different dispatching rules for each performance indicator. First, we selected twenty-seven different job sets as blocks. Nine of the job sets were 25 jobs, nine of the job sets were 50 jobs and the others were 75 jobs. The job sets which had the same number of jobs were divided into three groups. Each group had three job sets and these groups were assigned to different factories (A, B, and C) equally. Then, the independent variable in this experiment is the approach. There, there are four levels, namely, NWA, LECA, QTD-NWA, and QTD-LECA, in the experiment.

For each performance indicator, twenty-seven different job sets were allocated by different space allocation approaches using different dispatching rules. Table 4.3 shows an example of an observation table in the first experiment. It represents the observations which were obtained by different space allocation approaches using SPT rule for makespan. Two-way ANOVA with unrepeated observation was employed to analyze the observations. Because there are six dispatching rules and seven performance indicators, the first experiment should do ANOVA forty-two times. Table 4.4 shows an example of ANOVA table in the first experiment. Table 4.5 shows the hypothesis and the critical region for the first experiment.

|         | Approach |         |      |          |  |  |  |
|---------|----------|---------|------|----------|--|--|--|
| Job Set | NWA      | QTD-NWA | LCEA | QTD-LCEA |  |  |  |
| 1       | 45       | 66      | 45   | 78       |  |  |  |
| 2       | 50       | 75      | 48   | 75       |  |  |  |
| 3       | 86       | 117     | 86   | 133      |  |  |  |
| 4       | 105      | 107     | 80   | 112      |  |  |  |
| 5       | 197      | 190     | 172  | 174      |  |  |  |
| 6       | 204      | 219     | 173  | 195      |  |  |  |
| ••••    | •••      |         | •••  |          |  |  |  |
| 27      | 96       | 100     | 91   | 103      |  |  |  |

Table 4.3 An observation table under the SPT rule for makespan

Table 4.4 An example of ANOVA table in the first experiment

| ANOVA    |     |     |     |       |         |                 |  |  |
|----------|-----|-----|-----|-------|---------|-----------------|--|--|
| Source   | SS  | df  | MS  | F     | p value | f<br>(critical) |  |  |
| Block    | SSB | 26  | MSB | f     | Р       | 1.638019        |  |  |
| Approach | SSA | 3   | MSA | $f_1$ | $P_1$   | 2.721783        |  |  |
| Error    | SSE | 78  | MSE |       |         |                 |  |  |
| Total    | SST | 107 |     |       |         |                 |  |  |

Table 4.5 Hypothesis and critical region in the first experiment

| Hypothesis of ANOVA | H <sub>0</sub> : $\mu_{\text{NWA}} = \mu_{\text{LCEA}} = \mu_{\text{QTD-NWA}} = \mu_{\text{QTD-LCEA}}$<br>H <sub>1</sub> : Not all means are equal |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Critical region     | $C = \left\{ f_1; f_1 > 2.721783 \right\}$                                                                                                         |

### 4.3 The Second Design of Experiment

The second experiment tend to find the best combination of dispatching rules and space allocation algorithms for different performance measurements. The factorial design was employed for this purpose. Eighteen job sets were selected in this experiment. Six of these job sets were 25 jobs, six of these job sets were 50 jobs and the other were 75 jobs. The job sets which had the same number of jobs were divided into three groups. Each group had two job sets, and these groups were assigned to different factories (A, B, and C) equally. In this experiment, the two factors are the dispatching rule and the approach, respectively.

Table 4.6 shows an example of an observation table in the second experiment. It represents the observations which were obtained by combination of different space allocation approaches and dispatching rules for makespan.

The second design of experiment acquired the observation under different treatment combinations repeatedly. We employed two-way ANOVA with repeated observation to analyze the observations. Table 4.7 shows an example of ANOVA table in the second experiment. Table 4.8 shows the hypotheses and the critical regions in the second experiment.

| Dula | Approach |        |      |         |  |  |
|------|----------|--------|------|---------|--|--|
| Kule | NWA      | QTDNWA | LCEA | QTDLCEA |  |  |
| SPT  | 102      | 115    | 108  | 113     |  |  |
|      | 146      | 113    | 135  | 113     |  |  |
|      | 104      | 110    | 109  | 105     |  |  |
|      | 147      | 145    | 133  | 136     |  |  |
|      |          |        | •••  |         |  |  |
| LPT  | 77       | 92     | 69   | 98      |  |  |
|      | 121      | 86     | 86   | 128     |  |  |
|      | 91       | 93     | 105  | 93      |  |  |
|      | 124      | 105    | 116  | 102     |  |  |
|      |          |        |      |         |  |  |
| FCFS | 98       | 110    | 96   | 107     |  |  |
|      | 128      | 96     | 108  | 112     |  |  |
|      | 106      | 113    | 96   | 104     |  |  |
|      | 124      | 124    | 115  | 121     |  |  |
|      |          |        | •••  |         |  |  |
| EDD  | 81       | 100    | 105  | 106     |  |  |
|      | 110      | 117    | 126  | 106     |  |  |
|      | 107      | 99     | 110  | 99      |  |  |
|      | 132      | 110    | 142  | 104     |  |  |
|      |          |        |      |         |  |  |
| SSR  | 102      | 103    | 103  | 123     |  |  |
|      | 149      | 153    | 128  | 142     |  |  |
|      | 114      | 137    | 117  | 127     |  |  |
|      | 152      | 167    | 128  | 136     |  |  |
|      |          |        |      |         |  |  |
| LSR  | 85       | 98     | 85   | 85      |  |  |
|      | 122      | 89     | 110  | 89      |  |  |
|      | 96       | 99     | 88   | 91      |  |  |
|      | 126      | 107    | 132  | 120     |  |  |
|      |          |        |      |         |  |  |

Table 4.6 An observation table for makespan

| ANOVA       |         |     |         |       |                       |                 |  |
|-------------|---------|-----|---------|-------|-----------------------|-----------------|--|
| Source      | SS      | df  | MS      | F     | p value               | f<br>(critical) |  |
| Rule        | SSR     | 5   | MSR     | $f_1$ | $p_1$                 | 2.236109        |  |
| Approach    | SSA     | 3   | MSA     | $f_2$ | $p_2$                 | 2.626775        |  |
| Interaction | SS(R*A) | 15  | MS(R*A) | $f_3$ | <i>p</i> <sub>3</sub> | 1.690951        |  |
| Error       | SSE     | 408 | MSE     |       |                       |                 |  |
| Total       | SST     | 431 |         |       |                       |                 |  |

Table 4.7 An example of ANOVA table in the second experiment

Table 4.8 Hypothesis and critical region in the second experiment

| Hypothesis of ANOVA | (1)   | H <sub>0</sub> : $\mu_{\text{NWA}} = \mu_{\text{LCEA}} = \mu_{\text{QTD-NWA}} = \mu_{\text{QTD-LCEA}}$<br>H <sub>1</sub> : Not all means are equal |
|---------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | (2)   | H <sub>0</sub> : $\mu_{SPT} = \mu_{LPT} = \mu_{FCFS} = \mu_{EDD} = \mu_{SSR} = \mu_{LSR}$<br>H <sub>1</sub> : Not all means are equal              |
|                     | (3)   | H <sub>0</sub> : The interaction is significant<br>H <sub>1</sub> : The interaction is not significant                                             |
|                     | (1)   | $T = \left\{ f_1; f_1 > 2.236109 \right\}$                                                                                                         |
| Critical Region     | (2) C | $T = \left\{ f_2; f_2 > 2.626775 \right\}$                                                                                                         |
|                     | (3)   | $T = \left\{ f_3; f_3 > 1.690951 \right\}$                                                                                                         |

# **Chapter 5 Results and Discussion**

The computational system of this research was developed by Microsoft Visual Basic 6.0, and the database was created by using Microsoft Excel (CSV files). The experiments were implemented by a Pentium IV (Intel Celeron CPU 2.40GHz) computer to obtain data. All calculations were at least rounded up to the second decimal place. In the experiments, ANOVA was employed to determine the significant difference between each level of factors. The level of significance in ANOVA was 0.05. In order to perform Post-Hoc comparison, Least Significant Difference (LSD) method was used.

#### **5.1 Results of the First Experiment**

According to the data obtained from the first experiment, ANOVA was used to compare the performance between the space allocation approaches under different dispatching rules for each performance indicator. Table 5.1 shows the ANOVA table for the SPT rule and total penalties. Because  $f_1$  = 41.71085 > 2.721783, H<sub>0</sub> is rejected. There is a significant difference between the space allocation approaches under the SPT rule for total penalties. Table 5.2 shows the 95% confidence interval (CI) of the approaches' performances under the SPT rule for total penalties. Table 5.3 indicates that there is no significant difference between QTD-LCEA and QTD-NWA under the SPT rule for total penalties. However, they were significant better than the other approaches under the SPT rule for total penalties.

|          | ANOVA    |     |          |                    |          |              |  |  |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|--|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |  |  |
| Block    | 1.59E+08 | 26  | 6130087  | <i>f</i> =243.9109 | 2.74E-64 | 1.638019     |  |  |  |
| Approach | 3144892  | 3   | 1048297  | $f_1$ =41.71085    | 3.46E-16 | 2.721783     |  |  |  |
| Error    | 1960334  | 78  | 25132.48 |                    |          |              |  |  |  |
| Total    | 1.64E+08 | 107 |          |                    |          |              |  |  |  |

Table 5.1 ANOVA under the SPT rule for total penalties

|          |          |             | 1             |
|----------|----------|-------------|---------------|
| Approach | Average  | 95% Confide | ence Interval |
| Арргоаси | Average  | Lower Bound | Upper Bound   |
| LCEA     | 1516.370 | 1455.631    | 1577.110      |
| NWA      | 1541.963 | 1481.223    | 1602.703      |
| QTD-LCEA | 1170.667 | 1109.927    | 1231.407      |
| QTD-NWA  | 1208.111 | 1147.371    | 1268.851      |

Table 5.2 The 95% CI under the SPT rule for total penalties

Table 5.3 The comparison under the SPT rule for total penalties

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -345.70*        | 43.147     | .000 |
| QTD-LCEA | NWA     | -371.30*        | 43.147     | .000 |
|          | QTD-NWA | -37.44          | 43.147     | .388 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.4 shows the ANOVA table under the LPT rule for total penalties. Because  $f_1 = 54.077622 > 2.721783$ , H<sub>0</sub> is rejected. There is a significant difference between the space allocation approaches under the LPT rule for total penalties. Table 5.5 shows the 95% confidence interval of the approaches' performances under the LPT rule for total penalties. Table 5.6 indicates that QTD-LCEA is significant better than the other approaches under the LPT rule for total penalties.

Table 5.4 ANOVA under the LPT rule for total penalties

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 3.22E+08 | 26  | 12370051 | <i>f</i> =577.0943 | 1.01E-78 | 1.638019     |  |
| Approach | 3522395  | 3   | 1174132  | $f_1 = 54.77622$   | 3.72E-19 | 2.721783     |  |
| Error    | 1671935  | 78  | 21435.06 |                    |          |              |  |
| Total    | 3.27E+08 | 107 |          |                    |          |              |  |

| Approach | Average  | 95% Confidence Interval |             |  |  |  |
|----------|----------|-------------------------|-------------|--|--|--|
| Appioaen | Average  | Lower Bound             | Upper Bound |  |  |  |
| LCEA     | 1739.407 | 1683.313                | 1795.502    |  |  |  |
| NWA      | 1819.000 | 1762.906                | 1875.094    |  |  |  |
| QTD-LCEA | 1384.407 | 1328.313                | 1440.502    |  |  |  |
| QTD-NWA  | 1471.037 | 1414.943                | 1527.131    |  |  |  |

Table 5.5 The 95% CI under the LPT rule for total penalties

Table 5.6 The comparison under the LPT rule for total penalties

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -355.00*        | 39.847     | .000 |
| QTD-LCEA | NWA     | -434.59*        | 39.847     | .000 |
|          | QTD-NWA | -86.63*         | 39.847     | .033 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.7 shows the ANOVA table under the FCFS rule for total penalties. Because  $f_1 = 49.96176 > 2.721783$ ,  $H_0$  is rejected. There is a significant difference between the space allocation approaches under the FCFS rule for total penalties. Table 5.8 shows the 95% confidence interval of the approaches' performances under the FCFS rule for total penalties. Table 5.9 indicates that QTD-LCEA is significant better than the other approaches under the FCFS rule for total penalties.

| ANOVA    |          |     |          |                                 |          |              |  |  |
|----------|----------|-----|----------|---------------------------------|----------|--------------|--|--|
| Source   | SS       | df  | MS       | F                               | p value  | f (critical) |  |  |
| Block    | 2.35E+08 | 26  | 9035316  | <i>f</i> =378.4228              | 1.24E-71 | 1.638019     |  |  |
| Approach | 3578698  | 3   | 1192899  | <i>f</i> <sub>1</sub> =49.96176 | 4.02E-18 | 2.721783     |  |  |
| Error    | 1862347  | 78  | 23876.25 |                                 |          |              |  |  |
| Total    | 2.4E+08  | 107 |          |                                 |          |              |  |  |

Table 5.7 ANOVA under the FCFS rule for total penalties

| Approach | Average  | 95% Confidence Interval |             |  |  |  |
|----------|----------|-------------------------|-------------|--|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |  |
| LCEA     | 1631.037 | 1571.835                | 1690.239    |  |  |  |
| NWA      | 1638.741 | 1579.538                | 1697.943    |  |  |  |
| QTD-LCEA | 1226.185 | 1166.983                | 1285.388    |  |  |  |
| QTD-NWA  | 1330.704 | 1271.501                | 1389.906    |  |  |  |

Table 5.8 The 95% CI under the FCFS rule for total penalties

Table 5.9 The comparison under the FCFS rule for total penalties

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -404.85*        | 42.055     | .000 |
| QTD-LCEA | NWA     | -412.56*        | 42.055     | .000 |
|          | QTD-NWA | -104.52*        | 42.055     | .015 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.10 shows the ANOVA table under the EDD rule for total penalties. Because  $f_1 = 48.74388 > 2.721783$ ,  $H_0$  is rejected. There is a significant difference between the space allocation approaches under the EDD rule for total penalties. Table 5.11 shows the 95% confidence interval of the approaches' performances under the EDD rule for total penalties. Table 5.12 indicates there was no significant difference between QTD-NWA and QTD-LCEA. The analytic result proves that QTD-NWA and QTD-LCEA are significant better than the other approaches under the EDD rule for total penalties.

| ANOVA    |          |     |          |                          |          |              |  |  |
|----------|----------|-----|----------|--------------------------|----------|--------------|--|--|
| Source   | SS       | df  | MS       | F                        | p value  | f (critical) |  |  |
| Block    | 2.09E+08 | 26  | 8029501  | <i>f</i> =297.5345       | 1.32E-67 | 1.638019     |  |  |
| Approach | 3946323  | 3   | 1315441  | f <sub>1</sub> =48.74388 | 7.53E-18 | 2.721783     |  |  |
| Error    | 2104970  | 78  | 26986.79 |                          |          |              |  |  |
| Total    | 2.15E+08 | 107 |          |                          |          |              |  |  |

Table 5.10 ANOVA under the EDD rule for total penalties

| Approach | Average  | 95% Confidence Interval |             |  |  |  |
|----------|----------|-------------------------|-------------|--|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |  |
| LCEA     | 1529.481 | 1466.541                | 1592.422    |  |  |  |
| NWA      | 1567.370 | 1504.430                | 1630.311    |  |  |  |
| QTD-LCEA | 1148.074 | 1085.133                | 1211.015    |  |  |  |
| QTD-NWA  | 1188.148 | 1125.207                | 1251.089    |  |  |  |

Table 5.11 The 95% CI under the EDD rule for total penalties

| Table 5.12 The compa | arison u | inder th | ie EDD | rule | for 1 | total | penalties |
|----------------------|----------|----------|--------|------|-------|-------|-----------|
|----------------------|----------|----------|--------|------|-------|-------|-----------|

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -381.41*        | 44.710     | .000 |
| QTD-LCEA | NWA     | -419.30*        | 44.710     | .000 |
|          | QTD-NWA | -40.07          | 44.710     | .373 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.13 shows the ANOVA table under the SSR rule for total penalties. Because  $f_1 = 24.88178 > 2.721783$ ,  $H_0$  is rejected. There is a significant difference between the space allocation approaches under the SSR rule for total penalties. Table 5.14 shows the 95% confidence interval of the approaches' performances under the SSR rule for total penalties. Table 5.15 indicates that QTD-LCEA is significant better than the other approaches under the SSR rule for total penalties.

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 3.69E+08 | 26  | 14180809 | <i>f</i> =505.8478 | 1.67E-76 | 1.638019     |  |
| Approach | 2092589  | 3   | 697529.6 | $f_1 = 24.88178$   | 2.14E-11 | 2.721783     |  |
| Error    | 2186632  | 78  | 28033.75 |                    |          |              |  |
| Total    | 3.73E+08 | 107 |          |                    |          |              |  |

Table 5.13 ANOVA under the SSR rule for total penalties

| Approach | Average  | 95% Confidence Interval |             |  |  |  |
|----------|----------|-------------------------|-------------|--|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |  |
| LCEA     | 1803.111 | 1738.961                | 1867.261    |  |  |  |
| NWA      | 1905.741 | 1841.591                | 1969.891    |  |  |  |
| QTD-LCEA | 1525.741 | 1461.591                | 1589.891    |  |  |  |
| QTD-NWA  | 1727.963 | 1663.813                | 1792.113    |  |  |  |

Table 5.14 The 95% CI under the SSR rule for total penalties

Table 5.15 The comparison under the SSR rule for total penalties

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -277.37*        | 45.569     | .000 |
| QTD-LCEA | NWA     | -380.00*        | 45.569     | .000 |
|          | QTD-NWA | -202.22*        | 45.569     | .000 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.16 shows the ANOVA table under the LSR rule for total penalties. Because  $f_1 = 16.8414 > 2.721783$ ,  $H_0$  is rejected. There is a significant difference between the space allocation approaches under the LSR rule for total penalties. Table 5.17 shows the 95% confidence interval of the approaches' performances under the LSR rule for total penalties. Table 5.18 indicates there is no significant difference between QTD-NWA and QTD-LCEA. The analytic result proves that QTD-NWA and QTD-LCEA are significant better than the other approaches under the LSR rule for total penalties.

|          | ANOVA    |     |          |                   |          |              |  |  |  |
|----------|----------|-----|----------|-------------------|----------|--------------|--|--|--|
| Source   | SS       | df  | MS       | F                 | p value  | f (critical) |  |  |  |
| Block    | 2.29E+08 | 26  | 8795433  | <i>f</i> =194.121 | 1.72E-60 | 1.638019     |  |  |  |
| Approach | 2289202  | 3   | 763067.4 | $f_1 = 16.8414$   | 1.58E-08 | 2.721783     |  |  |  |
| Error    | 3534104  | 78  | 45309.03 |                   |          |              |  |  |  |
| Total    | 2.35E+08 | 107 |          |                   |          |              |  |  |  |

Table 5.16 ANOVA under the LSR rule for total penalties

| Approach | Δverage  | 95% Confidence Interval |             |  |  |
|----------|----------|-------------------------|-------------|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |
| LCEA     | 1546.815 | 1465.260                | 1628.369    |  |  |
| NWA      | 1671.778 | 1590.223                | 1753.332    |  |  |
| QTD-LCEA | 1306.630 | 1225.075                | 1388.184    |  |  |
| QTD-NWA  | 1362.778 | 1281.223                | 1444.332    |  |  |

Table 5.17 The 95% CI under the LSR rule for total penalties

Table 5.18 The comparison under the LSR rule for total penalties

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -240.19*        | 57.933     | .000 |
| QTD-LCEA | NWA     | -365.15*        | 57.933     | .000 |
|          | QTD-NWA | -56.15          | 57.933     | .335 |

(Note: \* represents the mean difference is significant at the .05 level.)

After finding the best approach under different dispatching rules for total penalties, the analyses for other performance Indicators could be found in Appendix A. Tables 5.19 - 25 show the mean performance measurements for different space allocation approaches and dispatching rules. Based on the results of the first experiment, we found that QTDSA outperforms the other algorithms for total penalties, total earliness and number of early jobs.

| Performance     | Dispatching | Approach |          |           |           |  |
|-----------------|-------------|----------|----------|-----------|-----------|--|
| Indicator       | Rule        | LCEA     | NWA      | QTD-LCEA  | QTD-NWA   |  |
|                 | SPT         | 1516.370 | 1541.963 | 1170.667* | 1208.111* |  |
|                 | LPT         | 1739.407 | 1819.000 | 1384.407* | 1471.037  |  |
| Total Danaltian | FCFS        | 1631.037 | 1638.741 | 1226.185* | 1330.704  |  |
| Total Penalties | EDD         | 1529.481 | 1567.370 | 1148.074* | 1188.148* |  |
|                 | SSR         | 1803.111 | 1905.741 | 1525.741* | 1727.963  |  |
|                 | LSR         | 1546.815 | 1671.778 | 1306.630* | 1362.778* |  |

Table 5.19 Performances of the approaches for total penalties

(Note: \* represent the approach is significant better than the others under the dispatching rule for total penalties.)

| Performance | Dispatching | Approach |          |          |         |  |  |
|-------------|-------------|----------|----------|----------|---------|--|--|
| Indicator   | Rule        | LCEA     | NWA      | QTD-LCEA | QTD-NWA |  |  |
| Makespan    | SPT         | 143.741  | 145.370  | 149.111  | 151.407 |  |  |
|             | LPT         | 131.926  | 139.667  | 123.444* | 130.963 |  |  |
|             | FCFS        | 138.185* | 138.778* | 135.037* | 145.037 |  |  |
|             | EDD         | 139.667  | 143.370  | 133.185  | 137.148 |  |  |
|             | SSR         | 152.444* | 159.444  | 168.963  | 181.852 |  |  |
|             | LSR         | 129.074  | 136.815  | 129.185  | 127.889 |  |  |

Table 5.20 Performances of the approaches for makespan

(Note: \* represent the approach is significant better than the others under the dispatching rule for makespan.)

| Performance | Dispatching | Approach |         |          |         |  |
|-------------|-------------|----------|---------|----------|---------|--|
| Indicator   | Rule        | LCEA     | NWA     | QTD-LCEA | QTD-NWA |  |
|             | SPT         | 48.414*  | 46.728* | 43.181   | 42.514  |  |
|             | LPT         | 52.692*  | 49.821  | 53.826*  | 50.682  |  |
| Space       | FCFS        | 50.151*  | 48.843* | 48.105*  | 44.932  |  |
| Utilization | EDD         | 49.451   | 47.528  | 49.394   | 48.047  |  |
|             | SSR         | 45.972*  | 43.308  | 39.810   | 36.489  |  |
|             | LSR         | 53.400   | 50.528  | 50.125   | 50.732  |  |

Table 5.21 Performances of the approaches for space utilization

(Note: \* represent the approach is significant better than the others under the dispatching rule for space utilization.)

Table 5.22 Performances of the approaches for total tardiness

| Performance     | Dispatching | Approach  |           |           |          |  |  |
|-----------------|-------------|-----------|-----------|-----------|----------|--|--|
| Indicator       | Rule        | LCEA      | NWA       | QTD-LCEA  | QTD-NWA  |  |  |
|                 | SPT         | 898.222*  | 943.556*  | 1112.185  | 1158.222 |  |  |
|                 | LPT         | 1296.630  | 1380.259  | 1205.963* | 1312.630 |  |  |
| Total Tandinasa | FCFS        | 1106.148* | 1126.593* | 1137.593* | 1261.407 |  |  |
| Total Tardiness | EDD         | 1048.630  | 1096.963  | 1016.815  | 1076.556 |  |  |
|                 | SSR         | 1276.222* | 1390.667  | 1442.593  | 1638.593 |  |  |
|                 | LSR         | 1041.148* | 1181.296  | 1162.926  | 1213.222 |  |  |

(Note: \* represent the approach is significant better than the others under the dispatching rule for total tardiness.)

| Performance      | Dispatching | Approach |         |          |          |  |
|------------------|-------------|----------|---------|----------|----------|--|
| Indicator        | Rule        | LCEA     | NWA     | QTD-LCEA | QTD-NWA  |  |
|                  | SPT         | 618.148  | 598.407 | 58.481*  | 49.889*  |  |
|                  | LPT         | 442.778  | 438.741 | 178.444* | 158.407* |  |
| Total Farlings   | FCFS        | 524.889  | 512.148 | 88.593*  | 69.296*  |  |
| I otal Earliness | EDD         | 480.852  | 470.407 | 131.259* | 111.593* |  |
|                  | SSR         | 526.889  | 515.074 | 83.148*  | 89.370*  |  |
|                  | LSR         | 505.667  | 490.481 | 143.704* | 149.556* |  |

Table 5.23 Performances of the approaches for total earliness

(Note: \* represent the approach is significant better than the others under the dispatching rule for total earliness.)

| Performance | Dispatching | Approach |        |          |         |  |
|-------------|-------------|----------|--------|----------|---------|--|
| Indicator   | Rule        | LCEA     | NWA    | QTD-LCEA | QTD-NWA |  |
|             | SPT         | 19.481   | 20.407 | 18.556   | 18.630  |  |
|             | LPT         | 25.444   | 26.148 | 22.185   | 23.148  |  |
| Tondy John  | FCFS        | 22.222   | 22.778 | 19.815   | 20.667  |  |
| Tardy Jobs  | EDD         | 22.259   | 22.889 | 25.556   | 25.074  |  |
|             | SSR         | 22.630   | 23.407 | 19.444   | 20.593  |  |
|             | LSR         | 22.926   | 23.519 | 21.148   | 21.074  |  |

Table 5.24 Performances of the approaches for tardy jobs

(Note: \* represent the approach is significant better than the others under the dispatching rule for tardy jobs.)

| Performance | Dispatching | Approach |        |          |         |  |
|-------------|-------------|----------|--------|----------|---------|--|
| Indicator   | Rule        | LCEA     | NWA    | QTD-LCEA | QTD-NWA |  |
|             | SPT         | 29.704   | 28.926 | 4.852*   | 5.593*  |  |
|             | LPT         | 24.963   | 23.963 | 10.852*  | 12.000* |  |
| Early John  | FCFS        | 27.148   | 26.519 | 6.741*   | 7.185*  |  |
| Early Jobs  | EDD         | 26.593   | 26.074 | 6.519*   | 7.889*  |  |
|             | SSR         | 26.815   | 25.852 | 4.370*   | 6.370*  |  |
|             | LSR         | 26.556   | 25.852 | 10.370*  | 11.185* |  |

Table 5.25 Performances of the approaches for early jobs

(Note: \* represent the approach is significant better than the others under the dispatching rule for early jobs.)

### 5.2 Results of the Second Experiment

Table 5.26 shows the two-way ANOVA table for total penalties. Because  $f_1$  = 0.816677 < 2.236109, H<sub>0</sub> is not rejected. There is no significant difference between the dispatching rules for total penalties. Because  $f_2$  = 4.104096 > 2.626775, H<sub>0</sub> is rejected. There is a significant difference between the space allocation approaches for total penalties. Because  $f_3$  = 0.042958 < 1.690951, H<sub>0</sub> is not rejected. There is no significant interaction between the approaches and the rules for total penalties. Table 5.27 shows the 95% confidence interval of the rules' performances for total penalties. Table 5.28 shows the 95% confidence interval of the approaches' performances for total penalties. Table 5.29 indicates there is no significant difference between QTD-LCEA and QTD-NWA. The analytic result proves that QTD-LCEA and QTD-NWA are significant better than the other approaches for total penalties.

| ANOVA       |          |     |          |                          |          |              |  |  |
|-------------|----------|-----|----------|--------------------------|----------|--------------|--|--|
| Source      | SS       | df  | MS       | F                        | p value  | f (critical) |  |  |
| Rule        | 5597017  | 5   | 1119403  | $f_1 = 0.816677$         | 0.538243 | 2.236109     |  |  |
| Approach    | 16876212 | 3   | 5625404  | f <sub>2</sub> =4.104096 | 0.006903 | 2.626775     |  |  |
| Interaction | 883220.3 | 15  | 58881.35 | f <sub>3</sub> =0.042958 | 1        | 1.690951     |  |  |
| Error       | 5.59E+08 | 408 | 1370681  |                          |          |              |  |  |
| Total       |          |     |          |                          |          |              |  |  |

Table 5.26 Two-way ANOVA for total penalties

Table 5.27 The 95% CI of the rules' performances for total penalties

| Approach  | Average  | 95% Confidence Interv |             |
|-----------|----------|-----------------------|-------------|
| rippioaen | Twendge  | Lower Bound           | Upper Bound |
| EDD       | 1343.917 | 1072.685              | 1615.148    |
| FCFS      | 1474.417 | 1203.185              | 1745.648    |
| LPT       | 1558.611 | 1287.380              | 1829.843    |
| LSR       | 1451.139 | 1179.907              | 1722.370    |
| SPT       | 1381.264 | 1110.032              | 1652.495    |
| SSR       | 1686.069 | 1414.838              | 1957.301    |

| Approach | Δverage  | 95% Confidence Inter |             |
|----------|----------|----------------------|-------------|
| Approach | Average  | Lower Bound          | Upper Bound |
| LCEA     | 1671.185 | 1449.726             | 1892.645    |
| NWA      | 1688.620 | 1467.161             | 1910.080    |
| QTD-LCEA | 1272.056 | 1050.596             | 1493.515    |
| QTD-NWA  | 1298.417 | 1076.957             | 1519.876    |

Table 5.28 The 95% CI of the approaches' performances for total penalties

Table 5.29 The comparison of the approaches for total penalties

| Approach |         | Mean Difference      | Std. Error | Sig. |
|----------|---------|----------------------|------------|------|
|          | LCEA    | -399.13*             | 159.320    | .013 |
| QTD-LCEA | NWA     | -416.56 <sup>*</sup> | 159.320    | .009 |
|          | QTD-NWA | -26.36               | 159.320    | .869 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.30 shows the two-way ANOVA table for makespan. Because  $f_1 = 2.011746 < 2.236109$ , H<sub>0</sub> is not rejected. There is no significant difference between the dispatching rules for makespan. Because  $f_2 = 0.009252 < 2.626775$ , H<sub>0</sub> is not rejected. There is no significant difference between the space allocation approaches for makespan. Because  $f_3 = 0.114757 < 1.690951$ , H<sub>0</sub> is not rejected. There is no significant interaction between the approaches and the rules for makespan. Table 5.31 shows the 95% confidence interval of the rules' performances for makespan. Table 5.32 shows the 95% confidence interval of the approaches' performances for makespan.

|             |          |     | 2        |                                 | 1        |              |
|-------------|----------|-----|----------|---------------------------------|----------|--------------|
| ANOVA       |          |     |          |                                 |          |              |
| Source      | SS       | df  | MS       | F                               | p value  | f (critical) |
| Rule        | 69206.96 | 5   | 13841.39 | $f_1 = 2.011746$                | 0.076    | 2.236109     |
| Approach    | 190.9722 | 3   | 63.65741 | $f_2 = 0.009252$                | 0.998778 | 2.626775     |
| Interaction | 11843.39 | 15  | 789.5593 | <i>f</i> <sub>3</sub> =0.114757 | 0.999988 | 1.690951     |
| Error       | 2807158  | 408 | 6880.289 |                                 |          |              |
| Total       | 2888399  | 431 |          |                                 |          |              |

Table 5.30 Two-way ANOVA for makespan

| Approach  | Average | 95% Confidence Interval |             |  |
|-----------|---------|-------------------------|-------------|--|
| rippioaen | Twendge | Lower Bound             | Upper Bound |  |
| EDD       | 146.861 | 127.645                 | 166.078     |  |
| FCFS      | 149.528 | 130.311                 | 168.744     |  |
| LPT       | 140.069 | 120.853                 | 159.286     |  |
| LSR       | 139.167 | 119.950                 | 158.383     |  |
| SPT       | 156.097 | 136.881                 | 175.314     |  |
| SSR       | 176.639 | 157.422                 | 195.855     |  |

Table 5.31 The 95% CI of the rules' performances for makespan

Table 5.32 The 95% CI of the approaches' performances for makespan

| Approach | Δverage | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 151.056 | 135.365                 | 166.746     |  |  |
| NWA      | 152.500 | 136.810                 | 168.190     |  |  |
| QTD-LCEA | 151.269 | 135.578                 | 166.959     |  |  |
| QTD-NWA  | 150.750 | 135.060                 | 166.440     |  |  |

Table 5.33 shows the two-way ANOVA table for space utilization. Because  $f_1 = 13.0886 > 2.236109$ , H<sub>0</sub> is rejected. There is a significant difference between the dispatching rules for space utilization. Because  $f_2 = 0.720182 < 2.626775$ , H<sub>0</sub> is not rejected. There is no significant difference between the space allocation approaches for space utilization. Because  $f_3 = 0.6662 < 1.690951$ , H<sub>0</sub> is not rejected. There is no significant interaction between the approaches and the rules for space utilization. Table 5.34 shows the 95% confidence interval of the rules' performances for space utilization. Table 5.35 shows the 95% confidence interval of the approaches' performances for space utilization. Table 5.36 indicates there is no significant difference between LSR and LPT. The analytic result proves that LSR and LPT are significant better than the other rules for space utilization.

| ANOVA       |          |     |          |                               |          |              |
|-------------|----------|-----|----------|-------------------------------|----------|--------------|
| Source      | SS       | df  | MS       | F                             | p value  | f (critical) |
| Rule        | 5195.843 | 5   | 1039.169 | $f_1 = 13.0886$               | 7.86E-12 | 2.236109     |
| Approach    | 171.5364 | 3   | 57.1788  | $f_2 = 0.720182$              | 0.540371 | 2.626775     |
| Interaction | 793.3937 | 15  | 52.89292 | <i>f</i> <sub>3</sub> =0.6662 | 0.817911 | 1.690951     |
| Error       | 32393.13 | 408 | 79.39494 |                               |          |              |
| Total       | 38553.91 | 431 |          |                               |          |              |

Table 5.33 Two-way ANOVA for space utilization

Table 5.34 The 95% CI of the rules' performances for space utilization

| Approach  | Average | 95% Confide | % Confidence Interval |  |
|-----------|---------|-------------|-----------------------|--|
| rippioaen | Twendge | Lower Bound | Upper Bound           |  |
| EDD       | 44.998  | 42.934      | 47.062                |  |
| FCFS      | 44.459  | 42.395      | 46.524                |  |
| LPT       | 48.020  | 45.956      | 50.084                |  |
| LSR       | 48.099  | 46.034      | 50.163                |  |
| SPT       | 41.846  | 39.781      | 43.910                |  |
| SSR       | 38.187  | 36.123      | 40.252                |  |

Table 5.35 The 95% CI of the approaches' performances for space utilization

| Approach | Δverage | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
| мрргоасн | Average | Lower Bound             | Upper Bound |  |
| LCEA     | 45.216  | 43.531                  | 46.902      |  |
| NWA      | 44.426  | 42.741                  | 46.112      |  |
| QTD-LCEA | 43.877  | 42.191                  | 45.562      |  |
| QTD-NWA  | 43.553  | 41.868                  | 45.239      |  |

Table 5.36 The comparison of approaches for space utilization

| Dispate | hing Rule | Mean Difference | Std. Error | Sig. |
|---------|-----------|-----------------|------------|------|
|         | EDD       | 3.10061*        | 1.485064   | .037 |
|         | FCFS      | 3.63931*        | 1.485064   | .015 |
| LSR     | LPT       | .07874          | 1.485064   | .958 |
|         | SPT       | 6.25307*        | 1.485064   | .000 |
|         | SSR       | 9.91144*        | 1.485064   | .000 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.37 shows the two-way ANOVA table for total tardiness. Because  $f_1$  = 0.904641 < 2.236109, H<sub>0</sub> is not rejected. There is no significant difference between the dispatching rules for total tardiness. Because  $f_2$  = 0.21059 < 2.626775, H<sub>0</sub> is not rejected. There is no significant difference between the space allocation approaches for total tardiness. Because  $f_3$  = 0.051519 < 1.690951, H<sub>0</sub> is not rejected. There is no significant interaction between the approaches and the rules for total tardiness. Table 5.38 shows the 95% confidence interval of the rules' performances for total tardiness for total tardiness. Table 5.39 shows the 95% confidence interval of the approaches' performances for total tardiness.

| ANOVA       |          |     |          |                                |          |              |
|-------------|----------|-----|----------|--------------------------------|----------|--------------|
| Source      | SS       | df  | MS       | F                              | p value  | f (critical) |
| Rule        | 5706770  | 5   | 1141354  | $f_1 = 0.904641$               | 0.477904 | 2.236109     |
| Approach    | 797084.2 | 3   | 265694.7 | <i>f</i> <sub>2</sub> =0.21059 | 0.889056 | 2.626775     |
| Interaction | 975001.2 | 15  | 65000.08 | f <sub>3</sub> =0.051519       | 1        | 1.690951     |
| Error       | 5.15E+08 | 408 | 1261666  |                                |          |              |
| Total       | 5.22E+08 | 431 |          |                                |          |              |

Table 5.37 Two-way ANOVA for total tardiness

Table 5.38 The 95% CI of the rules' performances for total tardiness

| Approach | Average  | 95% Confidence Interval |             |  |
|----------|----------|-------------------------|-------------|--|
| мрргоасн | Average  | Lower Bound             | Upper Bound |  |
| EDD      | 1001.667 | 741.445                 | 1261.889    |  |
| FCFS     | 1139.236 | 879.014                 | 1399.458    |  |
| LPT      | 1217.389 | 957.167                 | 1477.611    |  |
| LSR      | 1089.792 | 829.570                 | 1350.014    |  |
| SPT      | 1019.167 | 758.945                 | 1279.389    |  |
| SSR      | 1333.069 | 1072.847                | 1593.292    |  |

| Approach | Average     | 95% Confidence Interval |             |  |
|----------|-------------|-------------------------|-------------|--|
| rppioaen | Lower Bound |                         | Upper Bound |  |
| LCEA     | 1077.630    | 865.159                 | 1290.100    |  |
| NWA      | 1107.407    | 894.937                 | 1319.878    |  |
| QTD-LCEA | 1162.935    | 950.465                 | 1375.406    |  |
| QTD-NWA  | 1185.574    | 973.104                 | 1398.045    |  |

Table 5.39 The 95% CI of the approaches' performances for total tardiness

Table 5.40 shows the two-way ANOVA table for total earliness. Because  $f_1$  = 0.238902 < 2.236109, H<sub>0</sub> is not rejected. There is no significant difference between the dispatching rules for total earliness. Because  $f_2$  = 212.9357 > 2.626775, H<sub>0</sub> is rejected. There is a significant difference between the space allocation approaches for total earliness. Because  $f_3$  = 1.060049 < 1.690951, H<sub>0</sub> is not rejected. There is no significant interaction between the approaches and the rules for total earliness. Table 5.41 shows the 95% confidence interval of the rules' performances for total earliness. Table 5.42 shows the 95% confidence interval of the approaches' performances for total earliness. Table 5.43 indicates there is no significant difference between QTD-LCEA and QTD-NWA. The analytic result proves that QTD-LCEA and QTD-NWA are significant better than the other approaches for total earliness.

| ANOVA       |          |     |          |                          |          |              |
|-------------|----------|-----|----------|--------------------------|----------|--------------|
| Source      | SS       | df  | MS       | F                        | p value  | f (critical) |
| Rule        | 45851.32 | 5   | 9170.263 | $f_1 = 0.238902$         | 0.945151 | 2.236109     |
| Approach    | 24520612 | 3   | 8173537  | f <sub>2</sub> =212.9357 | 4.2E-83  | 2.626775     |
| Interaction | 610349.9 | 15  | 40690    | f <sub>3</sub> =1.060049 | 0.392388 | 1.690951     |
| Error       | 15661081 | 408 | 38385    |                          |          |              |
| Total       | 40837895 | 431 |          |                          |          |              |

Table 5.40 Two-way ANOVA for total earliness

| Approach  | Average | 95% Confidence Interval |             |  |
|-----------|---------|-------------------------|-------------|--|
| rippioaen | Twenage | Lower Bound             | Upper Bound |  |
| EDD       | 342.250 | 296.861                 | 387.639     |  |
| FCFS      | 335.181 | 289.791                 | 380.570     |  |
| LPT       | 341.222 | 295.833                 | 386.611     |  |
| LSR       | 361.347 | 315.958                 | 406.736     |  |
| SPT       | 362.097 | 316.708                 | 407.486     |  |
| SSR       | 353.000 | 307.611                 | 398.389     |  |

Table 5.41 The 95% CI of the rules' performances for total earliness

Table 5.42 The 95% CI of the approaches' performances for total earliness

| Approach | Average | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
| Approach | Average | Lower Bound             | Upper Bound |  |
| LCEA     | 593.556 | 556.495                 | 630.616     |  |
| NWA      | 581.213 | 544.153                 | 618.273     |  |
| QTD-LCEA | 109.120 | 72.060                  | 146.181     |  |
| QTD-NWA  | 112.843 | 75.782                  | 149.903     |  |

Table 5.43 The comparison of the approaches for total earliness

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -484.44*        | 26.661     | .000 |
| QTD-LCEA | NWA     | -472.09*        | 26.661     | .000 |
|          | QTD-NWA | -3.72           | 26.661     | .889 |

(Note: \* represents the mean difference is significant at the .05 level.)

Table 5.44 shows the two-way ANOVA table for tardy jobs. Because  $f_1 = 1.418894 < 2.236109$ , H<sub>0</sub> is not rejected. There is no significant difference between the dispatching rules for tardy jobs. Because  $f_2 = 0.046526 < 2.626775$ , H<sub>0</sub> is not rejected. There is no significant difference between the space allocation approaches for tardy jobs. Because  $f_3 = 0.075082 < 1.690951$ , H<sub>0</sub> is not rejected. There is no significant interaction between the approaches and the rules for tardy jobs. Table 5.45 shows the 95% confidence interval of the rules' performances for tardy jobs. Table 5.46 shows the 95% confidence interval of the approaches' performances for tardy jobs.

| ANOVA       |          |     |          |                  |          |              |
|-------------|----------|-----|----------|------------------|----------|--------------|
| Source      | SS       | df  | MS       | F                | p value  | f (critical) |
| Rule        | 1252.806 | 5   | 250.5611 | $f_1 = 1.418894$ | 0.216269 | 2.236109     |
| Approach    | 24.64815 | 3   | 8.216049 | $f_2 = 0.046526$ | 0.986677 | 2.626775     |
| Interaction | 198.8796 | 15  | 13.25864 | $f_3 = 0.075082$ | 0.999999 | 1.690951     |
| Error       | 72048.33 | 408 | 176.5891 |                  |          |              |
| Total       | 73524.67 | 431 |          |                  |          |              |

Table 5.44 Two-way ANOVA for tardy jobs

 Table 5.45 The 95% CI of the rules' performances for tardy jobs

 95% Confidence Interval

| Approach | Average | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
| Approach | Average | Lower Bound             | Upper Bound |  |
| EDD      | 23.278  | 20.199                  | 26.356      |  |
| FCFS     | 20.333  | 17.255                  | 23.412      |  |
| LPT      | 23.139  | 20.060                  | 26.217      |  |
| LSR      | 21.375  | 18.296                  | 24.454      |  |
| SPT      | 18.514  | 15.435                  | 21.592      |  |
| SSR      | 20.028  | 16.949                  | 23.106      |  |

Table 5.46 The 95% CI of the approaches' performances for tardy jobs

| Approach | Average | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
| Approach | Average | Lower Bound             | Upper Bound |  |
| LCEA     | 21.019  | 18.505                  | 23.532      |  |
| NWA      | 21.481  | 18.968                  | 23.995      |  |
| QTD-LCEA | 20.824  | 18.310                  | 23.338      |  |
| QTD-NWA  | 21.120  | 18.607                  | 23.634      |  |

Table 5.47 shows the two-way ANOVA table for early jobs. Because  $f_1 = 0.428612 < 2.236109$ , H<sub>0</sub> is not rejected. There is no significant difference between the dispatching rules for early jobs. Because  $f_2 = 138.8638 > 2.626775$ , H<sub>0</sub> is rejected. There is a significant difference between the space allocation approaches for early jobs. Because  $f_3 = 0.797243 < 1.690951$ , H<sub>0</sub> is not rejected. There is no significant interaction between the approaches and the rules for early jobs. Table 5.48 shows the 95% confidence interval of the rules'
performances for early jobs. Table 5.49 shows the 95% confidence interval of the approaches' performances for early jobs. Table 5.50 indicates there is no significant difference between QTD-LCEA and QTD-NWA. The analytic result proves that QTD-LCEA and QTD-NWA are significant better than the other approaches for early jobs.

| ANOVA       |          |     |          |                                 |          |              |
|-------------|----------|-----|----------|---------------------------------|----------|--------------|
| Source      | SS       | df  | MS       | F                               | p value  | f (critical) |
| Rule        | 225.1574 | 5   | 45.03148 | $f_1 = 0.428612$                | 0.828697 | 2.236109     |
| Approach    | 43768.53 | 3   | 14589.51 | f <sub>2</sub> =138.8638        | 5.28E-62 | 2.626775     |
| Interaction | 1256.417 | 15  | 83.76111 | <i>f</i> <sub>3</sub> =0.797243 | 0.681039 | 1.690951     |
| Error       | 42865.89 | 408 | 105.0635 |                                 |          |              |
| Total       | 88115.99 | 431 |          |                                 |          |              |

Table 5.47 Two-way ANOVA for early jobs

Table 5.48 The 95% CI of the rules' performances for early jobs

| Approach  | Average | 95% Confidence Interval |             |  |  |  |
|-----------|---------|-------------------------|-------------|--|--|--|
| rippioaen | Weinge  | Lower Bound             | Upper Bound |  |  |  |
| EDD       | 17.250  | 14.875                  | 19.625      |  |  |  |
| FCFS      | 18.014  | 15.639                  | 20.389      |  |  |  |
| LPT       | 17.458  | 15.084                  | 19.833      |  |  |  |
| LSR       | 19.403  | 17.028                  | 21.777      |  |  |  |
| SPT       | 18.306  | 15.931                  | 20.680      |  |  |  |
| SSR       | 17.542  | 15.167                  | 19.916      |  |  |  |

Table 5.49 The 95% CI of the approaches' performances for early jobs

| Approach | Average | 95% Confidence IntervalLower BoundUpper Bound |        |  |  |
|----------|---------|-----------------------------------------------|--------|--|--|
| Approach | Average |                                               |        |  |  |
| LCEA     | 28.241  | 26.302                                        | 30.180 |  |  |
| NWA      | 27.824  | 25.885                                        | 29.763 |  |  |
| QTD-LCEA | 6.907   | 4.969                                         | 8.846  |  |  |
| QTD-NWA  | 9.009   | 7.070                                         | 10.948 |  |  |

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -21.33*         | 1.395      | .000 |
| QTD-LCEA | NWA     | -20.92*         | 1.395      | .000 |
|          | QTD-NWA | -2.10           | 1.395      | .133 |

Table 5.50 The comparison of the approaches for early jobs

Tables 5.51 - 5.52 show the mean performance measurements of the space allocation approaches and the dispatching rules. Both experiments indicate that the QTDSA is better than the other algorithms for total penalties, total earliness and number of early jobs. The performances of the QTDSA and the other algorithms are about the same for the other performance measurements. There is no significant difference between the dispatching rules for all performance indicators except the space utilization. LPT and LSR are better than the other dispatching rules for the space utilization.

| Performance       | Approach |          |           |           |  |  |  |
|-------------------|----------|----------|-----------|-----------|--|--|--|
| Indicator         | LCEA     | NWA      | QTD-LCEA  | QTD-NWA   |  |  |  |
| Total Penalties   | 1671.185 | 1688.620 | 1272.056* | 1298.417* |  |  |  |
| Makespan          | 151.056  | 152.500  | 151.269   | 150.750   |  |  |  |
| Space Utilization | 45.216   | 44.426   | 43.877    | 43.553    |  |  |  |
| Total Tardiness   | 1077.630 | 1107.407 | 1162.935  | 1185.574  |  |  |  |
| Total Earliness   | 593.556  | 581.213  | 109.120*  | 112.843*  |  |  |  |
| Tardy Jobs        | 21.019   | 21.481   | 20.824    | 21.120    |  |  |  |
| Early Jobs        | 28.241   | 27.824   | 6.907*    | 9.009*    |  |  |  |

Table 5.51 Performances of the approaches for each performance indicator

(Note: \* represent the approach is significant better than the others for each performance indicator.)

| Performance       | Dispatching Rule |          |          |          |          |          |  |
|-------------------|------------------|----------|----------|----------|----------|----------|--|
| Indicator         | EDD              | FCFS     | LPT      | LSR      | SPT      | SSR      |  |
| Total Penalties   | 1343.917         | 1474.417 | 1558.611 | 1451.139 | 1381.264 | 1686.069 |  |
| Makespan          | 146.861          | 149.528  | 140.069  | 139.167  | 156.097  | 176.639  |  |
| Space Utilization | 44.998           | 44.459   | 48.020*  | 48.099*  | 41.846   | 38.187   |  |
| Total Tardiness   | 1001.667         | 1139.236 | 1217.389 | 1089.792 | 1019.167 | 1333.069 |  |
| Total Earliness   | 342.250          | 335.181  | 341.222  | 361.347  | 362.097  | 353.000  |  |
| Tardy Jobs        | 23.278           | 20.333   | 23.139   | 21.375   | 18.514   | 20.028   |  |
| Early Jobs        | 17.250           | 18.014   | 17.458   | 19.403   | 18.306   | 17.542   |  |

Table 5.52 Performances of the dispatching rules for each performance indicator

(Note: \* represent the rule is significant better than the others for each performance indicator.)

### 5.3 Summary

Based on our experimental results, some suggestions are proposed to help manufacturers make decision for each performance measurement. Tables 5.53 - 5.59 show suggested combination of space allocation approaches and dispatching rules for each performance indicator. Table 5.60 shows suggested space allocation approaches and suggested dispatching rules for each performance indicator. Under different condition, different schemes can be used to optimize different performance measurements.

| Performance Indicator | Dispatching Rule | Suggested Approaches |
|-----------------------|------------------|----------------------|
|                       | SPT              | QTD-LCEA , QTD-NWA   |
|                       | LPT              | QTD-LCEA             |
| Total Papaltias       | FCFS             | QTD-LCEA             |
| Total Tenances        | EDD              | QTD-LCEA , QTD-NWA   |
|                       | SSR              | QTD-LCEA             |
|                       | LSR              | QTD-LCEA, QTD-NWA    |

Table 5.53 Suggested combination of approaches and rules for total penalties

| Table 5.54 Suggested | combination | of appro | aches and  | rules fo | r makespan |
|----------------------|-------------|----------|------------|----------|------------|
| Tuble 5.54 Buggebleu | comonation  | or uppro | acties and | 1010510  | makespun   |

| Performance Indicator | Dispatching Rule | Suggested Approaches |
|-----------------------|------------------|----------------------|
|                       | SPT              | All approaches       |
|                       | LPT              | QTD-LCEA             |
| Makaanan              | FCFS             | LCEA, NWA , QTD-LCEA |
| makespan              | EDD              | All approaches       |
|                       | SSR              | LCEA                 |
|                       | LSR              | All approaches       |

| Performance Indicator | Dispatching Rule | Suggested Approaches |  |
|-----------------------|------------------|----------------------|--|
|                       | SPT              | LCEA, NWA            |  |
| Space Utilization     | LPT              | LCEA, QTD-LCEA       |  |
|                       | FCFS             | LCEA, NWA, QTD-LCEA  |  |
|                       | EDD              | All approaches       |  |
|                       | SSR              | LCEA                 |  |
|                       | LSR              | All approaches       |  |

Table 5.55 Suggested combination of approaches and rules for space utilization

Table 5.56 Suggested combination of approaches and rules for total tardiness

| Performance Indicator | Dispatching Rule | Suggested Approaches |  |
|-----------------------|------------------|----------------------|--|
|                       | SPT              | LCEA, NWA            |  |
|                       | LPT              | QTD-LCEA             |  |
| Total Tardinasa       | FCFS             | LCEA, NWA, QTD-LCEA  |  |
| Total Talumess        | EDD              | All approaches       |  |
|                       | SSR              | LCEA                 |  |
|                       | LSR              | LCEA                 |  |

| Table 5.57 Suggestee | l combination | of approaches | and rules | for total | earliness |
|----------------------|---------------|---------------|-----------|-----------|-----------|
|                      |               | 1 1           |           |           |           |

| Performance Indicator | Dispatching Rule | Suggested Approaches |
|-----------------------|------------------|----------------------|
|                       | SPT              | QTD-LCEA, QTD- NWA   |
| Total Earliness       | LPT              | QTD-LCEA, QTD- NWA   |
|                       | FCFS             | QTD-LCEA, QTD- NWA   |
|                       | EDD              | QTD-LCEA, QTD- NWA   |
|                       | SSR              | QTD-LCEA, QTD- NWA   |
|                       | LSR              | QTD-LCEA, QTD- NWA   |

| Performance Indicator | Dispatching Rule | Suggested Approaches     |
|-----------------------|------------------|--------------------------|
|                       | SPT              | LCEA, QTD-LCEA, QTD- NWA |
| Tardy Jobs            | LPT              | QTD-LCEA, QTD- NWA       |
|                       | FCFS             | QTD-LCEA, QTD- NWA       |
|                       | EDD              | LCEA, NWA                |
|                       | SSR              | QTD-LCEA                 |
|                       | LSR              | QTD-LCEA, QTD- NWA       |

Table 5.58 Suggested combination of approaches and rules for tardy jobs

Table 5.59 Suggested combination of approaches and rules for early jobs

| Performance Indicator | Dispatching Rule | Suggested Approaches |
|-----------------------|------------------|----------------------|
|                       | SPT              | QTD-LCEA, QTD- NWA   |
|                       | LPT              | QTD-LCEA, QTD- NWA   |
| Early, Jaho           | FCFS             | QTD-LCEA, QTD- NWA   |
| Larry Jobs            | EDD              | QTD-LCEA, QTD- NWA   |
|                       | SSR              | QTD-LCEA, QTD- NWA   |
|                       | LSR              | QTD-LCEA, QTD- NWA   |

| Table 5.60 Sug | gested schemes | s for different | performance | measurements |
|----------------|----------------|-----------------|-------------|--------------|
|                | 0              |                 |             |              |

| Performance Indicator | Suggested Approaches | Suggested Rules |
|-----------------------|----------------------|-----------------|
| Total penalties       | QTD-LCEA and QTD-NWA | All rules       |
| Makespan              | All approaches       | All rules       |
| Space utilization     | All approaches       | LPT and LSR     |
| Total Tardiness       | All approaches       | All rules       |
| Total earliness       | QTD-LCEA and QTD-NWA | All rules       |
| Tardy jobs            | QTD-LCEA and QTD-NWA | All rules       |
| Early jobs            | All approaches       | All rules       |

## **Chapter 6 Conclusion and Suggestion**

#### 6.1 Conclusion

A space scheduling problem is a critical issue of work efficiency for equipment manufacturers. In this research, a new algorithm, Quasi-Three-Dimensional Space Allocation Algorithm (QTDSA), was developed to solve this problem. In the experiments, it was proved that QTDSA is more effective than the other space allocation algorithms previously developed to reduce the total penalties. The QTDSA also had better performances than the other algorithms for some other performance indicators (number of early jobs and total earliness). In addition, the performance of the QTDSA and the other algorithms were about the same for the other performance indicators (makespan, number of tardy jobs, total tardiness and space utilization).

The Quasi-three-dimensional space allocation algorithm has a completely new concept for a space scheduling problem. Although the QTDSA did not have an outstanding performance for all performance indicators, it did successfully reduce the total penalties.

This research focused on developing a space allocation approach. It provides a new direction to develop space allocation approaches. It also provides a new scheduling system for similar industries. Because it can generate different scheduling plans quickly, it will bring a company great benefits in terms of efficiency and cost saving.

### 6.2 Suggestions

In this study, the QTDSA was developed to reduce total penalties for a space scheduling problem. Several additional directions for further research are suggested as follows.

First, although the QTDSA is related to a quasi-three-dimensional space, it is still based on the two-dimensional space allocation approaches. The approaches of a quasi-three-dimensional coordinate system can replace two-dimensional space allocation approaches completely in the future research.

Second, there was no significant difference between the dispatching rules for almost all performance indicators according to the experimental results. It represent that if a new dispatching rules is developed to operate in coordination with the QTDSA for a space scheduling problem, the new scheduling rule may result better for each performance indicator.

Third, there are some assumptions in this study, namely, all of the orders are rectangles, there is no constraint for all resources except the space of a shop floor, there is no constraint on job's height, the buffer or storage is available to fit in any number or any shape of jobs, the unit earliness penalty is equal and the unit tardiness penalty is equal for all jobs. The different conclusions may be obtained if some assumptions are relaxed.

In summary, this study focused on a scheduling scheme to reduce total penalties for a space scheduling problem. The future research should refine the methodology and investigate the related topics for this problem.

### References

- [1] Ahmed, M. U., and P. S. Sundararaghavan. (1990). Minimizing the weighted sum of late and early completion penalties in a single machine. *IIE Transactions*, 22(3), 288-290.
- [2] Axelrod, C. W. (1976). The effective use of computer resources. Omega, 4(3), 321-330.
- [3] Balakrishnan, J., C. H. Cheng, D. G. Conway and C. M. Lau. (2003). A hybrid genetic algorithm for the dynamic plant layout problem. *International Journal of Production Economics*, 86(2), 107-120.
- [4] Barbosa-Povoa, A. P., R. Mateus and A. Q. Novais (2001). Optimal 2D Layout Design of Industrial Facilities. *International Journal of Production Research*, 39(12), 2567-2593.
- [5] Barbosa-Povoa, A. P., R. Mateus and A. Q. Novais. (2002). Optimal 3D layout of industrial facilities. *International Journal of Production Research*, 40(7), 1669-1698.
- [6] Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. *Journal* of Operational Research Society, 41(11), 1069-1072.
- [7] Beasley, J. E. (2008). OR-Library. from http://people.brunel.ac.uk/~mastjjb/jeb/info.htm
- [8] Bischoff, E. E. (2006). Three-dimensional packing of items with limited load bearing strength. *European Journal of Operational Research*, 168(3), 952-966.
- [9] Bortfeldt, A., H. Gehring and D. Mack. (2003). A parallel tabu search algorithm for solving the container loading problem. *Parallel Computing*, 29(5), 641-662.
- [10] Chretienne, P., E. G. Coffman, J. K. Lenstra and Z. Liu. (1995). Scheduling theory and its application: John Wiley and Sons press.
- [11] Dantzig, G. B. (1957). Discrete-variable extremum problems. *Operations Research*, 5(2), 266-277.
- [12] Dunker, T., G. Radons and E. Westkamper. (2005). Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem. *European Journal of Operational Research*, 165(1), 55-69.
- [13] Eley, M. (2002). Solving container loading problems by block arragement. European Journal of Operational Research, 141(2), 393-409.
- [14] Erel, E., J. B. Ghosh and J. T. Simon. (2003). New heuristic for the dynamic layout

problem. Journal of the Operational Research Society, 54(12), 1275-1282.

- [15] Gehring, H., and A. Bortfeldt. (1997). A genetic algorithm for solving the container loading problem. *International Transactions in Operational Research*, 4, 401-418.
- [16] Gilmore, P. C., and R. E. Gomory. (1965). Multistage cutting stock problems of two and more dimensions. *Operations Research*, 13, 94-120.
- [17] Hardin, J. R., G. L. Nemhauser and M. W. P. Savelsberghb. (2008). Strong valid inequalities for the resource-constrained scheduling problem with uniform resource requirements. *Discrete Optimization*, 5(1), 19-35.
- [18] Haynes, R. D., C. A. Komar and J. J. Byrd. (1973). Effectiveness of three heuristic rules for job sequencing in a single production facility. *Management Science*, 19(5), 575-580.
- [19] Holthaus, O., C. Rajendran (1997). Efficient dispatching rules for scheduling in a job shop. *International Journal of Production Economics*, 48(1), 87-105.
- [20] Ikonen, I. T., W. E. Biles, A. Kumar, R. K. Ragade and J. C. Wissel. (1997). A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes.
  Paper presented at the Proceedings of the 7th International Conference on Genetic Algorithms, Michigan State University, East Lansing, MI., United States of America.
- [21] Johnson, D. S. (1973). Approximation algorithms for combinatorial problems. Proceedings of the fifth annual ACM symposium on theory of computing-Austin-Texas-United States of America, 38-49.
- [22] Johnson, D. S. (1974). Fast algorithms for bin packing. *Journal of Computer Systems Science*, 8, 272-314.
- [23] Kovacs, A., and J. C. Beck. (2008). A global constraint for total weighted completion time for cumulative resources. *Engineering Applications of Artifical Intelligence*, 21(5), 691-697.
- [24] Lauff, V., and F. Werner. (2004). On the complexity and some properties of multi-stage scheduling problems with earliness and tardiness penalties *Computers & Operations Research*, 31(3), 317-345.
- [25] Lee, Y., and N. Y. Hsu. (2007). An optimization model for the container pre-marshalling problem. *Computers and Operations Research*, 34(11), 3295-3313.
- [26] Lewis, J. E., R. K. Ragade, A. Kumar and W. E. Biles. (2005). A distributed

chromosome genetic algorithm for bin-packing. *Robotics and Computer-Integrated Manufacturing*, 21(4-5), 486-495.

- [27] Liaw, C. F. (1999). A branch-and-bound algorithm for the single machine earliness and tardiness scheduling problem. *Computers & Operations Research*, 26(7), 679-693.
- [28] Martello, S., and P. Toth. (1990). *Knapsack problems: Algorithms and computer implementations*: John Wiley and Sons press.
- [29] Mckendall, A. R., and J. Shang. (2006). Hybrid ant systems for the dynamic facility layout problem. *Computers and Operations Research*, 33(3), 790-803.
- [30] Mizrak, P., and G. M. Bayhan. (2006). Comparative study of dispatching rules in a real-life job shop environment. *Applied Artificial Intelligence*, *20*, 585-607.
- [31] Pathumnakul, S., and P. J. Egbelu. (2006). An algorithm for minimizing weighted earliness penalty in assembly job shops. *International Journal of Production Economics*, 103(1), 230-245.
- [32] Perng, C., Y. Lai, Z. Y. Zhuang and Z. P. Ho. (2007). Job scheduling in machinery industry with space constrain. Paper presented at the System Analysis Section, The Fourth Conference on Operations Research of Taiwan.
- [33] Perng, C., Y. Lai and Z. P. Ho. (2008). Jobs scheduling in an assembly factory with space obstacles. Paper presented at the The 18th International Conference on Flexible Automation and Intelligent Manufacturing.
- [34] Perng, C., S. S. Lin and Z. P. Ho. (2008). On space resource constrained job scheduling problems- A container loading heuristic approach. Paper presented at the The 4th International Conference on Natural Computation.
- [35] Perng, C., Y. Lai, C. L. Ouyang and Z. P. Ho. (2008). Application of new approaches to space scheduling problems with early and tardy penalty. Paper presented at the The Chinese Institute of Industrial Engineers Conference.
- [36] Perng, C., Y. Lai and Z. P. Ho. (2009). A space allocation algorithm for minimal early and tardy costs in space scheduling. Paper presented at the 3rd International Conference on New Trends in Information and Service Science papers (NISS).
- [37] Pinedo, M. (2002). Scheduling theory, algorithms and systems (second ed.). New Jersey: Prentice Hall press.

- [38] Puchinger, J., and G. R. Raidl. (2007). Models and algorithms for three-stage two-dimensional bin packing. *European Journal of Operational Research*, 183(3), 1304-1327.
- [39] Pugazhendhi, S., S. Thiagarajan, C. Rajendran and N. Anantharaman. (2004). Relative performance evaluation of permutation and non-permutation schedules in flowline-based manufacturing systems with flowtime objective. *International Journal of Advance Manufacturing Technology*, 23, 820-830.
- [40] Schaller, J. E., and J. N. D. Gupta. (2008). Single machine scheduling with family setups to minimize total earliness and tardiness. *European Journal of Operational Research*, 187(3), 1050-1068.
- [41] Sciomachen, A., and E. Tanfani. (2007). A 3D-BPP approach for optimising stowage plans and terminal productivity. *European Journal of Operational Research*, 183(3), 1433-1446.
- [42] Sleator, D. (1980). A 2.5 time optimal algorithm for packing in two dimensions. *Information Processing Letters*, 10(1), 37-40.
- [43] Su, L. H. (2009). Minimizing earliness and tardiness subject to total completion time in an identical parallel machine system. *Computers & Operations Research*, 36(2), 461-471.
- [44] Taillard, E. (1993). Benchmarks for basic scheduling problems. *European Journal of Operations Research*, 64, 278-285.
- [45] Thiagarajan, S., and C. Rajendran. (2005). Scheduling in dynamic assembly job-shops to minimize the sum of weighted earliness, weighted tardiness and weighted flowtime of jobs. *Computers & Industrial Engineering*, 49(4), 463-503.
- [46] Tsai, R. D., E. M. Malstrom and W. Kuo. (1993). Three dimensional palletization of mixed box sizes. *IIE Transactions*, 25, 64-75.
- [47] Wan, G., and B. P. C. Yen. (2002). Tabu search for single machine scheduling with distinct due windows and weighted earliness and tardiness penalties. *European Journal* of Operational Research, 142(2), 271-281

# Appendix

# A. The Other Analyses of the First Experiment

### A.1 The Analysis for Makespan

| Idel     | fuoto in i fin (o vir ander the bi i fuite for manospan |     |          |                  |          |              |  |
|----------|---------------------------------------------------------|-----|----------|------------------|----------|--------------|--|
|          | ANOVA                                                   |     |          |                  |          |              |  |
| Source   | SS                                                      | df  | MS       | F                | p value  | f (critical) |  |
| Block    | 858938.6                                                | 26  | 33036.1  | <i>f</i> =116.02 | 5.37E-52 | 1.638019     |  |
| Approach | 985.4074                                                | 3   | 328.4691 | $f_1 = 1.153556$ | 0.332944 | 2.721783     |  |
| Error    | 22210.09                                                | 78  | 284.7448 |                  |          |              |  |
| Total    | 882134.1                                                | 107 |          |                  |          |              |  |

Table A-1 ANOVA under the SPT rule for makespan

Table A-2 The 95% CI under the SPT rule for makespan

| Approach | Δverage | 95% Confide | ence Interval |
|----------|---------|-------------|---------------|
| Approach | Average | Lower Bound | Upper Bound   |
| LCEA     | 143.741 | 137.276     | 150.206       |
| NWA      | 145.370 | 138.905     | 151.836       |
| QTD-LCEA | 149.111 | 142.646     | 155.576       |
| QTD-NWA  | 151.407 | 144.942     | 157.873       |

Table A-3 ANOVA under the LPT rule for makespan

| ANOVA    |          |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 840169   | 26  | 32314.19 | <i>f</i> =191.9292 | 2.66E-60 | 1.638019     |
| Approach | 3565.519 | 3   | 1188.506 | $f_1 = 7.059099$   | 0.000293 | 2.721783     |
| Error    | 13132.48 | 78  | 168.3651 |                    |          |              |
| Total    | 856867   | 107 |          |                    |          |              |

| Approach | Average | 95% Confide | ence Interval |
|----------|---------|-------------|---------------|
| Арргоасн | Average | Lower Bound | Upper Bound   |
| LCEA     | 131.926 | 126.954     | 136.897       |
| NWA      | 139.667 | 134.695     | 144.638       |
| QTD-LCEA | 123.444 | 118.473     | 128.416       |
| QTD-NWA  | 130.963 | 125.992     | 135.934       |

Table A-4 The 95% CI under the LPT rule for makespan

Table A-5 The comparison under the LPT rule for makespan

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -8.48*          | 3.532      | .019 |
| QTD-LCEA | NWA     | -16.22*         | 3.532      | .000 |
|          | QTD-NWA | -7.52*          | 3.532      | .036 |

|          | ANOVA    |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 822074.7 | 26  | 31618.26 | <i>f</i> =203.1164 | 3.04E-61 | 1.638019     |
| Approach | 1420.074 | 3   | 473.358  | $f_1 = 3.040862$   | 0.033834 | 2.721783     |
| Error    | 12141.93 | 78  | 155.6657 |                    |          |              |
| Total    | 835636.7 | 107 |          |                    |          |              |

Table A-6 ANOVA under the FCFS rule for makespan

Table A-7 The 95% CI under the FCFS rule for makespan

| Approach | Average | 95% Confide | ence Interval |
|----------|---------|-------------|---------------|
| прроден  | Average | Lower Bound | Upper Bound   |
| LCEA     | 138.185 | 133.405     | 142.965       |
| NWA      | 138.778 | 133.998     | 143.558       |
| QTD-LCEA | 135.037 | 130.257     | 139.817       |
| QTD-NWA  | 145.037 | 140.257     | 149.817       |

| App      | oroach  | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | -3.15           | 3.396      | .357 |
| QTD-LCEA | NWA     | -3.74           | 3.396      | .274 |
|          | QTD-NWA | -10.00*         | 3.396      | .004 |

Table A-8 The comparison under the FCFS rule for makespan

Table A-9 ANOVA under the EDD rule for makespan

| ANOVA    |          |     |          |                    |          |              |  |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |  |
| Block    | 838389.1 | 26  | 32245.73 | <i>f</i> =139.2464 | 5.39E-55 | 1.638019     |  |  |
| Approach | 1486.546 | 3   | 495.5154 | $f_1 = 2.13978$    | 0.101922 | 2.721783     |  |  |
| Error    | 18062.7  | 78  | 231.5731 |                    |          |              |  |  |
| Total    | 857938.3 | 107 |          |                    |          |              |  |  |

Table A-10 The 95% CI under the EDD rule for makespan

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Tretage | Lower Bound             | Upper Bound |  |  |
| LCEA     | 139.667 | 133.836                 | 145.497     |  |  |
| NWA      | 143.370 | 137.540                 | 149.201     |  |  |
| QTD-LCEA | 133.185 | 127.355                 | 139.016     |  |  |
| QTD-NWA  | 137.148 | 131.318                 | 142.979     |  |  |

Table A-11 ANOVA under the SSR rule for makespan

Г

| ANOVA    |          |     |          |                          |          |              |
|----------|----------|-----|----------|--------------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                        | p value  | f (critical) |
| Block    | 1268392  | 26  | 48784.32 | <i>f</i> =698.0316       | 6.35E-82 | 1.638019     |
| Approach | 13131.95 | 3   | 4377.318 | f <sub>1</sub> =62.63296 | 1.02E-20 | 2.721783     |
| Error    | 5451.296 | 78  | 69.88841 |                          |          |              |
| Total    | 1286976  | 107 |          |                          |          |              |

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 152.444 | 149.241                 | 155.647     |  |  |
| NWA      | 159.444 | 156.241                 | 162.647     |  |  |
| QTD-LCEA | 168.963 | 165.760                 | 172.166     |  |  |
| QTD-NWA  | 181.852 | 178.649                 | 185.055     |  |  |

Table A-12 The 95% CI under the SSR rule for makespan

Table A-13 The comparison under the SSR rule for makespan

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
|          | NWA      | -7.00*          | 2.275      | .003 |
| LCEA     | QTD-LCEA | -16.52*         | 2.275      | .000 |
|          | QTD-NWA  | -29.41*         | 2.275      | .000 |

|          | ANOVA    |     |          |                   |          |              |  |
|----------|----------|-----|----------|-------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                 | p value  | f (critical) |  |
| Block    | 706973.2 | 26  | 27191.28 | <i>f</i> =67.6585 | 2.96E-43 | 1.638019     |  |
| Approach | 1356.074 | 3   | 452.0247 | $f_1 = 1.124747$  | 0.344277 | 2.721783     |  |
| Error    | 31347.43 | 78  | 401.8901 |                   |          |              |  |
| Total    | 739676.7 | 107 |          |                   |          |              |  |

Table A-14 ANOVA under the LSR rule for makespan

Table A-15 The 95% CI under the LSR rule for makespan

| Approach | Average | 95% Confidence Interval |             |  |  |  |
|----------|---------|-------------------------|-------------|--|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |  |
| LCEA     | 129.074 | 121.393                 | 136.755     |  |  |  |
| NWA      | 136.815 | 129.134                 | 144.496     |  |  |  |
| QTD-LCEA | 129.185 | 121.504                 | 136.866     |  |  |  |
| QTD-NWA  | 127.889 | 120.208                 | 135.570     |  |  |  |

### A.2 The Analysis for Space Utilization

|          | ANOVA    |     |          |                                |          |              |  |
|----------|----------|-----|----------|--------------------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                              | p value  | f (critical) |  |
| Block    | 3819.997 | 26  | 146.923  | <i>f</i> =4.979878             | 1.81E-08 | 1.638019     |  |
| Approach | 646.8743 | 3   | 215.6248 | <i>f</i> <sub>1</sub> =7.30849 | 0.000221 | 2.721783     |  |
| Error    | 2301.259 | 78  | 29.50332 |                                |          |              |  |
| Total    | 6768.13  | 107 |          |                                |          |              |  |

Table A-16 ANOVA under the SPT rule for space utilization

Table A-17 The 95% CI under the SPT rule for space utilization

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 48.414  | 46.333                  | 50.495      |  |  |
| NWA      | 46.728  | 44.647                  | 48.809      |  |  |
| QTD-LCEA | 43.181  | 41.100                  | 45.262      |  |  |
| QTD-NWA  | 42.514  | 40.433                  | 44.595      |  |  |

Table A-18 The comparison under the SPT rule for space utilization

| Approach |          | Mean Difference      | Std. Error | Sig. |
|----------|----------|----------------------|------------|------|
|          | NWA      | 1.68552              | 1.478320   | .258 |
| LCEA     | QTD-LCEA | 5.23311*             | 1.478320   | .001 |
|          | QTD-NWA  | 5.90022 <sup>*</sup> | 1.478320   | .000 |

Table A-19 ANOVA under the LPT rule for space utilization

| ANOVA |          |          |     |          |                    |          |              |
|-------|----------|----------|-----|----------|--------------------|----------|--------------|
|       | Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
|       | Block    | 4093.413 | 26  | 157.439  | <i>f</i> =7.829751 | 6.61E-13 | 1.638019     |
|       | Approach | 271.5259 | 3   | 90.50864 | $f_1$ =4.501174    | 0.005765 | 2.721783     |
|       | Error    | 1568.407 | 78  | 20.10779 |                    |          |              |
|       | Total    | 5933.347 | 107 |          |                    |          |              |

| Approach | Average | 95% Confide | ence Interval |
|----------|---------|-------------|---------------|
| Арргоасн | Average | Lower Bound | Upper Bound   |
| LCEA     | 52.692  | 50.974      | 54.410        |
| NWA      | 49.821  | 48.103      | 51.540        |
| QTD-LCEA | 53.826  | 52.108      | 55.544        |
| QTD-NWA  | 50.682  | 48.964      | 52.400        |

Table A-20 The 95% CI under the LPT rule for space utilization

Table A-21 The comparison under the LPT rule for space utilization

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
|          | LCEA    | 1.13389         | 1.220437   | .356 |
| QTD-LCEA | NWA     | $4.00444^{*}$   | 1.220437   | .002 |
|          | QTD-NWA | 3.14389*        | 1.220437   | .012 |

Table A-22 ANOVA under the FCFS rule for space utilization

|          | ANOVA    |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 4986.423 | 26  | 191.7855 | <i>f</i> =9.996236 | 1.1E-15  | 1.638019     |
| Approach | 398.6157 | 3   | 132.8719 | $f_1$ =6.925544    | 0.000341 | 2.721783     |
| Error    | 1496.49  | 78  | 19.18577 |                    |          |              |
| Total    | 6881.529 | 107 |          |                    |          |              |

Table A-23 The 95% CI under the FCFS rule for space utilization

| Approach | Average | 95% Confide | ence Interval |
|----------|---------|-------------|---------------|
| Approach | Average | Lower Bound | Upper Bound   |
| LCEA     | 50.151  | 48.473      | 51.829        |
| NWA      | 48.843  | 47.164      | 50.521        |
| QTD-LCEA | 48.105  | 46.427      | 49.784        |
| QTD-NWA  | 44.932  | 43.253      | 46.610        |

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
|          | NWA      | 1.30859         | 1.192128   | .276 |
| LCEA     | QTD-LCEA | 2.04585         | 1.192128   | .090 |
|          | QTD-NWA  | 5.21959*        | 1.192128   | .000 |

Table A-24 The comparison under the FCFS rule for space utilization

Table A-25 ANOVA under the EDD rule for space utilization

|          | ANOVA    |     |          |                          |          |              |
|----------|----------|-----|----------|--------------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                        | p value  | f (critical) |
| Block    | 4484.821 | 26  | 172.4931 | <i>f</i> =6.610624       | 3.92E-11 | 1.638019     |
| Approach | 75.8835  | 3   | 25.2945  | f <sub>1</sub> =0.969386 | 0.411558 | 2.721783     |
| Error    | 2035.279 | 78  | 26.09332 |                          |          |              |
| Total    | 6595.983 | 107 |          |                          |          |              |

Table A-26 The 95% CI under the EDD rule for space utilization

| Approach | $\Delta$ verage | 95% Confide | ence Interval |
|----------|-----------------|-------------|---------------|
| Арргоаст | Average         | Lower Bound | Upper Bound   |
| LCEA     | 49.451          | 47.494      | 51.408        |
| NWA      | 47.528          | 45.571      | 49.485        |
| QTD-LCEA | 49.394          | 47.437      | 51.351        |
| QTD-NWA  | 48.047          | 46.090      | 50.004        |

Table A-27 ANOVA under the SSR rule for space utilization

|          | ANOVA    |     |          |                                |          |              |
|----------|----------|-----|----------|--------------------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                              | p value  | f (critical) |
| Block    | 1851.505 | 26  | 71.21173 | <i>f</i> =6.452369             | 6.86E-11 | 1.638019     |
| Approach | 1382.166 | 3   | 460.7219 | <i>f</i> <sub>1</sub> =41.7452 | 3.39E-16 | 2.721783     |
| Error    | 860.8489 | 78  | 11.03652 |                                |          |              |
| Total    | 4094.52  | 107 |          |                                |          |              |

| Approach | Average | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
| Approach | Average | Lower Bound             | Upper Bound |  |
| LCEA     | 45.972  | 44.699                  | 47.245      |  |
| NWA      | 43.308  | 42.035                  | 44.581      |  |
| QTD-LCEA | 39.810  | 38.537                  | 41.083      |  |
| QTD-NWA  | 36.489  | 35.216                  | 37.762      |  |

Table A-28 The 95% CI under the SSR rule for space utilization

Table A- 29 The comparison under the SSR rule for space utilization

| App  | oroach  | Mean Difference      | Std. Error | Sig. |
|------|---------|----------------------|------------|------|
|      | NWA     | 2.66411 <sup>*</sup> | .904168    | .004 |
| LCEA | QTDLCEA | 6.16189 <sup>*</sup> | .904168    | .000 |
|      | QTDNWA  | 9.48326 <sup>*</sup> | .904168    | .000 |

Table A-30 ANOVA under the LSR rule for space utilization

|          | ANOVA    |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 5073.747 | 26  | 195.1441 | <i>f</i> =4.070444 | 8.08E-07 | 1.638019     |  |
| Approach | 179.9542 | 3   | 59.98472 | $f_1 = 1.251201$   | 0.29702  | 2.721783     |  |
| Error    | 3739.454 | 78  | 47.94172 |                    |          |              |  |
| Total    | 8993.155 | 107 |          |                    |          |              |  |

Table A- 31 The 95% CI under the LSR rule for space utilization

| Approach | Average | 95% Confide | ence Interval |
|----------|---------|-------------|---------------|
| Approach | Average | Lower Bound | Upper Bound   |
| LCEA     | 53.400  | 50.747      | 56.053        |
| NWA      | 50.528  | 47.875      | 53.181        |
| QTD-LCEA | 50.125  | 47.472      | 52.778        |
| QTD-NWA  | 50.732  | 48.080      | 53.385        |

### A.3 The Analysis for Total Tardiness

|          | ANOVA    |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 1.46E+08 | 26  | 5619593  | <i>f</i> =175.6358 | 7.86E-59 | 1.638019     |  |
| Approach | 1296489  | 3   | 432162.9 | $f_1 = 13.5069$    | 3.49E-07 | 2.721783     |  |
| Error    | 2495666  | 78  | 31995.71 |                    |          |              |  |
| Total    | 1.5E+08  | 107 |          |                    |          |              |  |

Table A-32 ANOVA under the SPT rule for total tardiness

Table A-33 The 95% CI under the SPT rule for total tardiness

| Approach | Average  | 95% Confidence Interval |             |  |  |
|----------|----------|-------------------------|-------------|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |
| LCEA     | 898.222  | 829.689                 | 966.756     |  |  |
| NWA      | 943.556  | 875.022                 | 1012.089    |  |  |
| QTD-LCEA | 1112.185 | 1043.652                | 1180.719    |  |  |
| QTD-NWA  | 1158.222 | 1089.689                | 1226.756    |  |  |

Table A-34 The comparison under the SPT rule for total tardiness

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
|          | NWA      | -45.33          | 48.683     | .355 |
| LCEA     | QTD-LCEA | -213.96*        | 48.683     | .000 |
|          | QTD-NWA  | -260.00*        | 48.683     | .000 |

Table A-35 ANOVA under the LPT rule for total tardiness

| ANOVA    |          |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 3.17E+08 | 26  | 12190435 | <i>f</i> =558.8968 | 3.5E-78  | 1.638019     |
| Approach | 417157.4 | 3   | 139052.5 | $f_1$ =6.375161    | 0.000639 | 2.721783     |
| Error    | 1701305  | 78  | 21811.6  |                    |          |              |
| Total    | 3.19E+08 | 107 |          |                    |          |              |

| Approach | Average  | 95% Confidence Interval |             |  |  |
|----------|----------|-------------------------|-------------|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |
| LCEA     | 1296.630 | 1240.045                | 1353.214    |  |  |
| NWA      | 1380.259 | 1323.674                | 1436.844    |  |  |
| QTD-LCEA | 1205.963 | 1149.378                | 1262.548    |  |  |
| QTD-NWA  | 1312.630 | 1256.045                | 1369.214    |  |  |

Table A-36 The 95% CI under the LPT rule for total tardiness

Table A-37 The comparison under the LPT rule for total tardiness

| Approach |         | Mean Difference      | Std. Error | Sig. |
|----------|---------|----------------------|------------|------|
|          | LCEA    | -90.67*              | 40.195     | .027 |
| QTD-LCEA | NWA     | -174.30 <sup>*</sup> | 40.195     | .000 |
|          | QTD-NWA | -106.67 <sup>*</sup> | 40.195     | .010 |

Table A-38 ANOVA under the FCFS rule for total tardiness

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 2.29E+08 | 26  | 8821877  | <i>f</i> =317.1536 | 1.13E-68 | 1.638019     |  |
| Approach | 399183.6 | 3   | 133061.2 | $f_1$ =4.783657    | 0.004114 | 2.721783     |  |
| Error    | 2169632  | 78  | 27815.79 |                    |          |              |  |
| Total    | 2.32E+08 | 107 |          |                    |          |              |  |

Table A-39 The 95% CI under the FCFS rule for total tardiness

| Approach | Average  | 95% Confidence Interval |             |  |  |
|----------|----------|-------------------------|-------------|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |
| LCEA     | 1106.148 | 1042.248                | 1170.048    |  |  |
| NWA      | 1126.593 | 1062.692                | 1190.493    |  |  |
| QTD-LCEA | 1137.593 | 1073.692                | 1201.493    |  |  |
| QTD-NWA  | 1261.407 | 1197.507                | 1325.308    |  |  |

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
|          | NWA      | -20.44          | 45.392     | .654 |
| LCEA     | QTD-LCEA | -31.44          | 45.392     | .491 |
|          | QTD-NWA  | -155.26*        | 45.392     | .001 |

Table A-40 The comparison under the FCFS rule for total tardiness

Table A-41 ANOVA under the EDD rule for total tardiness

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 2.06E+08 | 26  | 7915677  | <i>f</i> =278.2763 | 1.73E-66 | 1.638019     |  |
| Approach | 98126.74 | 3   | 32708.91 | $f_1 = 1.149885$   | 0.33437  | 2.721783     |  |
| Error    | 2218740  | 78  | 28445.39 |                    |          |              |  |
| Total    | 2.08E+08 | 107 |          |                    |          |              |  |

Table A-42 The 95% CI under the EDD rule for total tardiness

| Approach | $\Delta$ verage | 95% Confidence Interval |             |  |  |
|----------|-----------------|-------------------------|-------------|--|--|
| прроден  | Average         | Lower Bound             | Upper Bound |  |  |
| LCEA     | 1048.630        | 984.010                 | 1113.249    |  |  |
| NWA      | 1096.963        | 1032.344                | 1161.582    |  |  |
| QTD-LCEA | 1016.815        | 952.196                 | 1081.434    |  |  |
| QTD-NWA  | 1076.556        | 1011.936                | 1141.175    |  |  |

Table A-43 ANOVA under the SSR rule for total tardiness

|          | ANOVA    |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 3.65E+08 | 26  | 14020282 | <i>f</i> =588.2502 | 4.83E-79 | 1.638019     |  |
| Approach | 1854012  | 3   | 618004.1 | $f_1 = 25.92965$   | 9.76E-12 | 2.721783     |  |
| Error    | 1859042  | 78  | 23833.87 |                    |          |              |  |
| Total    | 3.68E+08 | 107 |          |                    |          |              |  |

| Approach | Average  | 95% Confidence Interval |             |  |  |
|----------|----------|-------------------------|-------------|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |
| LCEA     | 1276.222 | 1217.072                | 1335.372    |  |  |
| NWA      | 1390.667 | 1331.517                | 1449.816    |  |  |
| QTD-LCEA | 1442.593 | 1383.443                | 1501.742    |  |  |
| QTD-NWA  | 1638.593 | 1579.443                | 1697.742    |  |  |

Table A-44 The 95% CI under the SSR rule for total tardiness

Table A-45 The comparison under the SSR rule for total tardiness

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
|          | NWA      | -114.44*        | 42.018     | .008 |
| LCEA     | QTD-LCEA | -166.37*        | 42.018     | .000 |
|          | QTD-NWA  | -362.37*        | 42.018     | .000 |

Table A-46 ANOVA under the LSR rule for total tardiness

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 2.23E+08 | 26  | 8589486  | <i>f</i> =188.7676 | 5.01E-60 | 1.638019     |  |
| Approach | 458779.1 | 3   | 152926.4 | $f_1 = 3.360801$   | 0.02289  | 2.721783     |  |
| Error    | 3549230  | 78  | 45502.95 |                    |          |              |  |
| Total    | 2.27E+08 | 107 |          |                    |          |              |  |

Table A-47 The 95% CI under the LSR rule for total tardiness

| Approach | Δverage  | 95% Confidence Interval |             |  |  |
|----------|----------|-------------------------|-------------|--|--|
| Approach | Average  | Lower Bound             | Upper Bound |  |  |
| LCEA     | 1041.148 | 959.419                 | 1122.877    |  |  |
| NWA      | 1181.296 | 1099.567                | 1263.025    |  |  |
| QTD-LCEA | 1162.926 | 1081.197                | 1244.655    |  |  |
| QTD-NWA  | 1213.222 | 1131.493                | 1294.951    |  |  |

| App  | oroach   | Mean Difference      | Std. Error | Sig. |
|------|----------|----------------------|------------|------|
|      | NWA      | -140.15*             | 58.057     | .018 |
| LCEA | QTD-LCEA | -121.78 <sup>*</sup> | 58.057     | .039 |
|      | QTD-NWA  | -172.07*             | 58.057     | .004 |

Table A-48 The comparison under the LSR rule for total tardiness

### A.4 The Analysis for Total Earliness

Table A-49 ANOVA under the SPT rule for total earliness

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 2292722  | 26  | 88181.63 | <i>f</i> =4.062861 | 8.35E-07 | 1.638019     |  |
| Approach | 8295760  | 3   | 2765253  | $f_1 = 127.4057$   | 5.61E-30 | 2.721783     |  |
| Error    | 1692937  | 78  | 21704.32 |                    |          |              |  |
| Total    | 12281419 | 107 |          |                    |          |              |  |

Table A-50 The 95% CI under the SPT rule for total earliness

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 618.148 | 561.703                 | 674.594     |  |  |
| NWA      | 598.407 | 541.962                 | 654.853     |  |  |
| QTD-LCEA | 58.481  | 2.036                   | 114.927     |  |  |
| QTD-NWA  | 49.889  | -6.557                  | 106.334     |  |  |

Table A-51 The comparison under the SPT rule for total earliness

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
|          | LCEA     | -568.26*        | 40.096     | .000 |
| QTD-NWA  | NWA      | -548.52*        | 40.096     | .000 |
|          | QTD-LCEA | -8.59           | 40.096     | .831 |

| ANOVA    |         |     |          |                    |          |              |  |
|----------|---------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS      | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 2023871 | 26  | 77841.2  | <i>f</i> =6.919028 | 1.34E-11 | 1.638019     |  |
| Approach | 2008107 | 3   | 669369   | $f_1 = 59.49784$   | 4.11E-20 | 2.721783     |  |
| Error    | 877524  | 78  | 11250.31 |                    |          |              |  |
| Total    | 4909502 | 107 |          |                    |          |              |  |

Table A-52 ANOVA under the LPT rule for total earliness

Table A-53 The 95% CI under the LPT rule for total earliness

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 442.778 | 402.139                 | 483.416     |  |  |
| NWA      | 438.741 | 398.102                 | 479.379     |  |  |
| QTD-LCEA | 178.444 | 137.806                 | 219.083     |  |  |
| QTD-NWA  | 158.407 | 117.769                 | 199.046     |  |  |

Table A-54 The comparison under the LPT rule for total earliness

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
| QTD-NWA  | LCEA     | -284.37*        | 28.868     | .000 |
|          | NWA      | -280.33*        | 28.868     | .000 |
|          | QTD-LCEA | -20.04          | 28.868     | .490 |

Table A-55ANOVA under the FCFS rule for total earliness

| ANOVA    |         |     |         |                  |          |              |  |
|----------|---------|-----|---------|------------------|----------|--------------|--|
| Source   | SS      | df  | MS      | F                | p value  | f (critical) |  |
| Block    | 1828967 | 26  | 70344.9 | <i>f</i> =4.7764 | 4.13E-08 | 1.638019     |  |
| Approach | 5224303 | 3   | 1741434 | $f_1 = 118.2429$ | 6.16E-29 | 2.721783     |  |
| Error    | 1148753 | 78  | 14727.6 |                  |          |              |  |
| Total    | 8202023 | 107 |         |                  |          |              |  |

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 524.889 | 478.392                 | 571.386     |  |  |
| NWA      | 512.148 | 465.651                 | 558.645     |  |  |
| QTD-LCEA | 88.593  | 42.096                  | 135.089     |  |  |
| QTD-NWA  | 69.296  | 22.800                  | 115.793     |  |  |

Table A-56 The 95% CI under the FCFS rule for total earliness

Table A-57 The comparison under the FCFS rule for total earliness

| Approach |          | Mean Difference      | Std. Error | Sig. |
|----------|----------|----------------------|------------|------|
|          | LCEA     | -455.59 <sup>*</sup> | 33.029     | .000 |
| QTD-NWA  | NWA      | -442.85*             | 33.029     | .000 |
|          | QTD-LCEA | -19.30               | 33.029     | .561 |

Table A-58 ANOVA under the EDD rule for total earliness

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 1925357  | 26  | 74052.2  | <i>f</i> =6.734448 | 2.54E-11 | 1.638019     |  |
| Approach | 3394121  | 3   | 1131374  | $f_1 = 102.8893$   | 4.9E-27  | 2.721783     |  |
| Error    | 857690.5 | 78  | 10996.03 |                    |          |              |  |
| Total    | 6177169  | 107 |          |                    |          |              |  |

Table A-59 The 95% CI under the EDD rule for total earliness

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 480.852 | 440.675                 | 521.029     |  |  |
| NWA      | 470.407 | 430.231                 | 510.584     |  |  |
| QTD-LCEA | 131.259 | 91.083                  | 171.436     |  |  |
| QTD-NWA  | 111.593 | 71.416                  | 151.769     |  |  |

| Approach |          | Mean Difference | Std. Error | Sig. |
|----------|----------|-----------------|------------|------|
| QTD-NWA  | LCEA     | -369.26*        | 28.540     | .000 |
|          | NWA      | -358.81*        | 28.540     | .000 |
|          | QTD-LCEA | -19.67          | 28.540     | .493 |

Table A-60 The comparison under the EDD rule for total earliness

Table A-61 ANOVA under the SSR rule for total earliness

| ANOVA    |         |     |          |                    |          |              |  |
|----------|---------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS      | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 1858540 | 26  | 71482.3  | <i>f</i> =4.569309 | 9.72E-08 | 1.638019     |  |
| Approach | 5104959 | 3   | 1701653  | $f_1 = 108.7735$   | 8.64E-28 | 2.721783     |  |
| Error    | 1220233 | 78  | 15644.01 |                    |          |              |  |
| Total    | 8183731 | 107 |          |                    |          |              |  |

Table A-62 The 95% CI under the SSR rule for total earliness

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 526.889 | 478.967                 | 574.810     |  |  |
| NWA      | 515.074 | 467.153                 | 562.996     |  |  |
| QTD-LCEA | 83.148  | 35.227                  | 131.070     |  |  |
| QTD-NWA  | 89.370  | 41.449                  | 137.292     |  |  |

Table A-63 The comparison under the SSR rule for total earliness

| Approach |         | Mean Difference      | Std. Error | Sig. |
|----------|---------|----------------------|------------|------|
|          | LCEA    | -443.74*             | 34.041     | .000 |
| QTD-LCEA | NWA     | -431.93 <sup>*</sup> | 34.041     | .000 |
|          | QTD-NWA | -6.22                | 34.041     | .855 |

| ANOVA    |         |     |          |                    |          |              |  |
|----------|---------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS      | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 2029827 | 26  | 78070.27 | <i>f</i> =5.590979 | 1.65E-09 | 1.638019     |  |
| Approach | 3338432 | 3   | 1112811  | $f_1 = 79.69359$   | 1.09E-23 | 2.721783     |  |
| Error    | 1089162 | 78  | 13963.61 |                    |          |              |  |
| Total    | 6457421 | 107 |          |                    |          |              |  |

Table A-64 ANOVA under the LSR rule for total earliness

Table A-65 The 95% CI under the LSR rule for total earliness

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Арргоасн | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 505.667 | 460.392                 | 550.941     |  |  |
| NWA      | 490.481 | 445.207                 | 535.756     |  |  |
| QTD-LCEA | 143.704 | 98.429                  | 188.978     |  |  |
| QTD-NWA  | 149.556 | 104.281                 | 194.830     |  |  |

Table A-66 The comparison under the LSR rule for total earliness

| App      | oroach  | Mean Difference Std. Error |        | Sig. |
|----------|---------|----------------------------|--------|------|
| QTD-LCEA | LCEA    | -361.96 <sup>*</sup>       | 32.161 | .000 |
|          | NWA     | -346.78 <sup>*</sup>       | 32.161 | .000 |
|          | QTD-NWA | -5.85                      | 32.161 | .856 |

# A.5 The Analysis for Tardy Jobs

Table A-67 ANOVA under the SPT rule for tardy jobs

| ANOVA    |          |     |          |                  |          |              |  |
|----------|----------|-----|----------|------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                | p value  | f (critical) |  |
| Block    | 15910.46 | 26  | 611.9409 | f=204.1904       | 2.49E-61 | 1.638019     |  |
| Approach | 60.99074 | 3   | 20.33025 | $f_1 = 6.783728$ | 0.000401 | 2.721783     |  |
| Error    | 233.7593 | 78  | 2.996914 |                  |          |              |  |
| Total    | 16205.21 | 107 |          |                  |          |              |  |

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 19.481  | 18.818                  | 20.145      |  |  |
| NWA      | 20.407  | 19.744                  | 21.071      |  |  |
| QTD-LCEA | 18.556  | 17.892                  | 19.219      |  |  |
| QTD-NWA  | 18.630  | 17.966                  | 19.293      |  |  |

Table A-68 The 95% CI under the SPT rule for tardy jobs

Table A-69 The comparison under the SPT rule for tardy jobs

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
| QTD-LCEA | LCEA    | 93              | .471       | .053 |
|          | NWA     | -1.85*          | .471       | .000 |
|          | QTD-NWA | 07              | .471       | .875 |

Table A-70 ANOVA under the LPT rule for tardy jobs

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 26579.46 | 26  | 1022.287 | <i>f</i> =126.9532 | 1.79E-53 | 1.638019     |  |
| Approach | 283.6574 | 3   | 94.55247 | $f_1 = 11.74205$   | 1.99E-06 | 2.721783     |  |
| Error    | 628.0926 | 78  | 8.052469 |                    |          |              |  |
| Total    | 27491.21 | 107 |          |                    |          |              |  |

Table A-71 The 95% CI under the LPT rule for tardy jobs

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 25.444  | 24.357                  | 26.532      |  |  |
| NWA      | 26.148  | 25.061                  | 27.235      |  |  |
| QTD-LCEA | 22.185  | 21.098                  | 23.272      |  |  |
| QTD-NWA  | 23.148  | 22.061                  | 24.235      |  |  |

| App      | oroach  | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
| QTD-LCEA | LCEA    | -3.26*          | .772       | .000 |
|          | NWA     | -3.96*          | .772       | .000 |
|          | QTD-NWA | 96              | .772       | .216 |

Table A-72 The comparison under the LPT rule for tardy jobs

Table A-73 ANOVA under the FCFS rule for tardy jobs

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 20138.19 | 26  | 774.5456 | <i>f</i> =169.1232 | 3.32E-58 | 1.638019     |  |
| Approach | 151.7778 | 3   | 50.59259 | $f_1 = 11.04697$   | 4.02E-06 | 2.721783     |  |
| Error    | 357.2222 | 78  | 4.579772 |                    |          |              |  |
| Total    | 20647.19 | 107 |          |                    |          |              |  |

Table A-74 The 95% CI under the FCFS rule for tardy jobs

| Approach  | Average | 95% Confidence Interval |             |  |  |
|-----------|---------|-------------------------|-------------|--|--|
| rippioaen | Tretage | Lower Bound             | Upper Bound |  |  |
| LCEA      | 22.222  | 21.402                  | 23.042      |  |  |
| NWA       | 22.778  | 21.958                  | 23.598      |  |  |
| QTD-LCEA  | 19.815  | 18.995                  | 20.635      |  |  |
| QTD-NWA   | 20.667  | 19.847                  | 21.487      |  |  |

Table A-75 The comparison under the FCFS rule for tardy jobs

| 1        |         |                 |            |      |
|----------|---------|-----------------|------------|------|
| App      | oroach  | Mean Difference | Std. Error | Sig. |
|          | LCEA    | -2.41*          | .582       | .000 |
| QTD-LCEA | NWA     | -2.96*          | .582       | .000 |
|          | QTD-NWA | 85              | .582       | .148 |

| ANOVA    |          |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 25030.17 | 26  | 962.6987 | <i>f</i> =157.0262 | 5.61E-57 | 1.638019     |  |
| Approach | 211.2963 | 3   | 70.4321  | $f_1 = 11.48821$   | 2.57E-06 | 2.721783     |  |
| Error    | 478.2037 | 78  | 6.130817 |                    |          |              |  |
| Total    | 25719.67 | 107 |          |                    |          |              |  |

Table A-76 ANOVA under the EDD rule for tardy jobs

Table A-77 The 95% CI under the EDD rule for tardy jobs

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 22.259  | 21.311                  | 23.208      |  |  |
| NWA      | 22.889  | 21.940                  | 23.838      |  |  |
| QTD-LCEA | 25.556  | 24.607                  | 26.504      |  |  |
| QTD-NWA  | 25.074  | 24.125                  | 26.023      |  |  |

Table A-78 The comparison under the EDD rule for tardy jobs

| App  | oroach   | Mean Difference | Std. Error | Sig. |
|------|----------|-----------------|------------|------|
| LCEA | NWA      | 63              | .674       | .353 |
|      | QTD-LCEA | -3.30*          | .674       | .000 |
|      | QTD-NWA  | -2.81*          | .674       | .000 |

Table A-79 ANOVA under the SSR rule for tardy jobs

| ANOVA    |          |     |          |                                |          |              |  |
|----------|----------|-----|----------|--------------------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                              | p value  | f (critical) |  |
| Block    | 19856.96 | 26  | 763.7293 | <i>f</i> =186.7209             | 7.6E-60  | 1.638019     |  |
| Approach | 268.963  | 3   | 89.65432 | <i>f</i> <sub>1</sub> =21.9192 | 2.15E-10 | 2.721783     |  |
| Error    | 319.037  | 78  | 4.090218 |                                |          |              |  |
| Total    | 20444.96 | 107 |          |                                |          |              |  |

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 22.630  | 21.855                  | 23.405      |  |  |
| NWA      | 23.407  | 22.633                  | 24.182      |  |  |
| QTD-LCEA | 19.444  | 18.670                  | 20.219      |  |  |
| QTD-NWA  | 20.593  | 19.818                  | 21.367      |  |  |

Table A-80 The 95% CI under the SSR rule for tardy jobs

Table A-81 The comparison under the SSR rule for tardy jobs

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
| QTD-LCEA | LCEA    | -3.19*          | .550       | .000 |
|          | NWA     | -3.96*          | .550       | .000 |
|          | QTD-NWA | -1.15*          | .550       | .040 |

Table A-82 ANOVA under the LSR rule for tardy jobs

| ANOVA    |          |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 24656.5  | 26  | 948.3269 | <i>f</i> =175.5528 | 8.01E-59 | 1.638019     |
| Approach | 125.1481 | 3   | 41.71605 | $f_1 = 7.72241$    | 0.000139 | 2.721783     |
| Error    | 421.3519 | 78  | 5.401947 |                    |          |              |
| Total    | 25203    | 107 |          |                    |          |              |

Table A-83 The 95% CI under the LSR rule for tardy jobs

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 22.926  | 22.035                  | 23.816      |  |  |
| NWA      | 23.519  | 22.628                  | 24.409      |  |  |
| QTD-LCEA | 21.148  | 20.258                  | 22.039      |  |  |
| QTD-NWA  | 21.074  | 20.184                  | 21.965      |  |  |

| Approach |          | Mean Difference Std. Error |      | Sig. |
|----------|----------|----------------------------|------|------|
|          | LCEA     | -1.85*                     | .633 | .004 |
| QTD-NWA  | NWA      | -2.44*                     | .633 | .000 |
|          | QTD-LCEA | 07                         | .633 | .907 |

Table A-84 The comparison under the LSR rule for tardy jobs

#### A.6 The Analysis for Early Jobs

#### Table A-85 ANOVA under the SPT rule for early jobs

|          | ANOVA    |     |          |                    |          |              |  |
|----------|----------|-----|----------|--------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |  |
| Block    | 4643.963 | 26  | 178.614  | <i>f</i> =4.701249 | 5.63E-08 | 1.638019     |  |
| Approach | 15687.81 | 3   | 5229.269 | $f_1 = 137.6381$   | 4.55E-31 | 2.721783     |  |
| Error    | 2963.444 | 78  | 37.99288 |                    |          |              |  |
| Total    | 23295.21 | 107 |          |                    |          |              |  |

Table A-86 The 95% CI under the SPT rule for early jobs

| Approach  | Average | 95% Confidence Interval |             |  |  |
|-----------|---------|-------------------------|-------------|--|--|
| rippioaen | Tretage | Lower Bound             | Upper Bound |  |  |
| LCEA      | 29.704  | 27.342                  | 32.065      |  |  |
| NWA       | 28.926  | 26.564                  | 31.288      |  |  |
| QTD-LCEA  | 4.852   | 2.490                   | 7.213       |  |  |
| QTD-NWA   | 5.593   | 3.231                   | 7.954       |  |  |

Table A-87 The comparison under the SPT rule for early jobs

| Approach |         | Mean Difference | lean Difference Std. Error |      |
|----------|---------|-----------------|----------------------------|------|
| QTD-LCEA | LCEA    | -24.85*         | 1.678                      | .000 |
|          | NWA     | -24.07*         | 1.678                      | .000 |
|          | QTD-NWA | 74              | 1.678                      | .660 |

|          | ANOVA    |     |          |                                |          |              |  |
|----------|----------|-----|----------|--------------------------------|----------|--------------|--|
| Source   | SS       | df  | MS       | F                              | p value  | f (critical) |  |
| Block    | 4782.167 | 26  | 183.9295 | <i>f</i> =4.698892             | 5.68E-08 | 1.638019     |  |
| Approach | 4620.333 | 3   | 1540.111 | <i>f</i> <sub>1</sub> =39.3456 | 1.37E-15 | 2.721783     |  |
| Error    | 3053.167 | 78  | 39.14316 |                                |          |              |  |
| Total    | 12455.67 | 107 |          |                                |          |              |  |

Table A-88 ANOVA under the LPT rule for early jobs

Table A-89 The 95% CI under the LPT rule for early jobs

| Approach | Average | 95% Confidence Interval |             |  |  |
|----------|---------|-------------------------|-------------|--|--|
| Approach | Average | Lower Bound             | Upper Bound |  |  |
| LCEA     | 24.963  | 22.566                  | 27.360      |  |  |
| NWA      | 23.963  | 21.566                  | 26.360      |  |  |
| QTD-LCEA | 10.852  | 8.455                   | 13.249      |  |  |
| QTD-NWA  | 12.000  | 9.603                   | 14.397      |  |  |

Table A-90 The comparison under the LPT rule for early jobs

|          |         |                 | U                     |      |
|----------|---------|-----------------|-----------------------|------|
| Approach |         | Mean Difference | Difference Std. Error |      |
|          | LCEA    | -14.11*         | 1.703                 | .000 |
| QTD-LCEA | NWA     | -13.11*         | 1.703                 | .000 |
|          | QTD-NWA | -1.15           | 1.703                 | .502 |

Table A-91 ANOVA under the FCFS rule for early jobs

| ANOVA    |          |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 4825.13  | 26  | 185.5819 | <i>f</i> =5.618722 | 1.48E-09 | 1.638019     |
| Approach | 10668.47 | 3   | 3556.157 | $f_1 = 107.6671$   | 1.19E-27 | 2.721783     |
| Error    | 2576.278 | 78  | 33.0292  |                    |          |              |
| Total    | 18069.88 | 107 |          |                    |          |              |

| Approach | Average | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
| Approach | Average | Lower Bound             | Upper Bound |  |
| LCEA     | 27.148  | 24.946                  | 29.350      |  |
| NWA      | 26.519  | 24.317                  | 28.720      |  |
| QTD-LCEA | 6.741   | 4.539                   | 8.943       |  |
| QTD-NWA  | 7.185   | 4.983                   | 9.387       |  |

Table A-92 The 95% CI under the FCFS rule for early jobs

Table A-93 The comparison under the FCFS rule for early jobs

| Approach |         | Mean Difference     | Std. Error | Sig. |
|----------|---------|---------------------|------------|------|
| QTD-LCEA | LCEA    | -20.41*             | 1.564      | .000 |
|          | NWA     | -19.78 <sup>*</sup> | 1.564      | .000 |
|          | QTD-NWA | 44                  | 1.564      | .777 |

Table A-94 ANOVA under the EDD rule for early jobs

| ANOVA    |          |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 4831.463 | 26  | 185.8255 | <i>f</i> =5.881712 | 5.49E-10 | 1.638019     |
| Approach | 9909.435 | 3   | 3303.145 | $f_1 = 104.5505$   | 2.98E-27 | 2.721783     |
| Error    | 2464.315 | 78  | 31.59378 |                    |          |              |
| Total    | 17205.21 | 107 |          |                    |          |              |

Table A-95 The 95% CI under the EDD rule for early jobs

| Approach | Average | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
| Approach | Average | Lower Bound             | Upper Bound |  |
| LCEA     | 26.593  | 24.439                  | 28.746      |  |
| NWA      | 26.074  | 23.921                  | 28.228      |  |
| QTD-LCEA | 6.519   | 4.365                   | 8.672       |  |
| QTD-NWA  | 7.889   | 5.735                   | 10.042      |  |
| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
| QTD-LCEA | LCEA    | -20.07*         | 1.530      | .000 |
|          | NWA     | -19.56*         | 1.530      | .000 |
|          | QTD-NWA | -1.37           | 1.530      | .373 |

Table A-96 The comparison under the EDD rule for early jobs

(Note: \* represents the mean difference is significant at the .05 level.)

Table A-97 ANOVA under the SSR rule for early jobs

| ANOVA    |          |     |          |                    |          |              |
|----------|----------|-----|----------|--------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                  | p value  | f (critical) |
| Block    | 3668.13  | 26  | 141.0819 | <i>f</i> =3.639084 | 5.39E-06 | 1.638019     |
| Approach | 11931.56 | 3   | 3977.185 | $f_1 = 102.588$    | 5.37E-27 | 2.721783     |
| Error    | 3023.944 | 78  | 38.76852 |                    |          |              |
| Total    | 18623.63 | 107 |          |                    |          |              |

Table A-98 The 95% CI under the SSR rule for early jobs

| Approach | Average | 95% Confidence Interval |             |  |
|----------|---------|-------------------------|-------------|--|
|          | Average | Lower Bound             | Upper Bound |  |
| LCEA     | 26.815  | 24.429                  | 29.200      |  |
| NWA      | 25.852  | 23.466                  | 28.237      |  |
| QTD-LCEA | 4.370   | 1.985                   | 6.756       |  |
| QTD-NWA  | 6.370   | 3.985                   | 8.756       |  |

Table A-99 The comparison under the SSR rule for early jobs

| Approach |         | Mean Difference | Std. Error | Sig. |
|----------|---------|-----------------|------------|------|
| QTD-LCEA | LCEA    | -22.44*         | 1.695      | .000 |
|          | NWA     | -21.48*         | 1.695      | .000 |
|          | QTD-NWA | -2.00           | 1.695      | .242 |

(Note: \* represents the mean difference is significant at the .05 level.)

| ANOVA    |          |     |          |                                 |          |              |
|----------|----------|-----|----------|---------------------------------|----------|--------------|
| Source   | SS       | df  | MS       | F                               | p value  | f (critical) |
| Block    | 5841.241 | 26  | 224.6631 | <i>f</i> =9.579973              | 3.5E-15  | 1.638019     |
| Approach | 6440.546 | 3   | 2146.849 | <i>f</i> <sub>1</sub> =91.54486 | 1.76E-25 | 2.721783     |
| Error    | 1829.204 | 78  | 23.45133 |                                 |          |              |
| Total    | 14110.99 | 107 |          |                                 |          |              |

Table A-100 ANOVA under the LSR rule for early jobs

Table A-101 The 95% CI under the LSR rule for early jobs

| Approach  | $\Delta$ verage | 95% Confidence Interval |             |  |  |
|-----------|-----------------|-------------------------|-------------|--|--|
| rippioaen | nvenage         | Lower Bound             | Upper Bound |  |  |
| LCEA      | 26.556          | 24.700                  | 28.411      |  |  |
| NWA       | 25.852          | 23.996                  | 27.707      |  |  |
| QTD-LCEA  | 10.370          | 8.515                   | 12.226      |  |  |
| QTD-NWA   | 11.185          | 9.330                   | 13.041      |  |  |

Table A-102 The comparison under the LSR rule for early jobs

| Approach |         | Mean Difference     | Std. Error | Sig. |
|----------|---------|---------------------|------------|------|
| QTD-LCEA | LCEA    | -16.19 <sup>*</sup> | 1.318      | .000 |
|          | NWA     | -15.48*             | 1.318      | .000 |
|          | QTD-NWA | 81                  | 1.318      | .538 |

(Note: \* represents the mean difference is significant at the .05 level.)