東海大學生命科學系 碩士論文

指導教授:劉少倫 博士

Dr. Shao-Lun Liu

四個幽蟌(Euphaea)姊妹種粒線體基因作為族群遺傳及親緣關係分子

標記的效能探討

Population Genetic and Phylogenetic Utility of Mitochondrial Genes of

Four Sibling Euphaea Damselflies

研究生: 鄭筠潔

Yun-Chieh Cheng

中華民國一百零五年八月

東海大學生命科學系碩士論文

四個幽蟌(Euphaea)姊妹種粒線體基因作為族群遺傳及親緣關係分子

標記的效能探討

Population Genetic and Phylogenetic Utility of Mitochondrial Genes of

Four Sibling Euphaea Damselflies

研究生:鄭筠潔

Yun-Chieh Cheng

指導教授:劉少倫 博士

Dr. Shao-Lun Liu

中華民國一百零五年八月

東海大學生命科學系 碩士論文學位考試審定書

(中文)

四個幽蟌(Euphaea)姊妹種粒線體基因作為族群遺傳及親緣關係分子標

記的效能探討

(英文)

Population Genetic and Phylogenetic Utility of Mitochondrial Genes of Four Sibling Euphaea Damselflies

經本委員會審定通過,特此證明。

學位考試委員會 召集人 预计扩展 (簽名) 委員 扩展中平 本嘉艽

中華民國 105年 6月 20日

致謝

這篇論文的完成,首先要感謝的是林仲平老師,非常感謝老師 對實驗分析及論文撰寫上的細心指導與幫助。也謝謝特地前來幫忙 口試的委員們,師大的李壽先老師及東海的劉少倫老師,謝謝您們 的指教與建議。在分析上,謝謝若凡學姊及祐薰學姊及師大的秉宏 學長不厭其煩的幫助我解決在研究分析上遇到的困難。另外,提供 豆娘標本及 DNA 序列的實驗室學長們,黃仁磐學長及李逸鴻學 長,謝謝你們。

從大學時期以來陪伴我的實驗室學長姐學弟妹們,謝謝你們教 會我做分生實驗、幫我一起出野外並指導我如何飼養各式昆蟲以及 分析各種數據,並且在各種預講時給予意見。當然還有那些餘興活 動,感謝大家的大力支持與參與。就讀碩士班的這段生涯,一路走 來,總是受到許多人的幫助扶持,不論是在東海或是師大或是校外 的好朋友,真的很高興能夠認識你們,謝謝你們這些日子裡帶給我 的溫暖時光,我會懷念的。最後,一直在旁邊默默陪伴的家人們, 真的很感激你們對我的支持。帶著所有人的祝福,我將勇敢朝下一 個階段邁進,謝謝大家!

Contents

Abstract (in Chinese)1		
Abstract		
Introduction		
Materials and methods		
Mitochondrial Genome sequencing8		
Nonsynonymous/synonymous substitution ratio $(d_N/d_S, \omega)$ 10		
Phylogenetic analysis and nucleotide substitution pattern11		
Results13		
Mitochondrial Genomes13		
Pattern of Selection on nucleotide sequences		
Phylogeny and sequence divergence15		
Parsimony informative sites, consistency index16		
Relative substitution rates17		
Rate heterogeneity among sites18		
Proportion of invariant sites18		
Transformation rate matrices (Q marix)19		
Correlation among parameters		
Discussion		
Acknowledgments		
References		
Tables		
Figure legends		

Figures	40
Appendix	45

1 Abstract (In Chinese)

2	一直以來,經由母系遺傳的粒線體基因被認為是研究族群遺傳及系統發生學
3	的有效分子標記。但近期研究卻發現粒線體基因或許並不適合此用途,原因有二:
4	一、由於其經歷過頻繁發生的正向選汰,此時有利的突變及其相鄰的基因會被固
5	定下來(genetic draft),這種狀況的發生使得粒線體基因擁有比中性理論預期還低
6	的遺傳多樣性。二、粒線體基因過快的演化速率使各分子間的親緣關係難以表現
7	出來。但,這些研究通常都以較高階的分類群為主,粒線體基因在種間的效能表
8	現如何仍有許多未知。本研究透過不同族群大小的兩對姊妹群幽蟌屬豆娘-E.
9	formosa + E. yayeyamana; E. decorata + E. ornata—的 8 個核基因、13 個粒線體基
10	因來對選汰壓力及基因效能進行分析。結果顯示,粒線體基因較核基因受到更強
11	烈的負向選汰影響,而負向選汰是影響這些豆娘粒線體基因及核基因演化的主因。
12	粒線體基因無論是在成對距離的分化度、α值、簡約訊息位點、不變位點的比例
13	及相對置換率這些基因效能參數上都比核基因還要為高。在這些參數的平均中,
14	粒線體基因的非蛋白質轉譯區比蛋白質轉譯區擁有較高的解析度。另外,核基因
15	的外顯子提供的資訊較內插子要少。在相關性分析上,A+T-rich及 nad2 這兩個
16	粒線體基因表現得最好,並能提供最多的資訊。研究顯示粒線體基因適合用作族
17	群遺傳及系統發生學的分析之用,但需考慮如何選擇基因。

20 關鍵字:粒線體基因、有效族群大小、正向選汰、負向選汰、基因效能、蜻蛉目
21
22

24 Abstract

25	The maternal inherited mitochondrial genes have been considered as efficient
26	genetic markers for population genetics and phylogenetic studies. However, recent
27	studies suggested that mitochondrial genes might not be suitable for these purposes
28	because (a) these genes have lower genetic diversity than expected from neutral
29	evolution due to fixation of beneficial mutations by frequent positive selection (i.e.
30	genetic draft), and (b) these genes evolved too rapidly to represent phylogenetic
31	relationships. Nevertheless, these studies primarily focused on analyzing higher taxa,
32	leaving the utilities of mitochondrial genes on species level analyses largely unknown.
33	In this study, we investigated the pattern of selection and phylogenetic utilities of
34	eight nuclear genes and 13 mitochondrial genes in two pairs of sibling Euphaea
35	damselflies (E. formosa of Taiwan + E. yayeyamana of Yaeyama Islands; E. decorata
36	of SE Asia + E. ornata of Hainan Islands) with various population sizes. Our results
37	showed that, comparing to nuclear genes, mitochondrial genes experienced stronger
38	negative selection, which was the dominance force in the evolution of both
39	mitochondrial and nuclear genes in these damselflies. Mitochondrial genes had higher
40	rates than nuclear genes in the pairwise distance divergence, α (shape of gamma
41	distribution), PI (parsimony informative site), Pi (proportion of invariant sites), and
42	the relative substitution rate. Among the averages of parameters, the mitochondrial

43	protein non-coding regions had higher resolution than mitochondrial protein-coding
44	region. In addition, the exons of nuclear genes provided less information than the
45	introns. Correlation analyses demonstrated that mitochondrial $A+T$ -rich and nad2
46	genes performed better and were more informative. In conclusion, our results showed
47	that mitochondrial genes are suitable for genetics and phylogenetic analyses, but the
48	selection of genes need to be considered.
49	
50	Keywords: Mitochondrial genome, effective population size, genetic draft, negative
51	selection, phylogenetic utility, Odonata
52	
53	

55 Introduction

56	Population genetic and phylogenetic studies employ a range of genetic markers,
57	including allozymes, microsatellites, single nucleotide polymorphism (SNP),
58	mitochondrial, and nuclear genes that differ in their utility and resolution from
59	populations, species, to higher taxonomic groups (Galtier et al., 2009; Dupuis et al.,
60	2012). Among these markers, the maternally inherited mitochondrial genes of animals
61	is popular because of their ease of amplification, large copy numbers, rapid mutation
62	rates, and non-recombination which makes them efficient and effective choices for
63	inferring population genetic structures and reconstructing phylogenies (Sunnucks,
64	2000; Simon et al., 1994; Simon et al., 2006).
65	The effective population size (N_e) is the number of individuals who can
65 66	The effective population size (N_e) is the number of individuals who can exchanges its genetic factors in an ideal population (Wright 1931), which is one of the
65 66 67	The effective population size (N_e) is the number of individuals who can exchanges its genetic factors in an ideal population (Wright 1931), which is one of the important parameters in population genetics and has been used to effectively assess
65 66 67 68	The effective population size (N_e) is the number of individuals who can exchanges its genetic factors in an ideal population (Wright 1931), which is one of the important parameters in population genetics and has been used to effectively assess the impacts of overfishing (Hauser <i>et al.</i> , 2002; Roman & Palumbi, 2003) or tracking
65 66 67 68 69	The effective population size (N_e) is the number of individuals who can exchanges its genetic factors in an ideal population (Wright 1931), which is one of the important parameters in population genetics and has been used to effectively assess the impacts of overfishing (Hauser <i>et al.</i> , 2002; Roman & Palumbi, 2003) or tracking historical population dynamics (Miller & Waits, 2003; Luikart <i>et al.</i> , 2010).
65 66 67 68 69 70	The effective population size (N_e) is the number of individuals who can exchanges its genetic factors in an ideal population (Wright 1931), which is one of the important parameters in population genetics and has been used to effectively assess the impacts of overfishing (Hauser <i>et al.</i> , 2002; Roman & Palumbi, 2003) or tracking historical population dynamics (Miller & Waits, 2003; Luikart <i>et al.</i> , 2010). Theoretically, N_e is related to the level of genetic diversity in a population. Earlier
65 66 67 68 69 70 71	The effective population size (N_e) is the number of individuals who can exchanges its genetic factors in an ideal population (Wright 1931), which is one of the important parameters in population genetics and has been used to effectively assess the impacts of overfishing (Hauser <i>et al.</i> , 2002; Roman & Palumbi, 2003) or tracking historical population dynamics (Miller & Waits, 2003; Luikart <i>et al.</i> , 2010). Theoretically, N_e is related to the level of genetic diversity in a population. Earlier empirical studies have showed that the N_e of a given population is positively
 65 66 67 68 69 70 71 72 	The effective population size (N_e) is the number of individuals who can exchanges its genetic factors in an ideal population (Wright 1931), which is one of the important parameters in population genetics and has been used to effectively assess the impacts of overfishing (Hauser <i>et al.</i> , 2002; Roman & Palumbi, 2003) or tracking historical population dynamics (Miller & Waits, 2003; Luikart <i>et al.</i> , 2010). Theoretically, N_e is related to the level of genetic diversity in a population. Earlier empirical studies have showed that the N_e of a given population is positively correlated with its genetic diversity (Frankham <i>et al.</i> , 1996; Mulligan <i>et al.</i> , 2006;

74	organism determine the relative strength of genetic drift and natural selection acting
75	on allele frequencies of the population (Nielsen & Slatkin, 2013). The stochastic event
76	of genetic drift has a stronger effect on genetic diversity of small populations, whereas
77	natural selection is the dominant force in large populations (Meiklejohn et al., 2007).
78	Despite the popularity of mitochondrial DNA in ecology and evolutionary
79	studies, earlier studies suggested that the genetic diversity of mitochondrial DNA are
80	not positively correlated with the population sizes (Galtier et al., 2009). Bazin and
81	colleagues showed that the mammals have higher mitochondrial genetic diversity than
82	that of the insects and mollusks, which in general have much larger population sizes
83	(Bazin et al., 2006; Piganeau & Eyre-Walker, 2009). One hypothesized mechanism
84	for the decreased mitochondrial diversity in large populations is through genetic draft,
85	a process which fixes advantageous mutations and reduces mitochondrial diversity by
86	frequent positive selection. Because the effect of genetic draft is much stronger in
87	larger populations (Halliburton, 2004; Bazin et al., 2006; Meiklejohn et al., 2007),
88	invertebrates with larger population sizes (such as insects, mollusks) therefore tend to
89	have lower mitochondrial genetic diversity than that of vertebrates with smaller
90	populations. Due to maternal inheritance, mitochondrial genes have a smaller
91	population size than nuclear genes. Previous studies suggested that mitochondrial
92	genes cannot be used as reliable genetic markers for estimating effective population

93	size (Bazin et al., 2006; Galtier et al., 2009). However, the level and frequency of
94	genetic draft acting on mitochondrial genomes is largely unknown for most species
95	(Roux <i>et al.</i> , 2014).
96	Recent studies also suggested that mitochondrial genes evolve too rapidly and
97	show nucleotide substitution patterns that are problematic for higher level
98	phylogenetics (Lin & Danforth, 2004; Danforth et al., 2006). Comparing to nuclear
99	genes, mitochondrial genes showed higher inconsistency among phylogenetic signals
100	(lower values of CI, consistency index) and less symmetrical transformation rate
101	matrices of nucleotide substitution, suggesting that they are lower quality genes for
102	phylogenetic analysis (Lin & Danforth, 2004; Danforth et al., 2006). These studies
103	primarily analyzed deeper divergence (Mesozoic and older) of higher level (generic,
104	tribal) phylogenetic relationships and evaluated only the most commonly used
105	mitochondrial genes such as cytochrome c oxidase subunit 1 (cox1) and cytochrome c
106	oxidase subunit 2 (cox2). The relative phylogenetic utility among mitochondrial genes
107	and the utility of mitochondrial genes at shallow divergence (Pleistocene and younger)
108	of lower level (species, population) relationships are little known, especially for less
109	frequently utilized mitochondrial genes.
110	In this study, we investigated the pattern of selection and nucleotide substitution
111	between mitochondrial and nuclear genes at species and population level using

112	Euphaea damselflies (Insecta, Odonata, Euphaeidae) as an example. We sequenced
113	complete mitochondrial genomes of three closely related Euphaea species (E.
114	decorata, E. ornata and E. yayeyamana) and obtained mitochondrial genome
115	sequences of sibling species, E. formosa from GenBank (Lin et al., 2010). We then
116	used 13 protein-coding genes and eight nuclear genes (Lee & Lin, 2012) of these four
117	species to estimate the level of positive selection (genetic draft) and evaluated the
118	phylogenetic utility of these genes. The geographic distribution of the four species
119	indicate that E. yayeyamana of the Yaeyama islands has the smallest population
120	among the four Euphaea species. Euphaea formosa and E. ornata of Taiwan and
121	Hainan Island, respectively, represent species with a medium population. Euphaea
122	decorata is a widespread species of South-East Asia, distributing from Fujian,
123	Guangdong and Guanhxi (China) to Vietnam, representing a species with the largest
124	population size among the four species. First, we predict that the species with the
125	largest population size, E. decorata, experienced the strongest selective constrain than
126	the two species with medium population size. The species with the smallest
127	population size, E. yayeyamana, has the lowest level of positive selection. Comparing
128	mitochondrial with nuclear genes, the nuclear genes are predicted to exhibit a higher
129	level of positive selection than that of the mitochondrial genes because the effective
130	population size of nuclear genes are in general four times larger than mitochondrial

131	genes (Ballard & Whitlock, 2004). Secondly, we compared the phylogenetic utility
132	among all mitochondrial genes and between mitochondrial and nuclear genes by
133	calculating the parameters of nucleotide substitution and inferring patterns of rate
134	variation among genes. Specifically, we examined the differences in substitution rate
135	among mitochondrial and nuclear genes, and tested a positive relationships between
136	base composition (A+T bias) and relative rates, between CI (consistency index) and α
137	(the shape parameter of gamma distribution), CI and relative rate, PI sites (parsimony
138	informative sites) and α , PI sites and relative rate and between Pi (proportion of
139	invariant sites) and α . The comparisons help us to see the relationships between
140	characteristics of each gene, and to know which gene is the most diverse.
141	
141 142	Materials and Methods
141 142 143	Materials and Methods Mitochondrial Genome Sequencing
141 142 143 144	Materials and Methods Mitochondrial Genome Sequencing The damselfly specimens of <i>E. decorata</i> , <i>E. ornata</i> , and <i>E. yayeyamana</i> used for
141 142 143 144 145	Materials and Methods Mitochondrial Genome Sequencing The damselfly specimens of E. decorata, E. ornata, and E. yayeyamana used for genome sequencing were collected in Hong Kong, Hainan Island, and Yaeyama
141 142 143 144 145 146	Materials and Methods Mitochondrial Genome Sequencing The damselfly specimens of E. decorata, E. ornata, and E. yayeyamana used for genome sequencing were collected in Hong Kong, Hainan Island, and Yaeyama Islands, respectively (Huang & Lin, 2011; Lee & Lin, 2012). The specimens were
141 142 143 144 145 146 147	Materials and Methods Mitochondrial Genome Sequencing The damselfly specimens of E. decorata, E. ornata, and E. yayeyamana used for genome sequencing were collected in Hong Kong, Hainan Island, and Yaeyama Islands, respectively (Huang & Lin, 2011; Lee & Lin, 2012). The specimens were placed in 95% EtOH after capture and then stored in a -80°C freezer upon returning to
141 142 143 144 145 146 147 148	Materials and Methods Mitochondrial Genome Sequencing The damselfly specimens of E. decorata, E. ornata, and E. yayeyamana used for genome sequencing were collected in Hong Kong, Hainan Island, and Yaeyama Islands, respectively (Huang & Lin, 2011; Lee & Lin, 2012). The specimens were placed in 95% EtOH after capture and then stored in a -80°C freezer upon returning to the laboratory. Total genomic DNAs were extracted using the standard protocol
141 142 143 144 145 146 147 148 149	Materials and Methods Mitochondrial Genome Sequencing The damselfly specimens of E. decorata, E. ornata, and E. yayeyamana used for genome sequencing were collected in Hong Kong, Hainan Island, and Yaeyama Islands, respectively (Huang & Lin, 2011; Lee & Lin, 2012). The specimens were placed in 95% EtOH after capture and then stored in a -80°C freezer upon returning to the laboratory. Total genomic DNAs were extracted using the standard protocol (Yamauchi et al., 2004) and then preserved in the -20°C freezer. Two sets of long PCR

151	the complete mitochondrial genome as two overlapping DNA fragments following the
152	recommended thermal cycles (Yamauchi et al., 2004). The DNA sequencing was then
153	performed by primer walking procedure with the 22 published primers (Lin et al.,
154	2010). The genome sequences were edited and assembled following the established
155	procedure (Lin et al., 2010), and annotated with reference to the mitochondrial
156	genome of <i>E. formosa</i> (GenBank, accession number: HM126547). The three complete
157	mitochondrial genomes were submitted to GenBank (accession numbers: E.
158	yayeyamana, KF718293; E. decorata, KF718294; E. ornata, KF718295). A total of
159	75 mitochondrial (cox2, NADH dehydrogenase subunit 5 (nad5)) and 136 nuclear
160	gene sequences (actin (act), arrestin2 (arr), abnormal wing discs 2 (awd2), elongation
161	factor 1alpha (EF1a), ferritin (fer), myosin light chain (mlc), opsin, succinate
162	dehydrogenase B (sdhB)) was obtained from NCBI (Appendix 1). Additional one
163	cox2 (EfAa12wi), eight nad5 (EfAa1, EfAa2, EfBa1, EfBa5, EfBa12, EfDa4, EfTa3,
164	TW1) and one $EF1\alpha$ (EfAa9) gene sequences of <i>E. formosa</i> were sequenced for
165	calculating d_N/d_S ratio at population level. The chromatograms of the DNA sequences
166	were manually edited in MEGA 5.2 (Tamura et al., 2011). The nucleotide sequences
167	of protein coding genes were translated into amino acid sequences using invertebrate
168	mitochondrial genetic codes in the SIB ExPASy Bioformatics Resources Portal
169	(Gasteiger et al., 2003) to confirm reading frames and sequencing errors. The

170	haplotype numbers of each genes were inferred using dnaSP v5 (Librado & Rozas,
171	2009). For population-level analysis, we analyzed 137 nuclear and 84 mitochondrial
172	sequences of 10 genes (mitochondrial: cox2, nad5; nuclear: act, arr, awd2, EF1a, fer,
173	mlc, opsin, sdhB). For species-level analysis, we used the 13 mitochondrial
174	protein-coding and non-coding genes for four Euphaea species to compare with eight
175	nuclear genes.
176	Nonsynonymous/synonymous substitution ratio $(d_N/d_S, \omega)$
177	The d_N/d_S ratio (ω) of the obtained DNA sequences was calculated to test for
178	mitochondrial signature of natural selection (Miyata & Yasunaga, 1980; Yang &
179	Bielawski, 2000). A value of ω significantly greater than 1 indicates positive selection;
180	whereas a value of ω significantly less than 1 suggests negative selection (Yang &
181	Bielawski, 2000). The extremely large and small values of ω (>100, <0.001) were
182	excluded in the analysis because these extreme values were mainly due to the low
183	number of substitution. The nucleotide substitution model was selected in MEGA 5.2
184	using BIC (Bayesian Information Criterion). The models selected for individual genes
185	were as followings: HKY: act, arr, atp6, atp8, awd2, cox2, nad3, nad4l, nad6, EF1a,
186	fer, mlc, opsin and sdhB; HKY+G: nad2, nad4, nad5 and cob; TN93+G: cox1 and
187	nad1; TN93: cox3. The individual gene trees of four Euphaea species was
188	reconstructed in MEGA 5.2 using maximum likelihood. The ω of mitochondrial

189	protein-coding and nuclear genes were calculated using the branch model in codeml
190	option of PAML v.4.7 (Yang, 2007). Two models were used to compare the strength
191	of selection using maximum likelihood: model= 0, represents only one ω ratio for all
192	four species (ω_{T_i} which refers to total ω); model= 2, assumes each species has
193	different ω ratios (ω_d , ω_o , ω_f and ω_y , which refers to the ω of <i>E. decorata</i> , <i>E. ornata</i> ,
194	E. formosa and E. yayeyamana). The strength of selection are different among species
195	if the null hypothesis (model= 0) was rejected. The Hyphy program in MEGA 6.0
196	(Tamura et al., 2013) was used to calculate the level of selection across codon sites
197	within each genes. The results were illustrated using a sliding window plot.
198	Phylogenetic analysis and nucleotide substitution pattern
199	We used 24 genes (13 protein-coding and three non-coding mitochondrial genes,
200	and eight nuclear genes) to co-estimate the species tree of four Euphaea species in
201	*BEAST v.1.8.2 (Drummond et al., 2012) (Appendix 2). The nucleotide substitution
202	models for each genes were the same as in likelihood analysis of PAML, with
203	additional models for two ribosome genes (HKY: small subunit 18S rRNA (s-rRNA)
204	and <i>l-rRNA</i>) and <i>A+T-rich</i> (HKY+G). The Markov chain Monte Carlo (MCMC)
205	procedure was executed for 1×10^8 generations with trees sampled for every $1{\times}10^4$
206	generations. The initial 2×10^7 generations were discarded as burn-in. The
207	convergence of MCMC runs were assessed using values of the effective sample size

208 (ESS >741) in Tracer v.1.6 (Rambaut *et al.*, 2014).

209	The pairwise genetic distance of the haplotypes of four <i>Euphaea</i> species (Table 3)
210	were calculated in MEGA 6.0 (Tamura et al., 2013). The number of substitutions per
211	site within and between species was calculated using Tajima-Nei model (Tajima &
212	Nei, 1984). We corrected the pairwise distance using the mutation rate of 1.77×10^{-8}
213	mutation /site/year of cox1 (Papadopoulou et al., 2010) for all mitochondrial genes. A
214	substitution rate of 1.2×10^{-8} mutation /site/year of nuclear <i>arr</i> (Moriyama &
215	Gojobori, 1992) was used for nuclear genes. The PI ratio (parsimony informative sites
216	per codon) were calculated in MEGA 6.0.
217	Two nucleotide substitution models, GTR+SSR (site-specific rates) and
218	GTR+I+G (invariant sites and gamma distribution), were used to calculate the relative
219	substitution rates among genes in MrBayes v.3.2 (Huelsenbeck & Ronquist, 2001).
220	The gene partitions included 13 mitochondrial protein-coding genes, three non-coding
221	regions (s-rRNA, l-rRNA and $A+T$ -rich) and eight nuclear genes. For site-specific
222	rates (SSR), we partitioned the substitution rates of a given protein-coding gene into
223	three codon sites. For GTR+SSR analyses, the MCMC was run for 1×10^7
224	generations with trees sampled for every 1,000 generations. In GTR+I+G model, we
225	obtained the shape parameter (α of gamma distribution) and Pi (the proportion the
226	invariant sites) to estimate the level of among site rate heterogeneity and Q matrix,

227	transformation rate matrix. The α value estimate the rate heterogeneity within the
228	genes; higher α value suggests lower heterogeneity of the substitution rates among
229	sites. For GTR+I+G analysis, the MCMC was run for 3×10^7 generations with
230	sampling frequency of every 1,000 iterations. The convergence of MCMC runs was
231	confirmed when the standard deviation of each split frequency below 0.01 and
232	Potential Scale Reduction Factor equal to 1. The correlation between relative rate, α ,
233	PI sites, Pi and CI were tested using linear regression in excel.
234	
235	Results
236	Mitochondrial Genomes
237	Mitochondrial genome sizes of the sister species pair, E. decorata (15861bps)
238	and <i>E. ornata</i> (15863bps), are larger than that of the other sibling species pair, <i>E</i> .
239	formosa (15700bps) and E. yayeyamana (15709bps) (Appendix 3). This result
240	suggests that the variation of mitochondrial genome size in Euphaea damselflies has
241	certain degree of phylogenetic component. The majority of genome size variation
242	occurs in $A+T$ -rich. The gene arrangement and composition of three newly sequenced
243	mitochondrial genomes of <i>E. decorata</i> , <i>E. ornata</i> and <i>E. yayeyamana</i> are the same as
244	that of <i>E. formosa</i> (Lin <i>et al.</i> , 2010).
245	Pattern of Selection on nucleotide sequences

246	At the population level, the four <i>Euphaea</i> species were inferred to have the
247	same ω values of less than 1 for all examined gene sequences except for <i>nad5</i> and
248	$EF1\alpha$ (Appendix 4), indicating that most genes were under similar level of negative
249	selection across species. Nuclear <i>awd2</i> gene had an unrealistic large number of ω_T
250	(999) due to a small value of d_S (< 0.0001). For <i>nad5</i> , the ω values of the four
251	<i>Euphaea</i> species were significantly different ($\chi^2 = 23.49$, $p = 0.0001$). The least
252	populous <i>E. yayeyamana</i> has the lowest ω of <i>nad5</i> (0.0085), indicating that this
253	species had experienced the strongest negative selection in nad5 among the four
254	Euphaea species; whereas E. formosa with a median-sized population has the highest
255	value of ω in <i>nad5</i> (0.0985), suggesting that it had experienced the weakest negative
256	selection. The ω of <i>EF1</i> α in <i>E. ornata</i> was significantly greater than 1 ($\omega = 1.25$; d _N :
257	0.0015, d_s : 0.0012), demonstrating that this gene may have experienced positive
258	selection in E. ornata.
259	The average value of ω of mitochondrial genes (at both population and species
260	level) were significantly lower than that of nuclear genes (at population level) ($p <$
261	0.001) (Fig. 1), suggesting that mitochondrial DNA (mtDNA) experienced stronger
262	negative selection than nuclear DNA (nuDNA). For species-level analyses of 13
263	mitochondrial protein-coding genes, the one ratio model (m0) described the variation
264	of ω values among species better than that of the four ratio model (m2) except for

265	<i>atp6</i> ($\chi^2 = 57.915$, $p < 0.0001$) (Appendix 4). All 13 mitochondrial genes were under
266	negative selection, except for <i>nad3</i> , showing a signature of positive selection and
267	having a ω_T of 11.6780, which was due to a small d _s value (d _N = 0.4461; d _s = 0.0382).
268	For <i>atp6</i> , the two medium-size <i>Euphaea</i> species (<i>E. formosa</i> and <i>E. ornata</i>) have
269	smaller ω values (0.0228 and 0.0001, respectively), whereas the most populous <i>E</i> .
270	decorata has the largest ω (0.5742) and the least populous <i>E. yayeyamana</i> has the
271	median value of ω (0.0422). Sliding window analyses revealed potential positive
272	selection between site 145-151 in <i>awd2</i> gene $(d_N - d_S > 0)$ (Fig. 2c). Among the eight
273	nuclear protein-coding genes (Fig. 2, a-h), $EF1\alpha$ and $opsin$ had experienced much
274	more frequent negative selection than the other nuclear genes, which had experienced
275	only sporadic negative selection among sites. A few nuclear codon sites had
276	experienced stronger negative selection ($d_N - d_S < -10$) than the others (e.g., codon
277	site 13 and 151 of <i>arr</i> , codon site 10 and 16 of <i>fer</i> , and codon site 250 of <i>sdhB</i>). The
278	sliding windows indicated that mitochondrial genes (cox2 and nad5) (Fig. 2, i & j)
279	had also experienced negative selection at most codon sites. Overall, negative
280	selection occurred much more often and widespread in mitochondrial than nuclear
281	genes.
282	Phylogeny and sequence divergence

283 Species tree reconstruction revealed two pairs of sister taxa, E. decorata + E.

284	ornata and E. formosa + E. yayeyamana (Appendix. 2), a result consistent with
285	previous studies (Huang & Lin, 2011; Lee & Lin, 2012). The shorter tree branches
286	leading to E. decorata and E. ornata than that of E. formosa and E. yayeyamana
287	suggest that E. ornata and E. decorata have diverged more recently than the split
288	between E. formosa and E. yayeyamana. The pairwise sequence divergence of
289	mitochondrial genes were approximately six times higher than that of nuclear genes
290	(average mt: 0.0928 ± 0.0054 ; average nu: 0.014 ± 0.0045) (Table 1). In the
291	comparison between each species, two sister taxa had relatively smaller pairwise
292	mutation rates than other comparison. The sibling species, E. decorata and E. ornata
293	had the most similar mutation rate. <i>Nad2</i> and $A+T$ -rich gene had the highest mutation
294	rate compared to other mitochondrial genes (Appendix 3).
295	Parsimony informative sites, consistency index
296	<i>Nad2</i> and $A+T$ -rich had the highest PI values (nad2= 0.129; $A+T$ -rich= 0.128)
297	among mitochondrial genes (Table 2). For nuclear genes, the intron of opsin and
298	<i>EF1</i> α had the highest PI values (<i>opsin</i> = 0.057; <i>EF1</i> α = 0.056). The PI values of introns
299	are all higher than exons in nuclear genes. The average PI values of all mitochondrial
300	genes (0.077 \pm 0.342) is two and eight fold higher than that of nuclear introns (0.039
301	\pm 0.0158) and exons (0.009 \pm 0.004), respectively, suggesting that the mitochondrial
302	genes are phylogenetically more informative than nuclear genes at species level.

303	Mitochondrial genes had overall higher CI (0.980 \pm 0.023) and on average
304	greater than that of nuclear genes (0.965 ± 0.091), but the differences was not
305	statistically significant (t= 0.561, p = 0.290) (Table 2). The nuclear exons appear to
306	have lower values of CI (0.973 \pm 0.054). These results suggested that mitochondrial
307	genes in general had lower amount of homoplasy than that of nuclear genes.
308	Relative substitution rates
309	For both mitochondrial and nuclear genes, the third codon sites had the highest
310	substitution rates, followed by the first codon sites, and the second codon sites
311	contained the lowest rates, excepts for the second codon sites of awd2 having the
312	highest rate among three codons (Fig. 3a). The relative substitution rates of nuclear
313	genes are significantly lower than that of mitochondrial genes (protein-coding and
314	non-coding) in the third codon sites ($p < 0.001$). As expected, the third codon position
315	of mitochondrial protein-coding genes had the highest substitution rates (Fig. 3a). For
316	non-coding region of mitochondrial genes, the substitution rate of $A+T$ -rich is higher
317	than that of the two ribosomal genes. The lowest rate (2.0612) of the third codon site
318	of mitochondrial <i>nad4l</i> is still three times higher than the highest rate in the 3rd codon
319	site of nuclear <i>fer</i> (0.663). The highest rate of the third codon of mitochondrial <i>atp6</i>
320	(4.3913) is about 44 times higher than the lowest rate in the third codon of nuclear
321	awd2 (0.0999). It was noticed that mitochondrial $A+T$ -rich had intermediate rate

between the third codon sites of mitochondrial protein-coding and nuclear genes.

323 *Rate heterogeneity among sites*

339

324	The α (shape of gamma distribution) showed consistent differences among
325	mitochondrial and nuclear genes. Higher values of α correspond to genes with smaller
326	rate heterogeneity among sites (e.g. a more even distribution of rates among sites). All
327	mitochondrial genes had higher α (approximately two fold) than that of nuclear genes
328	$(p < 0.001)$ (Fig. 3b). A+T-rich had the highest α (2.7769) correspond to a gene with
329	the most even distribution of rates among sites. Among mitochondrial protein-coding
330	genes, <i>nad2</i> has the highest α (2.0078), which is about three times higher than the
331	lowest α in <i>cox2</i> (0.7011). Nuclear introns and exons had equivalent low α , with exon
332	of $EF1\alpha$ the lowest (0.3485). These results showed that at species-level analyses, the
333	mitochondrial genes have less rate heterogeneity (more even rates) among sites than
334	that of nuclear exon and introns.
335	Proportion of invariant sites
336	Among mitochondrial genes, the highest Pi is in sr-RNA (0.7290), which is about
337	five times higher than the lowest Pi in nad2 (0.1520) (Table 2). Within nuclear genes,
338	the highest value of Pi (act: 0.9724) is twice higher than the intron of opsin (0.4658).

is higher than that of all mitochondrial genes (0.3687 \pm 0.1620) (p < 0.001). Except

The average Pi of both nuclear introns (0.6884 \pm 0.1459) and exons (0.9383 \pm 0.0276)

341 for *arr*, Pi of nuclear exons are all approaching one and larger than that of introns

342 suggesting all sites in exons are nearly invariable.

343 A+T-rich had the lowest Pi (0.0920) (Fig. 3c), suggesting approximately 90% of

344 sites are variable. The highest Pi of mitochondrial coding genes is *cox2* (0.4877),

345 whose Pi is three times higher than the lowest Pi in nad2 (0.1520).

346 *Transformation rate matrices (Q marix)*

There is obviously an overall higher transition rates than the transversion rates 347 for all genes analyzed (Fig. 4, Appendix 6). Among mitochondrial genes, transition 348 rates fall into different rates categories (AG vs. CT) in cox1, cox2, cox3 and nad1, 349 350 suggesting that these genes are more asymmetric in transition rates than the other 351 mitochondrial genes with one rate category (nad2, atp8, atp6, nad3-6, nad4l, cob, 352 *l-rRNA*, *s-rRNA* and *A+T-rich*) (Table 2, Fig. 4, Appendix 6). Whereas nuclear genes 353 all have more symmetric transition rates (only one rate category), except for $EF1\alpha$ 354 exon. Among transversion rates, mitochondrial nad2, cox1, cox3, l-rRNA and s-rRNA 355 were more asymmetric and had two rate categories, with the remaining mitochondrial 356 genes having one rate. In contrast, all nuclear exons and introns were inferred to have only one transversion rate category and frequently were in the same rate category as 357 transition rates (arr exon, awd2 intron, EF1a intron, mlc exon, opsin exon, sdhB exon, 358 *sdhB* intron), indicating they had more symmetric rate matrix. The highest skew in 359

360	transformation rate matrix occurred in cox1 and cox3 (4 rate category), relative rate of
361	CT= 0.6394 and 0.5701 (Fig. 4, Appendix 6), which are 63 and 30 times higher than
362	the lowest rate of CG= 0.0101 and 0.0189 , respectively, likely due to an excess of CT
363	transition.
364	Correlation among parameters
365	There was a significant negative correlation between α and Pi ($r^2 = 0.6017$; $p <$
366	0.001) (Fig. 5a), suggesting that genes have more sites grouped into invariant sites
367	(higher Pi), the remaining sites tend to show more rate heterogeneity (lower α). Alpha
368	(α), the shape parameter of gamma distribution, showed a significant positive
369	correlation with PI sites ($r^2 = 0.6112$; $p < 0.001$), suggesting that genes with less rate
370	heterogeneity (higher α) such as mitochondrial <i>A</i> + <i>T</i> - <i>rich</i> and <i>nad2</i> has more
371	informative sites than many mitochondrial and nuclear genes (Fig. 5b). Although the
372	majority of mitochondrial genes and nuclear introns have a base composition of
373	approximately 70% A+T. The relative substitution rate had a significant positive
374	correlation with base composition (A+T %) ($r^2 = 0.4944$; $p < 0.001$) (Fig. 5c). PI, the
375	parsimony informative sites, was positively correlated with relative substitution rate
376	$(r^2 = 0.6721; p < 0.001)$ (Fig. 5d), suggesting that the genes with higher relative
377	substitution rate showed also have higher informative sites. The correlation between
378	CI, the consistency index, has both not significant with relative substitution rate ($r^2 =$

approach 1. 380 381 382 Discussion Our results indicated that the majority of mitochondrial and nuclear genes 383 experienced frequent negative selection, with exception of potential positive selection 384 in $EF1\alpha$ at species level and *nad3* at population level. The main selective force 385 driving the sequence variation in mitochondrial and nuclear genes was negative 386 387 selection rather than positive selection (genetic draft) as proposed by earlier studies (Bazin et al., 2006, Mulligan et al., 2006). The proteins transcribed by mitochondrial 388 389 genes are important in energy metabolism and related to the electron transport chains, 390 therefore the mutation in mitochondrial genes was expected to be under strong negative selection. Most mutations in mitochondrial and nuclear coding genes were 391 392 likely deleterious and removed by negative selection from evolving lineages 393 (Eyre-Walker & Keightley, 2007; Martincorena & Luscombe, 2012). We found evidences to suggest that mitochondrial genes had experienced stronger negative 394 selection than nuclear genes, despite population sizes of mitochondrial genes are one 395 396 fourth of that of nuclear genes. However, the strength of negative selection did not correlate with the population sizes, suggesting that population sizes of *Euphaea* 397 species did not predict the strength of selection on sequence variation. Therefore, the 398

0.0001; p = 0.8614) and alpha (α) ($r^2 = 0.0066$; p = 0.6636) because all CI values

379

399	comparative analysis of pattern of selection in mitochondrial and nuclear genes of
400	Euphaea species does not support the hypothesis that genetic draft by positive
401	selection is more frequent in species with larger population sizes and in genes with
402	smaller effective population sizes such as mitochondrial genes.
403	Although the barcoding region of COI gene is a widely used genetic marker in
404	species identification (over 464 thousand reference sequences of animals in the
405	Barcode of Life Data System, http://www.boldsystems.org), the successful
406	identification rate for closely related species were low (Hebert et al., 2003; Elias et al.,
407	2007; Rockney et al., 2015). Studies showed that the variation of this region was
408	better used for identifying distantly related species (Vences et al., 2005d) rather than
409	distinguishing sister taxa (Meier et al., 2006). According to our data, the barcoding
410	region of COI gene also had a medium substitution rate, α and Pi ratio among all
411	mitochondrial genes.
412	Previous study showed that the fixation happened in species can cause unique
413	haplotype for species delimitation (Roe & Sperling, 2007b). Another study also
414	showed that the mtDNA and ribosomal DNA had higher haplotype fixation than
415	nuDNA (Dupuis et al., 2012), suggesting these two gene groups will be more efficient
416	in species delimitation. Among mitochondrial and nuclear genes, mitochondrial
417	protein-coding gene, <i>nad2</i> and non-coding A+T-rich exhibit higher phylogenetic

418	utility than the others. A recent study of choosing genetic markers showed that some
419	mtDNA (nad1, nad2, nad4, nad5 and l-rRNA) recovered more monophyletic insect
420	taxa (McDonagh et al., 2016). A previous study suggested that mitochondrial control
421	region $(A+T-rich)$ is too conserve to be a good marker for constructing deep
422	intraspecies phylogeny, but it can delimitate close sister taxa (Zhang & Hewitt, 1997).
423	According to our result, $A+T$ -rich exhibits the best quality for phylogenetic analyses,
424	including the highest α , relative rate at species level, which suggesting <i>A</i> + <i>T</i> - <i>rich</i>
425	carries more information than other mtDNA. Also, the high relative substitution rate
426	of $A+T$ -rich suggests that can solve relationship of recent diverged species.
427	Previous studies mainly focus on selecting genetic markers suitable for
428	constructing deep phylogenetic splits of insect taxa (Lin & Danforth, 2004; Danforth
429	et al., 2005; McDonagh et al., 2016). Our study provided a comprehensive ranking of
430	mitochondrial genes for phylogenetic and population genetics analyses of odonates at
431	species level. This information can provide a useful guide for the selection of
432	mitochondrial genes that best fit the level of divergence in insects of interest.
433	Acknowledgement
434	We thank Ming-Yu Chen for sequencing mitochondrial genomes; Jo-Fan Wang
435	for helps of data analyses. Jen-Pen Huang for provides specimens. This project was
436	supported by the National Science Council of Taiwan (NSC

437 100-2311-B-029-004-MY3).

440	References
441	Ballard, J.W.O. and Whitlock, M.C. (2004) The incomplete natural history of
442	mitochondria. Mol Ecol 13: 729–744.
443	
444	Bazin, E., Glémin, S., and Galtier, N. (2006) Population size does not influence
445	mitochondrial genetic diversity in animals. Science 312: 570–572.
446	
447	Danforth, B.N., Sipes, S., Fang, J. and Brady, S.G. (2006) The history of early bee
448	diversification based on five genes plus morphology. P Natl Acad Sci 103:
449	15118–15123.
450	
451	Drummond, A.J., Suchard, M.A., Xie, D. and Rambaut, A. (2012) Bayesian
452	phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973.
453	
454	Dupuis, J.R., Roe, A.D. and Sperling, F.A.H. (2012) Multi-locus species delimitation
455	in closely related animals and fungi: one marker is not enough. <i>Mol Ecol</i> 21 :
456	4422–4436.
457	

458 Elias, M., Hill, R.I., Willmott, K.R., Dasmahapatra, K.K., Brower, A.V.Z., Mallet, J.

459	and Jiggins, C.D. (2007) Limited performance of DNA barcoding in a diverse
460	community of tropical butterflies. Proc R Soc B 274: 2881–2889.
461	
462	Eyre-Walker, A. and Keightley, P.D. (2007) The distribution of fitness effects of new
463	mutations. <i>Nature</i> 8: 610–618.
464	
465	Frankham, R. (1996) Relationship of genetic variation to population size in wildlife.
466	Conserv Biol 10: 1500–1508.
467	
468	Galtier, N., Nabholz, B., Glémin, S., and Hurst, G.D.O. (2009) Mitochondrial DNA as
469	a marker of molecular diversity: a reappraisal. Mol Ecol 18: 4541–4550.
470	
471	Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D. and Bairoch, A.
472	(2003) ExPASy: the proteomics server for in-depth protein knowledge and
473	analysis. Nucleic Acids Res 31: 3784–3788.
474	
475	Halliburton, R. (2004) Introduction to population genetics. Pearson Education Inc,
476	Upper Saddle River, New Jersey.
477	

478	Hauser, L., Adcock, G.J., Smith, P.J., Ramírez, J.H.B. and Carvalho, G.R. (2002) Loss
479	of microsatellite diversity and low effective population size in an overexploited
480	population of New Zealand snapper (Pagrus auratus). P Natl Acad Sci 99:
481	11742–11747.
482	
483	Hebert, P.D.N., Ratnasingham, S. and deWaard, J.R. (2003) Barcoding animal life:
484	cytochrome c oxidase subunit 1 divergences among closely related species. T
485	<i>Roy Soc</i> 270 : S96–S99.
486	
487	Heller, R., Okello, J.B.A. and Siegismund, H. (2010) Can small wildlife
488	conservancies maintain genetically stable populations of large mammals?
489	Evidence for increased genetic drift in geographically restricted populations of
490	Cape buffalo in East Africa. Mol Ecol 19: 1324–1334.
491	
492	Huang, J.P. and Lin, C.P. (2011) Lineage-specific late pleistocene expansion of an
493	endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan.
494	<i>BMC Evol Biol</i> doi: 10.1186/1471-2148-11-94.
495	

496 Huelsenbeck, J.P. and Ronquist, F.R. (2001) MrBayes: Bayesian inference of

497	phylogenetic trees. <i>Bioinformative</i> 17: 754–755.
498	
499	Lee, Y.H. and Lin, C.P. (2012) Pleistocene speciation with and without gene flow in
500	Euphaea damselflies of subtropical and tropical East Asian islands. Mol Ecol
501	21 : 3739–3756.
502	
503	Librado, P. and Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of
504	DNA polymorphism data. <i>Bioinformative</i> 25 : 1451–1452.
505	
506	Lin, C.P. and Danforth, B.N. (2004) How do insect nuclear and mitochondrial genes
507	substitution patterns differ? Insights from Bayesian analysis of combined
508	datasets. Mol Phylogenet Evol 30: 686–702.
509	
510	Lin, C.P., Chen, M.Y. and Huang, J.P. (2010) The complete mitochondrial genome
511	and phylogenomics of a damselfly, Euphaea formosa support a basal Odonata
512	within the Pterygota. Gene 468: 20–29.
513	
514	Luikart, G., Ryman, N., Tallmon, D.A., Schwartz, M.K. and Allendorf, F.W. (2010)
515	Estimation of census and effective population sizes: the increasing usefulness

516	of DNA-based approaches. Conserv Genet 11: 355–373.
517	
518	Martincorena, I. and Luscombe, N.M. (2012) Non-random mutation: the evolution of
519	targeted hypermutation and hypomutation. <i>Bioessays</i> 35 : 123–130.
520	
521	McDonagh, L.M., West, H., Hrrison, J.W. and Stevens, J.R. (2016) Which
522	mitochondrial gene (if any) is best for insect phylogenetics? Insect Syst Evol
523	doi:10.1163/1876312X-47032142
524	
525	Meiklejohn, C.D., Montooth, K.L. and Rand, D.M. (2007) Positive and negative
526	selection on the mitochondrial genome. Trends Genet 23: 259–263.
527	
528	Meier, R., Shiyang, K., Vaidya, G. and NG, P.K.L. (2006) DNA Barcoding and
529	Taxonomy in Diptera: A Tale of High Intraspecific Variability and Low
530	Identification Success. Syst Biol 55: 715–728.
531	
532	Miyata, T. and Yasunaga, T. (1980) Molecular evolution of mRNA: a method for
533	estimating evolutionary rates of synonymous and amino acid substitutions from
534	homologous nucleotide sequences and its application. J Mol Evol 16: 23–36.

536	Miller, C.R. and Waits, L.P. (2003) The history of effective population size and
537	genetic diversity in the Yellowstone grizzly (Ursus arctos): implcations for
538	conservation. Proc Natl Acad Sci USA 100: 4334–4339.
539	
540	Moriyama, E.N. and Gojobori, T. (1992) Rates of synonymous substitution and base
541	composition of nuclear genes in Drosophila. Genetics 130: 855–864.
542	
543	Mulligan, C.J., Kitchen, A. and Miyamoto, M.M. (2006) Comment on "population
544	size does not influence mitochondrial genetic diversity in animals". Science 314:
545	1390.
546	
547	Nielsen, R. and Slatkin, M. (2013) An introduction to population genetics. Sinauer
548	Associates Inc, Sunderland, Massachusetts.
549	
550	Papadopoulou, A., Anastasiou, I. and Vogler, A.P. (2010) Revisiting the insect
551	mitochondrial molecular clock: the mid-aegean trench calibration. Mol Biol
552	<i>Evol</i> 27 : 1659–1672.
553	

554	Piganeau, G. and Eyre-Walker, A. (2009) Evidence for variation in the effective
555	population size of animal mitochondrial DNA. PLoS One 4: e4396.
556	
557	Rambaut, A., Suchard, M., Xie, D. and Drummond, A. (2014) Tracer v1.6. Available
558	from http://beast.bio.ed. ac.uk/Tracer.
559	
560	Rockney, H.J., Ofori-Boateng, C., Porcino, N. and Leaché, A.D. (2015) A comparison
561	of DNA barcoding markers in West African frogs. <i>Afr J Herpetol</i> 64 : 135–147.
562	
563	Roe, A.D. and Sperling, F.A.H. (2007b) Blackwell publishing ltd population structure
564	and species boundary delimitation of cryptic Dioryctria moths: an integrative
565	approach. <i>Mol Ecol</i> 16 : 3617–3633.
566	
567	Roman, J. and Palumbi, S.R. (2003) Whales before whaling in the North Atlantic.
568	<i>Science</i> 301 : 508–510.
569	
570	Roux, J., Privman, E., Moretti, S., Daub, J.T., Robinson-Rechavi, M. and Keller, L.
571	(2014) Patterns of Positive Selection in Seven Ant Genomes. <i>Mol Biol Evol</i> 31 :
572	1661–1685.

574	Simon, C., Frati F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P. (1994)
575	Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences
576	and a compilation of conserved polymerase chain reaction primers. Ann
577	Entomol Soc Am 87: 651–701.
578	
579	Simon, C., Bucklry, T.R., Frati, F. Stewart, J.B. and Beckenbach, A.T. (2006)
580	Incorporating molecular evolution into phylogenetic analysis, and a new
581	compilation of conserved polymerase chain reaction primers for animal
582	mitochondrial DNA. Annu Rev Ecol Evol Syst 37: 545–579.
583	
584	Tajima, F. and Nei, M. (1984). Estimation of evolutionary distance between
585	nucleotide sequences. Mol Biol Evol 1: 269–285.
586	
587	Tamura, K., Peterson, D., Peterson, N., Stecher G., Nei, M. and Kumar, S. (2011)
588	MEGA5: Molecular evolutionary genetics analysis using maximum likelihood,
589	evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:
590	2731–2739.

592	Tamura, K., Stecher G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6:
593	Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725-
594	2729.
595	
596	Vences, M., Thomas, M., Bonett, R.M. and Vieites, D.R. (2005) Deciphering
597	amphibian diversity through DNA barcoding: chances and challenges. <i>Philos T</i>
598	<i>Roy Soc B</i> 360 : 1859–1868.
599	
600	Wright, S. (1931) Evolution in Mendelian populations. Genetics 16: 97–159.
601	
602	Yamauchi, M.M., Miya, M.U. and Nishida, M. (2004) Use of a PCR-based approach
603	for sequencing whole mitochondrial genomes of insects: two example
604	(cockroach and dragonfly) based on the method developed for decapod
605	crustaceans. Insect Mol Biol 13: 435–442.
606	
607	Yang, Z. and Bielawski, J.P. (2000) Statistical methods for detecting molecular
608	adaptation. Trends Ecol Evol 15: 496–503.
609	
610	Yang, Z. (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol

Evol **24**: 1586–1591.

613	Zhang, D. and Hewitt,	G.M. (1997) Ins	sect mitochondrial	control region: A	review of
	U ,	. , ,		U	

- 614 its structure, evolution and usefulness in evolutionary studies. *Biochem Syst*
- *Ecol* **25**: 99–120.

Gene	<i>E. y.</i> vs <i>E. d</i> .	<i>E. y.</i> vs <i>E. o</i> .	<i>E. f.</i> vs. <i>E. d</i> .	<i>E. f.</i> vs <i>E. o.</i>	<i>E. f.</i> vs <i>E. y.</i>	<i>E. d.</i> vs <i>E. o.</i>	Average
Nuclear							
act	0.0087 ± 0.0028	0.0087 ± 0.0028	0.0084 ± 0.0014	0.0084 ± 0.0014	0.0063 ± 0.0028	0.0012 ± 0.0014	0.028 ± 0.007
arr	0.0254 ± 0.0075	0.0227 ± 0.0047	0.0393 ± 0.0075	0.0345 ± 0.0073	0.0218 ± 0.0065	0.0244 ± 0.0084	0.0069 ± 0.0021
awd2	0.0033 ± 0.0038	0.0055 ± 0.005	0.0055 ± 0.005	0.0059 ± 0.0052	0.0055 ± 0.005	0.0055 ± 0.005	0.0099 ± 0.0022
EF1a	0.0137 ± 0.0017	0.0112 ± 0.0025	0.0138 ± 0.0016	0.0114 ± 0.0024	0.0044 ± 0.0022	0.0048 ± 0.0029	0.0197 ± 0.0054
fer	0.0176 ± 0.0048	0.0223 ± 0.0063	0.0224 ± 0.0047	0.0233 ± 0.0059	0.0164 ± 0.0035	0.0162 ± 0.0069	0.0121 ± 0.0061
mlc	0.0189 ± 0.0078	0.0168 ± 0.0064	0.0125 ± 0.0063	0.0104 ± 0.0036	0.0062 ± 0.0063	0.0076 ± 0.0061	0.0127 ± 0.0028
opsin	0.0177 ± 0.0042	0.0177 ± 0.0034	0.0153 ± 0.0034	0.0159 ± 0.0014	0.0033 ± 0.0021	0.006 ± 0.0023	0.0174 ± 0.006
sdhB	0.0185 ± 0.0063	0.0164 ± 0.0052	0.0224 ± 0.007	0.0204 ± 0.0059	0.0211 ± 0.0063	0.0059 ± 0.0051	0.0052 ± 0.0048
Average	0.0155 ± 0.0049	0.0152 ± 0.0045	0.0175 ± 0.0046	0.0163 ± 0.0041	0.0106 ± 0.0043	0.0089 ± 0.0047	0.014 ± 0.0045
Mitochondrial							
cox2	0.1042 ± 0.0058	0.0978 ± 0.0062	0.1093 ± 0.0038	0.1086 ± 0.0045	0.0689 ± 0.0137	0.0136 ± 0.0037	0.0837 ± 0.0063
nad5	0.1395 ± 0.0036	0.1357 ± 0.003	0.1302 ± 0.0028	0.1304 ± 0.0028	0.0593 ± 0.0125	0.0158 ± 0.0022	0.1018 ± 0.0045
Average	0.1219 ± 0.0047	0.1167 ± 0.0046	0.1198 ± 0.0033	0.1195 ± 0.0037	0.0641 ± 0.0131	0.0147 ± 0.0029	0.0928 ± 0.0054

 $\times 10^{-8}$ and 1.2×10^{-8} mutation /site/year of *cox1* and *arr* were used for calibration of sequence divergence in mitochondrial and nuclear genes, respectively.

Table 2. Summary of parameters of phylogenetic analyses of mitochondrial and nuclear genes. PI sites:

621 parsimony informative sites; CI: consistency index, Pi: proportion of invariant sites, α : shape of gamma

		A+1%	PI sites	CI ^a	Pi	α		model	
							TS	TV	total
Mt coding									
nad2	990	74.1	0.129	0.984	0.1520	2.0078	а	b, c	3
cox1	1548	64.3	0.089	0.972	0.3411	1.1163	a, b	c, d	4
cox2	688	67.8	0.044	1	0.4877	0.7011	a, b	c	3
atp8	159	77.2	0.006	1	0.3157	1.2044	а	b	2
atp6	675	69.9	0.070	1	0.2695	1.3661	а	b	2
cox3	787	64.6	0.088	0.986	0.3081	1.1830	a, b	c, d	4
nad3	354	70.5	0.118	0.953	0.2721	1.3405	а	b	2
nad5	1723	70.3	0.076	0.978	0.3604	0.7979	а	b	2
nad4	1344	71.6	0.081	0.956	0.3897	1.0041	а	b	2
nad4l	294	73.4	0.069	0.952	0.4180	0.8899	а	b	2
nad6	498	73.0	0.103	1	0.2657	1.3477	а	b	2
cob	1134	68.5	0.045	0.927	0.4712	0.7676	а	b	2
nad1	951	69.1	0.073	0.958	0.3831	1.0008	a, b	c	3
$Mean \pm SD$		70.3 ± 3.7	0.076 ± 0.0324	0.9743 ± 0.0236	0.3411 ± 0.0921	1.1329 ± 0.3467			
Mt non-coding	ŗ.								
l-rRNA	1291	68.9	0.053	1	0.6433	0.7835	а	b, c	3
s-rRNA	781	73.9	0.050	1	0.7290	0.7498	а	b, c	3
A+T-rich	1109	81.6	0.128	0.993	0.0920	2.7769	а	b	2
$Mean \pm SD$		74.8 ± 6.4	0.077 ± 0.0442	0.9977 ± 0.004	0.4881 ± 0.3457	1.4367 ± 1.1607			
Nu exon									
act	423	44.0	0.007	1	0.9724	0.5120	а	b	2
arr	303	45.9	0.007	1	0.8836	0.6937	а	а	1
awd2	153	54.9	0.007	1	0.9566	0.7341	а	b	2
EF1α	708	48.1	0.007	1	0.9543	0.3485	a, b	с	3
fer	333	52.9	0.018	0.667	0.9219	0.7074	а	b	2
mlc	162	46.9	0.006	1	0.9513	0.6243	а	а	1
opsin	309	46.3	0.01	1	0.9405	0.6161	а	а	1
sdhB	200	55.5	0.01	1	0.9261	0.6304	а	а	1
Mean ± SD		49.3 ± 4.4	0.009 ± 0.0039	0.9584 ± 0.1177	0.9383 ± 0.0276	0.6083 ± 0.1256			

622	distribution.	Substitution	rate categories	refer to Fig.	4 and Append	lix 6.
			U	U	11	

Nu intron

arr	1039	60.1	0.038	0.952	0.6967	0.7525	а	b	2
awd2	211	76.8	0.043	1	0.7687	0.6882	a	а	1
EF1α	252	68.5	0.056	1	0.6061	0.7656	a	а	1
fer	879	64.3	0.043	1	0.7612	0.7358	a	b	2
mlc	731	68.9	0.016	0.857	0.6030	0.6811	a	b	2
opsin	1075	69.4	0.057	1	0.4658	0.8496	a	b	2
sdhB	200	71.5	0.02	1	0.9170	0.5991	a	а	1
$Mean \pm SD$		68.5 ± 5.3	0.039 ± 0.016	0.9728 ± 0.0540	0.6884 ± 0.1459	0.7246 ± 0.0788			

^a Excluding un-informative sites

626	Figure 1. The ω (nonsynonymous/ synonymous substitution ratio, d_N/d_S) of nuclear
627	and mitochondrial genes on population and species level. The ω of nuclear genes
628	(0.102 ± 0.0451) is significantly different with that of mitochondrial genes at
629	population (0.003 \pm 0.0336) and species (0.029 \pm 0.0812) level (Tukey test).
630	Figure 2. Sliding window analyses of $d_N - d_S$ of nuclear (a-h) and mitochondrial (i-j)
631	genes. The arrows indicate codon sites with $d_N - d_S$ smaller than -10 .
632	Figure 3. (a) Relative rate among codon sites of mitochondrial protein-coding,
633	non-coding and nuclear genes estimated in GTR+SSR model. (b) The shape of
634	gamma distribution (α) of mitochondrial protein-coding, non-coding and nuclear
635	genes estimated in GTR+I+G model. (c) The proportion of invariant sites (Pi) of
636	mitochondrial protein-coding, non-coding and nuclear genes estimated in GTR+I+G
637	model.
638	Figure 4. Examples of the transformation rate matrix in selected mitochondrial and
639	nuclear genes (mean \pm 95% credibility interval, CI). The alphabet above the bars
640	represents the rate categories estimated in model selection of MEGA.
641	Figure 5. (a) Relationship between α (the shape of gamma distribution) and Pi
642	(estimated proportion of invariant sites). (b) Relationship between α and PI
643	(parsimony informative sites). (c) Relationship between relative substitution rate and
644	A+T bias. (d) Relationship between PI and relative rate. All regressions are significant

645 (P<0.001).

646 Fig. 1

659 Fig. 3

(a)

661 Fig. 4

		Accession	Haplotype	
Gene	Species	numbers (Lee &	numbers in	Non-submittee
Uche	Species	Lin 2012; Haung	Haung & Lin	species numbe
		& Lin 2011)	2011	
cox2	E. yayeyamana	JF918938.1		
		JF918959.1		
		JF918956.1		
		JF918955.1		
		JF918953.1		
		JF918951.1		
		JF918941.1		
	E. formosa	EU603537.1	H46	
		EU603535.1	H01	
		EU603538.1	H20	
		EU603527.1	H17	
		EU603539.1	H39	
		EU603540.1	H24	
		EU603541.1	H14	
		EU603563.1	H31	
		EU603562.1	H33	
		EU603561.1	H36	
		EU603559.1	H49	
		EU603558.1	H45	
		EU603556.1	H26	
	E. ornata	JN793716.1		
		JN793717.1		
		JN793718.1		
		JN793719.1		
		JN793721.1		
		JN793724.1		
		JN793728.1		
		JN793729.1		
		JN793731.1		
	E. decorata	JN793699.1		

668 mitochondrial and eight nuclear genes used in this study.

667

Appendix 1. Information of specimens and GenBank accession numers of two

		JN793700.1	
		JN793704.1	
		JN793710.1	
		JN793713.1	
		JN793715.1	
			EfAa12wi
nad5	E. yayeyamana	JQ974328.1	
		JQ974330.1	
		JQ974332.1	
		JQ974334.1	
		JQ974335.1	
		JQ974337.1	
		JQ974339.1	
		JQ974340.1	
		JQ974341.1	
		JQ974343.1	
	E. formosa	JQ974312.1	
		JQ974313.1	
		JQ974314.1	
		JQ974315.1	
		JQ974316.1	
		JQ974318.1	
		JQ974319.1	
		JQ974320.1	
		JQ974321.1	
		JQ974326.1	
		JQ974327.1	
	E. ornata	JQ974360.1	
		JQ974361.1	
		JQ974362.1	
		JQ974363.1	
		JQ974364.1	
		JQ974365.1	
		JQ974367.1	
		JQ974368.1	
		JQ974370.1	
		JQ974372.1	
		JQ974373.1	

		JQ974374.1	
	E. decorata	JQ974344.1	
		JQ974350.1	
		JQ974353.1	
		JQ974354.1	
		JQ974356.1	
		JQ974357.1	
		JQ974359.1	
			EfAa1
			EfAa2
			EfBa1
			EfBa5
			EfBa12
			EfDa4
			EfTa3
			TW1
act	E. yayeyamana	JN389860.1	
		JN389857.1	
	E. formosa	JN389838.1	
		JN389839.1	
		JN389843.1	
		JN389854.1	
	E. ornata	JN389814.1	
		JN389818.1	
	E. decorata	JN389796.1	
		JN389799.1	
			EfAa1
			EfBa2
			EfBa5
arr	E. yayeyamana	JN389890.1	
		JN389891.1	
		JN389892.1	
		JN389894.1	
		JN389896.1	
		JN389898.1	
		JN389899.1	
	E. formosa	JN389875.1	
		JN389876.1	

		JN389877.1
		JN389883.1
	E. ornata	JN389930.1
		JN389932.1
		JN389933.1
		JN389937.1
		JN389938.1
		JN389939.1
		JN389941.1
		JN389942.1
		JN389943.1
	E. decorata	JN389909.1
		JN389910.1
		JN389911.1
		JN389912.1
		JN389913.1
		JN389914.1
		JN389915.1
		JN389916.1
		JN389917.1
		JN389918.1
		JN389923.1
awd2	E. yayeyamana	JN246946.1
		JN246952.1
		JN246960.1
	E. formosa	JN246927.1
		JN246928.1
	E. ornata	JN246984.1
		JN246987.1
		JN246997.1
	E. decorata	JN246963.1
		JN246967.1
EF1α	E. yayeyamana	JN389968.1
		JN389969.1
		JN389971.1
		JN389974.1
		JN389975.1
	E. formosa	JN389950.1

		JN389951.1
		JN389952.1
	E. ornata	JN390008.1
		JN390014.1
		JN390022.1
	E. decorata	JN389988.1
		JN389993.1
		JN390003.1
fer	E. yayeyamana	JN390052.1
		JN390055.1
		JN390058.1
		JN390076.1
	E. formosa	JN390028.1
		JN390032.1
		JN390038.1
		JN390046.1
		JN390047.1
		JN390051.1
	E. ornata	JN390097.1
		JN390099.1
		JN390105.1

JN390106.1 JN390107.1

JN390077.1 JN390079.1 JN390080.1 JN390082.1 JN390090.1

EfAa9

		JIN370070.1
		JN390091.1
		JN390093.1
		JN390094.1
mlc	E. yayeyamana	JN390133.1
	E. formosa	JN390111.1
		JN390119.1
		JN390125.1
	E. ornata	JN390172.1
		JN390179.1

E. decorata

		JN390191.1
	E. decorata	JN390153.1
		JN390157.1
		JN390168.1
opsin	E. yayeyamana	JN390214.1
	E. formosa	JN390196.1
		JN390197.1
		JN390200.1
		JN390202.1
		JN390204.1
		JN390206.1
	E. ornata	JN390253.1
		JN390254.1
		JN390255.1
		JN390256.1
		JN390261.1
		JN390263.1
	E. decorata	JN390230.1
		JN390231.1
		JN390232.1
		JN390234.1
		JN390240.1
		JN390249.1
sdhB	E. yayeyamana	JN390295.1
		JN390296.1
		JN390297.1
	E. formosa	JN390274.1
		JN390275.1
		JN390276.1
		JN390277.1
		JN390278.1
		JN390279.1
		JN390281.1
		JN390283.1
		JN390291.1
	E. ornata	JN390326.1
		JN390329.1
	E. decorata	JN390312.1

Appendix 2. Species phylogeny of the four *Euphaea* species reconstructed in BEAST based on 13 protein-coding, two ribosomal, and A+T-*rich* genes of mitochondrial genomes and eight nuclear genes.

Appendix 3. Mutation rates of mitochondrial genes between *Euphaea* species calculated using Tajima-Nei model in MEGA. The mutation rate of 1.77×10^{-8}

Gene	<i>E. y.</i> vs <i>E. d</i> .	<i>E. y.</i> vs <i>E. o</i> .	<i>E. f.</i> vs. <i>E. d</i> .	<i>E.f.</i> vs <i>E. o.</i>	<i>E. f.</i> vs <i>E.</i> y.	<i>E. d.</i> vs <i>E. o.</i>	Average
atp8	0.3659	0.3312	0.0114	0.0114	0.3475	0.0231	0.1818 ± 0.1827
atp6	0.3369	0.2513	0.2794	0.1980	0.1061	0.1095	0.2135 ± 0.0934
coxl	0.2309	0.2279	0.2429	0.2443	0.0967	0.0185	0.1769 ± 0.0958
cox2	0.1606	0.1514	0.1389	0.1300	0.1037	0.0130	0.1163 ± 0.0543
cox3	0.2567	0.2713	0.2026	0.2195	0.0998	0.0182	0.1780 ± 0.0989
cob	0.2087	0.2027	0.1151	0.1240	0.1347	0.0222	0.1346 ± 0.0682
nad1	0.2017	0.2158	0.1958	0.1954	0.1013	0.0113	0.1535 ± 0.0809
nad2	0.3370	0.3599	0.3457	0.3578	0.1031	0.0273	0.2552 ± 0.1493
nad3	0.2923	0.2919	0.3199	0.2906	0.0855	0.0311	0.2185 ± 0.1258
nad4	0.1983	0.2067	0.2181	0.2146	0.0735	0.0255	0.1561 ± 0.0842
nad4l	0.1777	0.1622	0.1694	0.1697	0.0702	0.0123	0.1269 ± 0.0690
nad5	0.2300	0.2226	0.2149	0.2184	0.0983	0.0240	0.1680 ± 0.0862
nad6	0.2509	0.2513	0.2509	0.2513	0.0631	0.0108	0.1797 ± 0.1118
s-rRNA	0.1099	0.1022	0.1101	0.1023	0.0093	0.0117	0.0743 ± 0.0495
l-rRNA	0.1250	0.1252	0.1295	0.1297	0.0352	0.0097	0.0924 ± 0.0548
A+T-rich	0.4627	0.5097	0.4696	0.5144	0.0977	0.0739	0.3547 ± 0.2094
Average	0.2466 ± 0.0936	0.2427 ± 0.0996	0.2134 ± 0.1087	0.2107 ± 0.1147	0.1016 ± 0.0722	0.0276 ± 0.0267	0.1738 ± 0.0670

and 1.2×10^{-8} mutation /site/year of *cox1*.

Appendix 4. The organization of mitochondrial genomes of four *Euphaea* species. trn: transfer RNA labelled by the one-letter amino acid code; inc: intergenic nucleotide, negative inc values are overlapping nucleotide sequences of different genes; s1-s4: intergenic spacers; l-rRNA: large subunit of ribosomal gene;

	Stra nd		Posi	tion			Leng	th		Start	Stop		Inc	2			A+T	(%)	
		<i>E. d.</i>	Е. о.	<i>E. f.</i>	Е. у.	<i>E. d.</i>	Е. о.	<i>E. f.</i>	Е. у.			<i>E. d.</i>	Е. о.	E. f.	Е. у.	<i>E. d.</i>	Е. о.	<i>E. f.</i>	Е. у.
trnI	+	167	167	166	166	67	67	66	66			3	3	3	3	65.7	65.7	62.1	62.1
trnQ	-	71138	71138	70137	70137	68	68	68	68			0	0	-1	-1	72.1	70.6	70.5	67.6
<i>trnM</i>	+	139207	139207	137205	137205	69	69	69	69			6	6	6	6	72.5	73.9	69.5	72.5
nad2	+	2141203	2141203	2121201	2121201	990	990	990	990	ATA	TAA	-2	-2	1	1	75.6	74.8	72.3	73.8
trnW	+	12021271	12021271	12031272	12031272	70	70	70	70			0	0	0	0	82.9	82.9	75.7	75.7
s1		12721287	12721287	12731290	12731290	16	16	18	18			0	0	0	0	68.7	68.7	66.7	72.2
trnC	-	12881351	12881351	12911354	12911354	64	64	64	64			0	0	0	0	71.9	71.9	68.7	70.3
trnY	-	13521423	13521423	13551425	13551425	72	72	71	71			0	0	0	0	69.4	70.8	64.8	66.2
s2		14241458	14241458	14261460	14261460	35	35	35	35			0	0	0	0	85.7	85.7	80	82.9
cox1	+	14593006	14593006	14613008	14613008	1548	1548	1548	1548	ATA	TAA	-5	-5	-5	-5	64.8	64.6	64.1	63.8
trnL1	+	30023073	30023073	30043074	30043074	72	72	71	71			0	0	0	0	66.7	65.3	63.4	63.4
cox2	+	30743761	30743761	30753762	30753762	688	688	688	688	ATG	T(aa)	0	0	0	0	67.7	68.5	67	67.9
trnK	+	37623833	37623833	37633834	37633834	72	72	72	72			-1	-1	-1	-1	66.7	66.7	65.3	66.7
trnD	+	38333898	38333898	38343900	38343900	66	66	67	67			0	0	0	0	84.8	84.8	83.6	85.1
atp8	+	38994057	38994057	39014059	39014059	159	159	159	159	ATC	TAA	-4	-4	-4	-4	76.7	78	76.7	77.4
atp6	+	40544728	40544728	40564730	40564730	675	675	675	675	ATA	TAA	-1	-1	-1	-1	69	70.1	70	70.4
cox3	+	47285514	47285514	47305516	47305516	787	787	787	787	ATG	T(aa)	0	0	0	0	64.8	64	64.7	64.9
trnG	+	55155583	55155583	55175584	55175584	69	69	68	68			0	0	0	0	73.9	72.5	77.9	79.4
nad3	+	55845937	55845937	55855938	55855938	354	354	354	354	TTG	TAA	-1	-1	-1	-1	70.3	70.3	71.7	69.8
trnA	+	59376004	59376004	59386005	59386005	68	68	68	68			-1	-1	-1	-1	73.5	73.5	72	69.1
trnR	+	60046067	60046067	60056068	60056068	64	64	64	64			2	2	2	2	73.4	73.4	73.4	73.4
trnN	+	60706136	60706136	60716137	60716136	67	67	67	66			-1	-1	-1	-1	74.6	74.6	73.1	72.7
trnS1	+	61366206	61366206	61376207	61366206	71	71	71	71			1	1	1	1	63.4	64.8	64.8	64.8
trnE	+	62086274	62086274	62096275	62086274	67	67	67	67			-2	-2	-2	-2	82.1	82.1	82.1	80.6
trnF	-	62736340	62736340	62746342	62736341	68	68	69	69			2	2	2	2	70.6	72.1	71	71
nad5	-	63438065	63438065	63458067	63448066	1723	1723	1723	1723	ATT	T(aa)	0	0	1	0	69.7	69.8	70.6	71
trnH	-	80668131	80668131	80698133	80678132	66	66	65	66			0	0	2	2	69.7	68.2	67.7	69.7
nad4	-	81329475	81329475	81369497	81359498	1344	1344	1344	1344	ATG	TAA	-7	-7	-7	-7	71.1	71.5	72	71.9
nad4L	-	94699762	94699762	94739766	94729765	294	294	294	294	ATG	TAA	2	2	2	2	73.1	73.1	74.1	73.1
trnT	+	97659832	97659832	97699835	97689834	68	68	67	67			0	0	0	0	75	75	73.2	71.6

s-rRNA: small subunit of ribosomal gene. The incomplete stop codons are labeled in parentheses.

s3		98339844	98339845	98369848	98359848	12	13	13	14		0	0	0	0	41.7	38.5	38.5	50
trnP	-	98459910	98469911	98499914	98499914	66	66	66	66		1	1	1	1	77.3	78.8	77.3	77.3
nad6	+	991210409	991310410	991610413	991610413	498	498	498	498	ATC TAA	-1	-1	-1	-1	72.5	72.3	73.5	73.5
cob	+	1040911542	1041011543	1041311546	1041311546	1134	1134	1134	1134	ATG TAA	-2	-2	-2	-2	68.5	68.5	67.7	69.1
trnS2	+	1154111604	1154211605	1154511608	1154511608	64	64	64	64		0	0	0	0	76.6	76.6	68.7	76.6
<i>s</i> 4		1160511620	1160611621	1160911624	1160911624	16	16	16	16		0	0	0	0	81.2	81.2	75	81.2
nad1	-	1162112571	1162212572	1162512575	1162512575	951	951	951	951	TTG TAG	1	1	1	1	68.9	69	69.5	69.1
trnL2	-	1257312641	1257412641	1257712643	1257712643	69	68	67	67		0	0	0	0	76.8	77.9	73.1	73.1
l-rRNA	-	1264213930	1264213930	1264413931	1264413931	1289	1289	1288	1288		0	0	0	0	64.8	64.8	73.9	72.2
trnV	-	1393114001	1393114001	1393214003	1393214003	71	71	72	72		0	0	0	0	70.1	70.5	70.9	71
s-rRNA	-	1400214776	1400214776	1400414781	1400414781	775	775	778	778		0	0	0	0	75	74.9	70.8	74.7
A+T-rich		1477715861	1477715863	1478215700	1478215709	1085	1087	919	928		0	0	0	0	82.9	83.2	80.3	80.1

1 **Appendix 5.** The d_N/d_S ratio (ω) of mitochondrial and nuclear genes calculated using the branch model in

2 codeml option of PAML. Model 0 has only one ω ratio (ω_T) for all four *Euphaea* species; model 2 assumes

3 each species has different ω ratios (ω_d , ω_o , ω_f and ω_y for ω ration in *E. decorata*, *E. ornata*, *E. formosa* and

4 *E. yayeyamana*, respectively). N is the total number of haplotypes used. Numbers in **bold** indicate positive

5 selection.

Level		N	Length	df	Likelihoo	d of model	χ^2	р	ω_T	ω _y	ω_f	ω_o	ω_d
					m0	m2							
Population	mtDNA												
	cox2	32	498	4	-1478.3777	-1475.3633	6.0288	0.1970	0.0132				
	nad5	38	909	4	-2194.8263	-2183.0809	23.4909	0.0001	-	0.0085	0.0985	0.0663	0.0123
	nuDNA												
	act	14	423	4	-652.6245	-651.1693	2.9103	0.5730	0.0400				
	arr	22	303	4	-796.9831	-793.5623	6.8416	0.1445	0.1052				
	awd2	10	153	4	-236.2715	-236.2715	2x10 ⁻⁶	1.0000	999.000 (d	d _N : 0.0564; d	s< 0.0001)		
	EF1a	15	705	4	-1139.0231	-1133.7889	10.4685	0.0332	-	0.0828	0.8305	1.2502	0.2070
	fer	21	333	4	-701.9700	-701.1698	1.6006	0.8087	0.0536				
	mlc	10	162	4	-274.3832	-272.7528	3.2607	0.5152	0.1158				
	opsin	16	309	4	-524.4279	-521.7102	5.4355	0.2455	0.1227				
	sdhB	15	258	4	-527.8787	-524.6821	6.3931	0.1717	0.1719				
	Average								0.1015				
Species	mtDNA												
	atp6		672	4	-1358.9059	-1329.9486	57.9147	< 0.0001	-	0.0422	0.0228	0.0001	0.5742
	atp8		156	4	-247.6631	-247.4845	0.3572	0.9858	0.0186				
	cob		1131	4	-1953.7438	-1951.2565	4.9747	0.2899	0.0095				
	cox1		1545	4	-2721.4808	-2717.5284	7.9047	0.0951	0.0044				
	cox2		687	4	-1147.5413	-1147.2068	0.6690	0.9551	0.0124				
	cox3		786	4	-1388.6472	-1385.0979	7.0986	0.1308	0.0109				
	nad1		948	4	-1623.8951	-1619.6706	8.4490	0.0764	0.0137				
	nad2		987	4	-1916.8673	-1913.2311	7.2725	0.1222	0.0275				
	nad3		348	4	-677.8625	-676.2565	3.2121	0.5230	11.6780 (d _N : 0.4461; d	l _s : 0.0382)		
	nad4		1341	4	-2240.4020	-2236.7339	7.3361	0.1192	0.0107				
	nad41		291	4	-460.2535	-459.3542	1.7985	0.7728	0.0128				
	nad5		1722	4	-2980.5782	-2980.2613	0.6338	0.9592	0.0087				
	nad6		495	4	-900.4672	-899.6510	1.6325	0.8029	0.0548				
	Average								0.0167				

Gene name	E. decorata	E. ornata	E. formosa	E. yayeyamana		
	ω (d _N , d _S)					
mtDNA						
ota	0.0422	0.0228	0.0001	0.5741		
alpo	(0.046464, 0.080927)	(0.000007, 0.065363)	(0.007407, 0.324724)	(0.001805, 0.042812/0		
nad5	0.0085	0.0985	0.0663	0.01239		
naus	(0.000781, 0.063669)	(0.001447, 0.02182)	(0.001403, 0.014247)	(0.015353, 2.745501)		
nuDNA						
EF1a	0.0828	0.8305	1.2502	0.2070		
	(0.000003, 0.000001)	(0.000001, 0.000001)	(0.000001, 0.000002)	(0.00034, 0.004102)		

Appendix 6. The d_N and d_S ratio of the gene sequences with different ω in the four *Euphaea* species.

Appendix 7. The transformation rate matrix of mitochondrial and nuclear genes (mean \pm 95% credibility interval, CI). The alphabet above the bars represents the rate categories estimated in model selection of MEGA.

