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摘要 

在資料網格環境中，資料集被重複製為複本且分送到多重的站台。由於資料

集的檔案通常很大，如何有效率的存取及傳輸成為重大的課題。因此先前有學者

發展出協同配置的架構，使得同時從多重站台平行下載資料變成可能，目前發展

出數種協同配置法用來解決傳輸時本地端與伺服端網路傳輸率不斷變動的問題。

例如將欲傳輸的檔案切割成數個均等的檔案大小，或是將檔案動態的切割置於工

作佇列，透過連線品質較佳者傳送佇列中末完成傳輸的檔案區塊，來解決網路變

動的問題。無論各個下載連線的效率為何，當伺服端傳送最後一個檔案區塊時，

發生速度快的伺服器閒置的等待最慢的伺服器完成最後一個檔案區塊的傳送，或

是因為不同伺服器傳送相同的檔案區塊，造成網路頻寬資源的浪費，因此，若能

在一群候選伺服器中找到最大的頻寬資源，有效分配工作減少各伺服器間完成傳

輸時間的差異，將成為最重要的工作。近年，在全球各地的學者先後提出頗具新

意的資料網格平行檔案傳輸策略；本研究中，匯集 8 種各具代表性的平行檔案傳

輸方法，融合各方法的優點改善其缺點，採用 TCP 頻寬估計模型與突發模式等

新策略，藉此強化預測性遞迴調整的協同配置法，進一步提高大量資料集於資料

網格中的傳輸效能。我們的方法能有效地找出一群快速伺服器並分配較多的工作

量提高其資源利用率，動態計算出檔案切割量，有效減少各伺服器間的相互等待

時間。藉由各項實驗證明其傳輸的高效能，並具有網路自適應性與高度容錯性，

有效因應不同的網格環境。 

關鍵字： 資料網格、協同配置、動態協同配置、平行傳輸 
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Abstract 

Data grid enable the sharing, selection, and connection of a wide variety of 

geographically distributed computational and storage resources for content that the 

large-scale data-intensive application needs, such as high-energy physics, 

bioinformatics, and virtual astrophysical observatories. Data grid consists of scattered 

computing and storage resources located in different regions yet accessible to users. 

Co-allocation architectures can be used to enable parallel transfers of data file from 

multiple replicas in data grids which are stored at different grid sites. Schemes based 

on co-allocation models have been proposed and used to exploit the different transfer 

rates among various client-server network links and to adapt to dynamic rate 

fluctuations by dividing data into fragments. These schemes show that the more 

fragments used the more performance. In fact, some schemes can be applied to 

specific situations; however, most situations are not common actually. For example, 

how many blocks in a data set should be cut? For this issue, we proposed the 

anticipative recursively adjusting mechanism (ARAM) in a previous research work. 

Its best feature is performance tuning through alpha value adjustment. It relies on 

special features to adapt to various network situations in data grid environments. In 

this thesis, the TCP Bandwidth Estimation Model (TCPBEM) is used to evaluate 

dynamic link states by detecting TCP throughputs and packet lost rates between grid 

nodes. We integrated the model into ARAM, calling the result the anticipative 

recursively adjusting mechanism plus (ARAM+); it can be more reliable and 

reasonable than its predecessor. We also designed a Burst Mode (BM) that increases 

ARAM+ transfer rates. This approach not only adapts to the worst network links, but 

also speeds up overall performance. 

Keywords: Data Grid, Co-allocation, Dynamic Co-allocation, Parallel file transfer  
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Chapter 1  

Introduction 

1.1 Motivation 

An increasing number of scientific applications. e.g., arising from Genomics, 

Proteomics, and Bioinformatics require exchanges of large volumes of data to support 

computation. Downloading large data sets from replica locations may result in 

different performance rates because replica sites may have different architectures, 

system loading, and network connectivity. Bandwidth quality is the most important 

factor affecting internet transfers between clients and servers, with download speeds 

being bounded by traffic congestion due to bandwidth limitations.  

One method for improving download speeds uses replica selection techniques to 

determine the best replica locations [28]. However, downloading data sets from single 

best servers often results in ordinary transfer rates because bandwidth quality varies 

unpredictably due to the shared nature of the Internet. 

Another method uses co-allocation [27] technology to download data. Co-allocation 

architectures were developed to enable clients to download data from multiple 

locations by establishing multiple connections in parallel, thus improving 

performance over single-server transfers and helping to alleviate the internet 

congestion problem [27]. Parallel downloading [23, 24, 25, 26] is a technique used to 

fetch and download files from multiple sources including Web servers, file servers, 

P2P nodes, etc. Parallel downloading has been integrated into many Internet 

applications and has become the core of many P2P systems. It speeds up download 

times and eliminates the server selection problem [21, 22, 23]. Several co-allocation 

strategies were addressed in previous works [15, 27], but drawbacks remain, such as 

faster servers having to wait for the slowest one to deliver its final block. As shown in 
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[15, 16], this may degrade network performance by repeatedly transferring the same 

block. Hence, it is important to minimize differences in finish times among servers, 

and to prevent the same blocks from being transferred over different links between 

servers and clients.  

In our previous research work, we presented a method for regulating next-section 

workloads by continuously adjusting the workloads on selected replica servers. The 

anticipative recursively adjusting mechanism (ARAM) scheme measures the actual 

bandwidth performance during data file transfers, and, according to previous transfer 

finish rates, anticipates bandwidth statuses at the next transfer section. The basic idea 

is to assign less data to selected replica servers with greater network link performance 

variations since links with more bandwidth variations will have smaller effective 

bandwidths, as well as smaller transfer finish rates. The goal is to make the expected 

finish times of all servers be the same. 

1.2 Contribution 

In this thesis, we first present our new approach based on the ARAM co-allocation 

strategy for data grid environments. We have designed and implemented a TCP 

bandwidth estimation model and Burst Mode (BM) to enhancing the original ARAM 

algorithm. Workloads on all selected replica servers are still adjusted according to 

TCP throughputs and packet loss rates, and faster servers get double or even 

quadruple throughputs via Burst Mode enabling. Finally, we present Cyber 

Transformer, a useful toolkit for data grid users. Integrated with the Information 

Service, Replica Location Service, and Data Transfer Service, it‘s simple, friendly 

GUI interface makes it easy for inexperienced users to manage replicas and download 

files in data grid environments. This tool integrates all strategies based on 

co-allocation architectures including our previous and proposed algorithms.  



 

 11 

1.3 Thesis Organization 

The remainder of this research is organized as follows. Related background review 

and studies are presented in Chapter 2. Our new approach is outlined in Chapter 3. 

Experimental results and a performance evaluation of our scheme are presented in 

Chapter 4. Chapter 5 concludes this research article. 
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Chapter 2  

Background Review and Related Work 

2.1 Co-allocation Architecture 

The architecture proposed in [29] consists of three main components: an information 

service, a broker/co-allocator, and local storage systems. Figure 2.1 shows 

co-allocation of data grid transfers, an extension of the basic template for resource 

management [7] provided by the Globus Toolkit. Applications specify the 

characteristics of desired data and pass attribute descriptions to a broker. The broker 

queries available resources, gets replica locations from the Information Service [6] 

and Replica Management Service [31], then gets lists of physical file locations. 

Application

Information

Service

Co-allocator

Broker Forecasts

RLS

Queries

Information

Data Access/ Transport using GridFTP

Local Storage System

 

Figure 2.1: Data Grid Co-Allocation Architecture. 

 

2.2 Brute-Force Co-Allocation 

The Brute-force co-allocation scheme shown in Figure 2.2 divides file sizes equally 
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among available flows; it does not address bandwidth differences among various 

client-server links. 

2.3 History-Based Co-Allocation 

The history-based co-allocation scheme shown in Figure 2.3 keeps block sizes per 

flow proportional to predicted transfer rates, and disregards the influence of network 

variations between client and server. 

 

Figure 2.2: The Brute-Force Co-Allocation Process. 

 

Figure 2.3: The History-Based Co-Allocation Process. 
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2.4 Conservative Load Balancing 

The conservative load balancing scheme shown in Figure 2.4 divides requested data 

sets into k disjoint blocks of equal size. Available servers are allocated single blocks 

to deliver in parallel. Servers work in sequential order until all requested files are 

downloaded. Loadings on the co-allocated flows are automatically adjusted because 

the faster servers deliver larger file portions more quickly. 

2.5 Aggressive Load Balancing 

This method, shown in Figure 2.5, adds functions that change block size in deliveries 

by: (1) gradually increasing the amounts of data requested from faster servers and (2) 

reducing the amounts of data requested from slower servers or stopping requesting 

data from them altogether. 

 

Figure 2.4: The Conservative Load Balancing Process. 
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Figure 2.5: The Aggressive Load Balancing Process. 

2.6 Dynamic Co-Allocation with Duplicate Assignments (DCDA) 

The co-allocation strategies described above do not handle the shortcoming of faster 

servers having to wait for the slowest server to deliver its final block which, in most 

cases, wastes much time and decreases overall performance. Neither the prediction 

nor the heuristic approach, the DCDA scheme dynamically co-allocates duplicate 

assignments and copes nicely with changes in server speed performance, as shown in 

Figure 2.6. The DCDA scheme is based on an algorithm that uses a circular queue. 

Let D be a data set and k the number of blocks of fixed size in the data set. D is 

divided into k disjoint blocks of equal size and all available servers are assigned to 

deliver blocks in parallel. When a requested block is received from a server, one of 

the unassigned blocks is assigned to that server. The co-allocator repeats this process 

until all blocks have been assigned. DCDA behaves well even when server links are 

broken or idled. The DCDA scheme is flawed, however, in that it consumes network 

bandwidth by repeatedly transferring the same blocks. This wastes resources and can 

easily cause bandwidth traffic jams in the links between servers and clients. 
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Figure 2.6: The DCDA Process 

2.7 Recursively Adjusting Mechanism (RAM) 

This co-allocation strategy is the most efficient approach to reducing the influence of 

network variations between clients and servers. However, idle times when faster 

servers are waiting for the slowest server to deliver its last block are still a major 

factor affecting overall efficiency that conservative load balancing and aggressive 

load balancing [18] cannot effectively avoid. In real-world networking environments, 

a replica server‘s available bandwidth might change dynamically as a result of 

network configuration or load variations. Previous algorithms could not adapt to these 

dynamisms. Therefore, the greater the degree of bandwidth variation the greater the 

download times needed. Thus, overall efficiency depends on several factors. Our 

strategy can overcome such obstacles, and improve data transfer performance. The 

recursively adjusting mechanism works by continuously adjusting each replica 

server‘s workload to correspond to its real-time bandwidth during file transfers. The 

goal is to make the expected finish times of all servers the same. As Figure 2.7 shows, 

when an appropriate file section is first selected, it is divided into proper block sizes 

according to the respective server bandwidths. The co-allocator then assigns blocks to 

servers for transfer. At this moment, it is expected that the transfer finish times will be 
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consistent at E(t1). However, since server bandwidths may fluctuate during segment 

deliveries, actual completion times may vary (solid line, in Figure 2.7). When the 

quickest server finishes its work at time t1, the next section is assigned to the servers. 

This allows each server to finish its assigned workload by the expected time at E(t2). 

These adjustments are repeated until the entire file transfer is finished. 

 

Figure 2.7: The Adjustment Process 

The main purpose of this algorithm is to select appropriate data sources and download 

from multiple data servers to a single client resource. We proposed a recursively 

adjusting co-allocation scheme for parallel downloads from multiple replica servers to 

a single-client. This is useful in cases like downloading music file segments and 

playing continuous music on a single-client resource. Our algorithms are mainly 

aimed at transferring parallel data segments from multiple servers to multiple clients 

for execution of parallel numerical applications on the clients. The challenge in 

multiple server–multiple client scenarios is greater since server selections and data 

downloads on some clients can impact server selections and data transfer performance 

on other clients. 

2.8 Dynamic Adjustment Strategy (DAS) 

The DAS proposed a replica selection cost model and a replica selection service to 
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perform replica selection, its revival the CPU load, memory usage and free space 

through Replica Location Service (RLS). We now propose a new data transfer 

strategy based on this model. It consists of three phases: (1) initial phase, (2) steady 

phase, and (3) completion phase. 

 Initial phase: We assign equal block sizes to all GridFTP servers. In this phase, our 

system determines the next block size for each replica server. 

 Steady phase: As job transfers are completed, servers are assigned their next jobs. 

Jobs sizes are determined by multiplying the client bandwidth by the weighting.  

 Completion phase: To avoid the generating excessively small job sizes, we set an 

end condition such that if the remaining target file size is smaller than the initial 

block size, it is transferred immediately. 

To determine the initial block size, we set an upper bound that is dependent on the 

relation between the client‘s maximum bandwidth and the number of replica sources. 

Though multiple replicas can be downloaded in parallel, the gathered portions of files 

from different links must be transferred to the client in a single link. It is clear that the 

client‘s bandwidth could be bottleneck in co-allocation architecture. Each time, our 

strategy dynamically adjusts a job size according to source device loading and 

bandwidth. The lighter the loading a source device has, the larger job size it is 

assigned. Figure 9 shows a flowchart illustrating this strategy. 
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Transfer job start

File transfer 

complete?

remnantFileSize 

< initialPT

Job size =

ClientBandwidth ´ weighting

Calculate the 

weighting

Job size >

remnantFileSize

False True

False

True

True

False

remnantFileSize  = 

remnantFileSize - Job size

Job size = remnantFileSize 

remnantFileSize  = 0

END

Start

Calculate initialPT

Job size = remnantFileSize 

remnantFileSize  = 0

 

Figure 2.8: The flowchart of Dynamic Adjustment Strategy 
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Chapter 3  

Our Approach 

3.1 Anticipative Recursively Adjusting Mechanism (ARAM) 

The recursively adjusting mechanism reduces file transfer completion times and idle 

times spent waiting for the slowest server. It also provides an effective scheme for 

reducing the cost of reassembling data blocks. However, our scheme did not consider 

the potential effect of server links broken or idled during file transfers. Therefore, we 

propose an efficient approach called the anticipative recursively adjusting mechanism 

(ARAM) to extend and improve upon recursive adjustment co-allocation [12]. The 

main idea of the ARAM is to assign transfer requests to selected replica servers 

according to the finish rates for previous transfers, and to adjust workloads on 

selected replica servers according to anticipated bandwidth statuses. In continuously 

adjusting selected replica server workloads, the anticipative recursively adjusting 

mechanism scheme measures actual bandwidth performance during data file transfers 

and regulates workloads by anticipating bandwidth statuses for subsequent transfers 

according to the finish rates for previously assigned transfers. The basic idea is to 

assign less work to selected replica servers on network links with greater performance 

variability. Links with more bandwidth variation will have smaller effective 

bandwidths, as well as smaller finish rates for assigned transfers. The goal is to have 

the expected finished times of all servers be the same. Our approach performs well, 

even when the links to selected replica servers are broken or idled. It also reduces the 

idle time wasted waiting for the slowest server. As appropriate file sections are 

selected, they are first divided into proper block sizes according to the respective 

server bandwidths, previously assigned file sizes, and transfer finish rates. Initially, 

the finish rate is set to 1. Next, the co-allocator assigns the blocks to selected replica 
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servers for transfer. At this moment, it is expected that the transfer finish times will be 

consistent with E(t1). However, since server bandwidths may fluctuate during segment 

deliveries, actual completion times may differ from expected times E(t1) (solid lines in 

Figures 3.1 and 3.2). When the fastest server finishes at time t1, the size of unfinished 

transfer blocks (italic blocks in Figures 3.1 and 3.2) is measured to determine the 

finish rate. Two outcomes are possible: the quickest server finish time t1 may be 

slower than or equal to the expected time, E(t1), indicating that network link 

performance remained unchanged or declined during the transfer. In this case, the 

difference in transferred size between the expected time and actual completion time 

(italic block in Figure 3.1) is then calculated. 

 

Figure 3.1: Later-than-expected-time Adjustment Process 

 

Figure 3.2: Earlier-than-expected-time Adjustment Process 
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The other outcome is that the quickest server finish time t1 may be faster than the 

expected time, E(t1), indicating an excessively pessimistic anticipation of network 

performance, or an improvement in replica server network link performance during 

the transfer. The difference in transferred size between the expected time (italic block 

in Figure 3.2) and earlier time is then measured. If the anticipated network 

performance was excessively pessimistic, it is adjusted for the next section. The next 

task is to assign proper block sizes to the servers along with respective bandwidths 

and previous finish rates, enabling each server to finish its assigned workload by the 

expected time, E(t2). These adjustments are repeated until the entire file transfer is 

finished. 

Looking more closely at ARAM, some parameter definitions are shown below. 

 A: file requested by user 

 n: selected replica servers 

 : rate that determines how much of the section remains to be assigned 

 Tj: allocated time for section j 

 SEj: allocated size for section j 

 UnassignedFileSize: portion of file A not yet distributed for downloading 

 UnfinishedFileSize: the size of unfinished blocks assigned in previous rounds 

 Bji: real-time transfer rate from the selected replica server 

 rj: transfer finish rate 

 rj-1: server transfer finish rate for previously assigned delivered file 

 Bj: bandwidth available for section j 

 Sji: block size per flow from SEj for each server i at time Tj 

 ETji: expected time for server i at section j 

 RTji: real finish time for server i at section j 

 TSji: actual transfer size at real finish time RTji 
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 rji: job finish rate 

When a user requests file A from the data grid environment, the replica selection 

server responds with a list of all available servers defined as maximum performance 

data sets/servers. Data sets/servers for the co-allocator to transfer the file are selected, 

and the target file is then transferred from the chosen replica data sets/servers. 

Assume that n replica servers are selected and Si denotes server ―i‖ for 1≦i≦n. A 

connection for file downloading is then built to each server. 

The anticipative recursively adjusting mechanism process is as follows. A new section 

of a file to be allocated is first defined. The section size is shown as 

𝑆𝐸𝑗 =  𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 +  𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ×  α, 

0 < 𝛼 ≤ 1 
(1) 

where SEj denotes section j such that 1≦j≦k, assume k time is allocated for 

downloading and there are k sections, while Tj denotes the time allocated to section j. 

UnassignedFileSize, the portion of File A awaiting distribution for downloading is 

initially equal to total file size and TotalUnfinishedFileSize is equal to zero in the first 

round.  is the rate determining how much of the section remains to be assigned. 

In the next step, SEj is divided into several blocks and assigned to ―n‖ servers. Each 

server has a real-time transfer rate to the selected replica server of Bji. rj-1 denotes the 

server transfer finish rate for previously assigned files, where the initial value is 1. 

The block size per flow from SEj for each server ―i‖ at time Tj is Sji: 

𝑆𝑗𝑖 =
𝑆𝐸𝑗𝑖 ×  𝐵𝑗𝑖 × 𝑟𝑗−1 

  𝐵𝑗𝑖 × 𝑟𝑗
−1
 𝑛

𝑖=1

, 0 ≤ 𝑟𝑗−1 ≤ 1 (2) 

𝐵𝑗 =   𝐵𝑗𝑖 × 𝑟𝑗−1 

𝑛

𝑖=1

 (3) 

𝐸𝑇𝑗𝑖 =
𝑆𝑗𝑖

𝐵𝑗𝑖
 (4) 

This fulfills our requirement to minimize the time faster servers must wait for the 
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slowest server to finish. In some cases, network variations greatly degrade transfer 

rates. A faster channel may finish its assigned data blocks at real finish time RTji, or 

later or earlier than expected time ETji. Then TSji denoting the actual transfer size at 

real finish time RTji is given by 

𝑇𝑆𝑗𝑖 = 𝐵𝑗𝑖 × 𝑅𝑇𝑗𝑖 (5) 

If the first finish time for RTji is earlier than expected time ETji, the reason may be an 

excessively pessimistic anticipation of network performance, or the network links 

used for improvement during the transfer. We compare the block sizes transferred 

between the earliest and expected times for each server chosen. If the transferred size 

TSji is greater than expected size Sji at the first finish time, otherwise, the first finish 

time for RTji may be the result of the network link used remaining unchanged or 

deteriorating during the transfer. 

𝑟𝑗𝑖 =  

𝑇𝑆𝑗𝑖

𝑆𝑗𝑖
, 𝑅𝑇𝑗𝑖 ≥ 𝐸𝑇𝑗𝑖

1, 𝑅𝑇𝑗𝑖 < 𝐸𝑇𝑗𝑖, 𝑎𝑛𝑑 𝑇𝑆𝑗𝑖 ≥ 𝑆𝑗𝑖

  (6) 

The co-allocator then measures the bandwidth performance of each server, and 

estimates bandwidth statuses for the next transfer section in order to adjust workflows 

for the next session. At the same time, it eliminates server UnfinishedFileSize listings 

by summing them up for assignment to the next section. 

After allocation, all selected replica servers continue transferring data blocks. When a 

faster selected replica server finishes its assigned data blocks, the co-allocator 

allocates an unassigned section of file A. Workflows are continually adjusted during 

the data block allocation process until the entire file has been allocated. 

3.2 TCP Bandwidth Estimation Model 

TCP/UDP is one of the core protocols in the Internet protocol suite. TCP provides 

reliable, in-order delivery of a stream of bytes, making it suitable for applications such 
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as GridFTP file transfers. Parallel TCP sockets is a generic ―hack‖ that improves TCP 

throughputs during bulk data transfers by opening several TCP connections and 

striping the data files over them [1]. In practice, it is often unclear how many sockets 

one needs to open in order to achieve satisfactory throughput, and opening too many 

connections may be undesirable for various reasons [1, 5, 13, 16]. The TCP 

Bandwidth Estimation Model [13] as a function to assessing TCP packet loss rate, 

such as round trip time, maximum segment size, other miscellaneous parameters, etc. 

𝑇𝐶𝑃𝐵𝑊 𝑝 

≈ 𝑚𝑖𝑛

 

 
 𝑊𝑚𝑎𝑥

𝑅𝑇𝑇
,

1

 2𝑏𝑝
3

𝑅𝑇𝑇

  + 𝑇0  𝑚𝑖𝑛  1,3 
3𝑏𝑝

8   𝑝 1 + 32𝑝2 
 

 
 
𝑀𝑆𝑆 

(7) 

 TCPBW(p): bytes transmitted per second 

 MSS: maximum segment size 

 Wmax: maximum congestion window size 

 RTT: round trip time 

 b: number of transmitted data packets acknowledged by one acknowledgement 

(ACK) from the receiver (usually b=2) 

 T0: timeout value 

 p: packet loss ratio, number of retransmitted packets divided by the total 

number of packets transmitted 

 C: a constant value, initially set to 1.0 

In equation (7), TCPBW(p) represents bytes transmitted per second, and three factors 

need to be considered: MSS, RTT and p. These represent overall TCP bandwidth. For 

TCP performance assessment, another researcher has simplified them into one.  

𝐵𝑊 ≤
𝑀𝑆𝑆

𝑅𝑇𝑇

𝐶

 𝑝
 (8) 

In equation (8), MSS, RTT and p are the same variables used in equation (7), C is a 
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constant factor, and BW represents the number of bytes transmitted per second.  

Thus, how the TCP Bandwidth Estimation Model measures server bandwidth makes it 

more reliable and fair. 

3.3 k-means Algorithm 

The k-means algorithm clusters n objects according to attributes into k partitions, k < 

n. It is similar to the expectation-maximization algorithm for Gaussian mixtures in 

that they both attempt to find natural cluster centers in data. Assuming object 

attributes form vector spaces, it tries to minimize total intra-cluster variance, or, the 

squared error function: 

𝑉 =   

𝑘

𝑖=1

  

𝑥∈𝑠𝑖

 𝑥 − 𝑚𝑖 
2 (9) 

According to the k-means algorithm, where there are random k clusters Si, i = 1, 2, ..., 

k, the Euclid distance of each x point to mi in Si , mi is the cancroids or mean point of 

all the points x ∈ Si. Equations (10) ~ (13) not only calculate Euclid distances by 

means of each Si, but also recursively renew the mean point mi depending on the cost 

function V. After calculations, 9 servers with different network bandwidths have been 

placed in three groups (k=3). The simulation results are shown in Figure 3.3. 

 k: number of partitions  

 x: number of points 

 Si: partition attributes form a vector space  

 mi: the mean point of all of Si points  

 𝑥𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑖𝑗 : determines whether or not an  x point belongs to Si 

 𝑉: distance cost function 

 𝑑: distance between two point 

𝑚𝑖 =
 𝑑(𝑥𝑗 , 𝑚𝑖)𝑥∈𝑆𝑖

 𝑆𝑖 
 (10) 
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𝑥𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑖𝑗 =  1  𝑖𝑓 𝑥𝑗 − 𝑆𝑖 
2

 ≤   𝑥𝑗 − 𝑆𝑘 
2

  0                                , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒  
 , ∀𝑘 ≠ 1 (11) 

𝑉 =  𝑉𝑖

𝑘

𝑖=1

=    𝑑(𝑥𝑗 , 𝑚𝑖)

 

𝑘,𝑥𝑗∈𝑆𝑖

 

𝑘

𝑖=1

 (12) 

𝑛𝑒𝑤(𝑚𝑖) =
1

 𝑆𝑖 
 𝑥𝑗

 

𝑘,𝑥𝑗∈𝑆𝑖

 (13) 

 

 

Figure 3.3: 9 Hosts Classification According to Bandwidth Using k-means 

Algorithm 

 

3.4 Burst Mode 

Like many network accelerator methods, and multithreading, Burst Mode (BM) first 

splits one huge bandwidth into small pipelines all working at the same time. Burst 

Mode focuses on the fastest group of servers and can differentiate among the various 

candidate server network bandwidths. Second, BM chooses the faster one then others 

(as shown in Equations 10, 11, 12, and 13). Ultimately, the BM has made single jobs 

into many, as shown in Figure 3.4. 
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Server 1

Server 2
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Round 1 Round 2
t1 t2
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...
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80Mbps

5Mbps
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Figure 3.4: Burst Mode Enables Higher Bandwidths 

The k-means simulation results showed that fewer local replica servers are high 

efficiency than many remote replica servers. Accordingly, the main ideas in Burst 

Mode (BM) are to find the fastest server group, and to make it download via 

multithreading. BM also deals with cutting blocks properly for various data sets. 

Burst Mode function is shown below: 

 NiTCPBW: candidate server bandwidth 

 FTS: the fastest group of servers  

𝑁𝑖𝑇𝐶𝑃𝐵𝑊 =
𝑀𝑆𝑆

𝑅𝑇𝑇
 
𝐶

 𝑝
 (14) 

𝐹𝑇𝑆 = 𝑆𝑖 , 𝑀𝐴𝑋 𝑆1, 𝑆2, ⋯ , 𝑆𝑛  ,𝑚𝑖𝜖𝑆𝑖  (15) 

The algorithm is listed below: 

[Initialization] 

Measure bandwidths and find the fastest servers using Equations 14 and 15. 

BigBlockUnit set to 100MB initially 

[Allocate blocks to the fastest servers and download via multithreading.] 

Step 1:  Group mi and rank the most powerful server FTS 

Step 2:  Allocate SEj and download via multithreading 

Step 3:  Monitor job progress statuses 
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LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize are greater than 

BigBlockUnit (initial BigBlockUnit=100MB)) THEN 

{ 

IF (Job finish rate is just 100% (rji=1) and UnassignedFileSize and total 

UnfinishedFileSize are greater than BigBlockUnit) THEN 

{ 

Let data transfer in multiple parts between client and FTS server 

𝑆𝐸𝑗 =  𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 +  𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ×  α, 

 0 < 𝛼 ≤ 1, 

 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 +  𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ≥ 𝐵𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑈𝑛𝑖𝑡 

} 

} 

END LOOP; 

3.5 Grid Network Congestion Control  

Grid network congestion control is concerned with controlling traffic entry into data 

grid networks to prevent congestive collapse by avoiding oversubscription of any grid 

node processing or link capacity and taking resource reduction steps, such as reducing 

packet sending rates when Burst Mode is active. 

The modern theory of congestion control [35, 36], describes how individuals 

controlling their own pack lost rate can interact to achieve an optimal network-wide 

rate allocation. Examples of ―optimal rate‖ allocation are max-min fair allocation and 

Kelly's [35] suggestion of proportional fair allocation, although many others are 

possible. The mathematical expression (Equation 16) for optimal rate allocation is as 

follows. Let xi be the rate of flow i. Let x, c and R be the corresponding vectors and 

matrix. Let U(x) be an increasing, strictly convex function, called the utility, which 

measures how much benefit a user obtains by transmitting at rate x. The optimal rate 
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allocation will then satisfy: 

max
𝑥

 𝑈(𝑥𝑖)

𝑖

, 𝑅𝑥 ≤ 𝑐 (16) 

 

3.6 Anticipative Recursively Adjusting Mechanism Plus (ARAM+) 

3.6.1 Assumptions 

We outline our system design model assumptions below. 

 All grid nodes are installed GlobusToolkit4 previously. 

 All grid nodes are supporting Simple Network Management Protocol (SNMP). 

 The time for transferring, stopping/assigning processes, and calculating TCPBW 

to selected replica servers is negligible. 

3.6.2 Anticipative Recursively Adjusting Mechanism Plus (ARAM+) 

The ARAM+ is not merely inherited from ARAM. It has been enhanced also in the 

following areas: its TCP Bandwidth Estimation Model (TCPBEM) and its Burst 

Mode (BM). ARAM+ continually adjusts the workloads on selected replica servers by 

measuring actual bandwidth performance via TCPBEM during data file transfers and, 

according to previous job finish rates, and adjusting alpha values for subsequent 

transfer sections.  

Some interesting ideas have arisen from P2P networks and distributed 

denial-of-service (DDoS) attacks. As is well known, P2P networking is share based; it 

shares data and downloads in parallel, more numbers of share point get more speedup. 

Another typical example is DDoS attacks that occur when multiple compromised 

systems flood the bandwidth or resources of a targeted system. We have combined 

these elements in our approach. The multithreading in the Burst Mode (BM) design 

came from DDoS attacks, BM ―floods‖ the target replica server bandwidth to speed 

up download performance. The other idea from P2P networking was applied to 
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ARAM+. It pre-selects many candidate replicas from various servers, then chooses 

appropriate servers and allocates only enough workload to fit server capacities. 

Both of our previous works [24, 25, 27, 29, 30], the anticipative recursively adjusting 

mechanism (ARAM) and recursively adjusting mechanism (RAM) were based on 

co-allocation architecture and relied on tuning alpha values by hand to adapt to 

specific data grid situations. The ARAM+ uses the same strategies, but differs in that 

alpha values are tuned dynamically.  

ARAM+ adapts to real-time network statuses and calculates appropriate alpha  

values continually with TCPBEM TotalTCPBW, to ensure good download flexibility 

and to speed up overall performance. The equations are as follows: 

 TotalTCPBW: overall bytes transmitted per second. 

𝑇𝑜𝑡𝑎𝑙𝑇𝐶𝑃𝐵𝑊 =  
𝑀𝑆𝑆

𝑅𝑇𝑇
 
𝐶

 𝑝

𝑁

𝑖=1

 (17) 

𝛼 = 1 − (
1

𝑇𝑜𝑡𝑎𝑙𝑇𝐶𝑃𝐵𝑊
0.2), 0 < 𝛼 ≤ 1 (18) 

 

3.6.3 ARAM+ Algorithm 

[Initialization] 

Current bandwidths for all candidate servers are measured using the TCP Bandwidth 

Estimation Model (TCPBEM) and calculating appropriate alpha values with 

Equations 14 and 15. 

[Allocating blocks to selected servers] 

LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize is greater than zero) 

THEN 

{ 

IF (UnassignedFileSize and Total UnfinishedFileSize are greater than TotalTCPBW ) 
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THEN  

{ 

IF (UnassignedFileSize and Total UnfinishedFileSize multiplied by  are greater than 

TotalTCPBW ) THEN 

{ 

Define new section for allocation 

𝑆𝐸𝑗 =  𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 +  𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ×  α, 

 0 < 𝛼 ≤ 1 

} 

ELSE 

{ 

Define finial section 

𝑆𝐸𝑗 = 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 +  𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 

} 

} 

END LOOP; 

Step 1:  Define new section for allocation SEj 

Step 2:  Monitor all selected replica servers 

Step 3:  Allocate blocks to selected replica servers, according to the TCPBW of the 

selected replica server, and the previous finish rates Rj-1 for the selected 

replica server (initial R0=1) 

Step 4: Monitor all download flows 

LOOP WHEN (The fastest flow finishes its assigned data blocks) THEN 

{ 

IF (First finish time for RTji is earlier than expected time ETji and transferred size 

TSji is greater than expected size Sji ) THEN 
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{ 

 The rji=1 

} 

ELSE 

{ 

 Measure the finish rate for the previously delivered file (0 ≤ 𝑟𝑗𝑖 ≤ 1) 

} 

𝑟𝑗𝑖 =  

𝑇𝑆𝑗𝑖

𝑆𝑗𝑖
, 𝑅𝑇𝑗𝑖 ≥ 𝐸𝑇𝑗𝑖

1, 𝑅𝑇𝑗𝑖 < 𝐸𝑇𝑗𝑖, 𝑎𝑛𝑑 𝑇𝑆𝑗𝑖 ≥ 𝑆𝑗𝑖

  

} 

END LOOP; 
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Chapter 4  

Experimental Results 

4.1 Grid Environment: Tiger Grid 

The experiments in this work were conducted and evaluated on the Tiger grid, which 

consists over 11 clusters located at 6 educational institutions (Tunghai 

University—THU, National Taichung University—NTCU, Hsiuping Institute of 

Technology—HIT, National Dali Senior High School—DALI, Lizen High 

School—LZSH, and Tungs‘ Taichung Metro Harbor Hospital—TUNG). A logical 

diagram of the Tiger grid network environment is shown in Figure 4.1. The detail 

end-to-end transmission rate of THU to every educational unit is listed in Table 4.1. 

Figure 4.2 shows statuses for all machines used in the grid testbed on one monitor 

page. 
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Figure 4.1: Tiger Grid Network Topology 



 

 35 

Table 4.1: The end-to-end Measurement Using NWS in Mbps 

THU to others 

Case Bandwidth Avg High Low 

THU  HIT  37.815 70.349 20.952 

THU  DL 16.673 17.920 12.182 

THU  LZ 48.139 73.466 31.678 

THU  NTCU 23.432 39.824 13.176 

HIT to others 

Case Bandwidth Avg High Low 

HIT  THU  32.487 49.384 17.913 

HIT  DL 38.206 18.166 7.875 

HIT  LZ 84.089 77.048 88.664 

HIT  NTCU 81.391 86.995 71.530 

DL to others 

Case Bandwidth Avg High Low 

DL  HIT  42.143 88.129 22.037 

DL  THU 15.893 42.823 5.238 

DL  LZ 36.631 17.830 87.351 

LZ to others 

Case Bandwidth Avg High Low 

LZ  HIT  67.579 77.298 53.967 

LZ  THU 32.324 56.313 15.099 

LZ  DL 17.769 18.098 16.634 

NTCU to THU, HIT 

Case Bandwidth Avg High Low 
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NTCU  THU  23.432 39.824 13.176 

NTCU  HIT 81.391 86.995 71.530 

They are interconnected by the 1Gbps Taiwan Academic Network (TANET). The 

Tiger grid platform is built around 132 computing nodes, more than 224 CPUs with 

differing speeds, and total storage of more than 5 TB. All the institutions are in 

Taiwan, at least 10~30 km from THU. All machines have Globus 4.0.7 or above 

installed.  

 

Figure 4.2: Tiger Grid Rsources 

4.2 Experimental Tool: Cyber Transformer 

In a previous work [28], we gave experimental results for Cyber Transformer, a 

powerful new toolkit for replica management and data grid environment data transfers. 

It can accelerate data transfer rates, and also manage replicas over various sites. The 

friendly interface enables users to easily monitor replica sources, and add files as 

replicas for automatic cataloging by our Replica Location Service. Moreover, we 
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provide a function for administrators to delete and modify replicas. Cyber 

Transformer can be invoked with either the logical file name of a data file or a list of 

replica source host names. When users search for files using logical file names, Cyber 

Transformer queries the Replica Location Services to find all corresponding replicas, 

and directs the replica sources to start parallel transfers. Cyber Transformer users can 

easily gather replica resources and combine them into single entities with the 

―strategy selection‖ user interface, accomplishing the task with various parallel 

download strategies, as shown in Figure 4.3 and 4.4 

 

Figure 4.3: The GridFTP Client Tool: Cyber Transformer 
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Figure 4.4: Parallel Download Strategy Selection 

4.2.1 System Components 

Cyber Transformer is implemented in the Java Cog Kit [14] library. The system stack 

of Cyber Transformer consists of three parts: (1) Information Monitor, (2) Replica 

Manager, and (3) GridFTP Browser, to simplify replica management and data 

transfers. With the intuitive interface, users can easily invoke the services to transfer 

data without delay. Figure 4.5 shows the Cyber-Transformer system components and 

the three main services they provided. 

 Information Service: This service is invoked by the Information Monitor and 

provides replica sources statuses allowing users to monitor all replica source sites 

in the data grid. Sites status, such as CPU loading, free memory, hard disk free 

space, and bandwidth, are gathered by the Information Service and reported to 
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the Information Monitor. 

 Replica Management Service: This serves as middleware between users and 

replica databases. It enables convenient user replica searches by listing logical 

file names and replica source host names. Users can also easily upload files as 

replicas, and mark the importance of these files. 

 Data Transfer Service: This is the most important Cyber-Transformer service, 

and is easily summoned through the GridFTP Browser. Our Dynamic 

Adjustment Strategy is integrated into it, and an ―Option‖ function enables users 

to compensate for various data grid environment conditions by adjusting transfer 

factors such as machine loading, bandwidth, partition size, and stripe numbers, 

thus accelerating data transfer rates. 

Cyber Transformer Toolkit on Windows XP/Linux

Information 

Service

Replica Location 

Service

Data Transfer 

Service

Java CoG Kit

Globus Toolkit

(MDS and GRAM)

GridFTP Protocol J2SDK

Data Grid Nodes (Storage System)

 

Figure 4.5: The System Stack of Cyber Transformer 
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Figure 4.6: The Components of Cyber Transformer 

4.2.2 System Transaction Flow 

Figure 4.7 shows the Cyber Transformer transaction flow. Users must first pass the 

Grid Proxy Certification provided by Simple CA to get access to the Grid. They may 

then connect to any data grid site via the GridFTP Browser. The system automatically 

authenticates site certifications as connections are made. The security mechanism of 

our Grid environment is depicted below. Steps 4 and 5 show how users query the 

Replica Location Service for replica information, and the Replica Location Service 

reports on requests. The system ranks all replica servers according to our replica 

selection model [31, 32], and users can then choose the better servers for parallel 

downloading. The Data Transfer Service is invoked in Step 6. Information about the 

replicas chosen by the user is picked up by the GridFTP Job Controller. The 

Controller then dynamically adjusts replica transfer job sizes according to the 
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conditions presented in the information. Job sizes are continually adjusted until all 

transfers have been completed. The portions from the various replica sources are then 

gathered into complete file. To enable users lacking deep knowledge of data grids to 

easily download and manage files in data grid environments, we developed a 

user-friendly GUI for Cyber Transformer. It is implemented in the Java CoG Kit 

library, and it can be executed on any operating system with JVM 

 

Figure 4.7: The Transaction Flow of Cyber Transformer 

4.3 Experimental Results and Analyses 

An experiment and a case design were devised to test Burst Mode (BM), our proposed 

approach to speeding up local and remote performance, and dynamically truing alpha 

values to adapt to variable network situations. Details of the test cases we designed 
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are shown in Figure 4.8. 

 

Figure 4.8: Scenarios for Our Testbed of Tiger Grid 

4.3.1 Case Study—“cross-grid” vs. “local grid” 

We designed two scenarios to verify the efficiency of enabling Burst Mode. All test 

cases are listed in Tables 4.1 and 4.2. 

Table 4.2: Scenario for Replica Local or Not 

Scenario Replica Server List 

ARAMplus_4: non-local THU-S1, S2; LZ1, 2  
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ARAMplus_4: local-1 HIT-S1, S2; THU-beta1, beta2 

ARAMplus_4: local-2 HIT-S1, S2; THU-beta1; LZ-1 

ARAMplus_4: local-3 HIT-S1, S2; LZ-1, 2 

ARAMplus_4: all-local HIT-S1, S2, S3, S4 

Table 4.3: Scenario for Various Replica Numbers and Selections 

Scenario Replica Server List 

Rx6_non-local LZ-1, 2, 3; THU-beta1, beta2, beta3 

Rx6_local HIT-S1, S2, S3, S4, S5, S6 

Rx2_local HIT-S1, S2 

Rx2_non-local-THU THU-S1, S2 

Rx2_non-local-LZ LZ-S1, S2 

Generally, more replicas and local placement will yield better parallel file transfer 

performance. Our results, shown in Figure 4.9 and 4.10, show that we found more 

replicas remotely so user performance improvement was not obvious, even worse than 

the few replica found locally. However, Burst Mode function could get more 

performance even two copies only (refer to scenario: Rx2_local). 

 

Figure 4.9: Effects of Various Replica Locations on Performance Results 
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Figure 4.10: Effects of Various Replica Numbers and Selections on Performance 

Results 

4.3.2 Case Study—RAM and ARAM vs. ARAM+  

We first compare RAM [32] and ARAM [26] in different alpha value. Both RAM and 

ARAM were use a static variable ‗α‘ as basis to evaluate the working load and with 

similar method to dispatch file transformation. The value of alpha will decide the 

transform blocks to each site, and it means to through the adjustment represents the 

value of alpha to adapt to different network environment. Testing the two scenarios 

with transform different file size (100MB, 1000MB) by adjust the value of alpha from 

0.1 to 0.9. The results of the testing were shown as Figure 4.11 and 4.12. To change 

the value of alpha will affect performance when transform smaller file than huger file. 

Those schemes will obtain better performance when transform huge file at the value 

of alpha approach to 0.5 and transform small file at the value of alpha approach to 0.9. 

The worst performance will occurred when the value of alpha equal to 0.1. The 

transmission quality of ARAM scheme was more stable than RAM scheme with 

change the value of alpha. 
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Figure 4.11: Completion Times in Different α Value Using Dataset Size 100MB 

 

 

Figure 4.12: Completion Times in Different α value Using Dataset Size 1000MB 
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dynamic alpha values to adapt to data grid network link fluctuations. The case study 

for RAM and ARAM is listed in Table 4.4. We set the constant alpha values at 0.9, 

0.5, and 0.1 for comparison with ARAM+, and replicas were selected from inside and 

outside regions. In order to distinguish among replica locations, these two kinds of 

replica selection plans are listed in Table 4.3. 

Table 4.4: Replica Placement and Selection Plan 

local HIT-S1, S2, S3, S4, S5, S6 

mix HIT-S1, S2; LZ-1, 2; THU-beta1, beta2 

 

Table 4.5: Scenario for Alpha Value Tuning 

Scenario A Scenario B 

RAM(0.1)_local RAM(0.1)_mix 

ARAM(0.1)_local ARAM(0.1)_mix 

RAM(0.5)_local RAM(0.5)_mix 

ARAM(0.5)_local ARAM(0.5)_mix 

RAM(0.9)_local RAM(0.9)_mix 

ARAM(0.9)_local ARAM(0.9)_mix 

ARAM+_local ARAM+_mix 

In our next experiment, two scenarios, sets A and B, were used to accentuate the 

advantages of the Burst Mode method and dynamic alpha value adjustment. Overall 

performances in Scenario B have obviously been improved over those in Scenario A. 

The total amounts of TCP bandwidth in Scenario A differed slightly, but there were 

significant differences in Scenario B. In all these case studies, especially in Scenario 

B, Burst Mode yielded huge performance improvements, as shown in Figures 4.13 

and 4.14. 
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Figure 4.13: Performance Results for Scenario A  

 

Figure 4.14: Performance Results for Scenario B 

4.3.3 Case Study—Comparison of 9 Co-Allocation Schemes 

To evaluate the performance of our proposed technique, we implemented the 

following nine co-allocation schemes: Brute-force (Brute), history-based (history), 
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conservative load balancing (conservative), aggressive load balancing (aggressive), 

dynamic co-allocation with duplicate assignments (DCDA), recursively adjusting 

mechanism (RAM), dynamic adjustment strategy (DAS), anticipative recursively 

adjusting mechanism (ARAM), and anticipative recursively adjusting mechanism plus 

(ARAM+). Using the case setups listed in Table 4.3 for each scheme, we analyzed 

their performance by comparing transfer finish times and overall performance, as 

shown Figures 4.15 and 4.16. 

 

Figure 4.15: Comparing 9 Schemes on “local” Cases 
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Figure 4.16: Comparing 9 Schemes on “mixed” Cases 

We found that ARAM+ performed better than the others. An interesting outcome 

shows the Brute scheme‘s ―local‖ performance differed greatly from its ―mixed‖ 

performance. ARAM+ is comparable to Brute or any others. The advantages of 

ARAM+ are the follows: 

 ARAM+ uses TCP bandwidth measurement technology, reliability and 

accuracy of the best. 

 ARAM+ can enhance GridFTP to become multiplexing. 

 ARAM+ used k-means for classifying numbers grid node. It quickly finds out 

the most efficient computing nodes. 

 ARAM+ gives the longest amount of computing job to powerful grid node but 

small data set could ignore some advance option for example, dynamic , 

server classification (k-mean) algorithm and congestion control. 

 ARAM+ can really adapt to different grid environments, rather than to just 

specific experiments designed grid system. 
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4.3.4 Case Study—Completion Times for Various Methods with 

Network Broken 

In the final experimentation, we compare 9 co-allocation schemes to face normal 

and worst network link state. It is possible that any host‘s network interrupt or any 

other types of network fault occur will cause file transformation failure in the 

heterogeneous and complex environment of the grid. The design of network fault 

tolerant was important to improve the usability and reliable of the full grid system. 

There was only DCDA, ARAM and ARAM+ has the ability to face fault in all 

schemes of this study. As shown in Figure 4.17, we built a disgusting environment 

with four replicas at grid sites. Each site with replica will disconnection a period 

time when transform file. Since the DCDA scheme was designed for faster sites will 

transform more segments in parallel to overcome network fault. The experiment 

results shown that when some grid node was disconnection at period time, the file 

can be complete transform. The ARAM and ARAM+ scheme were designed 

transform file base on current network status, it can avoid the situation that faster 

site to waiting for slower site. The overall transform file performance was still to 

keep in stability, as shown Figures 4.18. Finally we sorted out the advantages and 

disadvantages of 9 schemes and make a comparative table, as shown in table 4.6. 
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Figure 4.17: Broken Network Link Status 

 

Figure 4.18: Compare 9 Schemes in Different Network Status 
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Table 4.6: Comparison for All Schemes 

Schemes Complexity Overhead 

Network 

Adaptability 

Fault 

Tolerance 

Brute-Force Low Non Non No 

History-based Low Non Non No 

Conservative Load 

Balancing 

Middle Few Low No 

Aggressive Load 

Balancing 

Middle Few Low No 

Dynamic 

Co-allocation with 

Duplicate 

Assignments 

High Very High Middle Yes 

Recursively 

adjusting 

mechanism 

Middle Middle High No 

Dynamic 

Adjustment Strategy 

High High High No 

Anticipative 

recursively adjusting 

mechanism 

High Middle High Yes 

Anticipative 

recursively adjusting 

mechanism plus 

Very High High Very High Yes 
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Chapter 5  

Conclusions 

Co-allocation architectures can be used to enable parallel transfers of data files from 

multiple replicas in data grids, which mean all replicas stored in the various grid sites. 

Many schemes based on the Co-Allocation Model have been proposed and used to 

exploit the different transfer rates among various client-server network links and to 

adapt to dynamic rate fluctuations by dividing data into fragments. In these schemes, 

the applicable piece fragments achieve more performance. In fact, some schemes can 

be applied to specific situations; however, most situations are not common actually. 

For this issue, we propose the anticipative recursively adjusting mechanism plus 

(ARAM+), based on ARAM. The best part is performance tuning through continual 

dynamic alpha value adjustment. It relies on special features to adapt to various 

network situations in data grid environments. The TCP Bandwidth Estimation Model 

was used to evaluate dynamic link states in our experiments by detecting TCP 

throughputs and packet lost rates between grid nodes. TCP Bandwidth Estimation 

Model also can be more reliable and fair than ARAM and any other schemes. Burst 

Mode function truly can increase transfer rates and speed up total performance 

especially considering congestion control. The ARAM+ not only adapts to the worst 

network links, but also speeds up the overall performance especially in wide-area grid 

networks. 
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