

私立東海大學

資訊工程與科學研究所

碩士論文

指導教授：楊朝棟 博士

強化動態預測調整機制於資料網格中之平行

檔案傳輸

The Enhancement of Anticipative Recursively

Adjusting Mechanism for Redundant Parallel

File Transfer in Data Grids

研 究 生：楊明峰

中華民國九十八年六月

ii

摘要

在資料網格環境中，資料集被重複製為複本且分送到多重的站台。由於資料

集的檔案通常很大，如何有效率的存取及傳輸成為重大的課題。因此先前有學者

發展出協同配置的架構，使得同時從多重站台平行下載資料變成可能，目前發展

出數種協同配置法用來解決傳輸時本地端與伺服端網路傳輸率不斷變動的問題。

例如將欲傳輸的檔案切割成數個均等的檔案大小，或是將檔案動態的切割置於工

作佇列，透過連線品質較佳者傳送佇列中末完成傳輸的檔案區塊，來解決網路變

動的問題。無論各個下載連線的效率為何，當伺服端傳送最後一個檔案區塊時，

發生速度快的伺服器閒置的等待最慢的伺服器完成最後一個檔案區塊的傳送，或

是因為不同伺服器傳送相同的檔案區塊，造成網路頻寬資源的浪費，因此，若能

在一群候選伺服器中找到最大的頻寬資源，有效分配工作減少各伺服器間完成傳

輸時間的差異，將成為最重要的工作。近年，在全球各地的學者先後提出頗具新

意的資料網格平行檔案傳輸策略；本研究中，匯集 8 種各具代表性的平行檔案傳

輸方法，融合各方法的優點改善其缺點，採用 TCP 頻寬估計模型與突發模式等

新策略，藉此強化預測性遞迴調整的協同配置法，進一步提高大量資料集於資料

網格中的傳輸效能。我們的方法能有效地找出一群快速伺服器並分配較多的工作

量提高其資源利用率，動態計算出檔案切割量，有效減少各伺服器間的相互等待

時間。藉由各項實驗證明其傳輸的高效能，並具有網路自適應性與高度容錯性，

有效因應不同的網格環境。

關鍵字： 資料網格、協同配置、動態協同配置、平行傳輸

 iii

Abstract

Data grid enable the sharing, selection, and connection of a wide variety of

geographically distributed computational and storage resources for content that the

large-scale data-intensive application needs, such as high-energy physics,

bioinformatics, and virtual astrophysical observatories. Data grid consists of scattered

computing and storage resources located in different regions yet accessible to users.

Co-allocation architectures can be used to enable parallel transfers of data file from

multiple replicas in data grids which are stored at different grid sites. Schemes based

on co-allocation models have been proposed and used to exploit the different transfer

rates among various client-server network links and to adapt to dynamic rate

fluctuations by dividing data into fragments. These schemes show that the more

fragments used the more performance. In fact, some schemes can be applied to

specific situations; however, most situations are not common actually. For example,

how many blocks in a data set should be cut? For this issue, we proposed the

anticipative recursively adjusting mechanism (ARAM) in a previous research work.

Its best feature is performance tuning through alpha value adjustment. It relies on

special features to adapt to various network situations in data grid environments. In

this thesis, the TCP Bandwidth Estimation Model (TCPBEM) is used to evaluate

dynamic link states by detecting TCP throughputs and packet lost rates between grid

nodes. We integrated the model into ARAM, calling the result the anticipative

recursively adjusting mechanism plus (ARAM+); it can be more reliable and

reasonable than its predecessor. We also designed a Burst Mode (BM) that increases

ARAM+ transfer rates. This approach not only adapts to the worst network links, but

also speeds up overall performance.

Keywords: Data Grid, Co-allocation, Dynamic Co-allocation, Parallel file transfer

 iv

Acknowledgements

研究所 2 年時光匆匆，回想當初決定報考東海大學到選擇加入高效能計算實

驗室，我首先要感謝指導教授—楊朝棟 博士，在學期間給予我最多耐心且最大

支持與最真誠的鼓勵，無論是參與各項比賽與國際論文發表，研究的過程中充滿

挑戰且富有成就感，有幸能成為楊老師實驗室的一員，回想起過程就好比男人當

兵 2 個寒暑，從男孩蛻變男人，在東海大學高效能計算實驗室培養出的韌性足以

應付未來更多的挑戰。

接著要感謝我的太太雯如與大女兒佳恩，沒有他們的體諒與支持，我將無法

順利完成論文，更遑論畢業取得學位。

最後，特別感激修平技術學院的長官 姜文忠博士與東海大學研究所的同學

們，志豪、秋雄與共同合作的學長學弟們，沒有你們的指導與無私付出，我將不

可能完成我的研究工作，謝謝你們大家，並且再一次感謝 楊朝棟老師的指導。

v

Table of Contents

摘要 .. ii

Abstract ..iii

Acknowledgements ... iv

Table of Contents ... v

List of Tables .. vii

List of Figures ..viii

Chapter 1 Introduction .. 9

1.1 Motivation .. 9

1.2 Contribution ... 10

1.3 Thesis Organization ... 11

Chapter 2 Background Review and Related Work .. 12

2.1 Co-allocation Architecture ... 12

2.2 Brute-Force Co-Allocation .. 12

2.3 History-Based Co-Allocation ... 13

2.4 Conservative Load Balancing .. 14

2.5 Aggressive Load Balancing ... 14

2.6 Dynamic Co-Allocation with Duplicate Assignments (DCDA) 15

2.7 Recursively Adjusting Mechanism (RAM) ... 16

2.8 Dynamic Adjustment Strategy (DAS) ... 17

Chapter 3 Our Approach .. 20

3.1 Anticipative Recursively Adjusting Mechanism (ARAM) 20

3.2 TCP Bandwidth Estimation Model .. 24

3.3 k-means Algorithm ... 26

3.4 Burst Mode ... 27

3.5 Grid Network Congestion Control ... 29

3.6 Anticipative Recursively Adjusting Mechanism Plus (ARAM+) 30

3.6.1 Assumptions .. 30

 vi

3.6.2 Anticipative Recursively Adjusting Mechanism Plus (ARAM+) 30

3.6.3 ARAM+ Algorithm ... 31

Chapter 4 Experimental Results ... 34

4.1 Grid Environment: Tiger Grid ... 34

4.2 Experimental Tool: Cyber Transformer ... 36

4.2.1 System Components .. 38

4.2.2 System Transaction Flow .. 40

4.3 Experimental Results and Analyses ... 41

4.3.1 Case Study—―cross-grid‖ vs. ―local grid‖ .. 42

4.3.2 Case Study—RAM and ARAM vs. ARAM+ 44

4.3.3 Case Study—Comparison of 9 Co-Allocation Schemes 47

4.3.4 Case Study—Completion Times for Various Methods with Network

Broken .. 50

Chapter 5 Conclusions ... 53

Bibliography ... 54

vii

List of Tables

Table 4.1: The end-to-end Measurement Using NWS in Mbps 35

Table 4.2: Scenario for Replica Local or Not .. 42

Table 4.3: Scenario for Various Replica Numbers and Selections 43

Table 4.4: Replica Placement and Selection Plan .. 46

Table 4.5: Scenario for Alpha Value Tuning ... 46

Table 4.6: Comparison for All Schemes .. 52

viii

List of Figures

Figure 2.1: Data Grid Co-Allocation Architecture. ... 12

Figure 2.2: The Brute-Force Co-Allocation Process. .. 13

Figure 2.3: The History-Based Co-Allocation Process. ... 13

Figure 2.4: The Conservative Load Balancing Process. .. 14

Figure 2.5: The Aggressive Load Balancing Process. ... 15

Figure 2.6: The DCDA Process.. 16

Figure 2.7: The Adjustment Process .. 17

Figure 2.8: The flowchart of Dynamic Adjustment Strategy 19

Figure 3.1: Later-than-expected-time Adjustment Process ... 21

Figure 3.2: Earlier-than-expected-time Adjustment Process 21

Figure 3.3: 9 Hosts Classification According to Bandwidth Using k-means Algorithm

 .. 27

Figure 3.4: Burst Mode Enables Higher Bandwidths .. 28

Figure 4.1: Tiger Grid Network Topology .. 34

Figure 4.2: Tiger Grid Rsources .. 36

Figure 4.3: The GridFTP Client Tool: Cyber Transformer ... 37

Figure 4.4: Parallel Download Strategy Selection ... 38

Figure 4.5: The System Stack of Cyber Transformer .. 39

Figure 4.6: The Components of Cyber Transformer ... 40

Figure 4.7: The Transaction Flow of Cyber Transformer .. 41

Figure 4.8: Scenarios for Our Testbed of Tiger Grid ... 42

Figure 4.9: Effects of Various Replica Locations on Performance Results 43

Figure 4.10: Effects of Various Replica Numbers and Selections on Performance

Results .. 44

Figure 4.11: Completion Times in Different α Value Using Dataset Size 100MB 45

Figure 4.12: Completion Times in Different α value Using Dataset Size 1000MB 45

Figure 4.13: Performance Results for Scenario A ... 47

Figure 4.14: Performance Results for Scenario B ... 47

Figure 4.15: Comparing 9 Schemes on ―local‖ Cases ... 48

Figure 4.16: Comparing 9 Schemes on ―mixed‖ Cases ... 49

Figure 4.17: Broken Network Link Status ... 51

Figure 4.18: Compare 9 Schemes in Different Network Status 51

 9

Chapter 1

Introduction

1.1 Motivation

An increasing number of scientific applications. e.g., arising from Genomics,

Proteomics, and Bioinformatics require exchanges of large volumes of data to support

computation. Downloading large data sets from replica locations may result in

different performance rates because replica sites may have different architectures,

system loading, and network connectivity. Bandwidth quality is the most important

factor affecting internet transfers between clients and servers, with download speeds

being bounded by traffic congestion due to bandwidth limitations.

One method for improving download speeds uses replica selection techniques to

determine the best replica locations [28]. However, downloading data sets from single

best servers often results in ordinary transfer rates because bandwidth quality varies

unpredictably due to the shared nature of the Internet.

Another method uses co-allocation [27] technology to download data. Co-allocation

architectures were developed to enable clients to download data from multiple

locations by establishing multiple connections in parallel, thus improving

performance over single-server transfers and helping to alleviate the internet

congestion problem [27]. Parallel downloading [23, 24, 25, 26] is a technique used to

fetch and download files from multiple sources including Web servers, file servers,

P2P nodes, etc. Parallel downloading has been integrated into many Internet

applications and has become the core of many P2P systems. It speeds up download

times and eliminates the server selection problem [21, 22, 23]. Several co-allocation

strategies were addressed in previous works [15, 27], but drawbacks remain, such as

faster servers having to wait for the slowest one to deliver its final block. As shown in

 10

[15, 16], this may degrade network performance by repeatedly transferring the same

block. Hence, it is important to minimize differences in finish times among servers,

and to prevent the same blocks from being transferred over different links between

servers and clients.

In our previous research work, we presented a method for regulating next-section

workloads by continuously adjusting the workloads on selected replica servers. The

anticipative recursively adjusting mechanism (ARAM) scheme measures the actual

bandwidth performance during data file transfers, and, according to previous transfer

finish rates, anticipates bandwidth statuses at the next transfer section. The basic idea

is to assign less data to selected replica servers with greater network link performance

variations since links with more bandwidth variations will have smaller effective

bandwidths, as well as smaller transfer finish rates. The goal is to make the expected

finish times of all servers be the same.

1.2 Contribution

In this thesis, we first present our new approach based on the ARAM co-allocation

strategy for data grid environments. We have designed and implemented a TCP

bandwidth estimation model and Burst Mode (BM) to enhancing the original ARAM

algorithm. Workloads on all selected replica servers are still adjusted according to

TCP throughputs and packet loss rates, and faster servers get double or even

quadruple throughputs via Burst Mode enabling. Finally, we present Cyber

Transformer, a useful toolkit for data grid users. Integrated with the Information

Service, Replica Location Service, and Data Transfer Service, it‘s simple, friendly

GUI interface makes it easy for inexperienced users to manage replicas and download

files in data grid environments. This tool integrates all strategies based on

co-allocation architectures including our previous and proposed algorithms.

 11

1.3 Thesis Organization

The remainder of this research is organized as follows. Related background review

and studies are presented in Chapter 2. Our new approach is outlined in Chapter 3.

Experimental results and a performance evaluation of our scheme are presented in

Chapter 4. Chapter 5 concludes this research article.

 12

Chapter 2

Background Review and Related Work

2.1 Co-allocation Architecture

The architecture proposed in [29] consists of three main components: an information

service, a broker/co-allocator, and local storage systems. Figure 2.1 shows

co-allocation of data grid transfers, an extension of the basic template for resource

management [7] provided by the Globus Toolkit. Applications specify the

characteristics of desired data and pass attribute descriptions to a broker. The broker

queries available resources, gets replica locations from the Information Service [6]

and Replica Management Service [31], then gets lists of physical file locations.

Application

Information

Service

Co-allocator

Broker Forecasts

RLS

Queries

Information

Data Access/ Transport using GridFTP

Local Storage System

Figure 2.1: Data Grid Co-Allocation Architecture.

2.2 Brute-Force Co-Allocation

The Brute-force co-allocation scheme shown in Figure 2.2 divides file sizes equally

 13

among available flows; it does not address bandwidth differences among various

client-server links.

2.3 History-Based Co-Allocation

The history-based co-allocation scheme shown in Figure 2.3 keeps block sizes per

flow proportional to predicted transfer rates, and disregards the influence of network

variations between client and server.

Figure 2.2: The Brute-Force Co-Allocation Process.

Figure 2.3: The History-Based Co-Allocation Process.

 14

2.4 Conservative Load Balancing

The conservative load balancing scheme shown in Figure 2.4 divides requested data

sets into k disjoint blocks of equal size. Available servers are allocated single blocks

to deliver in parallel. Servers work in sequential order until all requested files are

downloaded. Loadings on the co-allocated flows are automatically adjusted because

the faster servers deliver larger file portions more quickly.

2.5 Aggressive Load Balancing

This method, shown in Figure 2.5, adds functions that change block size in deliveries

by: (1) gradually increasing the amounts of data requested from faster servers and (2)

reducing the amounts of data requested from slower servers or stopping requesting

data from them altogether.

Figure 2.4: The Conservative Load Balancing Process.

 15

Figure 2.5: The Aggressive Load Balancing Process.

2.6 Dynamic Co-Allocation with Duplicate Assignments (DCDA)

The co-allocation strategies described above do not handle the shortcoming of faster

servers having to wait for the slowest server to deliver its final block which, in most

cases, wastes much time and decreases overall performance. Neither the prediction

nor the heuristic approach, the DCDA scheme dynamically co-allocates duplicate

assignments and copes nicely with changes in server speed performance, as shown in

Figure 2.6. The DCDA scheme is based on an algorithm that uses a circular queue.

Let D be a data set and k the number of blocks of fixed size in the data set. D is

divided into k disjoint blocks of equal size and all available servers are assigned to

deliver blocks in parallel. When a requested block is received from a server, one of

the unassigned blocks is assigned to that server. The co-allocator repeats this process

until all blocks have been assigned. DCDA behaves well even when server links are

broken or idled. The DCDA scheme is flawed, however, in that it consumes network

bandwidth by repeatedly transferring the same blocks. This wastes resources and can

easily cause bandwidth traffic jams in the links between servers and clients.

 16

Figure 2.6: The DCDA Process

2.7 Recursively Adjusting Mechanism (RAM)

This co-allocation strategy is the most efficient approach to reducing the influence of

network variations between clients and servers. However, idle times when faster

servers are waiting for the slowest server to deliver its last block are still a major

factor affecting overall efficiency that conservative load balancing and aggressive

load balancing [18] cannot effectively avoid. In real-world networking environments,

a replica server‘s available bandwidth might change dynamically as a result of

network configuration or load variations. Previous algorithms could not adapt to these

dynamisms. Therefore, the greater the degree of bandwidth variation the greater the

download times needed. Thus, overall efficiency depends on several factors. Our

strategy can overcome such obstacles, and improve data transfer performance. The

recursively adjusting mechanism works by continuously adjusting each replica

server‘s workload to correspond to its real-time bandwidth during file transfers. The

goal is to make the expected finish times of all servers the same. As Figure 2.7 shows,

when an appropriate file section is first selected, it is divided into proper block sizes

according to the respective server bandwidths. The co-allocator then assigns blocks to

servers for transfer. At this moment, it is expected that the transfer finish times will be

 17

consistent at E(t1). However, since server bandwidths may fluctuate during segment

deliveries, actual completion times may vary (solid line, in Figure 2.7). When the

quickest server finishes its work at time t1, the next section is assigned to the servers.

This allows each server to finish its assigned workload by the expected time at E(t2).

These adjustments are repeated until the entire file transfer is finished.

Figure 2.7: The Adjustment Process

The main purpose of this algorithm is to select appropriate data sources and download

from multiple data servers to a single client resource. We proposed a recursively

adjusting co-allocation scheme for parallel downloads from multiple replica servers to

a single-client. This is useful in cases like downloading music file segments and

playing continuous music on a single-client resource. Our algorithms are mainly

aimed at transferring parallel data segments from multiple servers to multiple clients

for execution of parallel numerical applications on the clients. The challenge in

multiple server–multiple client scenarios is greater since server selections and data

downloads on some clients can impact server selections and data transfer performance

on other clients.

2.8 Dynamic Adjustment Strategy (DAS)

The DAS proposed a replica selection cost model and a replica selection service to

 18

perform replica selection, its revival the CPU load, memory usage and free space

through Replica Location Service (RLS). We now propose a new data transfer

strategy based on this model. It consists of three phases: (1) initial phase, (2) steady

phase, and (3) completion phase.

 Initial phase: We assign equal block sizes to all GridFTP servers. In this phase, our

system determines the next block size for each replica server.

 Steady phase: As job transfers are completed, servers are assigned their next jobs.

Jobs sizes are determined by multiplying the client bandwidth by the weighting.

 Completion phase: To avoid the generating excessively small job sizes, we set an

end condition such that if the remaining target file size is smaller than the initial

block size, it is transferred immediately.

To determine the initial block size, we set an upper bound that is dependent on the

relation between the client‘s maximum bandwidth and the number of replica sources.

Though multiple replicas can be downloaded in parallel, the gathered portions of files

from different links must be transferred to the client in a single link. It is clear that the

client‘s bandwidth could be bottleneck in co-allocation architecture. Each time, our

strategy dynamically adjusts a job size according to source device loading and

bandwidth. The lighter the loading a source device has, the larger job size it is

assigned. Figure 9 shows a flowchart illustrating this strategy.

 19

Transfer job start

File transfer

complete?

remnantFileSize

< initialPT

Job size =

ClientBandwidth ´ weighting

Calculate the

weighting

Job size >

remnantFileSize

False True

False

True

True

False

remnantFileSize =

remnantFileSize - Job size

Job size = remnantFileSize

remnantFileSize = 0

END

Start

Calculate initialPT

Job size = remnantFileSize

remnantFileSize = 0

Figure 2.8: The flowchart of Dynamic Adjustment Strategy

 20

Chapter 3

Our Approach

3.1 Anticipative Recursively Adjusting Mechanism (ARAM)

The recursively adjusting mechanism reduces file transfer completion times and idle

times spent waiting for the slowest server. It also provides an effective scheme for

reducing the cost of reassembling data blocks. However, our scheme did not consider

the potential effect of server links broken or idled during file transfers. Therefore, we

propose an efficient approach called the anticipative recursively adjusting mechanism

(ARAM) to extend and improve upon recursive adjustment co-allocation [12]. The

main idea of the ARAM is to assign transfer requests to selected replica servers

according to the finish rates for previous transfers, and to adjust workloads on

selected replica servers according to anticipated bandwidth statuses. In continuously

adjusting selected replica server workloads, the anticipative recursively adjusting

mechanism scheme measures actual bandwidth performance during data file transfers

and regulates workloads by anticipating bandwidth statuses for subsequent transfers

according to the finish rates for previously assigned transfers. The basic idea is to

assign less work to selected replica servers on network links with greater performance

variability. Links with more bandwidth variation will have smaller effective

bandwidths, as well as smaller finish rates for assigned transfers. The goal is to have

the expected finished times of all servers be the same. Our approach performs well,

even when the links to selected replica servers are broken or idled. It also reduces the

idle time wasted waiting for the slowest server. As appropriate file sections are

selected, they are first divided into proper block sizes according to the respective

server bandwidths, previously assigned file sizes, and transfer finish rates. Initially,

the finish rate is set to 1. Next, the co-allocator assigns the blocks to selected replica

 21

servers for transfer. At this moment, it is expected that the transfer finish times will be

consistent with E(t1). However, since server bandwidths may fluctuate during segment

deliveries, actual completion times may differ from expected times E(t1) (solid lines in

Figures 3.1 and 3.2). When the fastest server finishes at time t1, the size of unfinished

transfer blocks (italic blocks in Figures 3.1 and 3.2) is measured to determine the

finish rate. Two outcomes are possible: the quickest server finish time t1 may be

slower than or equal to the expected time, E(t1), indicating that network link

performance remained unchanged or declined during the transfer. In this case, the

difference in transferred size between the expected time and actual completion time

(italic block in Figure 3.1) is then calculated.

Figure 3.1: Later-than-expected-time Adjustment Process

Figure 3.2: Earlier-than-expected-time Adjustment Process

 22

The other outcome is that the quickest server finish time t1 may be faster than the

expected time, E(t1), indicating an excessively pessimistic anticipation of network

performance, or an improvement in replica server network link performance during

the transfer. The difference in transferred size between the expected time (italic block

in Figure 3.2) and earlier time is then measured. If the anticipated network

performance was excessively pessimistic, it is adjusted for the next section. The next

task is to assign proper block sizes to the servers along with respective bandwidths

and previous finish rates, enabling each server to finish its assigned workload by the

expected time, E(t2). These adjustments are repeated until the entire file transfer is

finished.

Looking more closely at ARAM, some parameter definitions are shown below.

 A: file requested by user

 n: selected replica servers

 : rate that determines how much of the section remains to be assigned

 Tj: allocated time for section j

 SEj: allocated size for section j

 UnassignedFileSize: portion of file A not yet distributed for downloading

 UnfinishedFileSize: the size of unfinished blocks assigned in previous rounds

 Bji: real-time transfer rate from the selected replica server

 rj: transfer finish rate

 rj-1: server transfer finish rate for previously assigned delivered file

 Bj: bandwidth available for section j

 Sji: block size per flow from SEj for each server i at time Tj

 ETji: expected time for server i at section j

 RTji: real finish time for server i at section j

 TSji: actual transfer size at real finish time RTji

 23

 rji: job finish rate

When a user requests file A from the data grid environment, the replica selection

server responds with a list of all available servers defined as maximum performance

data sets/servers. Data sets/servers for the co-allocator to transfer the file are selected,

and the target file is then transferred from the chosen replica data sets/servers.

Assume that n replica servers are selected and Si denotes server ―i‖ for 1≦i≦n. A

connection for file downloading is then built to each server.

The anticipative recursively adjusting mechanism process is as follows. A new section

of a file to be allocated is first defined. The section size is shown as

𝑆𝐸𝑗 = 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 + 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 × α,

0 < 𝛼 ≤ 1
(1)

where SEj denotes section j such that 1≦j≦k, assume k time is allocated for

downloading and there are k sections, while Tj denotes the time allocated to section j.

UnassignedFileSize, the portion of File A awaiting distribution for downloading is

initially equal to total file size and TotalUnfinishedFileSize is equal to zero in the first

round.  is the rate determining how much of the section remains to be assigned.

In the next step, SEj is divided into several blocks and assigned to ―n‖ servers. Each

server has a real-time transfer rate to the selected replica server of Bji. rj-1 denotes the

server transfer finish rate for previously assigned files, where the initial value is 1.

The block size per flow from SEj for each server ―i‖ at time Tj is Sji:

𝑆𝑗𝑖 =
𝑆𝐸𝑗𝑖 × 𝐵𝑗𝑖 × 𝑟𝑗−1

 𝐵𝑗𝑖 × 𝑟𝑗
−1
 𝑛

𝑖=1

, 0 ≤ 𝑟𝑗−1 ≤ 1 (2)

𝐵𝑗 = 𝐵𝑗𝑖 × 𝑟𝑗−1

𝑛

𝑖=1

 (3)

𝐸𝑇𝑗𝑖 =
𝑆𝑗𝑖

𝐵𝑗𝑖
 (4)

This fulfills our requirement to minimize the time faster servers must wait for the

 24

slowest server to finish. In some cases, network variations greatly degrade transfer

rates. A faster channel may finish its assigned data blocks at real finish time RTji, or

later or earlier than expected time ETji. Then TSji denoting the actual transfer size at

real finish time RTji is given by

𝑇𝑆𝑗𝑖 = 𝐵𝑗𝑖 × 𝑅𝑇𝑗𝑖 (5)

If the first finish time for RTji is earlier than expected time ETji, the reason may be an

excessively pessimistic anticipation of network performance, or the network links

used for improvement during the transfer. We compare the block sizes transferred

between the earliest and expected times for each server chosen. If the transferred size

TSji is greater than expected size Sji at the first finish time, otherwise, the first finish

time for RTji may be the result of the network link used remaining unchanged or

deteriorating during the transfer.

𝑟𝑗𝑖 =

𝑇𝑆𝑗𝑖

𝑆𝑗𝑖
, 𝑅𝑇𝑗𝑖 ≥ 𝐸𝑇𝑗𝑖

1, 𝑅𝑇𝑗𝑖 < 𝐸𝑇𝑗𝑖, 𝑎𝑛𝑑 𝑇𝑆𝑗𝑖 ≥ 𝑆𝑗𝑖

 (6)

The co-allocator then measures the bandwidth performance of each server, and

estimates bandwidth statuses for the next transfer section in order to adjust workflows

for the next session. At the same time, it eliminates server UnfinishedFileSize listings

by summing them up for assignment to the next section.

After allocation, all selected replica servers continue transferring data blocks. When a

faster selected replica server finishes its assigned data blocks, the co-allocator

allocates an unassigned section of file A. Workflows are continually adjusted during

the data block allocation process until the entire file has been allocated.

3.2 TCP Bandwidth Estimation Model

TCP/UDP is one of the core protocols in the Internet protocol suite. TCP provides

reliable, in-order delivery of a stream of bytes, making it suitable for applications such

 25

as GridFTP file transfers. Parallel TCP sockets is a generic ―hack‖ that improves TCP

throughputs during bulk data transfers by opening several TCP connections and

striping the data files over them [1]. In practice, it is often unclear how many sockets

one needs to open in order to achieve satisfactory throughput, and opening too many

connections may be undesirable for various reasons [1, 5, 13, 16]. The TCP

Bandwidth Estimation Model [13] as a function to assessing TCP packet loss rate,

such as round trip time, maximum segment size, other miscellaneous parameters, etc.

𝑇𝐶𝑃𝐵𝑊 𝑝

≈ 𝑚𝑖𝑛

 𝑊𝑚𝑎𝑥

𝑅𝑇𝑇
,

1

 2𝑏𝑝
3

𝑅𝑇𝑇

 + 𝑇0 𝑚𝑖𝑛 1,3
3𝑏𝑝

8 𝑝 1 + 32𝑝2

𝑀𝑆𝑆

(7)

 TCPBW(p): bytes transmitted per second

 MSS: maximum segment size

 Wmax: maximum congestion window size

 RTT: round trip time

 b: number of transmitted data packets acknowledged by one acknowledgement

(ACK) from the receiver (usually b=2)

 T0: timeout value

 p: packet loss ratio, number of retransmitted packets divided by the total

number of packets transmitted

 C: a constant value, initially set to 1.0

In equation (7), TCPBW(p) represents bytes transmitted per second, and three factors

need to be considered: MSS, RTT and p. These represent overall TCP bandwidth. For

TCP performance assessment, another researcher has simplified them into one.

𝐵𝑊 ≤
𝑀𝑆𝑆

𝑅𝑇𝑇

𝐶

 𝑝
 (8)

In equation (8), MSS, RTT and p are the same variables used in equation (7), C is a

 26

constant factor, and BW represents the number of bytes transmitted per second.

Thus, how the TCP Bandwidth Estimation Model measures server bandwidth makes it

more reliable and fair.

3.3 k-means Algorithm

The k-means algorithm clusters n objects according to attributes into k partitions, k <

n. It is similar to the expectation-maximization algorithm for Gaussian mixtures in

that they both attempt to find natural cluster centers in data. Assuming object

attributes form vector spaces, it tries to minimize total intra-cluster variance, or, the

squared error function:

𝑉 =

𝑘

𝑖=1

𝑥∈𝑠𝑖

 𝑥 − 𝑚𝑖
2 (9)

According to the k-means algorithm, where there are random k clusters Si, i = 1, 2, ...,

k, the Euclid distance of each x point to mi in Si , mi is the cancroids or mean point of

all the points x ∈ Si. Equations (10) ~ (13) not only calculate Euclid distances by

means of each Si, but also recursively renew the mean point mi depending on the cost

function V. After calculations, 9 servers with different network bandwidths have been

placed in three groups (k=3). The simulation results are shown in Figure 3.3.

 k: number of partitions

 x: number of points

 Si: partition attributes form a vector space

 mi: the mean point of all of Si points

 𝑥𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑖𝑗 : determines whether or not an x point belongs to Si

 𝑉: distance cost function

 𝑑: distance between two point

𝑚𝑖 =
 𝑑(𝑥𝑗 , 𝑚𝑖)𝑥∈𝑆𝑖

 𝑆𝑖
 (10)

 27

𝑥𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑖𝑗 = 1 𝑖𝑓 𝑥𝑗 − 𝑆𝑖
2

 ≤ 𝑥𝑗 − 𝑆𝑘
2

 0 , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 , ∀𝑘 ≠ 1 (11)

𝑉 = 𝑉𝑖

𝑘

𝑖=1

= 𝑑(𝑥𝑗 , 𝑚𝑖)

𝑘,𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

 (12)

𝑛𝑒𝑤(𝑚𝑖) =
1

 𝑆𝑖
 𝑥𝑗

𝑘,𝑥𝑗∈𝑆𝑖

 (13)

Figure 3.3: 9 Hosts Classification According to Bandwidth Using k-means

Algorithm

3.4 Burst Mode

Like many network accelerator methods, and multithreading, Burst Mode (BM) first

splits one huge bandwidth into small pipelines all working at the same time. Burst

Mode focuses on the fastest group of servers and can differentiate among the various

candidate server network bandwidths. Second, BM chooses the faster one then others

(as shown in Equations 10, 11, 12, and 13). Ultimately, the BM has made single jobs

into many, as shown in Figure 3.4.

 28

Server 1

Server 2

Server 3

Round 1 Round 2
t1 t2

File A Section 1 Section 2

...

...

...

80Mbps

5Mbps

2Mbps

: Burst Mode Enable

Figure 3.4: Burst Mode Enables Higher Bandwidths

The k-means simulation results showed that fewer local replica servers are high

efficiency than many remote replica servers. Accordingly, the main ideas in Burst

Mode (BM) are to find the fastest server group, and to make it download via

multithreading. BM also deals with cutting blocks properly for various data sets.

Burst Mode function is shown below:

 NiTCPBW: candidate server bandwidth

 FTS: the fastest group of servers

𝑁𝑖𝑇𝐶𝑃𝐵𝑊 =
𝑀𝑆𝑆

𝑅𝑇𝑇

𝐶

 𝑝
 (14)

𝐹𝑇𝑆 = 𝑆𝑖 , 𝑀𝐴𝑋 𝑆1, 𝑆2, ⋯ , 𝑆𝑛 ,𝑚𝑖𝜖𝑆𝑖 (15)

The algorithm is listed below:

[Initialization]

Measure bandwidths and find the fastest servers using Equations 14 and 15.

BigBlockUnit set to 100MB initially

[Allocate blocks to the fastest servers and download via multithreading.]

Step 1: Group mi and rank the most powerful server FTS

Step 2: Allocate SEj and download via multithreading

Step 3: Monitor job progress statuses

 29

LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize are greater than

BigBlockUnit (initial BigBlockUnit=100MB)) THEN

{

IF (Job finish rate is just 100% (rji=1) and UnassignedFileSize and total

UnfinishedFileSize are greater than BigBlockUnit) THEN

{

Let data transfer in multiple parts between client and FTS server

𝑆𝐸𝑗 = 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 + 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 × α,

 0 < 𝛼 ≤ 1,

 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 + 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ≥ 𝐵𝑖𝑔𝐵𝑙𝑜𝑐𝑘𝑈𝑛𝑖𝑡

}

}

END LOOP;

3.5 Grid Network Congestion Control

Grid network congestion control is concerned with controlling traffic entry into data

grid networks to prevent congestive collapse by avoiding oversubscription of any grid

node processing or link capacity and taking resource reduction steps, such as reducing

packet sending rates when Burst Mode is active.

The modern theory of congestion control [35, 36], describes how individuals

controlling their own pack lost rate can interact to achieve an optimal network-wide

rate allocation. Examples of ―optimal rate‖ allocation are max-min fair allocation and

Kelly's [35] suggestion of proportional fair allocation, although many others are

possible. The mathematical expression (Equation 16) for optimal rate allocation is as

follows. Let xi be the rate of flow i. Let x, c and R be the corresponding vectors and

matrix. Let U(x) be an increasing, strictly convex function, called the utility, which

measures how much benefit a user obtains by transmitting at rate x. The optimal rate

 30

allocation will then satisfy:

max
𝑥

 𝑈(𝑥𝑖)

𝑖

, 𝑅𝑥 ≤ 𝑐 (16)

3.6 Anticipative Recursively Adjusting Mechanism Plus (ARAM+)

3.6.1 Assumptions

We outline our system design model assumptions below.

 All grid nodes are installed GlobusToolkit4 previously.

 All grid nodes are supporting Simple Network Management Protocol (SNMP).

 The time for transferring, stopping/assigning processes, and calculating TCPBW

to selected replica servers is negligible.

3.6.2 Anticipative Recursively Adjusting Mechanism Plus (ARAM+)

The ARAM+ is not merely inherited from ARAM. It has been enhanced also in the

following areas: its TCP Bandwidth Estimation Model (TCPBEM) and its Burst

Mode (BM). ARAM+ continually adjusts the workloads on selected replica servers by

measuring actual bandwidth performance via TCPBEM during data file transfers and,

according to previous job finish rates, and adjusting alpha values for subsequent

transfer sections.

Some interesting ideas have arisen from P2P networks and distributed

denial-of-service (DDoS) attacks. As is well known, P2P networking is share based; it

shares data and downloads in parallel, more numbers of share point get more speedup.

Another typical example is DDoS attacks that occur when multiple compromised

systems flood the bandwidth or resources of a targeted system. We have combined

these elements in our approach. The multithreading in the Burst Mode (BM) design

came from DDoS attacks, BM ―floods‖ the target replica server bandwidth to speed

up download performance. The other idea from P2P networking was applied to

 31

ARAM+. It pre-selects many candidate replicas from various servers, then chooses

appropriate servers and allocates only enough workload to fit server capacities.

Both of our previous works [24, 25, 27, 29, 30], the anticipative recursively adjusting

mechanism (ARAM) and recursively adjusting mechanism (RAM) were based on

co-allocation architecture and relied on tuning alpha values by hand to adapt to

specific data grid situations. The ARAM+ uses the same strategies, but differs in that

alpha values are tuned dynamically.

ARAM+ adapts to real-time network statuses and calculates appropriate alpha 

values continually with TCPBEM TotalTCPBW, to ensure good download flexibility

and to speed up overall performance. The equations are as follows:

 TotalTCPBW: overall bytes transmitted per second.

𝑇𝑜𝑡𝑎𝑙𝑇𝐶𝑃𝐵𝑊 =
𝑀𝑆𝑆

𝑅𝑇𝑇

𝐶

 𝑝

𝑁

𝑖=1

 (17)

𝛼 = 1 − (
1

𝑇𝑜𝑡𝑎𝑙𝑇𝐶𝑃𝐵𝑊
0.2), 0 < 𝛼 ≤ 1 (18)

3.6.3 ARAM+ Algorithm

[Initialization]

Current bandwidths for all candidate servers are measured using the TCP Bandwidth

Estimation Model (TCPBEM) and calculating appropriate alpha values with

Equations 14 and 15.

[Allocating blocks to selected servers]

LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize is greater than zero)

THEN

{

IF (UnassignedFileSize and Total UnfinishedFileSize are greater than TotalTCPBW)

 32

THEN

{

IF (UnassignedFileSize and Total UnfinishedFileSize multiplied by  are greater than

TotalTCPBW) THEN

{

Define new section for allocation

𝑆𝐸𝑗 = 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 + 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 × α,

 0 < 𝛼 ≤ 1

}

ELSE

{

Define finial section

𝑆𝐸𝑗 = 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒 + 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑓𝑖𝑛𝑖𝑠𝑕𝑒𝑑𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒

}

}

END LOOP;

Step 1: Define new section for allocation SEj

Step 2: Monitor all selected replica servers

Step 3: Allocate blocks to selected replica servers, according to the TCPBW of the

selected replica server, and the previous finish rates Rj-1 for the selected

replica server (initial R0=1)

Step 4: Monitor all download flows

LOOP WHEN (The fastest flow finishes its assigned data blocks) THEN

{

IF (First finish time for RTji is earlier than expected time ETji and transferred size

TSji is greater than expected size Sji) THEN

 33

{

 The rji=1

}

ELSE

{

 Measure the finish rate for the previously delivered file (0 ≤ 𝑟𝑗𝑖 ≤ 1)

}

𝑟𝑗𝑖 =

𝑇𝑆𝑗𝑖

𝑆𝑗𝑖
, 𝑅𝑇𝑗𝑖 ≥ 𝐸𝑇𝑗𝑖

1, 𝑅𝑇𝑗𝑖 < 𝐸𝑇𝑗𝑖, 𝑎𝑛𝑑 𝑇𝑆𝑗𝑖 ≥ 𝑆𝑗𝑖

}

END LOOP;

 34

Chapter 4

Experimental Results

4.1 Grid Environment: Tiger Grid

The experiments in this work were conducted and evaluated on the Tiger grid, which

consists over 11 clusters located at 6 educational institutions (Tunghai

University—THU, National Taichung University—NTCU, Hsiuping Institute of

Technology—HIT, National Dali Senior High School—DALI, Lizen High

School—LZSH, and Tungs‘ Taichung Metro Harbor Hospital—TUNG). A logical

diagram of the Tiger grid network environment is shown in Figure 4.1. The detail

end-to-end transmission rate of THU to every educational unit is listed in Table 4.1.

Figure 4.2 shows statuses for all machines used in the grid testbed on one monitor

page.

S3

Hsiuping Institute

of Technology, HIT

S4

S5

S2

S6

lz1

lz2

lz3

lz4

 Da-Li Senior

High School, DL

tc1

tc2

tc3

tc4

Tunghai

University, THU

delta x 4

alpha x 4

beta x 4

gamma x 4
zeta x 5

eta x 8

 75 Mbps

37 M
bps

16 Mbps

National

Taichung

University,

NTCU

host101

host102

host103host104

23 Mbps

36
 M

bp
s

 40 M
bps

 48 M
bps

TungGrid4

TungGrid3

TungGrid2

TungGrid1

3.
6

M
pbs

S1

Tungs’Taichung

MetroHarbor

Hospital

2.8 Mpbs

2.
1

M
pb

s

81 Mbps

Lizen High

School, LZ

Figure 4.1: Tiger Grid Network Topology

 35

Table 4.1: The end-to-end Measurement Using NWS in Mbps

THU to others

Case Bandwidth Avg High Low

THU  HIT 37.815 70.349 20.952

THU  DL 16.673 17.920 12.182

THU  LZ 48.139 73.466 31.678

THU  NTCU 23.432 39.824 13.176

HIT to others

Case Bandwidth Avg High Low

HIT  THU 32.487 49.384 17.913

HIT  DL 38.206 18.166 7.875

HIT  LZ 84.089 77.048 88.664

HIT  NTCU 81.391 86.995 71.530

DL to others

Case Bandwidth Avg High Low

DL  HIT 42.143 88.129 22.037

DL  THU 15.893 42.823 5.238

DL  LZ 36.631 17.830 87.351

LZ to others

Case Bandwidth Avg High Low

LZ  HIT 67.579 77.298 53.967

LZ  THU 32.324 56.313 15.099

LZ  DL 17.769 18.098 16.634

NTCU to THU, HIT

Case Bandwidth Avg High Low

 36

NTCU  THU 23.432 39.824 13.176

NTCU  HIT 81.391 86.995 71.530

They are interconnected by the 1Gbps Taiwan Academic Network (TANET). The

Tiger grid platform is built around 132 computing nodes, more than 224 CPUs with

differing speeds, and total storage of more than 5 TB. All the institutions are in

Taiwan, at least 10~30 km from THU. All machines have Globus 4.0.7 or above

installed.

Figure 4.2: Tiger Grid Rsources

4.2 Experimental Tool: Cyber Transformer

In a previous work [28], we gave experimental results for Cyber Transformer, a

powerful new toolkit for replica management and data grid environment data transfers.

It can accelerate data transfer rates, and also manage replicas over various sites. The

friendly interface enables users to easily monitor replica sources, and add files as

replicas for automatic cataloging by our Replica Location Service. Moreover, we

 37

provide a function for administrators to delete and modify replicas. Cyber

Transformer can be invoked with either the logical file name of a data file or a list of

replica source host names. When users search for files using logical file names, Cyber

Transformer queries the Replica Location Services to find all corresponding replicas,

and directs the replica sources to start parallel transfers. Cyber Transformer users can

easily gather replica resources and combine them into single entities with the

―strategy selection‖ user interface, accomplishing the task with various parallel

download strategies, as shown in Figure 4.3 and 4.4

Figure 4.3: The GridFTP Client Tool: Cyber Transformer

 38

Figure 4.4: Parallel Download Strategy Selection

4.2.1 System Components

Cyber Transformer is implemented in the Java Cog Kit [14] library. The system stack

of Cyber Transformer consists of three parts: (1) Information Monitor, (2) Replica

Manager, and (3) GridFTP Browser, to simplify replica management and data

transfers. With the intuitive interface, users can easily invoke the services to transfer

data without delay. Figure 4.5 shows the Cyber-Transformer system components and

the three main services they provided.

 Information Service: This service is invoked by the Information Monitor and

provides replica sources statuses allowing users to monitor all replica source sites

in the data grid. Sites status, such as CPU loading, free memory, hard disk free

space, and bandwidth, are gathered by the Information Service and reported to

 39

the Information Monitor.

 Replica Management Service: This serves as middleware between users and

replica databases. It enables convenient user replica searches by listing logical

file names and replica source host names. Users can also easily upload files as

replicas, and mark the importance of these files.

 Data Transfer Service: This is the most important Cyber-Transformer service,

and is easily summoned through the GridFTP Browser. Our Dynamic

Adjustment Strategy is integrated into it, and an ―Option‖ function enables users

to compensate for various data grid environment conditions by adjusting transfer

factors such as machine loading, bandwidth, partition size, and stripe numbers,

thus accelerating data transfer rates.

Cyber Transformer Toolkit on Windows XP/Linux

Information

Service

Replica Location

Service

Data Transfer

Service

Java CoG Kit

Globus Toolkit

(MDS and GRAM)

GridFTP Protocol J2SDK

Data Grid Nodes (Storage System)

Figure 4.5: The System Stack of Cyber Transformer

 40

Figure 4.6: The Components of Cyber Transformer

4.2.2 System Transaction Flow

Figure 4.7 shows the Cyber Transformer transaction flow. Users must first pass the

Grid Proxy Certification provided by Simple CA to get access to the Grid. They may

then connect to any data grid site via the GridFTP Browser. The system automatically

authenticates site certifications as connections are made. The security mechanism of

our Grid environment is depicted below. Steps 4 and 5 show how users query the

Replica Location Service for replica information, and the Replica Location Service

reports on requests. The system ranks all replica servers according to our replica

selection model [31, 32], and users can then choose the better servers for parallel

downloading. The Data Transfer Service is invoked in Step 6. Information about the

replicas chosen by the user is picked up by the GridFTP Job Controller. The

Controller then dynamically adjusts replica transfer job sizes according to the

 41

conditions presented in the information. Job sizes are continually adjusted until all

transfers have been completed. The portions from the various replica sources are then

gathered into complete file. To enable users lacking deep knowledge of data grids to

easily download and manage files in data grid environments, we developed a

user-friendly GUI for Cyber Transformer. It is implemented in the Java CoG Kit

library, and it can be executed on any operating system with JVM

Figure 4.7: The Transaction Flow of Cyber Transformer

4.3 Experimental Results and Analyses

An experiment and a case design were devised to test Burst Mode (BM), our proposed

approach to speeding up local and remote performance, and dynamically truing alpha

values to adapt to variable network situations. Details of the test cases we designed

 42

are shown in Figure 4.8.

Figure 4.8: Scenarios for Our Testbed of Tiger Grid

4.3.1 Case Study—“cross-grid” vs. “local grid”

We designed two scenarios to verify the efficiency of enabling Burst Mode. All test

cases are listed in Tables 4.1 and 4.2.

Table 4.2: Scenario for Replica Local or Not

Scenario Replica Server List

ARAMplus_4: non-local THU-S1, S2; LZ1, 2

 43

ARAMplus_4: local-1 HIT-S1, S2; THU-beta1, beta2

ARAMplus_4: local-2 HIT-S1, S2; THU-beta1; LZ-1

ARAMplus_4: local-3 HIT-S1, S2; LZ-1, 2

ARAMplus_4: all-local HIT-S1, S2, S3, S4

Table 4.3: Scenario for Various Replica Numbers and Selections

Scenario Replica Server List

Rx6_non-local LZ-1, 2, 3; THU-beta1, beta2, beta3

Rx6_local HIT-S1, S2, S3, S4, S5, S6

Rx2_local HIT-S1, S2

Rx2_non-local-THU THU-S1, S2

Rx2_non-local-LZ LZ-S1, S2

Generally, more replicas and local placement will yield better parallel file transfer

performance. Our results, shown in Figure 4.9 and 4.10, show that we found more

replicas remotely so user performance improvement was not obvious, even worse than

the few replica found locally. However, Burst Mode function could get more

performance even two copies only (refer to scenario: Rx2_local).

Figure 4.9: Effects of Various Replica Locations on Performance Results

 44

Figure 4.10: Effects of Various Replica Numbers and Selections on Performance

Results

4.3.2 Case Study—RAM and ARAM vs. ARAM+

We first compare RAM [32] and ARAM [26] in different alpha value. Both RAM and

ARAM were use a static variable ‗α‘ as basis to evaluate the working load and with

similar method to dispatch file transformation. The value of alpha will decide the

transform blocks to each site, and it means to through the adjustment represents the

value of alpha to adapt to different network environment. Testing the two scenarios

with transform different file size (100MB, 1000MB) by adjust the value of alpha from

0.1 to 0.9. The results of the testing were shown as Figure 4.11 and 4.12. To change

the value of alpha will affect performance when transform smaller file than huger file.

Those schemes will obtain better performance when transform huge file at the value

of alpha approach to 0.5 and transform small file at the value of alpha approach to 0.9.

The worst performance will occurred when the value of alpha equal to 0.1. The

transmission quality of ARAM scheme was more stable than RAM scheme with

change the value of alpha.

 45

Figure 4.11: Completion Times in Different α Value Using Dataset Size 100MB

Figure 4.12: Completion Times in Different α value Using Dataset Size 1000MB

RAM and ARAM both used constant alpha values; our approach, ARAM+, relied on

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

m
p

le
ti

o
n

 t
im

e
s

(s
e

co
n

d
s)

α value

RAM(100MB) ARAM(100MB)

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

m
p

le
ti

o
n

 t
im

e
s

(s
e

co
n

d
s)

α value

RAM(1000MB) ARAM(1000MB)

 46

dynamic alpha values to adapt to data grid network link fluctuations. The case study

for RAM and ARAM is listed in Table 4.4. We set the constant alpha values at 0.9,

0.5, and 0.1 for comparison with ARAM+, and replicas were selected from inside and

outside regions. In order to distinguish among replica locations, these two kinds of

replica selection plans are listed in Table 4.3.

Table 4.4: Replica Placement and Selection Plan

local HIT-S1, S2, S3, S4, S5, S6

mix HIT-S1, S2; LZ-1, 2; THU-beta1, beta2

Table 4.5: Scenario for Alpha Value Tuning

Scenario A Scenario B

RAM(0.1)_local RAM(0.1)_mix

ARAM(0.1)_local ARAM(0.1)_mix

RAM(0.5)_local RAM(0.5)_mix

ARAM(0.5)_local ARAM(0.5)_mix

RAM(0.9)_local RAM(0.9)_mix

ARAM(0.9)_local ARAM(0.9)_mix

ARAM+_local ARAM+_mix

In our next experiment, two scenarios, sets A and B, were used to accentuate the

advantages of the Burst Mode method and dynamic alpha value adjustment. Overall

performances in Scenario B have obviously been improved over those in Scenario A.

The total amounts of TCP bandwidth in Scenario A differed slightly, but there were

significant differences in Scenario B. In all these case studies, especially in Scenario

B, Burst Mode yielded huge performance improvements, as shown in Figures 4.13

and 4.14.

 47

Figure 4.13: Performance Results for Scenario A

Figure 4.14: Performance Results for Scenario B

4.3.3 Case Study—Comparison of 9 Co-Allocation Schemes

To evaluate the performance of our proposed technique, we implemented the

following nine co-allocation schemes: Brute-force (Brute), history-based (history),

 48

conservative load balancing (conservative), aggressive load balancing (aggressive),

dynamic co-allocation with duplicate assignments (DCDA), recursively adjusting

mechanism (RAM), dynamic adjustment strategy (DAS), anticipative recursively

adjusting mechanism (ARAM), and anticipative recursively adjusting mechanism plus

(ARAM+). Using the case setups listed in Table 4.3 for each scheme, we analyzed

their performance by comparing transfer finish times and overall performance, as

shown Figures 4.15 and 4.16.

Figure 4.15: Comparing 9 Schemes on “local” Cases

 49

Figure 4.16: Comparing 9 Schemes on “mixed” Cases

We found that ARAM+ performed better than the others. An interesting outcome

shows the Brute scheme‘s ―local‖ performance differed greatly from its ―mixed‖

performance. ARAM+ is comparable to Brute or any others. The advantages of

ARAM+ are the follows:

 ARAM+ uses TCP bandwidth measurement technology, reliability and

accuracy of the best.

 ARAM+ can enhance GridFTP to become multiplexing.

 ARAM+ used k-means for classifying numbers grid node. It quickly finds out

the most efficient computing nodes.

 ARAM+ gives the longest amount of computing job to powerful grid node but

small data set could ignore some advance option for example, dynamic ,

server classification (k-mean) algorithm and congestion control.

 ARAM+ can really adapt to different grid environments, rather than to just

specific experiments designed grid system.

 50

4.3.4 Case Study—Completion Times for Various Methods with

Network Broken

In the final experimentation, we compare 9 co-allocation schemes to face normal

and worst network link state. It is possible that any host‘s network interrupt or any

other types of network fault occur will cause file transformation failure in the

heterogeneous and complex environment of the grid. The design of network fault

tolerant was important to improve the usability and reliable of the full grid system.

There was only DCDA, ARAM and ARAM+ has the ability to face fault in all

schemes of this study. As shown in Figure 4.17, we built a disgusting environment

with four replicas at grid sites. Each site with replica will disconnection a period

time when transform file. Since the DCDA scheme was designed for faster sites will

transform more segments in parallel to overcome network fault. The experiment

results shown that when some grid node was disconnection at period time, the file

can be complete transform. The ARAM and ARAM+ scheme were designed

transform file base on current network status, it can avoid the situation that faster

site to waiting for slower site. The overall transform file performance was still to

keep in stability, as shown Figures 4.18. Finally we sorted out the advantages and

disadvantages of 9 schemes and make a comparative table, as shown in table 4.6.

 51

Figure 4.17: Broken Network Link Status

Figure 4.18: Compare 9 Schemes in Different Network Status

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700

B
an

d
w

id
th

 (
M

b
p

s)

Time (seconds)

Server1 Server2 Server3 Server4

0

500

1000

1500

2000

2500

3000

Normal Broken

C
o

m
p

le
ti

o
n

 T
im

e
 (

se
co

n
d

s)

 52

Table 4.6: Comparison for All Schemes

Schemes Complexity Overhead

Network

Adaptability

Fault

Tolerance

Brute-Force Low Non Non No

History-based Low Non Non No

Conservative Load

Balancing

Middle Few Low No

Aggressive Load

Balancing

Middle Few Low No

Dynamic

Co-allocation with

Duplicate

Assignments

High Very High Middle Yes

Recursively

adjusting

mechanism

Middle Middle High No

Dynamic

Adjustment Strategy

High High High No

Anticipative

recursively adjusting

mechanism

High Middle High Yes

Anticipative

recursively adjusting

mechanism plus

Very High High Very High Yes

 53

Chapter 5

Conclusions

Co-allocation architectures can be used to enable parallel transfers of data files from

multiple replicas in data grids, which mean all replicas stored in the various grid sites.

Many schemes based on the Co-Allocation Model have been proposed and used to

exploit the different transfer rates among various client-server network links and to

adapt to dynamic rate fluctuations by dividing data into fragments. In these schemes,

the applicable piece fragments achieve more performance. In fact, some schemes can

be applied to specific situations; however, most situations are not common actually.

For this issue, we propose the anticipative recursively adjusting mechanism plus

(ARAM+), based on ARAM. The best part is performance tuning through continual

dynamic alpha value adjustment. It relies on special features to adapt to various

network situations in data grid environments. The TCP Bandwidth Estimation Model

was used to evaluate dynamic link states in our experiments by detecting TCP

throughputs and packet lost rates between grid nodes. TCP Bandwidth Estimation

Model also can be more reliable and fair than ARAM and any other schemes. Burst

Mode function truly can increase transfer rates and speed up total performance

especially considering congestion control. The ARAM+ not only adapts to the worst

network links, but also speeds up the overall performance especially in wide-area grid

networks.

 54

Bibliography

[1] Eitan Altman, Dhiman Barman, Bruno Tuffin and Milan Vojnovic´ ―Parallel TCP

Sockets: Simple Model, Throughput and Validation‖, INFOCOM 2006, April

2006.

[2] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.Foster, C. Kesselman, S.

Meder, V. Nefedova, D.Quesnel, and S. Tuecke, ―Data management and transfer

in high-performance computational grid environments,‖ Parallel Computing, vol.

28, no. 5, pp.749-771, May 2002.

[3] R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi, ―Dynamic Co-allocation

Scheme for Parallel Data Transfer in Grid Environment,‖ Proceedings of First

International Conference on Semantics, Knowledge, and Grid (SKG 2005), pp.

17, 2005.

[4] R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi, ―A Framework for an

Integrated Co-allocator for Data Grid in Multi-Sender Environment,‖ IEICE

Transactions on Communications, vol. E90-B, no. 4, pp. 742-749, 2007.

[5] Juerg Bolliger, Thomas Gross, and Urs Hengartner, ―Bandwidth modelling for

network-aware applications,‖ In INFOCOM '99, March 1999.

[6] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C.

Kesselman, P. Kunszt, and M. Ripeanu, ―Giggle: A Framework for Constructing

Scalable Replica Location Services,‖ Proceedings of the 2002 ACM/IEEE

conference on Supercomputing, pp.1-17, November 2002.

 55

[7] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, ―The data

grid: Towards an architecture for the distributed management and analysis of

large scientific datasets,‖ Journal of Network and Computer Applications, 23(3),

pp.187-200, 2001.

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, ―Grid Information

Services for Distributed Resource Sharing,‖ Proceedings of the Tenth IEEE

International Symposium on High-Performance Distributed Computing

(HPDC-10’01), pp.181-194, August 2001.

[9] K. Czajkowski, I. Foster, and C. Kesselman. ―Resource Co-Allocation in

Computational Grids,‖ Proceedings of the Eighth IEEE International Symposium

on High Performance Distributed Computing (HPDC-8’99), August 1999.

[10] I. Foster, C. Kesselman, S. Tuecke. ―The Anatomy of the Grid: Enabling Scalable

Virtual Organizations.‖ International Journal of High Performance Computing

Applications, Vol. 15, No. 3, pp. 200-222, 2001.

[11] I. Foster, C. Kesselman, ―Globus: A Metacomputing Infrastructure Toolkit,‖

International Journal of High Performance Computing Applications, Vol. 11, No.

2, pp. 115-128, 1997.

[12] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger,

―Data Management in an International Data Grid Project,‖ Proceedings of the

First IEEE/ACM International Workshop on Grid Computing - Grid 2000,

Bangalore, pp. 77-90, India, December 2000.

 56

[13] Thomas J. Hacker and Brian D. Athey, ―The End-to-End Performance Effects of

Parallel TCP Sockets on a Lossy Wide-Area Network,‖ Parallel and Distributed

Processing Symposium., Proceedings International, IPDPS 2002,

10.1109/IPDPS.2002.1015527.

[14] Open Grid Forum, http://www.ogf.org/

[15] M. Mathis, J. Semke, J. Mahdavi and T. Ott. ―The Macroscopic Behavior of the

TCP Congestion Avoidance Algorithm.‖ Computer Communication Review,

volume 27, number3, July 1997.

[16] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. ―Modeling TCP throughput: A

simple model and its empirical validation,‖ ACMSIGCOMM, pp. 303-314,

Volume 28 , Issue 4, ISSN 0146-4833, October 1998.

[17] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney, ―File

and Object Replication in Data Grids,‖ Journal of Cluster Computing, 5(3), pp.

305-314, 2002.

[18] The Globus Alliance, http://www.globus.org/

[19] S. Vazhkudai and J. Schopf, ―Using Regression Techniques to Predict Large Data

Transfers,‖ International Journal of High Performance Computing Applications

(IJHPCA), vol. 17, no. 3, pp. 249-268, August 2003.

[20] S. Vazhkudai and J. Schopf, ―Predicting Sporadic Grid Data Transfers,‖

Proceedings of 11th IEEE International Symposium on High Performance

Distributed Computing (HPDC-11 ‘02), pp. 188-196, July 2002.

 57

[21] S. Vazhkudai, ―Enabling the Co-Allocation of Grid Data Transfers,‖ Proceedings

of Fourth International Workshop on Grid Computing, pp. 44-51, 17 November

2003.

[22] S. Venugopal, R. Buyya, and K. Ramamohanarao, ―A Taxonomy of Data Grids

for Distributed Data Sharing, Management, and Processing,‖ ACM Computing

Surveys, vol. 38, issue 1, Article 3, March 2006.

[23] S. Vazhkudai, J. Schopf, and I. Foster, ―Predicting the Performance of Wide Area

Data Transfers,‖ Proceedings of the 16th International Parallel and Distributed

Processing Symposium (IPDPS 2002), pp. 34-43, April 2002.

[24] S. Vazhkudai, S. Tuecke, and I. Foster, ―Replica Selection in the Globus Data

Grid,‖ Proceedings of the 1st International Symposium on Cluster Computing

and the Grid (CCGRID 2001), pp. 106-113, May 2001.

[25] C.M. Wang, C.C. Hsu, H.M. Chen, and J.J. Wu, ―Efficient Multi-Source Data

Transfer in Data Grids,‖ Proceedings of the Sixth IEEE International Symposium

on Cluster Computing and the Grid (CCGRID'06), pp. 421-424, 16-19 May

2006.

[26] Chao-Tung Yang, Yao-Chun Chi, Tsu-Fen Han and Ching-Hsien Hsu,

―Redundant Parallel File Transfer with Anticipative Recursively-Adjusting

Scheme in Data Grids‖, ICA3PP 2007, pp. 242–253, 2007.

 58

[27] C.T. Yang, I.H. Yang, and C.H. Chen, ―Improve Dynamic Adjustment

Mechanism in Co-Allocation Data Grid Environments,‖ Proceedings of the 11th

Workshop on Compiler Techniques for High-Performance Computing

(CTHPC-11’ 05), pp. 189-194, 17-18 March 2005.

[28] C.T. Yang, I.H. Yang, K.C. Li, and S.Y. Wang, ―Improvements on Dynamic

Adjustment Mechanism in Co-Allocation Data Grid Environments,‖ The Journal

of Supercomputing, Springer Netherlands, vol. 40, no. 3, pp. 269-280, June

2007.

[29] C.T. Yang, C.H. Chen, K.C. Li, and C.H. Hsu, ―Performance Analysis of

Applying Replica Selection Technology for Data Grid Environments,‖ PaCT

2005, Lecture Notes in Computer Science, vol. 3603, pp. 278-287,

Springer-Verlag, September 2005.

[30] C.T. Yang, I.H. Yang, K.C. Li, and C.H. Hsu ―A Recursively-Adjusting

Co-Allocation Scheme with Cyber-Transformer in Data Grids,‖ Future

Generation Computer Systems, pp. 695-703, Volume 25, Issue 7, Elsevier B.V.,

2008.

[31] C.T. Yang, S.Y. Wang, C.H. Lin, M.H Lee, and T.Y. Wu, ―Cyber Transformer: A

Toolkit for Files Transfer with Replica Management in Data Grid Environments,‖

Proceedings of the Second Workshop on Grid Technologies and Applications

(WoGTA’05), pp. 73-80, December 2005.

 59

[32] C.T. Yang, S.Y. Wang, and C.P. Fu, ―A Dynamic Adjustment Mechanism for

Data Transfer in Data Grids,‖ Network and Parallel Computing: IFIP

International Conference, NPC 2007, Lecture Notes in Computer Science, vol.

4672, pp. 61-70, Springer, ISSN 1611-3349, September 17-20, 2007.

[33] L. Yang, J. Schopf, and I. Foster, ―Improving Parallel Data Transfer Times Using

Predicted Variances in Shared Networks,‖ Proceedings of the fifth IEEE

International Symposium on Cluster Computing and the Grid, (CCGrid ‘05), pp.

734-742, 9-12 May 2005.

[34] X. Zhang, J. Freschl, and J. Schopf, ―A Performance Study of Monitoring and

Information Services for Distributed Systems‖, Proceedings of 12th IEEE

International Symposium on High Performance Distributed Computing

(HPDC-12 ‘03), pp. 270-282, August 2003.

[35] Frank Kelly, ―Fairness and stability of end-to-end congestion Control‖, European

Journal of Control 2003, pp. 159-176, September 2003.

[36] Lefteris Mamatas, Tobias Harks and Vassilis Tsaoussidis, ―Approaches to

Congestion Control in Packet Networks,‖ Journal of Internet Engineering ,Vol. 1,

No. 1, January 2007.

