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Abstract

Data grid enable the sharing, selection, and connection of a wide variety of
geographically distributed computational and storage resources for content that the
large-scale data-intensive application needs, such as high-energy physics,
bioinformatics, and virtual astrophysical observatories. Data grid consists of scattered
computing and storage resources located in different regions yet accessible to users.
Co-allocation architectures can be used to enable parallel transfers of data file from
multiple replicas in data grids which are stored at different grid sites. Schemes based
on co-allocation models have been proposed and used to exploit the different transfer
rates among various client-server network links and to adapt to dynamic rate
fluctuations by dividing data into fragments. These schemes show that the more
fragments used the more performance. In fact, some schemes can be applied to
specific situations; however, most situations are not common actually. For example,
how many blocks in a data set should be cut? For this issue, we proposed the
anticipative recursively adjusting mechanism (ARAM) in a previous research work.
Its best feature is performance tuning through alpha value adjustment. It relies on
special features to adapt to various network situations in data grid environments. In
this thesis, the TCP Bandwidth Estimation Model (TCPBEM) is used to evaluate
dynamic link states by detecting TCP throughputs and packet lost rates between grid
nodes. We integrated the model into ARAM, calling the result the anticipative
recursively adjusting mechanism plus (ARAM+); it can be more reliable and
reasonable than its predecessor. We also designed a Burst Mode (BM) that increases
ARAMH+ transfer rates. This approach not only adapts to the worst network links, but
also speeds up overall performance.

Keywords: Data Grid, Co-allocation, Dynamic Co-allocation, Parallel file transfer
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Chapter 1

Introduction

1.1 Motivation

An increasing number of scientific applications. e.g., arising from Genomics,
Proteomics, and Bioinformatics require exchanges of large volumes of data to support
computation. Downloading large data sets from replica locations may result in
different performance rates because replica sites may have different architectures,
system loading, and network connectivity. Bandwidth quality is the most important
factor affecting internet transfers between clients and servers, with download speeds
being bounded by traffic congestion due to bandwidth limitations.

One method for improving download speeds uses replica selection techniques to
determine the best replica locations [28]. However, downloading data sets from single
best servers often results in ordinary transfer rates because bandwidth quality varies
unpredictably due to the shared nature of the Internet.

Another method uses co-allocation [27] technology to download data. Co-allocation
architectures were developed to enable clients to download data from multiple
locations by establishing multiple connections in parallel, thus improving
performance over single-server transfers and helping to alleviate the internet
congestion problem [27]. Parallel downloading [23, 24, 25, 26] is a technique used to
fetch and download files from multiple sources including Web servers, file servers,
P2P nodes, etc. Parallel downloading has been integrated into many Internet
applications and has become the core of many P2P systems. It speeds up download
times and eliminates the server selection problem [21, 22, 23]. Several co-allocation
strategies were addressed in previous works [15, 27], but drawbacks remain, such as

faster servers having to wait for the slowest one to deliver its final block. As shown in



[15, 16], this may degrade network performance by repeatedly transferring the same
block. Hence, it is important to minimize differences in finish times among servers,
and to prevent the same blocks from being transferred over different links between
servers and clients.

In our previous research work, we presented a method for regulating next-section
workloads by continuously adjusting the workloads on selected replica servers. The
anticipative recursively adjusting mechanism (ARAM) scheme measures the actual
bandwidth performance during data file transfers, and, according to previous transfer
finish rates, anticipates bandwidth statuses at the next transfer section. The basic idea
is to assign less data to selected replica servers with greater network link performance
variations since links with more bandwidth variations will have smaller effective
bandwidths, as well as smaller transfer finish rates. The goal is to make the expected
finish times of all servers be the same.

1.2 Contribution

In this thesis, we first present our new approach based on the ARAM co-allocation
strategy for data grid environments. We have designed and implemented a TCP
bandwidth estimation model and Burst Mode (BM) to enhancing the original ARAM
algorithm. Workloads on all selected replica servers are still adjusted according to
TCP throughputs and packet loss rates, and faster servers get double or even
quadruple throughputs via Burst Mode enabling. Finally, we present Cyber
Transformer, a useful toolkit for data grid users. Integrated with the Information
Service, Replica Location Service, and Data Transfer Service, it’s simple, friendly
GUI interface makes it easy for inexperienced users to manage replicas and download
files in data grid environments. This tool integrates all strategies based on

co-allocation architectures including our previous and proposed algorithms.
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1.3 Thesis Organization

The remainder of this research is organized as follows. Related background review
and studies are presented in Chapter 2. Our new approach is outlined in Chapter 3.
Experimental results and a performance evaluation of our scheme are presented in

Chapter 4. Chapter 5 concludes this research article.
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Chapter 2

Background Review and Related Work

2.1 Co-allocation Architecture

The architecture proposed in [29] consists of three main components: an information
service, a broker/co-allocator, and local storage systems. Figure 2.1 shows
co-allocation of data grid transfers, an extension of the basic template for resource
management [7] provided by the Globus Toolkit. Applications specify the
characteristics of desired data and pass attribute descriptions to a broker. The broker
queries available resources, gets replica locations from the Information Service [6]

and Replica Management Service [31], then gets lists of physical file locations.

Application

RLS

v

Broker J<—Forecasts—>

ﬁ

Queries
Information

v

Co-allocator U

Information
Service

Data Access/ Transport using GridFTP

Figure 2.1: Data Grid Co-Allocation Architecture.

2.2 Brute-Force Co-Allocation

The Brute-force co-allocation scheme shown in Figure 2.2 divides file sizes equally
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among available flows; it does not address bandwidth differences among various
client-server links.

2.3 History-Based Co-Allocation

The history-based co-allocation scheme shown in Figure 2.3 keeps block sizes per
flow proportional to predicted transfer rates, and disregards the influence of network

variations between client and server.
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Figure 2.2: The Brute-Force Co-Allocation Process.
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Figure 2.3: The History-Based Co-Allocation Process.



2.4 Conservative Load Balancing

The conservative load balancing scheme shown in Figure 2.4 divides requested data
sets into k disjoint blocks of equal size. Available servers are allocated single blocks
to deliver in parallel. Servers work in sequential order until all requested files are
downloaded. Loadings on the co-allocated flows are automatically adjusted because
the faster servers deliver larger file portions more quickly.

2.5 Aggressive Load Balancing

This method, shown in Figure 2.5, adds functions that change block size in deliveries
by: (1) gradually increasing the amounts of data requested from faster servers and (2)
reducing the amounts of data requested from slower servers or stopping requesting

data from them altogether.

7

File Server 1

Client File Server 2

File Server 3

Figure 2.4: The Conservative Load Balancing Process.
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File Server 1

F 3

Client File Server 2

7| File Server 3
Figure 2.5: The Aggressive Load Balancing Process.
2.6 Dynamic Co-Allocation with Duplicate Assignments (DCDA)
The co-allocation strategies described above do not handle the shortcoming of faster
servers having to wait for the slowest server to deliver its final block which, in most
cases, wastes much time and decreases overall performance. Neither the prediction
nor the heuristic approach, the DCDA scheme dynamically co-allocates duplicate
assignments and copes nicely with changes in server speed performance, as shown in
Figure 2.6. The DCDA scheme is based on an algorithm that uses a circular queue.
Let D be a data set and k the number of blocks of fixed size in the data set. D is
divided into k disjoint blocks of equal size and all available servers are assigned to
deliver blocks in parallel. When a requested block is received from a server, one of
the unassigned blocks is assigned to that server. The co-allocator repeats this process
until all blocks have been assigned. DCDA behaves well even when server links are
broken or idled. The DCDA scheme is flawed, however, in that it consumes network
bandwidth by repeatedly transferring the same blocks. This wastes resources and can

easily cause bandwidth traffic jams in the links between servers and clients.
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Figure 2.6: The DCDA Process

2.7 Recursively Adjusting Mechanism (RAM)

This co-allocation strategy is the most efficient approach to reducing the influence of
network variations between clients and servers. However, idle times when faster
servers are waiting for the slowest server to deliver its last block are still a major
factor affecting overall efficiency that conservative load balancing and aggressive
load balancing [18] cannot effectively avoid. In real-world networking environments,
a replica server’s available bandwidth might change dynamically as a result of
network configuration or load variations. Previous algorithms could not adapt to these
dynamisms. Therefore, the greater the degree of bandwidth variation the greater the
download times needed. Thus, overall efficiency depends on several factors. Our
strategy can overcome such obstacles, and improve data transfer performance. The
recursively adjusting mechanism works by continuously adjusting each replica
server’s workload to correspond to its real-time bandwidth during file transfers. The
goal is to make the expected finish times of all servers the same. As Figure 2.7 shows,
when an appropriate file section is first selected, it is divided into proper block sizes
according to the respective server bandwidths. The co-allocator then assigns blocks to

servers for transfer. At this moment, it is expected that the transfer finish times will be
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consistent at E(t;). However, since server bandwidths may fluctuate during segment
deliveries, actual completion times may vary (solid line, in Figure 2.7). When the
quickest server finishes its work at time t;, the next section is assigned to the servers.
This allows each server to finish its assigned workload by the expected time at E(t,).

These adjustments are repeated until the entire file transfer is finished.

File A Section 1 Section 2
Round 1 Round 2
E(ty) t E(t)
Server 1| —=—t—— —
Server 2 ———%—pi— — — _hl
Server 3 __’J] %b———hl

Figure 2.7: The Adjustment Process

The main purpose of this algorithm is to select appropriate data sources and download
from multiple data servers to a single client resource. We proposed a recursively
adjusting co-allocation scheme for parallel downloads from multiple replica servers to
a single-client. This is useful in cases like downloading music file segments and
playing continuous music on a single-client resource. Our algorithms are mainly
aimed at transferring parallel data segments from multiple servers to multiple clients
for execution of parallel numerical applications on the clients. The challenge in
multiple server—multiple client scenarios is greater since server selections and data
downloads on some clients can impact server selections and data transfer performance
on other clients.

2.8 Dynamic Adjustment Strategy (DAS)

The DAS proposed a replica selection cost model and a replica selection service to

17



perform replica selection, its revival the CPU load, memory usage and free space
through Replica Location Service (RLS). We now propose a new data transfer
strategy based on this model. It consists of three phases: (1) initial phase, (2) steady
phase, and (3) completion phase.
¢ Initial phase: We assign equal block sizes to all GridFTP servers. In this phase, our
system determines the next block size for each replica server.
e Steady phase: As job transfers are completed, servers are assigned their next jobs.
Jobs sizes are determined by multiplying the client bandwidth by the weighting.
e Completion phase: To avoid the generating excessively small job sizes, we set an
end condition such that if the remaining target file size is smaller than the initial
block size, it is transferred immediately.
To determine the initial block size, we set an upper bound that is dependent on the
relation between the client’s maximum bandwidth and the number of replica sources.
Though multiple replicas can be downloaded in parallel, the gathered portions of files
from different links must be transferred to the client in a single link. It is clear that the
client’s bandwidth could be bottleneck in co-allocation architecture. Each time, our
strategy dynamically adjusts a job size according to source device loading and
bandwidth. The lighter the loading a source device has, the larger job size it is

assigned. Figure 9 shows a flowchart illustrating this strategy.
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Figure 2.8: The flowchart of Dynamic Adjustment Strategy
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Chapter 3

Our Approach

3.1 Anticipative Recursively Adjusting Mechanism (ARAM)

The recursively adjusting mechanism reduces file transfer completion times and idle
times spent waiting for the slowest server. It also provides an effective scheme for
reducing the cost of reassembling data blocks. However, our scheme did not consider
the potential effect of server links broken or idled during file transfers. Therefore, we
propose an efficient approach called the anticipative recursively adjusting mechanism
(ARAM) to extend and improve upon recursive adjustment co-allocation [12]. The
main idea of the ARAM is to assign transfer requests to selected replica servers
according to the finish rates for previous transfers, and to adjust workloads on
selected replica servers according to anticipated bandwidth statuses. In continuously
adjusting selected replica server workloads, the anticipative recursively adjusting
mechanism scheme measures actual bandwidth performance during data file transfers
and regulates workloads by anticipating bandwidth statuses for subsequent transfers
according to the finish rates for previously assigned transfers. The basic idea is to
assign less work to selected replica servers on network links with greater performance
variability. Links with more bandwidth variation will have smaller effective
bandwidths, as well as smaller finish rates for assigned transfers. The goal is to have
the expected finished times of all servers be the same. Our approach performs well,
even when the links to selected replica servers are broken or idled. It also reduces the
idle time wasted waiting for the slowest server. As appropriate file sections are
selected, they are first divided into proper block sizes according to the respective
server bandwidths, previously assigned file sizes, and transfer finish rates. Initially,

the finish rate is set to 1. Next, the co-allocator assigns the blocks to selected replica
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servers for transfer. At this moment, it is expected that the transfer finish times will be
consistent with E(t;). However, since server bandwidths may fluctuate during segment
deliveries, actual completion times may differ from expected times E(t;) (solid lines in
Figures 3.1 and 3.2). When the fastest server finishes at time t;, the size of unfinished
transfer blocks (italic blocks in Figures 3.1 and 3.2) is measured to determine the
finish rate. Two outcomes are possible: the quickest server finish time t; may be
slower than or equal to the expected time, E(t;), indicating that network link
performance remained unchanged or declined during the transfer. In this case, the
difference in transferred size between the expected time and actual completion time

(italic block in Figure 3.1) is then calculated.

File A Section 1 Section 2

Round 1 Round 2
E(t;) b E(t2)

Server 1

: |
Server 2 e

|
’:
SBNEF3 ____+:ﬁ _ —XI

Figure 3.1: Later-than-expected-time Adjustment Process

File A Section 1 Section 2
Round 1 Round 2
t, E(t) E(t;)
—_— e ' [
-
Server 1 —@. o
Server 2 -——'i=’|— —_— —)}
Server 3 | =/ = — I

Figure 3.2: Earlier-than-expected-time Adjustment Process
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The other outcome is that the quickest server finish time t; may be faster than the
expected time, E(t;), indicating an excessively pessimistic anticipation of network
performance, or an improvement in replica server network link performance during
the transfer. The difference in transferred size between the expected time (italic block
in Figure 3.2) and earlier time is then measured. If the anticipated network
performance was excessively pessimistic, it is adjusted for the next section. The next
task is to assign proper block sizes to the servers along with respective bandwidths
and previous finish rates, enabling each server to finish its assigned workload by the
expected time, E(t,). These adjustments are repeated until the entire file transfer is
finished.
Looking more closely at ARAM, some parameter definitions are shown below.

e A:file requested by user

e n: selected replica servers

e ou rate that determines how much of the section remains to be assigned

e Tj: allocated time for section j

e SEj: allocated size for section j

e UnassignedFileSize: portion of file A not yet distributed for downloading

e UnfinishedFileSize: the size of unfinished blocks assigned in previous rounds

e  Bji: real-time transfer rate from the selected replica server

e rj: transfer finish rate

e rj4: server transfer finish rate for previously assigned delivered file

e  Bj: bandwidth available for section j

e  Sji: block size per flow from SEj for each server i at time Tj

e  ETji: expected time for server i at section j

e  RTji: real finish time for server i at section |

e  TSji: actual transfer size at real finish time RTji

22



e rji: job finish rate
When a user requests file A from the data grid environment, the replica selection
server responds with a list of all available servers defined as maximum performance
data sets/servers. Data sets/servers for the co-allocator to transfer the file are selected,
and the target file is then transferred from the chosen replica data sets/servers.
Assume that n replica servers are selected and Si denotes server “i” for 1=i=n. A
connection for file downloading is then built to each server.
The anticipative recursively adjusting mechanism process is as follows. A new section
of a file to be allocated is first defined. The section size is shown as
SEj = (UnassignedFileSize + TotalUnfinishedFileSize) X «,
1

0<a<=<l1

where SEj denotes section j such that 1=j=k, assume k time is allocated for
downloading and there are k sections, while Tj denotes the time allocated to section j.
UnassignedFileSize, the portion of File A awaiting distribution for downloading is
initially equal to total file size and TotalUnfinishedFileSize is equal to zero in the first
round. « is the rate determining how much of the section remains to be assigned.
In the next step, SEj is divided into several blocks and assigned to “n” servers. Each
server has a real-time transfer rate to the selected replica server of Bji. rj.; denotes the
server transfer finish rate for previously assigned files, where the initial value is 1.

The block size per flow from SEj for each server “i” at time Tj is Sji:

_ SEjix (Bjixrj_q)

Sji = S (Bjix 1) 0=srj,=<1 (2)
n
Bj = ) (Bjixrjp) ©
i=1
ETji = E (4)
Bji

This fulfills our requirement to minimize the time faster servers must wait for the
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slowest server to finish. In some cases, network variations greatly degrade transfer
rates. A faster channel may finish its assigned data blocks at real finish time RTji, or
later or earlier than expected time ETji. Then TSji denoting the actual transfer size at
real finish time RTji is given by

TSji = Bji X RTji (5)

If the first finish time for RTji is earlier than expected time ETji, the reason may be an
excessively pessimistic anticipation of network performance, or the network links
used for improvement during the transfer. We compare the block sizes transferred
between the earliest and expected times for each server chosen. If the transferred size
TSji is greater than expected size Sji at the first finish time, otherwise, the first finish
time for RTji may be the result of the network link used remaining unchanged or
deteriorating during the transfer.

TSji

s ..
rji = _Sji ,RTji = ETji

1,RTji < ETji,and TSji > Sji

(6)

The co-allocator then measures the bandwidth performance of each server, and
estimates bandwidth statuses for the next transfer section in order to adjust workflows
for the next session. At the same time, it eliminates server UnfinishedFileSize listings
by summing them up for assignment to the next section.

After allocation, all selected replica servers continue transferring data blocks. When a
faster selected replica server finishes its assigned data blocks, the co-allocator
allocates an unassigned section of file A. Workflows are continually adjusted during
the data block allocation process until the entire file has been allocated.

3.2 TCP Bandwidth Estimation Model

TCP/UDP is one of the core protocols in the Internet protocol suite. TCP provides

reliable, in-order delivery of a stream of bytes, making it suitable for applications such
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as GridFTP file transfers. Parallel TCP sockets is a generic “hack” that improves TCP
throughputs during bulk data transfers by opening several TCP connections and
striping the data files over them [1]. In practice, it is often unclear how many sockets
one needs to open in order to achieve satisfactory throughput, and opening too many
connections may be undesirable for various reasons [1, 5, 13, 16]. The TCP
Bandwidth Estimation Model [13] as a function to assessing TCP packet loss rate,

such as round trip time, maximum segment size, other miscellaneous parameters, etc.

TCPgy (p)

W, 1 (")
max | MSS

~min )\
RTT
/% + Ty min (1,3 f%) p(1+ 32p2)/

o  TCPgw(p): bytes transmitted per second

e  MSS: maximum segment size
e Wpa: maximum congestion window size
e RTT: round trip time
e  b: number of transmitted data packets acknowledged by one acknowledgement
(ACK) from the receiver (usually b=2)
e Ty timeout value
e p: packet loss ratio, number of retransmitted packets divided by the total
number of packets transmitted
e C:aconstant value, initially set to 1.0
In equation (7), TCPgw() represents bytes transmitted per second, and three factors
need to be considered: MSS, RTT and p. These represent overall TCP bandwidth. For

TCP performance assessment, another researcher has simplified them into one.

W< MSS C
T RIT Jp (8)

In equation (8), MSS, RTT and p are the same variables used in equation (7), C is a
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constant factor, and BW represents the number of bytes transmitted per second.

Thus, how the TCP Bandwidth Estimation Model measures server bandwidth makes it
more reliable and fair.

3.3 k-means Algorithm

The k-means algorithm clusters n objects according to attributes into k partitions, k <
n. It is similar to the expectation-maximization algorithm for Gaussian mixtures in
that they both attempt to find natural cluster centers in data. Assuming object
attributes form vector spaces, it tries to minimize total intra-cluster variance, or, the

squared error function:

k

V=2 - ml? ©

i=1 xE€s;
According to the k-means algorithm, where there are random k clusters S;, i =1, 2, ...,
k, the Euclid distance of each x point to m;in S; , m; is the cancroids or mean point of
all the points x € S;. Equations (10) ~ (13) not only calculate Euclid distances by
means of each S;, but also recursively renew the mean point m; depending on the cost
function V. After calculations, 9 servers with different network bandwidths have been
placed in three groups (k=3). The simulation results are shown in Figure 3.3.

e  k: number of partitions

e  x: number of points

e S partition attributes form a vector space

e  m;: the mean point of all of S; points

e  xBoolean;;: determines whether or notan  x point belongs to S;

e  V:distance cost function

e  d: distance between two point

_ Taesd(ym)
l S:]

(10)
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. 2 2
xBooleanij :{ 1 lf”x] _Si” = ”x] _Sk” Vk =1 (11)

0 ,otherwise
k k
v=>Yv=>| > dugm (12)
i=1 i=1 \kx;€S;
m)=r Y.
new(\m;) = . X; (13)
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Figure 3.3: 9 Hosts Classification According to Bandwidth Using k-means

Algorithm

3.4 Burst Mode

Like many network accelerator methods, and multithreading, Burst Mode (BM) first
splits one huge bandwidth into small pipelines all working at the same time. Burst
Mode focuses on the fastest group of servers and can differentiate among the various
candidate server network bandwidths. Second, BM chooses the faster one then others
(as shown in Equations 10, 11, 12, and 13). Ultimately, the BM has made single jobs

into many, as shown in Figure 3.4.
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Figure 3.4: Burst Mode Enables Higher Bandwidths
The k-means simulation results showed that fewer local replica servers are high
efficiency than many remote replica servers. Accordingly, the main ideas in Burst
Mode (BM) are to find the fastest server group, and to make it download via
multithreading. BM also deals with cutting blocks properly for various data sets.
Burst Mode function is shown below:
e N;TCPgw: candidate server bandwidth

e FTS: the fastest group of servers

MSS C
NiTCPgy = e ﬁ (14)
FTS = S;, MAX{S,S; -+, Sy },m;€S; (15)

The algorithm is listed below:
[Initialization]
Measure bandwidths and find the fastest servers using Equations 14 and 15.
BigBlockUnit set to 100MB initially
[Allocate blocks to the fastest servers and download via multithreading.]
Step 1: Group mi and rank the most powerful server FTS
Step 2: Allocate SEj and download via multithreading

Step 3: Monitor job progress statuses
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LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize are greater than
BigBlockUnit (initial BigBlockUnit=100MB)) THEN

{

IF (Job finish rate is just 100% (rji=1) and UnassignedFileSize and total
UnfinishedFileSize are greater than BigBlockUnit) THEN

{

Let data transfer in multiple parts between client and FTS server

SE; = (UnassignedFileSize + TotalUnfinishedFileSize) X a,

O0<acgl,

(UnassignedFileSize + TotalUnfinishedFileSize) = BigBlockUnit

}

}
END LOOP;

3.5 Grid Network Congestion Control

Grid network congestion control is concerned with controlling traffic entry into data
grid networks to prevent congestive collapse by avoiding oversubscription of any grid
node processing or link capacity and taking resource reduction steps, such as reducing
packet sending rates when Burst Mode is active.

The modern theory of congestion control [35, 36], describes how individuals
controlling their own pack lost rate can interact to achieve an optimal network-wide
rate allocation. Examples of “optimal rate” allocation are max-min fair allocation and
Kelly's [35] suggestion of proportional fair allocation, although many others are
possible. The mathematical expression (Equation 16) for optimal rate allocation is as
follows. Let x; be the rate of flow i. Let X, ¢ and R be the corresponding vectors and
matrix. Let U(x) be an increasing, strictly convex function, called the utility, which

measures how much benefit a user obtains by transmitting at rate x. The optimal rate
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allocation will then satisfy:

maxz U(x;)),Rx <c (16)

3.6 Anticipative Recursively Adjusting Mechanism Plus (ARAM+)
3.6.1 Assumptions
We outline our system design model assumptions below.

e All grid nodes are installed GlobusToolkit4 previously.

e All grid nodes are supporting Simple Network Management Protocol (SNMP).

e The time for transferring, stopping/assigning processes, and calculating TCPgy

to selected replica servers is negligible.

3.6.2 Anticipative Recursively Adjusting Mechanism Plus (ARAM+)
The ARAM+ is not merely inherited from ARAM. It has been enhanced also in the
following areas: its TCP Bandwidth Estimation Model (TCPBEM) and its Burst
Mode (BM). ARAM+ continually adjusts the workloads on selected replica servers by
measuring actual bandwidth performance via TCPBEM during data file transfers and,
according to previous job finish rates, and adjusting alpha values for subsequent
transfer sections.
Some interesting ideas have arisen from P2P networks and distributed
denial-of-service (DDoS) attacks. As is well known, P2P networking is share based; it
shares data and downloads in parallel, more numbers of share point get more speedup.
Another typical example is DDoS attacks that occur when multiple compromised
systems flood the bandwidth or resources of a targeted system. We have combined
these elements in our approach. The multithreading in the Burst Mode (BM) design
came from DDoS attacks, BM “floods” the target replica server bandwidth to speed

up download performance. The other idea from P2P networking was applied to
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ARAMH+. It pre-selects many candidate replicas from various servers, then chooses
appropriate servers and allocates only enough workload to fit server capacities.

Both of our previous works [24, 25, 27, 29, 30], the anticipative recursively adjusting
mechanism (ARAM) and recursively adjusting mechanism (RAM) were based on
co-allocation architecture and relied on tuning alpha values by hand to adapt to
specific data grid situations. The ARAM+ uses the same strategies, but differs in that
alpha values are tuned dynamically.

ARAM+ adapts to real-time network statuses and calculates appropriate alpha «
values continually with TCPBEM TotalTCPgy, to ensure good download flexibility
and to speed up overall performance. The equations are as follows:

e TotalTCPgy: overall bytes transmitted per second.

TotalTCP ZN:MSS ¢ a7
ota BW = S
£ RTT \/5
1—¢ ! 1»0<a<1 18
a=1- , a<
TotalTCPBWO'2 (18)

3.6.3 ARAM+ Algorithm

[Initialization]

Current bandwidths for all candidate servers are measured using the TCP Bandwidth
Estimation Model (TCPBEM) and calculating appropriate alpha values with
Equations 14 and 15.

[Allocating blocks to selected servers]

LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize is greater than zero)
THEN

{

IF (UnassignedFileSize and Total UnfinishedFileSize are greater than TotalTCPgy )
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THEN

{

IF (UnassignedFileSize and Total UnfinishedFileSize multiplied by « are greater than
TotalTCPgw ) THEN

{

Define new section for allocation

SEj = (UnassignedFileSize + TotalUnfinishedFileSize) X a,

0<a=<l1

}
ELSE

{
Define finial section

SEj = UnassignedFileSize + TotalUnfinishedFileSize

}

}
END LOOP;

Step 1: Define new section for allocation SEj
Step 2: Monitor all selected replica servers
Step 3: Allocate blocks to selected replica servers, according to the TCPgy of the
selected replica server, and the previous finish rates Rj-1 for the selected
replica server (initial Ro=1)
Step 4: Monitor all download flows
LOOP WHEN (The fastest flow finishes its assigned data blocks) THEN
{
IF (First finish time for RTji is earlier than expected time ETji and transferred size

TSji is greater than expected size Sji ) THEN
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The rji=1
¥
ELSE
{

Measure the finish rate for the previously delivered file (0 < rji < 1)
¥

L RTji = ETji
rji = sji =R
1,RTji < ETji,and TSji = Sji

¥
END LOOP;
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Chapter 4

Experimental Results

4.1 Grid Environment: Tiger Grid

The experiments in this work were conducted and evaluated on the Tiger grid, which
consists over 11 clusters located at 6 educational institutions (Tunghai
University—THU, National Taichung University—NTCU, Hsiuping Institute of
Technology—HIT, National Dali Senior High School—DALI, Lizen High
School—LZSH, and Tungs’ Taichung Metro Harbor Hospital—TUNG). A logical
diagram of the Tiger grid network environment is shown in Figure 4.1. The detail
end-to-end transmission rate of THU to every educational unit is listed in Table 4.1.

Figure 4.2 shows statuses for all machines used in the grid testbed on one monitor

page.
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Figure 4.1: Tiger Grid Network Topology
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Table 4.1: The end-to-end Measurement Using NWS in Mbps

THU to others

Case Bandwidth Avg High Low
THU - HIT 37.815 70.349 20.952
THU - DL 16.673 17.920 12.182
THU > LZ 48.139 73.466 31.678
THU - NTCU 23.432 39.824 13.176
HIT to others
Case Bandwidth Avg High Low
HIT - THU 32.487 49.384 17.913
HIT > DL 38.206 18.166 7.875
HIT > LZ 84.089 77.048 88.664
HIT > NTCU 81.391 86.995 71.530
DL to others
Case Bandwidth Avg High Low
DL - HIT 42.143 88.129 22.037
DL - THU 15.893 42.823 5.238
DL-> LZ 36.631 17.830 87.351
LZ to others
Case Bandwidth Avg High Low
LZ > HIT 67.579 77.298 53.967
LZ > THU 32.324 56.313 15.099
LZ > DL 17.769 18.098 16.634
NTCU to THU, HIT
Case Bandwidth Avg High Low
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NTCU - THU 23.432 39.824 13.176

NTCU - HIT 81.391 86.995 71.530

They are interconnected by the 1Gbps Taiwan Academic Network (TANET). The
Tiger grid platform is built around 132 computing nodes, more than 224 CPUs with
differing speeds, and total storage of more than 5 TB. All the institutions are in
Taiwan, at least 10~30 km from THU. All machines have Globus 4.0.7 or above

installed.

& - -@ i ‘ﬁ hittp:f fgammnaz.hoc. csie. thu,edu, ey

[~ ] G|

Tiger Grid Resource Broker

Monitor Others Hi, Guest.

Ganglia Multi Grid Report for Sat, 07 Jun 2008 23:34:13 +0800 Get Fresh Dt
Last day [ Sorted |descending [
sounecforge noer
Multi Grid > | -Choose s Sowce [
Multi Grid (3 sources) qe: view =
CPUs Total 224 Multi Grid Load last day Multi Grid Memory last day
Hosts up 106 20 v 100 6 [
Hosts down: 26 g "
x =¥
% 108 o
Ay Load (15,5, 1m) g o
2%, 3%, 3% B 7 i V0 e S W0 [ i SUONRRY et 00500 sat 12,00
Laocaltime: Sﬂt D T B Memory Used W Memory Shared E Memory Cached =
: at 00: at 12: M Buffered M s d
2003-05-07 23:34 O 1-min Load @ Nodes [ CPUs M Running Processes ET:::{yIn?Eof;eMemory L Gty Germm
Tiger Grid e view)
CPUs Total 83 Tiger Grid Load last day Tiger Grid Memory last day
Hosts up a7 30 10 6
306
. n "
Hosts down: 24 ! &0 E e —
% 48 T
Ay Load (15,5, 1rm) g 20 o
4%, 4% % = : Sat 00:00 Sat 12:00
Localtime: o= = e;_'“-“’“"""-" B Memory Used M Memory Shared M Memory Cached
- i B a H Me Buff d M S d
2008-06-07 23:34 O 1 min Load [ Nodes [ CPUs M Running Processes ET::‘:{VIH\—J(ngeMEmury L) ey S
Cluster Grid e view
Dl e Tatal TR 1o mid 4 o—a4 -2 4 1 i mca m_ Ao as 1 V]

Figure 4.2: Tiger Grid Rsources
4.2 Experimental Tool: Cyber Transformer
In a previous work [28], we gave experimental results for Cyber Transformer, a
powerful new toolkit for replica management and data grid environment data transfers.
It can accelerate data transfer rates, and also manage replicas over various sites. The
friendly interface enables users to easily monitor replica sources, and add files as

replicas for automatic cataloging by our Replica Location Service. Moreover, we
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provide a function for administrators to delete and modify replicas. Cyber
Transformer can be invoked with either the logical file name of a data file or a list of
replica source host names. When users search for files using logical file names, Cyber
Transformer queries the Replica Location Services to find all corresponding replicas,
and directs the replica sources to start parallel transfers. Cyber Transformer users can
easily gather replica resources and combine them into single entities with the
“strategy selection” user interface, accomplishing the task with various parallel

download strategies, as shown in Figure 4.3 and 4.4
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Figure 4.3: The GridFTP Client Tool: Cyber Transformer

37




-Izl Options s

Strategy Selection
allocation bar host 7
Partition size (KE) 1024
Fix BElock Size (KB) | 1024
CPU 10
MEM 10
Partition size (KB} 1024 NET an
100
First transfer dize (KB} 1024
Partition percentage (%0 10 Alpha o9
First tramsfer size (KB 1024 Alpha o9
Partition percentage (%) 10 @ | Enable Burst Mode?
Mo Sesson ] -
Replica Server
Address £rid 186 hitedu tw/R LS Address £rid 186 hitedu.tw
Usex hpclab
Password rTITITTITIY]
| Save & Close |

Figure 4.4: Parallel Download Strategy Selection
4.2.1 System Components
Cyber Transformer is implemented in the Java Cog Kit [14] library. The system stack
of Cyber Transformer consists of three parts: (1) Information Monitor, (2) Replica
Manager, and (3) GridFTP Browser, to simplify replica management and data
transfers. With the intuitive interface, users can easily invoke the services to transfer
data without delay. Figure 4.5 shows the Cyber-Transformer system components and
the three main services they provided.
e Information Service: This service is invoked by the Information Monitor and
provides replica sources statuses allowing users to monitor all replica source sites
in the data grid. Sites status, such as CPU loading, free memory, hard disk free

space, and bandwidth, are gathered by the Information Service and reported to
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the Information Monitor.

Replica Management Service: This serves as middleware between users and
replica databases. It enables convenient user replica searches by listing logical
file names and replica source host names. Users can also easily upload files as
replicas, and mark the importance of these files.

Data Transfer Service: This is the most important Cyber-Transformer service,
and is easily summoned through the GridFTP Browser. Our Dynamic
Adjustment Strategy is integrated into it, and an “Option” function enables users
to compensate for various data grid environment conditions by adjusting transfer
factors such as machine loading, bandwidth, partition size, and stripe numbers,

thus accelerating data transfer rates.

Cyber Transformer Toolkit on Windows XP/Linux

Information Replica Location Data Transfer
Service Service Service
Java CoG Kit
GridFTP Protocol J2SDK
Globus Toolkit

(MDS and GRAM)

Data Grid Nodes (Storage System)

Figure 4.5: The System Stack of Cyber Transformer
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Figure 4.6: The Components of Cyber Transformer

4.2.2 System Transaction Flow

Figure 4.7 shows the Cyber Transformer transaction flow. Users must first pass the
Grid Proxy Certification provided by Simple CA to get access to the Grid. They may
then connect to any data grid site via the GridFTP Browser. The system automatically
authenticates site certifications as connections are made. The security mechanism of
our Grid environment is depicted below. Steps 4 and 5 show how users query the
Replica Location Service for replica information, and the Replica Location Service
reports on requests. The system ranks all replica servers according to our replica
selection model [31, 32], and users can then choose the better servers for parallel
downloading. The Data Transfer Service is invoked in Step 6. Information about the
replicas chosen by the user is picked up by the GridFTP Job Controller. The

Controller then dynamically adjusts replica transfer job sizes according to the
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conditions presented in the information. Job sizes are continually adjusted until all
transfers have been completed. The portions from the various replica sources are then
gathered into complete file. To enable users lacking deep knowledge of data grids to
easily download and manage files in data grid environments, we developed a
user-friendly GUI for Cyber Transformer. It is implemented in the Java CoG Kit

library, and it can be executed on any operating system with JVM
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Figure 4.7: The Transaction Flow of Cyber Transformer
4.3 Experimental Results and Analyses
An experiment and a case design were devised to test Burst Mode (BM), our proposed
approach to speeding up local and remote performance, and dynamically truing alpha

values to adapt to variable network situations. Details of the test cases we designed
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are shown in Figure 4.8.
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Figure 4.8: Scenarios for Our Testbed of Tiger Grid

4.3.1 Case Study—=*“cross-grid” vs. “local grid”
We designed two scenarios to verify the efficiency of enabling Burst Mode. All test
cases are listed in Tables 4.1 and 4.2.

Table 4.2: Scenario for Replica Local or Not

Scenario Replica Server List

ARAMplus_4: non-local | THU-S1, S2; LZ1, 2

42



ARAMplus_4: local-1 HIT-S1, S2; THU-betal, beta2

ARAMplus_4: local-2 HIT-S1, S2; THU-betal; LZ-1

ARAMplus_4: local-3 HIT-S1, S2; LZ-1, 2

ARAMplus_4: all-local | HIT-S1, S2, S3, S4

Table 4.3: Scenario for Various Replica Numbers and Selections

Scenario Replica Server List
Rx6_non-local LZ-1, 2, 3; THU-betal, beta2, beta3
Rx6_local HIT-S1, S2, S3, S4, S5, S6
Rx2_local HIT-S1, S2

Rx2_non-local-THU | THU-S1, S2

Rx2_non-local-LZ LZ-S1, S2

Generally, more replicas and local placement will yield better parallel file transfer
performance. Our results, shown in Figure 4.9 and 4.10, show that we found more
replicas remotely so user performance improvement was not obvious, even worse than
the few replica found locally. However, Burst Mode function could get more

performance even two copies only (refer to scenario: Rx2_local).
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Figure 4.9: Effects of Various Replica Locations on Performance Results
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Results

4.3.2 Case Study—RAM and ARAM vs. ARAM+

We first compare RAM [32] and ARAM [26] in different alpha value. Both RAM and
ARAM were use a static variable ‘o’ as basis to evaluate the working load and with
similar method to dispatch file transformation. The value of alpha will decide the
transform blocks to each site, and it means to through the adjustment represents the
value of alpha to adapt to different network environment. Testing the two scenarios
with transform different file size (L00MB, 1000MB) by adjust the value of alpha from
0.1 to 0.9. The results of the testing were shown as Figure 4.11 and 4.12. To change
the value of alpha will affect performance when transform smaller file than huger file.
Those schemes will obtain better performance when transform huge file at the value
of alpha approach to 0.5 and transform small file at the value of alpha approach to 0.9.
The worst performance will occurred when the value of alpha equal to 0.1. The
transmission quality of ARAM scheme was more stable than RAM scheme with

change the value of alpha.
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RAM and ARAM both used constant alpha values; our approach, ARAM+, relied on
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dynamic alpha values to adapt to data grid network link fluctuations. The case study
for RAM and ARAM s listed in Table 4.4. We set the constant alpha values at 0.9,
0.5, and 0.1 for comparison with ARAM+, and replicas were selected from inside and
outside regions. In order to distinguish among replica locations, these two kinds of
replica selection plans are listed in Table 4.3.

Table 4.4: Replica Placement and Selection Plan

local HIT-S1, S2, S3, S4, S5, S6

mix HIT-S1, S2; LZ-1, 2; THU-betal, beta2

Table 4.5: Scenario for Alpha Value Tuning

Scenario A Scenario B
RAM(0.1)_local RAM(0.1)_mix
ARAM(0.1) local ARAM(0.1) _mix
RAM(0.5)_local RAM(0.5)_mix
ARAM(0.5) local ARAM(0.5)_mix
RAM(0.9) local RAM(0.9) mix
ARAM(0.9) local ARAM(0.9)_mix
ARAM+ _local ARAM+_mix

In our next experiment, two scenarios, sets A and B, were used to accentuate the
advantages of the Burst Mode method and dynamic alpha value adjustment. Overall
performances in Scenario B have obviously been improved over those in Scenario A.
The total amounts of TCP bandwidth in Scenario A differed slightly, but there were
significant differences in Scenario B. In all these case studies, especially in Scenario
B, Burst Mode yielded huge performance improvements, as shown in Figures 4.13

and 4.14.
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Figure 4.13: Performance Results for Scenario A
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Figure 4.14: Performance Results for Scenario B

4.3.3 Case Study—Comparison of 9 Co-Allocation Schemes

To evaluate the performance of our proposed technique, we implemented the

following nine co-allocation schemes: Brute-force (Brute), history-based (history),
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conservative load balancing (conservative), aggressive load balancing (aggressive),
dynamic co-allocation with duplicate assignments (DCDA), recursively adjusting
mechanism (RAM), dynamic adjustment strategy (DAS), anticipative recursively
adjusting mechanism (ARAM), and anticipative recursively adjusting mechanism plus
(ARAMH+). Using the case setups listed in Table 4.3 for each scheme, we analyzed
their performance by comparing transfer finish times and overall performance, as

shown Figures 4.15 and 4.16.
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Figure 4.15: Comparing 9 Schemes on “local” Cases
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Figure 4.16: Comparing 9 Schemes on “mixed” Cases
We found that ARAM+ performed better than the others. An interesting outcome
shows the Brute scheme’s “local” performance differed greatly from its “mixed”
performance. ARAM+ is comparable to Brute or any others. The advantages of
ARAM+ are the follows:

e ARAM+ uses TCP bandwidth measurement technology, reliability and
accuracy of the best.

e ARAM-+ can enhance GridFTP to become multiplexing.

e ARAM+ used k-means for classifying numbers grid node. It quickly finds out
the most efficient computing nodes.

e ARAMH+ gives the longest amount of computing job to powerful grid node but
small data set could ignore some advance option for example, dynamic ¢,
server classification (k-mean) algorithm and congestion control.

e ARAM-+ can really adapt to different grid environments, rather than to just

specific experiments designed grid system.
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4.3.4 Case Study—Completion Times for Various Methods with

Network Broken
In the final experimentation, we compare 9 co-allocation schemes to face normal
and worst network link state. It is possible that any host’s network interrupt or any
other types of network fault occur will cause file transformation failure in the
heterogeneous and complex environment of the grid. The design of network fault
tolerant was important to improve the usability and reliable of the full grid system.
There was only DCDA, ARAM and ARAM+ has the ability to face fault in all
schemes of this study. As shown in Figure 4.17, we built a disgusting environment
with four replicas at grid sites. Each site with replica will disconnection a period
time when transform file. Since the DCDA scheme was designed for faster sites will
transform more segments in parallel to overcome network fault. The experiment
results shown that when some grid node was disconnection at period time, the file
can be complete transform. The ARAM and ARAM+ scheme were designed
transform file base on current network status, it can avoid the situation that faster
site to waiting for slower site. The overall transform file performance was still to
keep in stability, as shown Figures 4.18. Finally we sorted out the advantages and

disadvantages of 9 schemes and make a comparative table, as shown in table 4.6.
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Figure 4.18: Compare 9 Schemes in Different Network Status

51




Table 4.6: Comparison for All Schemes

Network Fault
Schemes Complexity Overhead
Adaptability | Tolerance

Brute-Force Low Non Non No
History-based Low Non Non No
Conservative Load

Middle Few Low No
Balancing
Aggressive Load

Middle Few Low No
Balancing
Dynamic
Co-allocation with

High Very High Middle Yes
Duplicate
Assignments
Recursively
adjusting Middle Middle High No
mechanism
Dynamic
High High High No

Adjustment Strategy
Anticipative
recursively adjusting High Middle High Yes
mechanism
Anticipative
recursively adjusting | Very High High Very High Yes
mechanism plus
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Chapter 5

Conclusions

Co-allocation architectures can be used to enable parallel transfers of data files from
multiple replicas in data grids, which mean all replicas stored in the various grid sites.
Many schemes based on the Co-Allocation Model have been proposed and used to
exploit the different transfer rates among various client-server network links and to
adapt to dynamic rate fluctuations by dividing data into fragments. In these schemes,
the applicable piece fragments achieve more performance. In fact, some schemes can
be applied to specific situations; however, most situations are not common actually.
For this issue, we propose the anticipative recursively adjusting mechanism plus
(ARAM+), based on ARAM. The best part is performance tuning through continual
dynamic alpha value adjustment. It relies on special features to adapt to various
network situations in data grid environments. The TCP Bandwidth Estimation Model
was used to evaluate dynamic link states in our experiments by detecting TCP
throughputs and packet lost rates between grid nodes. TCP Bandwidth Estimation
Model also can be more reliable and fair than ARAM and any other schemes. Burst
Mode function truly can increase transfer rates and speed up total performance
especially considering congestion control. The ARAM+ not only adapts to the worst
network links, but also speeds up the overall performance especially in wide-area grid

networks.
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