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Abstract

In 1966 Erdös et al. [8] proved that the edge set of any simple graph G

with n vertices, no one of which is isolated vertex, can be partitioned using

at most ⌊n2/4⌋ cliques. A couple of tens of years behind McGuinness [12]

proved that any greedy clique partition is such a partition.

A multifamily representation of a graph G is a family of sets each member

of which represent a vertex in G and the intersection relation of two mem-

bers of which represent the adjacency of the two corresponding vertices in

G. Erdös et al. [8] suggested a one-one correspondence between multifamily

representations and clique coverings of a graph G. In fact, if we define multi-

family representation of a multigraph M to be a family of sets each member

of which represent a vertex in M and the number of elements in the inter-

section of two members of which represent the number of edges between the

two corresponding vertices in M , then there is also a one-one correspondence

between multifamily representations and clique partitions of M .

In section 1 we will narrate this correspondence in full detail.

If a multiafmily representation of a multigraph M has its members pair-

wisely distinct, then it is designated as a representation of M .

In section 2 we turn the aforementioned correspondence between multi-

afmily representations and clique partitions of M to account to prove that

any multigraph M with at most one edge between any two vertices of it can

be represented by at most ⌊n2/4⌋ elements and we can accomplish such a

representation from any greedy clique partition by a straightward method

based on this correspondence.

An antichain representation of a multigraph M is a representation of M

with the sets in it without pairwise inclusion relation. An uniform represen-
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tation of M is a representation of M with all sets in it of the same cardinality.

In sections 3, 4, we utilize some immediately available results in the theory

of finite linear space to characterize all manners for forming a representation,

antichain representation, or uniform representation of a complete multigraph

M with at most one edge between any two vertices of it using the smallest

number of elements.

In section 5 we make use of the results in sections 3, 4 to prove that there

is only one manner for representing a diamond-free multigraph M with at

most one edge between any two vertices of it using the smallest number of

elements.

In section 6 we make use of the results in sections 3, 4 to characterize

all manners to form a representation or antichain representation of the line

graph of one simple graph using the smallest number of elements so that

the representation sets of any two adjacent vertices overlap on exactly one

element.

Prisner [14] proved that hereditary clique-Helly graphs are exactly hered-

itary maximal-clique irreducible graphs, whereas there is a graph that is

clique-Helly but not maximal-clique irreducible and vice versa.

In section 7 we investigate which graphs are clique-Helly but not hered-

itary clique-Helly and which graphs are maximal-clique irreducible but not

hereditary maximal-clique irreducible.

Keywords: Clique; Covering; Partition; Line graph; Intersection

graphs; Uniquely intersectable graphs; Clique-Helly

graphs; Helly property; Hereditary clique-Helly graphs
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1 Introduction

By an multigraph M = (V (M); q), we mean a set V of vertices along with a

function q defined in the following way. For each unordered pair {u, v} ⊂ V ,

let q(u, v) be the number of parallel edges joining u with v. If q(u, v) 6= 0,

then we say that {u, v} is an edge of M and q(u, v) is called the multiplicity

of the edge {u, v}. In this paper we consider only finite, undirected, simple

multigraphs, where simple means that q(u, v) ≤ 1 for every {u, v} ⊂ V and

q(u, u) = 0 for every u ∈ V (M). We denote the set of edges of M by E(M),

that is, in this paper E(M) = {{u, v} : q(u, v) = 1, u 6= v}. For a vertex

subset S ⊆ V (M), 〈S〉V denotes the subgraph induced by S. For a vertex v

in M , dM(v) or d(v) denote the degree of v in M . Let F = {S1, ..., Sp} be a

family of distinct nonempty subsets of a set X. Then S(F) denotes the union

of sets in F . The intersection multigraph of F , denoted Ω(F), is defined by

V (Ω(F)) = F , with |Si ∩ Sj | = q(Si, Sj) whenever i 6= j. Of course, so

long as we are involved in this paper, |Si ∩ Sj | always equal either 0 or 1 for

all i 6= j, as appointed above. We say that a multigraph M is intersection

multigraph on F if there exist a family F such that M ∼= Ω(F); in this case

we also say that F is a representation of the multigraph M . The intersection

number, denoted ω(M) [multifamily intersection number, denoted ωm(M)],

of a given multigraph M is the minimum cardinality of a set X such that M

is intersection multigraph [multifamily intersection multigraph] on a family

F consisting of distinct [not necessarily distinct] subsets of X. In this case

we also say that F is a minimum representation [multifamily representation]

of M . We also consider intersection multigraph on antichain, i.e. family

with no set in it contained in some other set in it, uniform family, i.e. family

with all sets in it having the same cardinality and distinct from each other,
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and uniform multifamily, i.e. family with all sets in it having the same

cardinality and not necessarily distinct from each other. And similarly we can

define antichain, uniform, uniform multifamily intersection multigraph on a

family F and intersection number, denoted ωai(M), ωu(M), and ωum(M),

respectively.

Note that given a representation {Sv | v ∈ V (M)} of M and a vertex

subset S ⊆ V (M), then {Sv | v ∈ S} form a representation of 〈S〉V . Thus

we know that ω(M) is not less than ω(〈S〉V ) for any S ⊆ V (M). Similarly

for ωm(M), ωai(M), ωu(M), and ωum(M).

We say that M is uniquely intersectable (ui), if given a set X with |X| =

ω(M) and any two families α, β of subsets of X such that α and β are both

representations of M then β can be obtained from α by a permutation of

elements of X. At this time we call α, β to be isomorphic.

Similarly we define uniquely intersectable with respect to multifamily (uim),

antichain (uia), uniform multifamily (uium), and uniform family (uiu).

2 partition edge set by cliques

Given a multigraph M = (V (M); q), Q ⊆ V (M) is said to be a clique of M

if every pair of distinct vertices u, v in Q has q(u, v) 6= 0. A clique partition

of a multigraph is a set Q of cliques such that every pair of distinct vertices

u, v in V (M) simultaneously appear in exactly q(u, v) cliques in Q and for

each isolated vertex, that is, vertex with no edge incident to it, we need to

use at least one trivial clique, that is, clique with only one vertex, in Q to

cover it. The minimum cardinality of a clique partition of M is called the

clique partition number of M , and is denoted by cp(M). This number must

exist as the edge set of M forms a clique partition for M . We refer to a clique

partition of M with the cardinality cp(M) as a minimum clique partition of
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M .

Note that a clique partition Q of M give rise to a clique partition of M−v

by deleting the vertex v from each clique in Q. Thus cp(M) is not less than

the clique partition number of any induced subgraph of M .

Erdös et al. [8] proved the following theorem.

theorem 2.1. The edge set of any simple graph G with n vertices no one

of which is isolated vertex can be partitioned using at most ⌊n2/4⌋ triangles

and edges, and that the complete bipartite graph K⌊n/2⌋,⌈n/2⌉ gives equality.

We somewhat modify their proof to prove the following theorem. We use

M (n) to denote a multigraph M with n vertices.

theorem 2.2. Any multigraph M with n ≥ 4 vertices and at most one edge

between any two vertices of it (perhaps with isolated vertices) can be parti-

tioned with at most ⌊n2/4⌋ cliques Q1, ..., QN such that for any two vertices

u, v in M , we have

{Qi | u ∈ Qi ∈ {Q1, ..., QN}}

6= {Qi | v ∈ Qi ∈ {Q1, ..., QN}}. (1)

Further, in this partition we need only to use edges and triangles.

Proof. When n = 4, it is easy to draw all the 11 different multigraphs on 4

vertices, see figure 1, where the set attaching to each vertex u stand for

{Qi | u ∈ Qi ∈ {Q1, ..., Qn}}.

Thus for n = 4 our theorem hold.
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We proceed by induction from n = 4. First note that given any positive

integer n,

⌊n2/4⌋ = ⌊(n − 1)2/4⌋ + ⌊n/2⌋.

Hence in the induction we should show that in going from M (n−1) to M (n)

we need at most ⌊n/2⌋ more cliques.

In case that M (n) has a vertex of degree ≤ ⌊n/2⌋, then at first we delete

this vertex and all edges incident with it from M (n). Then by induction

hypothesis we partition the resulting multigraph with at most ⌊(n − 1)2/4⌋

cliques as K2 or K3 with respect to (1). Then for going from M (n−1) to M (n)

we need only to use the edges joining the deleted vertex to the other vertices

of M (n) and then give rise to at most ⌊n/2⌋ more cliques as K2. Clearly this

resulting clique partition of M (n) still agree with the request of (1).

In the contrary case, every vertex of M (n) has degree > ⌊n/2⌋. Let x be

the vertex with the minimum degree t, and set t = ⌊n/2⌋ + r, where r > 0.

Let x be adjacent to the vertices y1, ..., yt and M (t) be the subgrapf of M (n)

induced by {y1, ..., yt}.

We claim that M (t) has r edges no two of which have a common vertex.

Assume that M (t) has only r − 1 such edges (, the case that M (t) has less

than r − 1 such edges is similar), say

{y1, y2}, {y3, y4}, ..., {y2r−3, y2r−2}.

By t = ⌊n/2⌋ + r = d(x) ≤ n − 1 (, since M (n) is without multiedges and

loops), we know that r ≤ ⌊n/2⌋ and thus t ≥ 2r. Thus we can pick y2r−1

from {y1, ..., yt}.
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By hypothesis, y2r−1 has degree ≥ ⌊n/2⌋ + r. But it can be adjacent to

at most 2r− 2 of the vertices y1, ..., y2r−2 and to at most n− t of the vertices

not in M (t), hence the degree of y2r−1 is at most

(2r − 2) + (n − t) = (2r − 2) + (n − (⌊n/2⌋ + r))

= (n − ⌊n/2⌋ − 2) + r

< ⌊n/2⌋ + r.

But ⌊n/2⌋+ r is the minimum degree. Hence y2r−1 is adjacent to some other

vertex, say y2r, in M (t) and

{y1, y2}, {y3, y4}, ..., {y2r−3, y2r−2}, {y2r−1, y2r}

is r edges in M (t) no two of which have a common vertex.

We remove these r edges from M (n)−x. Partition the resulting multigraph

with at most ⌊(n − 1)2/4⌋ cliques in terms of the request of (1).

Then the ⌊(n − 1)2/4⌋ cliques together with the triangles

{x, y1, y2}, {x, y3, y4}, ..., {x, y2r−1, y2r}

and the edges

{x, yk}, where 2r + 1 ≤ k ≤ t,

form a clique partition, using at most
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⌊(n − 1)2/4⌋ + r + (t − 2r)

= ⌊(n − 1)2/4⌋ − r + (⌊n/2⌋ + r)

= ⌊n2/4⌋

cliques.

Note that according to our convention in this paper, we need to use at

least one trivial clique even for each isolated vertex for the clique partition

of the multigraph M (n) − x with the r edges

{y1, y2}, {y3, y4}, ..., {y2r−3, y2r−2}, {y2r−1, y2r}

removed. Thus the resulting clique partition of M (n) given rise to above from

the one of M (n) − x with the r edges removed must agree with the request

of our theorem in the respect that for any two vertices u, v in M (n), we have

{Qi | u ∈ Qi ∈ {Q1, ..., QN}}

6= {Qi | v ∈ Qi ∈ {Q1, ..., QN}}

In the above theorem, we focus on the case that n ≥ 4. For n = 2 [n = 3],

clearly we need at least two [three] cliques for a clique partition agreeing with

the request of (1).

We prove that the number ⌊n2/4⌋ in theorem 2.2 cannot be replaced

by any smaller number. Let n = 2k or 2k + 1. We consider the comlete

bipartite multigraphs Mk,k and Mk,k+1, which have 2k and 2k + 1 vertices in
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total, respectively. Clearly these two multigraphs have no triangle and their

numbers of edges are

k2 = ⌊(2k)2/4⌋ = ⌊n2/4⌋, if n = 2k,

and

k(k + 1) = ⌊(2k + 1)2/4⌋ = ⌊n2/4⌋, if n = 2k + 1.

Hence the two multigraphs will always require ⌊n2/4⌋ cliques for a clique

partition.

Now we introduce a one-one correspondence between multifamily repre-

sentations and clique partitions of a multigraph M as following.

Given a multigraph M (n) = (V (M); q), we at first construct a clique

partition

Q = {Q1, ..., Qp}

of it. Then with each clique Qk we associate an element ek and with each

vertex vα we associate a set SQ(vα) of elements ek, where

ek ∈ SQ(vα) ⇔ vα ∈ Qk,

i.e., SQ(vα) is the collection of those elements for which the corresponding

cliques contains vα. Thus we obtain

F(Q) ≡ {SQ(v) : v ∈ V (M)}.
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Then clearly

S(F(Q)) ≡
⋃

v∈V (M)

SQ(v)

contains p elements. And

|SQ(vα) ∩ SQ(vβ)| = q(vα, vβ),

since there is exactly q(vα, vβ) cliques simultaneously containing the two ver-

tices vα, vβ. Thus we have constructed a multifamily representation

F(Q) = {SQ(v) : v ∈ V (M)}

from the clique partition Q of M , where

|S(F(Q))| ≡ |
⋃

v∈V (M)

SQ(v)| = p = |Q|.

Conversely, given a multifamily representation F = {S1, ...Sn} of M with

vertex set V (M) = {v1, ..., vn}, where Sα correspond to the set attaching to

vα, then we can also construct a clique partition of M by the following way.

Let

S(F) ≡

n
⋃

α=1

Sα = {e1, ..., ep}.

For each fixed ek in S(F) we form a clique QF (ek) using those vertices vα

such that the set Sα attaching to it contains ek. Clearly each QF(ek) is indeed

a clique of M . Thus we obtain

Q(F) = {QF (e1), ..., QF(ep)}.

And

q(vα, vβ) = |Sα ∩ Sβ|

= the number of cliques in Q(F) simultaneously containing vα, vβ,
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since each element in Sα exactly represent a clique in Q(F) containing vα.

Thus we have constructed a clique partition Q(F) of M from the multifamily

representation F of M , where

|Q(F)| = p = |
n

⋃

α=1

Sα| ≡ |S(F)|.

Thus we have established a one-one correspondence between multifamily

representations and clique partitions of the multigraph M .

From above we know that ωm(M) = cp(M).

theorem 2.3. Let M be a multigraph with at most one edge between any two

vertices of it. Then ωm(M) = cp(M).

If we are given a multigraph M (n), then by theorem 2.2 we can obtain a

clique partition Q with cardinality less than or equal to ⌊n2/4⌋, agreeing with

the request of (1). Then by the above method we can obtain a representation

F(Q) = {SQ(v) : v ∈ V (M)} of M consisting of distinct sets. Thus we obtain

the following theorem.

theorem 2.4. Let M be a multigraph with at most one edge between any two

vertices of it. Then ω(M (n)) ≤ ⌊n2/4⌋.

To see that ⌊n2/4⌋ is the smallest number for which theorem 2.4 is true,

we again consider the two complete bipartite multigraphs Mk,k and Mk,k+1.

Here each edge must give rise to at least one element, for if vα and vβ are

adjacent, then Sα ∩ Sβ contains some element eαβ . But if this element were

present in the set corresponding to any vertex, say vγ , other than vα and vβ,

then vα, vβ, vγ would be vertices of a triangle in Mk,k or Mk,k+1. But these

two multigraphs contain no triangle. Hence each edge in Mk,k and Mk,k+1

give rise to at least one new element. Hence any representation of Mk,k and

Mk,k+1 must use at least ⌊n2/4⌋ elements.
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One may not be contented with the above theorem and would rather ask

that how to secure a representation of M (n) using at most ⌊n2/4⌋ elements.

In fact, McGuinness had regarded this problem in respect of the original

theorem in Erdös et al. [8] having been the motive of our theorem 2.2. In

McGuinness [12] he proved the following theorem.

theorem 2.5. Every greedy clique partition of an n-vertex graph uses at

most ⌊n2/4⌋ cliques.

In this theorem, the so-called “a greedy clique partition of a graph G(n)”

mean an ordered set Q = {Q1, ..., Qm} such that each Qi is a maximal clique

in G−
⋃

j<i E(Qj), where G−
⋃

j<i E(Qj) means the subgraph of G obtained

by deleting all edges in the edge subet
⋃

j<i E(Qj) while leaving all vertices

in G preserved.

Here we also prove the following theorem, where for a representation F of

M we referred to those elements in S(F) which appear in only one member

of F as monopolized elements.

theorem 2.6. Every representation F of M (n) with n ≥ 4 derived from

F(Q), where Q is any greedy clique partition of M (n), by successively at-

taching monopolized elements to the sets which repetitiously occur in F(Q),

where note that by this method, provided that there are k sets in F(Q) being

identical with each other, we need only k − 1 monopolized elements rather

than k, uses at most ⌊n2/4⌋ elements.

lemma 2.7. For any clique partition Q, F(Q) = {SQ(v) : v ∈ V (M)} has

two identical sets, say SQ(u), SQ(v), in it only if the clique in Q simultane-

ously containing u, v is a maximal clique, say Quv, in M and has u, v as its

monopolized elements, that is, u, v are in no clique of Q except Quv, implying

that all vertices adjacent to u, v in M are just all vertices in Quv − {u, v}.
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Proof. If there is a clique Q′ properly containing Quv in M , say vertex w

being in Q′ but not in Quv, then no clique in Q can simultaneously contain

the three vertices u, v, w. Thus the clique in Q simultaneously containing

u, w doesn’t contain v and the clique in Q simultaneously containing v, w

doesn’t contain u, and therefore we must have SQ(u) 6= SQ(v).

If u, say, belong to one clique Q′′ in Q other than Quv, then there is a

vertex, say u′, adjacent to u and not in Quv. In case that u′ is not adja-

cent to v we must have SQ(u) 6= SQ(v). In case that u′ is adjacent to v,

then no clique in Q can simultaneously contain u, v, u′. Thus the clique in

Q simultaneously containing u, u′ doesn’t contain v and the clique in Q si-

multaneously containing u′, v doesn’t contain u, and therefore we must have

SQ(u) 6= SQ(v).

Proof of theorem 2.6:

Proof. We use induction on n.

When n = 4, it is an easy matter to draw all the 11 different graphs

on four vertices and to check that every representation of any one of them

derived from the method of theorem 2.6 uses at most ⌊n2/4⌋ elements, see

figure 1. As for n = 5, the number of nonisomorphic graphs is sufficiently

large to make a reduction being desired. Note that ⌊52/4⌋−⌊42/4⌋ = 6−4 = 2

and therefore we have two new elements in proceeding from n = 4 to n = 5.

If M (5) has one vertex with degree 2 or less, then we reduce M (5) to M (4) by

deleting this vertex and all edges incident to it and then obtain one of the 11

graphs in figure 1. This vertex form a maximal clique in M (5) with some edge

in M (4) only if M (5) is one of the 13 nonisomorphic graphs in figure 2, where

hollow circle denote this vertex and dashed lines denote the edges incident

to it. It is easy to check that every representation of any one of them derived

from the method of theorem 2.6 uses at most ⌊52/4⌋ = 6 elements.
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As for the case that there is no maximal clique in M (5) simultaneously

containing this vertex and some edge in M (4), then in any greedy clique

partition of M (5) we must use all the edges incident to this vertex as members

of this greedy clique partition. Thus in this case in order to obtain any

representation derived from the method of theorem 2.6, we can at first form a

representation of M (4) by the method of theorem 2.6 and then go back to M (5)

using the available two new elements to represent at most two edges incident

to this vertex and thus we can affirm that in this case all representations

of M (5) derived from the method of theorem 2.6 uses at most ⌊52/4⌋ = 6

elements.

As for the case that there is no edge in M (5) incident to this vertex, we

can at first form a representation of M (4) by the method of theorem 2.6 and

then go back to M (5) using one new monopolized element on this vertex.

Due to above, now we need to consider only those multigraphs on five

vertices for which every vertex has degree greater than or equal to 3. There

are only three such graphs and these are easy to discuss, see figure 3.
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Thus we have proved the theorem for n = 4, 5.

Now let F be a representation of M (n) with n ≥ 6 derived from F(Q),

where Q = {Q1, ..., Qm} is a greedy clique partition of M (n), by the method

of theorem 2.6. Note that deleting Qj from the set Q leaves a greedy clique

partition of M − E(Qj).

In case that every Qj has at least three edges, we have m ≤
(

n
2

)/

3 < n2/6.

Assume for the time being that every Qi has exactly three edges, that is, is

exactly a triangle. Now if every triangle in Q has at most one of its three

vertices of degree 2, then by lemma 2.7 we needn’t use any monopolized

element in the method of theorem 2.6 for this greedy clique partition. If

there is a triangle in Q with at least two of its three vertices of degree 2,

then recalling that M (n) have at least six vertices, two vertices of degree 2 in

this triangle make m be less than or equal to
((

n
2

)

/3
)

−2 < (n2/6)−2. Thus

despite that we maybe need two more monopolized elements for this triangle,

yet in the same time we also have two less cliques (as K3) in Q. Besides,

if there is a clique of cardinality 3 + r where r > 0 in Q, then despite that

we maybe need r more monopolized elements for this clique, yet in the same

time by the fact that
(

3+r
2

)

≥ 3(r+1), we also have r less cliques (as K3)in Q,

where note that
(

3+r
2

)

is the number of edges in a clique of cardinality 3 + r

and 3(r + 1) is the total number of edges in r + 1 triangles. In fact, we may

need rather r + 1 or r + 2 than r more monopolized elements for this clique

of cardinality 3 + r. By lemma 2.7, we need use r + 2 more monopolized

elements for this clique only when either this clique is a isolated clique or

M (n) is itself a clique. For the latter case, in the method of theorem 2.6 we

use n elements to represent M (n) and note that n2/6 ≥ n for n ≥ 6. As for

the former case, we lose all the edges joining this isolated clique to all the

vertices not on this isolated clique, therefore we lose at least 5 edges from
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the calculated
(

n
2

)

edges and hence further lose at least two cliques from the

calculated n2/6 cliques (as K3). Besides, by lemma 2.7, we need use r + 1

more monopolized elements for this clique only when this clique has exactly

r + 2 vertices of degree (3 + r) − 1. In this case, this clique has a vertex v

adjacent to one vertex, say v′, not in this clique, and all vertices in this cliques

other than v are not adjacent to v′. Therefore in M (n) we have r + 2 ≥ 3

less edges than complete graph Kn, and thus we have still one less triangle

in Q. Now we have brought to the conclusion that in case that each Qj has

at least three edges, we never use more than n2/6 elements in the method of

theorem 2.6 in order to form a representation of M (n).

Now we have secured a justification for assuming that some Qj is an edge

xy.

In case that d(x) = d(y) = 1, we can at first form a representation of

M (n) − x − y by the method of theorem 2.6 using at most ⌊(n − 2)2/4⌋

elements, and then use two new elements for the isolated edge xy to form

a representation for M (n) using at most ⌊n2/4⌋ elements. Thus in this case

every representation of M (n) derived from F(Q), where Q is any greedy

clique partition of M (n), by the method of theorem 2.6 uses at most ⌊n2/4⌋

elements.

As for the case that one of x, y has degree more than one, in any repre-

sentation of M (n) derived from the method of theorem 2.6 we can’t use mo-

nopolized element on x or y. Now let R consist of the members of Q−{Qj}

that are incident to x, and S consist of those incident to y. Then the set

Q′ ≡ Q − (R ∪ S ∪ {Qj})

is a greedy clique partition of

M ′ ≡ (M (n) − x − y) −
⋃

Qi∈R or S

E(Qi),
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except possibly leaving some isolated vertices in M ′ uncovered by any mem-

bers of Q′. Recall that under the present case, in F we never use monopolize

element on x, y. Now only if we can prove that every monopolized elementd

in S(F) is always necessary for deriving a representation of M ′ from F(Q′)

by the method of theorem 2.6, then by induction hypothesis we can prove

that

|Q(F) − (R ∪ S ∪ {Qj})| ≤ ⌊(n − 2)2/4⌋. (2)

If in F we had used one monopolized element on some vertex v not

belonging to any member of R ∪ S, then in F(Q) SQ(v) must be identical

with some SQ(u) where u is also a vertex not belonging to any member of

R ∪ S. Since both u and v don’t belong to any member of R ∪ S, in F(Q′)

SQ′(u) = SQ′(v). Thus this monopolized element is necessary for deriving a

representation of M ′ from F(Q′) by the method of theorem 2.6.

If in F we had used one monopolized element on some vertex v belonging

to one member, say Qv, of R ∪ S, then in F(Q) SQ(v) must be identical

with some SQ(u) where u is also a vertex belonging to Qv. Now by lemma

2.7 v must have all its neighbors in Qv. Thus v is an isolated vertex in M ′.

Thus this monopolized element is necessary for deriving a representation of

M ′ from F(Q′) by the method of theorem 2.6.

Thus we have proved (2).

Now it suffices to prove that

|R ∪ S| ≤ n − 2,

since

n − 2 ≤ ⌊n2/4⌋ − ⌊(n − 2)2/4⌋ − 1.
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We prove this by choosing distinct vertices in V (M)−{x, y} from the vertex

sets of the members of R ∪ S. Note that since each edge is covered exactly

once in a clique partition, each v /∈ {x, y} appears once in R if v is adjacent

to x and once in S if v is adjacent to y. Consieder Q1 ∈ R. If Q1 contains

a vertex v not adjacent to y, then we choose such a v for Q1. If all vertices

in Q1 are adjacent to y, then we choose for Q1 a vertex v ∈ Q1 such that

vy belongs to the first member of Q, say Q2, that contains both y and some

vertex of Q1. Note that Q2 is the only member of S containing v.

Now we have two cases, that is, either that Q1 precedes xy in Q or that

xy precedes Q1 in Q. For the first case, since Q1 and xy are maximal when

chosen, Q2 must precedes Q1 in Q for otherwise from the aforementioned

hypothesis that all vertices in Q1 are adjacent to y and Q1 precedes xy in

Q, Q1 should have contained y and hence xy. For the second case, since xy

is maximal when chosen, one of Q1, Q2 precedes xy or otherwise xy should

have contained v. Thus in this case Q2 precedes Q1 in Q. Note that in both

above cases, we have that Q2 precedes both of Q1, xy in Q.

For the members of S, similarly as above choose vertices by reversing the

roles of x and y.

In above we have shown that if v belongs to some Q1 ∈ R and to some

Q2 ∈ S, and v is chosen for one of them, then the one for which it is chosen

occurs after the other one in the ordered set Q. Hence no vertex is chosen

twice. Thus we conclude that

|R ∪ S| ≤ n − 2

.
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3 Clique partition of complete multigraph Kn and

finite linear space.

A [finite] linear sapce Γ = (P,L) is a system consisting of a [finite] point set

P of n points and a line set L of lines satisfying the following axioms.

(L1) Any line has at least two points.

(L2) Two points are on precisely one line.

(L3) Any line has at most n − 1 points.

If a space satisfy (L1) and (L2) but not (L3), then clearly this space contain

a unique line. This type of spaces is referred to as trivial linear space.

Suppose that n ≥ 3. Let Q be a clique partition of Kn such that each

member of Q has at least 2 and no more than n−1 vertices. Let Γ(Q) be the

system whose set of points is the vertex set of Kn, and whose lines are the

members of Q. Incidence is defined as following. A points v is incident with

a line Q if v is a vertex of Q. Then Γ(Q) is a finite linear space. Conversely,

if Γ is a finite linear space on n points, then there is a clique partition Q of

Kn such that Γ = Γ(Q), where each member of Q has at least 2 and no more

than n − 1 vertices.

Thus there is a one-one correspondence between all clique partitions of

Kn by cliques with cardinality at least 2 and at most n − 1 and all finite

linear spaces with n points.

A projective plane is a finite linear spaces Π satisfying the following two

axioms.

(P1) Any two distinct lines have a point in common.

(P2) There are four points, no three of which are on a common line.

33



 

a

b

c
d

e

f
g

Figure 4:

Suppose that Π is a projective plane with a finite number n of points and a

finite number l of lines. Then it is probative that for some k ≥ 2, n = l =

k2 + k + 1, and Π has point and line regularity k + 1, where each point is

on exactly k + 1 lines and each line contains exactly k + 1 points. We call

such a number k the order of the projective plane. Besides, any two lines in

a projective plane intersect on a common point, or paraphrased into terms

of clique partition, any two cliques intersect on a common vertex.

One can prove that the smallest projective plane has order k = 2. It is

well-known as the Fano Plane, as illustrated in figure 4, where the segments

on {a, b, c}, {c, d, e}, {a, f, e}, {a, g, d}, {b, g, e}, {f, g, c}, {b, d, f} respectively

stand for seven lines.

It is not the case that one could construct a projective plane of order k

for any k ≥ 2. It is known that there are unique projective planes of orders

2, 3, 4, 5, 7, and 8 while there is no one of order 6 and 10, as revealed in [ ].

There are at least 4 non-isomorphic projective planes of order 9, but no one

as yet can know the exactly number.

As for the projective planes of other orders, what have been known as yet

is just the following.
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We can construct many projective planes by using a vector space over a

skew-field.

theorem 3.1. Let F be a skew-field and denote by V a 3-dimensional vector

space over F . Define the structure P = P (V ) as follows. The points of P are

the 1-dimensional subspaces of V . The lines of P are the 2-dimensional sub-

spaces of V . The point p is on the line L if the corresponding 2-dimensional

subspace lies in the corresponding 1-dimensional subspace. Then P is a pro-

jective plane.

It is a well-known fact that if k is a prime number or prime power, that

is, k = pn for p a prime and n a positive integer, then there exists a field with

k elements and thus by theorem 3.1 we can construct a projective plane of

order k.

In 1948, de Bruijn and Erdös [6] proved a theorem about linear space

which we paraphrase in terms of clique partition as follows.

theorem 3.2. If Q with |Q| > 1 is a clique partition of Kn with n ≥ 3, no

one of whose members is a trivial clique, that is, the clique consisting of one

single vertex, then |Q| ≥ n, with equality if and only if

(a) Q consists of one clique on n − 1 vertices and n − 1 copies of K2,

or

(b) The finite linear space corresponding to Q is a projective plane.

The linear spaces corresponding to the class of clique partitions in (a) are

traditionally referred to as near-pencil in finite linear space theory. What is

the harm of somewhat abusing the terminology for both clique partition and

finite linear space? Afterwards we shall do so.
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Theorem 3.2 characterizes all those finite linear spaces on n points having

exactly n lines, as being the two classes of linear spaces described in the above

theorem.

4 Various intersection numbers of complete multi-

graph.

For any complete multigraph Kn with n ≥ 3, we can always construct a

representation of it by the following method.

Adopt an element, say e1 common to the representation sets of all vertices.

Then attach elements e2, ..., en−1 to some n − 1 vertices of the n vertices,

respectively. On the other hand, there cannot exist a representation F of

Kn with |S(F)| ≤ n − 1, for otherwise we can at first delete all elements

in S(F) that appear in the representation set of only one vertex, which we

would referred to as monopolized element in the rest of this paper, from

the representation sets of all vertices and say the resulting representation

F ′. Then F ′ does be a multifamily representation of Kn, since monopolized

elements have nothing to do with multifamily representation of a multigraph.

Now we take Q(F ′). Note that |Q(F ′)| ≤ n − 1. Clearly Q(F ′) is a clique

partition of Kn containing no trivial clique. By theorem 3.2 and the fact that

|Q(F ′)| ≤ n − 1, we know that |Q(F ′)| = 1, that is, Q(F ′) consists of only

one clique, containing all n vertices of Kn. But clearly we cannot recover F

from F(Q(F ′)) = F ′ by adding monopolized elements to the members of F ′,

since F is a representation of Kn with |S(F)| ≤ n−1, a contradiction. From

above we know that ω(Kn) = n.

Now we investigate the uniqueness of Kn’s representation. Assume a

representation F of Kn with |S(F)| = n. Delete all monopolized elements
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in S(F) from the representation sets of all vertices, say the resulting rep-

resentation F ′, and then take Q(F ′). Now |Q(F ′)| ≤ n. Clearly Q(F ′) is

a clique partition of Kn containing no trivial clique. By theorem 3.2 and

|Q(F ′)| ≤ n, we know that Q(F ′) consists of only one clique, or is a near-

pencil or projective plane. If Q(F ′) is a near-pencil or projective plane, then

|Q(F ′)| = n and thus it is clear that in these two cases we had never deleted

any monopolized element from the representation set of any vertex when we

proceed from F to F ′. Thus in these two cases, the original representation

F is just F(near-pencil) or F(projective plane). (Note that here we use the

two terminologies “near-pencil” and “projective plane” to stand for their cor-

responding clique partition, respectively.) Clearly these two representations

indeed have their constituting sets pairwise-distinct.

For the remaining case, Q(F ′) consists of only one clique. Thus in this

case we must had deleted n − 1 monopolized elements in proceeding from

F to F ′. And clearly all constituting sets of F has a common element, say

e1, and some n − 1 constituting sets of F have monopolized elements, say

e2, ..., en−1, respectively.

Thus in above we have proved that every complete multigraph Kn with

n ≥ 3 has intersection number n and has three manners for forming its

minimum representations. Note that the practicability of the one manner

derived from projective plane depends on whether or not n = k2 + k + 1 for

some k ≥ 2 and there exists projective plane of order k.

Then we investigate the minimum antichain representations of Kn with

n ≥ 3. Because F(near-pencil) itself is a antichain representation of Kn

making use of n elements, we know that ωai(Kn) ≤ n. Assuming an an-

tichain representation F of Kn with |S(F)| ≤ n. Delete all monopolized

elements in S(F) from the representation set of all vertices, say the resulting
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representation F ′, and then take Q(F ′). Now |Q(F ′)| ≤ n and Q(F ′) is

a clique partition of Kn with no trivial clique. By theorem 3.2, we know

that Q(F ′) have only one member, or is a near-pencil, or projective plane.

Clearly F(near-pencil) and F(projective plane) are both antichain represen-

tation. As for the remaining case that Q(F ′) have only one member, we

cannot recover F from F(Q(F ′)) = F ′ by adding monopolized elements

to the members of F ′, since F is an antichain representation of Kn with

|S(F)| ≤ n.

Thus we have proved that every complete multigraph Kn with n ≥ 3 has

antichain intersection number n and has two manners for forming its mini-

mum antichain representations with the one manner derived from projective

plane being provisory upon the existence of projective plane of appropriate

order.

It is clear that ωum(Kn) = 1 for all n.

As for the investigations of the minimum uniform representations of Kn

with n ≥ 3, we shall refer to the following theorem due to Bridges [5].

theorem 4.1. Let Γ = (P,L) be a finite linear space with n 6= 5 points and

l lines. Then l = n + 1 if and only if Γ is a projective plane with one point

removed from P and every line of L. As for the case of n = 5, see figure 5.

Assume an uniform representation F of Kn with |S(F)| ≤ n. Delete all

monopolized elements in S(F) from the representation sets of all vertices, say

the resulting representation F ′, and then take Q(F ′). Now |Q(F ′)| ≤ n and

Q(F ′) is a clique partition of Kn with no trivial clique. By Theorem 3.2, we

know that Q(F ′) have only one member, or is a near-pencil, or a projective

plane. Clearly F(projective plane) is an uniform representation in its own

right, while we cannot recover an uniform representation F , with |S(F)| ≤ n,

of Kn with n ≥ 3 from F(near-pencil) by adding monopolized elements to
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Figure 5:

the members of it except possibly n = 3. And for the remaining case, that

is, Q(F ′) has only one clique, we also cannot recover F from F(Q(F ′)).

Thus whenever n ≥ 4, we have that ωu(Kn) = n and Kn is uiu if and

only if n = k2 + k + 1 for some k ≥ 2 and there exists projective plane of

order k.

In case that 4 ≤ n 6= k2 + k + 1 or there exists no projective plane of

order k, since we can always form an uniform representation F of Kn with

|S(F)| = n+1 by at first adopting an element common to the representation

set of all vertices and then for the representation set of each vertex attaching

a monopolized element to it. Thus for this case we have ωu(Kn) = n + 1.

Now given an uniform representation F of Kn with |S(F)| ≤ n + 1, at first

we delete all monopolized elements of S(F) from the representation set of

each vertex resulting in another representation, say F ′, and then take Q(F ′).

Now |Q(F ′)| ≤ n + 1. By theorem 3.2 and 4.3, (note that we have assumed

that n ≥ 4 and there exists no projective plane of appropriate order) and

the fact that we cannot recover F from F(near-pencil with n ≥ 4 vertices)

or F(the clique partition as in figure 5), we know that Q(F ′) either consists
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of only one clique, or is a projective plane with one vertex deleted. The

corresponding representation of the latter is an uniform representation in its

own right and we can easily recover F from the corresponding representation

set of the former by returning monopolized element to each member of it.

Thus we have proved that for n = 3 Kn has uniform intersection number

n and has only one manner to form its minimum uniform representations;

for n ≥ 4 such that n = k2 +k +1 for some k ≥ 2 and there exists projective

plane of order k, Kn has uniform intersection number n and has only one

manner to form its minimum uniform representations; for n ≥ 4 such that

n = k2 + k for some k ≥ 2 and there exists projective plane of order k,

Kn has uniform intersection number n + 1 and has two manners to form its

minimum uniform representations; and for n ≥ 4 such that n 6= k2 + k + 1

and n 6= k2 +k for any k ≥ 2, Kn has uniform intersection number n+1 and

has only one manner to form its minimum uniform representations.

5 The intersection number of diamond-free multi-

graph.

We call a multigraph H-free if it has no induced subgraph isomorphic to H .

We call the multigraph obtained by deleting an edge from K4 a diamond.

For two multigraphs M and M ′, an isomorphism from M to M ′ is a

bijection f that maps V (M) to V (M ′) and E(M) to E(M ′) so that each edge

of M , say with endpoints u and v, is mapped to an edge with endpoints f(u)

and f(v). An automorphism of M is an isomorphism from M to M . Two

clique partitions {Q1, ..., Qn} and {Q′
1, ..., Q

′
n} of a multigraph M are said to

be isomorphic if there exists an automorphism A of M and a permutation π

on {1, ..., n} such that A(Qi) = Q′
π(i) for i = 1, ..., n.
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Since we study only multigraphs without loop and with at most one

edge between any two vertices of it, our technicality for isomorphism may

be reduced to the following. An isomorphism from a simple multigraph M

to a simple multigraph M ′ is a bijection f : V (M) → V (M ′) such that

uv ∈ E(M) ⇔ f(u)f(v) ∈ E(M ′).

It is possible to prove that given two isomorphic multifamily representa-

tions of M , then the two clique partitions corresponding to them are also

isomorphic and vice versa, but the formal proof is too scholastic and te-

dious in nature to be worth being included here. By the above we have the

following theorem.

theorem 5.1. A multigraph M is uim if and only if it has an unique mini-

mum clique partition upto isomorphism.

One can easily see the following proposition, where a maximal clique

means a clique not properly contained in another one.

proposition 5.2. A multigraph M is diamond-free if and only if every edge

of M is in exactly one maximal clique. Further if M is diamond-free then

there exists unique one minimum clique partition of M , consisting of all the

maximal cliques of M .

By theorem 5.1 and proposition 5.2 we have the following theorem.

theorem 5.3. Every diamond-free multigraph is uim.

Next we investigate the uniqueness of representation of diamond-free

multigraphs in the following theorem.

theorem 5.4. Every connected diamond-free multigraph M (n) other than Kn

is ui.
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Proof. We say that a vertex is a monopolized vertex of a maximal clique if

this vertex appear in no other maximal clique.

It is clear that two monopolized vertices separetely belonging to two dis-

tinct maximal cliques can’t be adjacent for otherwise the edge connecting

these two monopolized vertices induce some maximal clique, simultaneously

containing two monopolized vertices separately belonging to two distinct

maximal cliques, a contradiction with the definition of monopolized vertex.

Thus for any representation of M , the two sets attached to two monopolized

vertices separately belonging to two distinct maximal cliques are disjoint.

Besides, the subgraph, say, M ′ induced by the subset of V (M) consisting

of all the monopolized vertices is a disjoint union of complete multigraphs

with all vertices of each connected component exactly being all monopolized

vertices of some maximal clique.

Let Q1, ..., Qp be all maximal cliques of M , and each Qi contain qi vertices,

mi of which are monopolized vertices. Recall that we had reasoned out that

a complete multigraph Kn have intersection number n and there exists three

manners to form its representation before. Thus this induced subgraph has

intersection number
∑p

i=1 mi and for each connected component of it we have

three manners to form representation.

We call a vertex belonging to more than one maximal clique a shared

vertex.

We first try not to use more elements than
∑p

i=1 mi to form a representa-

tion for M . Assuming that such a representation F exists, then under F each

connected component of M ′ has three possible manners for representation.

Assume that under F there is one connected component, say, K in M ′ using

the projective plane or near-pencil manner for forming its representation. We

say that K has its vertices as monopolized vertices of maximal clique Qk.
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(Note that projective plane and near-pencil have a common property,

that is, any two lines intersect on a common point , or paraphrased into

terms of clique partition, any two cliques intersect on a common vertex, and

recall that in the method by which we construct a correspondence between

multifamily representation and clique partition, an element in multifamily

representation correspond to a clique in clique partition.)

At this time if Qk has one vertex other than any vertex of K, that is,

Qk has one shared vertex, then we aren’t allowed to use more than one

element from S(F) in order to make this shared vertex be adjacent to all

vertices of K for if we use two elements, say e1, e2, then the representation

set of the monopolized vertex on which the two cliques corresponding to e1, e2

intersect also contain e1, e2. On the other hand, clearly one element can’t

afford to make this shared vertex be adjacent to all vertices of K when the

representation of K is derived from a projective plane or near-pencil. It is

clear that each maximal clique of M has shared vertices in it unless M itself

is Kn or M is not connected. Thus in this case we fail in the trial.

As for the case that under F there is no connected component of M ′ using

the projective plane or near-pencil manner for forming its representation? In

this case, each connected component, say with mi vertices, of M ′ has its

representation derived from the clique partition with one member as Kmi

and mi − 1 members as trivial clique. Now clearly in each maximal clique,

to make one shared vertex be adjacent to all monopolized vertices we can

only use the element of S(F) corresponding to the member as Kmi
in the

clique partition of the subgraph induced by all monopolized vertices of this

maximal clique.

After we do so, two vertices not simultaneously belonging to any maximal

clique in M must have obtained distinct representation sets. On the other

43



hand, for two vertices simultaneously belonging to some maximal clique,

we have three cases as following. In case that these two vertices are both

monopolized, we had distingished their representation sets by trivial cliques.

In case that these two vertices are both shared, since two maximal cliques

in M never share more than one vertex, there must be a maximal clique

in M that occupy one of the two vertices but not the other and hence the

representation sets of these two vertices must be distinct. In case that one

of the two is monopolized and the other is shared, the shared vertex has at

least one element in its representation set that is not in the representation

set of the monopolized vertex. Thus we have succeeded in the trial and in

the same time we have also proved that M is ui.

6 Intersection number and antichain intersection

number of line graph.

The line graph of a graph G, which we assume to be finite, undirected and

simple in this paper, written L(G), is the graph whose vertices are the edges

of G, with its two vertices adjacent if and only if the two edges in G corre-

sponding to these two vertices have a common endpoint in G.

For each vertex v of G, the set ev consisting of all edges in G containing

v induces a maximal clique in L(G). This is one of the only two types of

maximal cliques in L(G), while the rest of maximal cliques is induced by

triangles in G. Besides, any edge ef ∈ E(L(G)) with e = uv and f = vw

being two edges in G can only be contained in either a clique induced by

e, f possibly together with some edges in G with v as endpoint or the clique

induced by the triangle uvw in G (, if u is adjacent to w). Clearly the set

P = {ev : v ∈ G, d(v) ≥ 2} is a clique partition of L(G) which we will
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call the canonical clique partition of L(G). Note that each vertex of L(G) is

contained in exactly two cliques in P .

Let G be a graph. A wing in G is a triangle with the property that

exactly two of its vertices have degree two in G, while a 3-wing is a wing

with the vertex in it having degree greater than two having degree exactly

three. Besides, we define a star in G to be a collection of edges in G which

intersect on a common vertex. Note that a star need not consist of all edges

incident with some vertex, but only a subcollection of those edges. We will

use the notation Si
v to indicate a star with i edges, centered at v. The join of

simple graphs G and H , denoted G∨H , is the graph obtained from the vertex-

disjoint union G + H by adding all the edges {xy : x ∈ V (G), y ∈ V (H)}.

We denote the graph as in figure 6 Wt, t ≥ 2.

S. McGuinness and Rolf REES [11] proved the following theorem.

theorem 6.1. Let G be a connected graph, and G 6= K3, K4, (K2 + K2 +

K2) ∨ K1 (or 3K2 ∨ K1 in abbreviation), or Wt, t ≥ 2. Let V2(G) denote the

set of vertices in G with degree at least two , and let w3 denote the number

of 3-wing in G. Then cp(L(G)) = |V2(G)| and there are exactly 2w3 distinct

minimum clique partitions of L(G).

A cursory illustration of the above theorem here would be advantageous
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for our further study. Note that the above theorem wouldn’t concern itself

with “isomorphism”, that is, it would regard two clique partitions to be

distinct if the cliques used by the two clique partitions don’t derive from the

same stars and triangles in G. For illustration, to attain a minimum clique

partition of the line graph of the graph G in figure 7, we have two “distinct

manners”, one by the upper triangle and the inferior two edges in L(G),

that is, by the three stars in G centered at u, v, w, whereas the other by the

inferior triangle and the upper two edges in L(G), that is, by the 3-wing uvw

and the two stars {vw, vy}, {vu, vy} in G.

We will follow this criterion when deciding whether or not two clique

partitions are the same. The above theorem clarify the fact that to attain a

minimum clique partition of L(G), where note that G is the class of graphs

aforementioned in the above theorem, no triangle in L(G) induced by a tri-

angle in G other than 3-wing can be used. And the adopting in a clique

partition of L(G) of any triangle induced by one 3-wing in G can also yield a

minimum clique partition other than the unique other minimum clique par-

tition, called the canonical one, which consists of all maximal cliques of L(G)

induced by one maximal star in G. Thus each 3-wing in G, refer to figure 7,
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yield two distinct clique partitions of L(G), one adopting the upper triangle

and the inferior two edges in the right graph of figure 7, while the other

adopting the inferior triangle and the upper two edges; and therefore as the

aforementioned by the above theorem G has exactly 2w3 distinct minimum

clique partitions.

Regarding L(G) as a multigraph, subsequentally we investigate the in-

tersection number of the line graph L(G) of a connected simple graph G 6=

K3, K4, 3K2 ∨ K1, or Wt, t ≥ 2.

At first we consider the following question. When do a minimum clique

partition, say Q, of L(G) has two vertices obtaining the same representation

set after we take F(Q)? Clearly if such two vertices, say e1, e2, exist, then

their two corresponding edges in G, say vu1, vu2, inetrsect and either d(u1) =

d(u2) = 1 or vu1u2 is a wing in G with d(u1) = d(u2) = 2.

For the former case see figure 8, where for the sake of generality we sup-

pose that u1, ..., um are vertices in G with degree one and um+1, ..., ut with de-

gree at least 2. Immediately after we ask the question whether or not we can

represent the complete subgraph Km in L(G), refer to figure 8, with vertex

set {vu1, ..., vum} by exactly m elements in some minimum representation of
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L(G). (Note that it is impossible to represent it by m−1 elements.) Assum-

ing that we can, then this Km’s representation can correspond to three types

of clique partitions, say the corresponding clique partition being Q, that is,

near-pencil, projective plane, or Km together with m−1 trivial cliques. Note

that projective plane and near-pencil have a common property, that is, any

two lines intersect on a common point , or paraphrased into terms of clique

partition, any two cliques intersect on a common vertex, and recall that in

the method by which we construct a correspondence between multifamily

representation and clique partition, an element in multifamily representation

correspond to a clique in clique partition. Thus for the former two cases, to

make vum+1, ..., vut be adjacent to vu1, ..., vum, we shouldn’t rely on more

than one element in
⋃m

i=1 SQ(vui), since for any two elements, the vertex on

which the two cliques respectively corresponding to them intersect has its

representation set comprising them. Nor should we use one. (Unless G itself

is a star, that is, t = m.) But for the third case we can use the element

in
⋃m

i=1 SQ(vui) corresponding to the clique Km (, and note that this is the

unique approach if we would like not to use new elements).

On the other hand, for the case that vu1u2 is a wing in G with d(u1) =
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d(u2) = 2, refer to figure 9. In this case, whether or not vu1u2 is a 3-wing in

G, that is, whether or not the adopting of the triangle in L(G) induced by

the triangle vu1u2 in G can occur in one minimum clique partition of L(G),

we can’t have SQ(vu1) = SQ(vu2). We summarize the above by the following

theorem.

theorem 6.2. Let G be a connected simple graph, and G 6= K3, K4, 3K2 ∨

K1, or Wt, t ≥ 2. In addition, we suppose that G is not a star. Let V2(G)

denote the set of vertices in G with degree at least two, and let w3 denote

the number of 3-wing in G. And let u
(i)
1 , ..., u

(i)
mi

be all vertices in G of degree

one and adjacent to vi with d(vi) > 1. We suppose that there are k vertices

with its degree more than one in G in total which are adjacent to some vertex

of degree one, i.e., 1 ≤ i ≤ k. Then when regarding L(G) as a multigraph,

ω(L(G)) = |V2(G)|+
∑k

i=1(mi−1) and there are exactly 2w3 distinct minimum

representations of L(G).

The case that G = K3 or a star is an easy affair. For G = 3K2 ∨ K1, S.

McGuinness and Rolf REES [11] have shown that L(G) admits exactly three

distinct minimum clique partitions, and with a little direct inspection we see

that these three partitions correspond to three distinct minimum (antichain)

representations, respectively. (As a matter of fact, two of the three are

isomorphic.)

As for G = K4, it is easily verified that there are exactly two distinct but

in fact isomorphic clique partitions, one by all the cliques in L(G) induced by

some maximal star in G, while the other by all the triangles in L(G) induced

by some triangle in G, and with a little direct inspection we see that these two

partitions correspond to two distinct minimum (antichain) representations,

respectively.

As for G = Wt, t ≥ 2, S. McGuinness and Rolf REES [11] have shown
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that L(G) has exactly two distinct minimum clique partitions, and with a

little direct inspection we see that these two partitions correspond to two

distinct minimum (antichain) representations, respectively.

Regarding L(G) as a multigraph, next we consider the antichain inter-

section number of the line graph L(G), where G is connected simple and

6= K3, K4, 3K2 ∨ K1, or Wt, t ≥ 2. At first, we consider the question that

when do a minimum clique partition, say Q, of L(G) has two vertices the two

corresponding representation sets for which after we take F(Q) would have

one in it contained in the other in it. Clearly, the two edges in G, say e1, e2,

corresponding to such two vertices must intersect, say e1 = vu1, e2 = vu2,

and one of u1, u2, say u1 throughout the rest of this paper, has no neighbor

other than v, u2.

We at first consider exclusively the case that vu1u2 form a triangle in G.

Now d(u1) = 2. If only we have never made use of the clique in L(G) induced

by the triangle vu1u2 in G in a clique partition, say Q, of L(G), we utterly

needn’t to worry about the inclusion relation between the two representation

sets SQ(e1), SQ(e2). Thus what we need to consider is mere the case that

there exists a minimum clique partition of L(G) making use of the triangle

in L(G) induced by the triangle vu1u2 in G, i.e., that the triangle vu1u2 is a

3-wing. Recall that we have supposed that d(u1) = 2, and thus exactly one

of v, u2 has degree two and the other has degree three. In case that d(v) = 2,

making use of the triangle vu1u2 in a minimum clique partition, say Q, will

make SQ(e1) be contained in SQ(e2). Thus in this case the representation

derived from the minimum clique partition of L(G) making no use of the

triangle vu1u2, i.e., the canonical one, is the unique approach to form an

minimum antichain representation of L(G). In case that d(u2) = 2, whether

or not we make use of the triangle vu1u2 in a minimum clique partition, say
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Q, of L(G), there can’t be inclusion relation between SQ(e1), SQ(e2). But if

we make use of the triangle vu1u2, then SQ(u1u2) will be contained in both

SQ(e1) and SQ(e2). Thus in this case we have the same conclusions as the

former one.

Now what remained is the case that u1 is not adjacent to u2. For this case,

we can without loss of generality assume that d(u1) = 1 while leave d(u2)

unappointed. See figure 8, where for the sake of generality we suppose that

u1, ..., um are vertices in G with degree one and um+1, ..., ut with degree at

least two. Immediately after we look for a minimum antichain representation

of L(G) in which the complete subgraph Km with vertex set vu1, ..., vum is

represented using exactly m elements. (Note that it is impossible to represent

it by m− 1 elements.) Assuming that we can, then this Km’s representation

can only correspond to two types of clique partitions, say the corresponding

clique partition being Q, that is, near-pencil or projective plane. (When

m = 1, we can represent Km by m elements with respect to antichain. But

in this case we can’t make u1 be adjacent to um+1, ..., ut by the single element

in the representation set of u1 so that the representation set of u1 wouldn’t

be contained in the representation sets of um+1, ..., ut, unless t = 1, that is,

G = K2.) Now to make vum+1, ..., vut be adjacent to vu1, ..., vum, we can’t

use more than one element in
⋃m

i=1 SQ(vui) for securing the representation

sets of any two vertices from overlapping on more than one element, neither

can we use one (, unless G itself is a star, that is, t = m).

Thus we should yield by one step looking for a minimum antichain rep-

resentation of L(G) in which the complete subgraph Km with vertex set

{vu1, ..., vum} is represented by exactly m + 1 elements. Assuming such a

minimum antichain representation, then by tlheorem 3.2 and 4.1 this Km’s

representation can only correspond to five types of clique partitions, say the
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corresponding clique partition being Q, that is, near-pencil together with one

trivial clique attached on it, projective plane together with one trivial clique

attached on it, one Km together with m trivial cliques attached on it, one as

in figure 5, or projective plane with one vertex deleted.

For the first case, to make vum+1, ..., vut be adjacent to vu1, ..., vum, we

can’t use more than one element in
⋃m

i=1 SQ(vui) different from the mo-

nopolized one for securing the representation sets of any two vertices from

overlapping on more than one element. Since we have only one monopo-

lized element in
⋃m

i=1 SQ(vui), thus we must try to use one non-monopolized

element in
⋃m

i=1 SQ(vui) to make m − 1 vertices of the Km be adjacent to

vum+1, ..., vut (, unless G is a star, i.e., t = m), and then use the monopo-

lized element on the vertex of the Km other than the aforementioned m − 1

vertices to make this vertex be adjacent to vum+1, ..., vut. Clearly we have

only one approach to do so, that is, at first take the element in
⋃m

i=1 SQ(vui)

that correspond to the clique Km−1 in Q to make all vertices on this Km−1

be adjacent to vum+1, ..., vut, and then use the monopolized element on the

vertex not on this Km−1 to make this vertex be adjacent to vum+1, ..., vut.

But when t > m + 1, using this method will make |S(um+1) ∩ S(um+2)| ≥ 2.

Thus, provided that G is not a star, this method can be carried out only if

t = m + 1.

As for the second case, i.e. projective plane together with one trivial

clique attached on it, similarly we must try to use one non-monopolized

element in
⋃m

i=1 SQ(vui) to make m − 1 vertices of the Km be adjacent to

vum+1, ..., vut (, unless G is a star, i.e., t = m). But we know that in a

projective plane of order k each clique contain k + 1 vertices, whereas there

are k2+k+1 vertices in total where k ≥ 2, and thus each clique in a projective
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plane has

(k2 + k + 1) − (k + 1) = k2 ≥ 4

vertices not on it. Thus in this case we have failed.

For the third case, i.e., one clique Km together with m trivial cliques

attached on it, for the sake not to make two representation sets overlap on

more than one element, we can only use the element in
⋃m

i=1 SQ(vui) corre-

sponding to the clique Km in Q or all monopolized elements in
⋃m

i=1 SQ(vui)

to make vum+1, ..., vut be adjacent to vu1, ..., vum. But when t > m + 1 and

there is one vertex, say um+1, in {um+1, ..., ut} which is not adjacent to any

other vertex in {um+1, ..., ut}, then for the sake that we should make vum+1

be adjacent to vum+2, ..., vut, we can only use the element in
⋃m

i=1 SQ(vui)

corresponding to this Km for vum+1 to be adjacent to vu1, ..., vum. (If we use

the monopolized elements corresponding to all trivial cliques in Q for vum+1

to be adjacent to vu1, ..., vum, then since there is no triangle in G which con-

tains v and um+1 by our supposition before, so in any clique partition of L(G)

we can only cover the edge {vum+1, vum+2} by a clique induced by some star

in G centered at v. Thus we can use neither the element in
⋃m

i=1 SQ(vui) cor-

responding to Km nor all monopolized elements in
⋃m

i=1 SQ(vui) for vum+2,

or otherwise either we can’t make vum+2 be adjacent to vum+1 or we will

make the representation sets of vum+1, vum+2 overlap on more than one el-

ement.) Thus in this case, when t > m + 1 we have only one method to

make a vertex belonging to vum+1, ..., vut but not adjacent to any member

of it be adjacent to vu1, ..., vum using elements in
⋃m

i=1 SQ(vui), while when

t = m + 1 we have two methods to make vum+1 be adjacent to vu1, ..., vum

using elements in
⋃m

i=1 SQ(vui).

As for the forth case, i.e. one as in figure 5, for securing the representation

sets of any two vertices from overlapping on more than one element, we need
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one pair of vertex-disjoint cliques in the clique partition as in figure 5, and the

unique two vertex-disjoint pairs of cliques, refer to figure 5, are {Q3, Q4} and

{Q5, Q6}. If we use Q3, Q4 to make vum+1, ..., vut be adjacent to v2, v3, v4, v5,

then to make v1 be adjacent to vum+1, ..., vut we can use neither 1 nor 2 for

the sake of two representation sets overlapping on more than one element.

Similarly for the use of Q5, Q6. Thus in this case we have failed.

For the fifth case, i.e. projective plane, say of order k ≥ 2, with one

vertex, say x, deleted, we know that a clique in this clique partition has at

most k + 1 vertices, whereas there are k2 + k vertices in total. Thus in this

case each clique has at least

(k2 + k) − (k + 1) = k2 − 1 ≥ 3

vertices not on it. Thus in order that vum+1, ..., vut be adjacent to vu1, ..., vum,

we need more than one element from F(Q). Recall that a projective plane

with k2+k+1 points for some k ≥ 2 has point and line regularity k+1. Thus

deleting one vertex from a projective plane of order k ≥ 2 leaves a clique par-

tition consisting of k +1 cliques of cardinality k and k2 cliques of cardinality

k+1. Besides, recall that any two cliques in a projective plane intersect on a

common vertex. Thus we couldn’t adopt two elements in
⋃m

i=1 SQ(vui) which

correspond to two cliques in Q of cardinality k + 1 to make vum+1, ..., vut

be adjacent to vu1, ..., vum, or otherwise the representation set (turned out

after we take F(Q)) of the vertex on which the two cliques intersect and the

representation sets of vum+1, ..., vut would overlap on more than one element

(unless t = m, that is, G is a star). Nor could we adopt two elements in
⋃m

i=1 SQ(vui) corresponding to two cliques in Q respectively of cardinality

k, k + 1, for the same reason. Now the only permissible choice is the adop-

tion of elements in
⋃m

i=1 SQ(vui) corresponding to the k + 1 cliques in Q of

cardinality k. The vertex, say x, on which these k+1 cliques would intersect
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but for the deletion of x from the primitive projective plane of order k, hav-

ing been deleted, these k + 1 cliques are pairwisely vertex-disjoint. (Recall

the property of one linear space that any two lines intersect on at most one

point.) There are altogether k(k +1) = k2 + k vertices in these k +1 cliques,

tantamount to the sum total of vertices in Q. Thus we could utilize the k+1

elements corresponding to these k + 1 cliques in order that vum+1, ..., vut

be adjacent to vu1, ..., vum. Note that this method can be carried out only

when t = m + 1 for securing two vertices from having their representation

sets overlapping on more than one element.

Now we have obtained the following lemma.

lemma 6.3. Let G be a connected simple graph, and G 6= K3, K4, 3K2 ∨

K1, or Wt, t ≥ 2. In addition, we suppose that G is not a star. And let

u
(i)
1 , ..., u

(i)
mi

be all vertices in G of degree one and adjacent to vi with d(vi) > 1,

while u
(i)
mi+1, ..., u

(i)
ti be all vertices in G of degree more than one and adjacent

to vi. We suppose that there are k vertices with its degree more than one in

G in total which are adjacent to some vertex of degree one, i.e., 1 ≤ i ≤ k.

Then for any 1 ≤ i ≤ k so that ti = mi + 1, we have exactly four

distinct minimum antichain representations of L(G) respectively correspond-

ing to four distinct methods for representing the clique of L(G) with vertex

set {viu
(i)
1 , ..., viu

(i)
ti }. Figure 10 illustrates these four distinct methods where

for illustration we suppose that mi = 4 in the upper three graphs and that

viu
(i)
1 , ..., viu

(i)
6 form a projective plane of order 2 with one vertex deleted in

the lowermost graph. (Note that the method corresponding to the lowermost

graph of figure 10 rely on the existence of projective plane with ti vertices.)

On the other hand, for any 1 ≤ i ≤ k so that ti > mi + 1, all minimum

antichain representations of L(G) have the same method for representing

the clique of L(G) with vertex set {viu
(i)
1 , ..., viu

(i)
mi
}, and for any vertex in
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{viu
(i)
mi+1, ..., viu

(i)
ti } which is not adjacent to any other member of it, all min-

imum antichain representations of L(G) also have the same method to make

this vertex be adjacent to viu
(i)
1 , ..., viu

(i)
mi

using elements in
⋃mi

j=1 S(viu
(i)
j ).

Figure 11 illustrate this unique method, where for illustration we suppose

that mi = 4 and viu
(i)
mi+1 is a such vertex, which is not adjacent to any other

member of {viu
(i)
mi+1, ..., viu

(i)
ti }.

On the other hand, for any vertex in {viu
(i)
mi+1, ..., viu

(i)
ti } which is adja-

cent to some other member of it, a minimum antichain representation of

L(G) would make this vertex be adjacent to viu
(i)
1 , ..., viu

(i)
mi

using elements in
⋃mi

j=1 S(viu
(i)
j ) by one of the two methods as described in figure 12, where for

illustration we suppose that mi = 4 and viu
(i)
mi+1 is a such vertex, which is

adjacent to viu
(i)
mi+2.

(We should note that once a vertex in {vu
(i)
mi+1, ..., vu

(i)
ti } adopts the repre-

sentation method as the right in figure 12, then all other vertices in {vu
(i)
mi+1, ..., vu

(i)
ti }
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Figure 12:

must all adopt the representation method as the left in figure 12, or otherwise

there will be two vertices in {vu
(i)
mi+1, ..., vu

(i)
ti } overlapping on more than one

element on their representation sets.)

Due to the above lemma, what is still vague is mere the case that d(u1) = 1

and there is some triangle on v in G, see figure 13 where for illustration we

suppose that u1, ..., um are the all vertices in G adjacent to v and with degree

one, um+1 is a vertex adjacent to v and with degree at least two so that there

is no triangle in G containing the edge vum+1, and v, um+2, um+3 form a

triangle in G.

By lemma 6.3, if only we can prove that using the method as the left in

figure 12 is always not worst than the one as the right in figure 12 in sense

of the intent to minimize a representation of L(G), where G is connected,

6= K3, K4, 3K2 ∨K1, or Wt, t ≥ 2 and is not a star, and characterize all situ-

ations under which the two methods in figure 12 is equally fine, then we can

determine the antichain intersection number of any line graph and whether

or not any line graph is uniquely intersectable with respect to antichain.
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We examine the method as the left in figure 12. In this method, refer to

figure 13, we use one element to make the vertices vu1, ..., vut, where we say

that d(v) = t, be adjacent to each other, and use m monopolized elements

respectively in the representation sets of vu1, ..., vum. Thus in the whole

L(G), we use |V2(G)| +
∑k

i=1 mi elements, where V2(G) denote the set of

vertices of degree at least two in G and we let vi, 1 ≤ i ≤ k be all vertices of

degree more than one in G which is adjacent to some vertex of degree one

and for 1 ≤ i ≤ k, u
(i)
1 , ..., u

(i)
mi

be all vertices in G of degree one and adjacent

to vi.

Immediately after we examine the method as the right in figure 12. In

this method, refer to figure 13, we use m elements to make vum+2 be adjacent

to vu1, ..., vum, respectively; and use one more element to make all ui with

1 ≤ i ≤ t and i 6= m + 2 be adjacent to each other. Note that now we have

made use of m + 1 elements, that is exactly equal to the number of elements
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we should have used for the v-star if we had adopted the left method in

figure 12. But now we should use still another element to make vum+2 be

adjacent to vum+1 (, unless um+1 is adjacent to um+2 and thus we can shake

off the responsibility to make vum+2 be adjacent to vum+1 to the triangle

{vum+1, vum+2, um+1um+2} just like how we will deal with the responsibility

to make vum+2 be adjacent to vum+3). But even if um+1 is adjacent to

um+2, where to dispose of the triangle {vum+1, vum+2, um+1um+2}? If only

d(um+1) = 2, we can shake off this triangle to the star {vum+1, um+1um+2}.

Thus to attain a minimum antichain representation we should have either

that um+1 is adjacent to um+2 and d(um+1) = d(um+3) = 2, or that d(um+1) =

1 and d(um+3) = 2.

For the latter case, see figure 14, where note that by symmetry we also

have all neighbors of um+2 being of degree one.

In figure 14, if we use the triangle {vum+2, vum+3, um+2um+3}, i.e., use one

element to make the three vertices vum+2, vum+3, um+2um+3 be adjacent to

each other, and either use one more element to make all vui with 1 ≤ i ≤ m+3

and i 6= m + 2 be adjacent to each other and m + 1 more elements to
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respectively make vum+2 be adjacent to vu1, ..., vum+1 or exchange the roles of

um+2 and um+3 and do the same as before, and then similarly for the v′-star,

then we can obtain four more distinct minimum antichain representations

different from “the canonical one”.

When d(um+1) = 1 and d(um+2) = d(um+3) = 2, see figure 15.

In figure 15, if we use the triangle {vum+2, vum+3, um+2um+3}, and use

one more element to make all vui with 1 ≤ i ≤ m + 3, i 6= m + 2 be adjacent

to each other, and use m + 1 more elements to make vum+2 be adjacent to

vu1, ..., vum+1, respectively, and then attach one monopolized element to the

representation set of um+2um+3 then we obtain one more minimum antichain

representation other than “the canonical one”.

As for the case that um+1 is adjacent to um+2 and d(um+1) = d(um+3) = 2,

see figure 16.

In figure 16, if we use the t − m triangles
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Figure 16:

{vum+1, vum+2, um+1um+2}, {vum+2, vum+3, um+2um+3},

..., {vum+2, vut, um+2ut},

and use one more element to make all vui with 1 ≤ i ≤ t, i 6= m + 2 be

adjacent to each other, and use m more elements to make vum+2 be adjacent

to vu1, ..., vum, respectively, and then do the same for the um+2-star, we will

obtain one more minimum antichain representation other than “the canonical

one”.

There is another case remained, see figure 17.

In figure 17, if we use the t − m triangles

{vum+1, vum+2, um+1um+2}, {vum+2, vum+3, um+2um+3},

..., {vum+2, vut, um+2ut},
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and use one more element to make all vui with 1 ≤ i ≤ t, i 6= m + 2 be

adjacent to each other, and then use one more element to make all um+2ui

with m + 1 ≤ i ≤ t and i 6= m + 2 be adjacent to each other, we will obtain

one more minimum antichain representation other than “the canonical one”.

Summarizing the above, we have the following theorem.

theorem 6.4. Let G be a connected simple graph, and G 6= K3, K4, 3K2 ∨

K1, or Wt, t ≥ 2. In addition, we suppose that G is not a star, and is not

a graph as in figure 14, 15, 16, 17. Let V2(G) denote the set of vertices in

G with degree at least two, and let w3 denote the number of 3-wing in G.

And let u
(i)
1 , ..., u

(i)
mi

be all vertices in G of degree one and adjacent to vi with

d(vi) > 1. We suppose that there are k vertices with its degree more than one

in G in total which are adjacent to some vertex of degree one, i.e., 1 ≤ i ≤ k.

And we suppose that there are altogether k′ such numbers i in {1, ..., k} so

that ti = mi + 1, and that among the k′ numbers there are k′′ such numbers

i so that there exists projective plane with ti vertices. Then when regarding

L(G) as a multigraph, ωai(L(G)) = |V2(G)|+
∑k

i=1 mi and there are exactly

3k′−k′′

4k′′

distinct minimum antichain representations of L(G).
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7 Clique-Helly graph, maximal clique irreducible

graph, and strongly chordal graph.

A clique-Helly (CH ) graph is a graph G whose maximal clique obey the so-

called Helly-property : For any set of pairwisely intersecting maximal cliques,

the total intersection of these maximal cliques is nonempty. G is hereditary

clique-Helly (HCH ) if every induced subgraph of G is clique-Helly. The

smallest graph that is not CH is the Hajós graph, see the first graph in figure

18.

It is well-known that CH graphs are easy to be constructed — for any

graph G, the graph G∨K1 (formed by adding a vertex v that is adjacent to

all of V (G)) is CH as every clique contain v. So every graph is an induced

subgraph of a CH graph with just one more vertex. In particular, the k −

partite complete graph K3,...,3 with all parts of size 3 has 3k vertices but 3k

cliques, and is not CH when k ≥ 3; on the other hand K3,...,3 ∨ K1 is CH

with 3k + 1 vertices and 3k cliques. We have just seen that there are both

CH graphs and non-CH graphs with exponentially many cliques. In Prisner

[14], Prisner regarded this observation as the reason why there had been no

polynomial recognition algorithm known for CH graphs up to now, and thus

in that paper he considered the HCH graphs proving the following theorem,

where ocular graphs are the four graphs in figure 18.
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theorem 7.1. A graph is HCH if and only if it contains no ocular graph as

induced subgraph.

A hypergraph consists of a collection of vertices and a collection of edges;

if the vertex set is V , then the edges are subsets of V . Any hypergraph

on n vertices and m edges yields an n by m (0, 1)-matrix A = [aij], where

aij = 1 if and only if vertex j is in edge i. The matrix A is a (edge-vertex)

incidence matrix of the hypergraph. We avoid dealing with row and column

permutations of the matrix here.

Let a chordless chain of length k be a chain x1E1x2E2...xkEkxk+1 of

distinct vertices xi and distinct edges Ej with

Ei ∩ {x1, x2, ..., xk+1} = {xi, xi+1} for i = 1, 2, ..., k.

A chordless cycle of length k is defined to be a chordless chain of length k

except that x1 = xk+1.

A (0, 1)-matrix is totally balanced if it doesn’t contain an incidence matrix

of any graph cycle, of length at least 3, as a submatrix, where graph cycle

means cycle in graph rather than cycle in hypergraph.

In Anstee and Farber [2], Anstee and Farber suggested the following re-

mark.

remark 7.2. The incidence matrix of a hypergraph is totally balanced if and

only if the hypergraph contains no chordless cycle of size greater than 2.

The clique matrix of a graph G on the vertices v1, ..., vn with maximal

cliques C1, ..., Ck is the k by n matrix C(G) whose (i, j) entry is 1 if vj is in

Ci and is 0 otherwise.

In Farber [9], Farber proved the following theorem.

theorem 7.3. The graph G is strongly chordal if and only if C(G) is totally

balanced.
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A partial hypergraph of a hypergraph H = (V, {S1, ..., St}) is any hy-

pergraph we can obtain by deleting hyperedges and vertices, that is, any

hyperedge P = (W, {W ∩ Sj : j ∈ J}), where W ⊆ V and J ⊆ {1, ..., t}.

The underlying graph U(H) of the hypergraph has the same vertex set as H ,

and two distinct vertices are adjacent in U(H) if they lie in some common

hyperedge. A hypergraph H is conformal, if the set of its hyperedges are

exactly the set of maximal cliques of U(H).

In Prisner [14], Prisner proved the following theorem.

theorem 7.4. Let Θ denote the class of all conformal hypergraphs without

graph cycle of length 3 as partial hypergraph. Then the underlying graphs of

the members of Θ are exactly the HCH graphs.

Note that it is straightforward to realize the fact that for any conformal

hypergraph H , the edge-vertex incidence matrix of H are exactly the clique

matrix of U(H). And note that the incidence matrix of a partial hypergraph

P = (W, {W ∩ Sj : j ∈ J}) of H is exactly the submatrix of the incidence

matrix of H with certain rows and columns corresponding to W , {Sj : j ∈ J}.

Hence the underlying graphs of the members of the class Θ of hypergraphs in

the above theorem have their clique matrices containing no incidence matrix

of one graph cycle of length 3 as a submatrix. But theorem 7.4 state that

the underlying graphs of the members of the class Θ are exactly the HCH

graphs, and therefore we know that all HCH graphs have their clique matrices

containing no incidence matrix of one graph cycle of length 3 as a submatrix.

theorem 7.5. All HCH graphs have their clique matrices containing no in-

cidence matrix of one graph cycle of length 3 as a submatrix.

Now let G be strongly chordal, then by theorem 7.3 we know that C(G)

contain no incidence matrix of any graph cycle of length at least 3 as a
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submatrix. Now we construct a hypergraph H with its vertex set V (H)

being exactly V (G) and with its edge set being exactly the set of all maximal

cliques of G. Then H is conformal and have its incidence matrix identical

with C(G) which contain no incidence matrix of any graph cycle of length

at least 3 as a submatrix. Thus H ∈ Θ. Thus by theorem 7.4 U(H) = G is

HCH.

theorem 7.6. Every strongly chordal graph is HCH.

As an extension of theorem 7.1, Szwarcfiter [15] characterize the CH

graphs using the terminology of extended triangle. Let G be a graph and T

a triangle of it. The extended triangle of G, relative to T , is the subgraph

of G induced by the vertices which form a triangle with at least one edge

of T . Let H be a subgraph of G. A vertex v ∈ V (H) is universal in H

whenever v is adjacent to every other vertex of H . In terms of extended

triangle, Szwarcfiter characterize CH graphs in the following theorem.

theorem 7.7. G is CH graphs if and only if every extended triangle of G

contains an universal vertex.

This lead to a polynomial time algorithm for recognizing CH graphs.

A graph is called irreducible if each maximal clique of G contains an edge

which is not contained in any other maximal clique of G. Otherwise G is

called reducible. Wallis and Zhang [18] characterized irreducible graph in the

following theorem.

theorem 7.8. A graph G is reducible if and only if there exists a set of

maximal cliques

F = {M1, ..., Mt}

such that the set of vertices contained in at least two maximal cliques in F

form a maximal clique different from those in F .
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Figure 19:

In Prisner [14], Prisner characterized hereditary irreducible graph as well

as HCH graph in the following theorem.

theorem 7.9. A graph G is HCH if and only if G is hereditary irreducible.

By the above theorem, we know that CH and irreducible are equivalent

under “hereditariness”. However, CH and irreducible graphs are incompati-

ble. For example, the first graph in figure 19 is CH but not irreducible, while

the second and third in figure 19 are irreducible but not CH.

In fact , in some measure, the first graph can represent the class of graphs

which are CH but not HCH, and the second and third can represent the class

of graphs which are irreducible but not hereditary irreducible.

Let G be CH but not HCH. Then by theorem 7.1, G containan induced

ocular graph, say H , and by theorem 7.7 the extended triangle of the middle

triangle, say T , of this ocular graph must have universal vertex. But none of

the 6 vertices of this ocular graph can be universal vertex of this extended

triangle. Thus there must be another vertex in G adjacent to the 6 vertices

of this ocular graph as the first graph in figure 19.

Let G be irreducible but not hereditary irreducible. Then by theorem

7.1 and 7.9, G contain an induced ocular graph, say H . Now assume that

the middle triangle {a, b, c} of H is a maximal clique, refer to the first graph

in figure 18, then three different maximal cliques containing the three trian-

gles {a, c, e}, {a, b, d}, {b, c, f}, respectively together with the maximal clique
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{a, b, c} form a contradiction with theorem 7.8. Thus there must be an-

other vertex, say v1, in G adjacent to a, b, c, since {a, b, c} is not a max-

imal clique. Now if v1 is adjacent to at least two of the three vertices

d, e, f , say d, e , and {v1, a, b, c} is a maximal clique, then the three maximal

cliques {v1, a, c, e}, {v1, a, b, d}, {b, c, f} together with the middle maximal

clique {v1, a, b, c} again form a contradiction with theorem 7.8. Thus there

exists another vertex, say v2, in G adjacent to v1, a, b, c, since {v1, a, b, c} is

not a maximal clique. Now if v2 is still adjacent to at least two of the three

vertices d, e, f and {v1, v2, a, b, c} is a maximal clique, then similarly we again

arrive at a contradiction with theorem 7.8. Eventually we will find a vertex

v′ /∈ {a, b, c, d, e, f} adjacent to at most one of the three vertices d, e, f as the

second or third graph in figure 19.

theorem 7.10. Let G be CH but not HCH. Then G contain an induced

ocular graph H together with another v adjacent to all vertices of H.

On the other hand, let G be irreducible but not hereditary irreducible.

Then G contain an induced ocular graph H together with another vertex v

adjacent to all vertices of the middle triangle of H and adjacent to at most

one of the other vertices of H.
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