Abstract

In this thesis, we are interested in studying the stability of the unique positive
equilibrium point of a nonselective harvesting of two competing fish species in the
presence of toxicity with time delays. Firstly, we state the formulation of the model.
Secondly, we drive different sufficient conditions for local and global stability of the
positive equilibrium point of the system, respectively. Finally, we illustrate our re-
sults by some examples.

Keywords: Nonselective harvesting, Intraspecific Competition, Interspecific Com-
petition, Time delay, Lyapunov functional.
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1 Introduction

In recent years, the application of theories of functional differential equations in
mathematical ecology has developed rapidly. Various mathematical models have been
proposed in the study of population dynamics, ecology and epidemic [8]. Some of them
are described as autonomous delay differential equations. Many people are doing research
on the dynamics of population with delays, which is useful for the control of the popula-
tion of mankind, animals and the environment. Clark [1] studied the problem of combined
harvesting of two independent fish species governed by the logistic law of growth. Based
on the work of Clark [1], Chaud-huri [2] proposed a model to study the combined harvest-
ing of two competing fish species. In addition, Mesterton-Gibbons [7] extended the work
of Clark [1] and found criteria for the survival of less productive species as a function of

the system parameters and initial stocks.

In [5], they discuss nonselective harvesting of two competing fish species, each of
which obeys the logistic law of growth. As pointed out above, it is assumed that the
two fish species compete with each other for using a common source of food and each
species releases a substance toxic to the other species as a biological measure of deterring
the competitor from sharing the food resource. They develop a bioeconomic model of
harvesting both the competing fish species which can demonstrate the toxin producing
interspecific reaction as stated above. This is the first bioeconomic model of this kind.
The local and the global stabilities of the dynamical system for the model are examined
and the existence of a bionomic equilibrium is investigated. If we want to consider that
it is a factor that the fish grows up from the seedling to multiply the ability of future
generation through one periodic time, how is the dynamic behavior of this model? Since
time delays occur so often in nature, a number of models in ecology can be formulated as
systems of differential equations with time delays. One of the most important problems

for this type of system is to analyze the effect of time delays on the stability of the system.



Because this assumption corresponds to the fact that the fish species cannot give birth to
fishes when the species are infants, fishes have to mature for a duration of time. In order
to make this model correspond with the factual factor, we assume that the system model

obey the logistic law of growth with time delays.

The main purpose of this thesis is to establish local and global stability of the unique
positive equilibrium of the system with two different time delays. In section 2, we intro-
duce some definitions and theorems. In section 3, we give sufficient conditions for the
unique positive equilibrium point of the system. In section 4, we analyze uniform persis-
tence of the system. In section 5, we discuss the local and global stability by constructing
respective differential Lyapunov functionals. Finally, in section 6, we illustrate our results

by some examples.



2 Preliminaries

For ordinary differential equations, we have definitions and theorems of stability the-
ory and we view the solution of initial value problem as maps in Euclidean space. In order
to establish a similar view for the solution of delay differential equations, we need some

definitions.

We denote C = C([—7, 0], R") the Banach space of continuous functions mapping the
interval [—7, 0] into R™ with the topology of uniform convergence. That is, for ¢ € C, the
norm of ¢ is defined as |¢| = sup |p(0)|, where |- | is a norm in R". We define x; € C
as z4(0) = x(t+0), 0 € [—, O]OiEXSTS’ﬂme that €2 is a subset of C and f : 2 — R™ is a given

function, then we consider the following general nonlinear autonomous system of delay

differential equation

w(t) = f(xt) (2.1)

Definition 2.1 [6/ Let R7 = {x € R*lz; > 0, i = 1,2}. The notation z > 0
denotes x € IntR%. The system (2.1) is said to be unifromly persistent if there exists a
compact region D C IntR% such that every positive solution x(t) of the system (2.1) with

the initial conditions eventually enters and remains in the region D.

Definition 2.2 /6]  We say that ¢ € B(0,96) if ¢ € C and |¢| < §, where |¢| =
sup [¢(6)].

0e[—7,0]
(i) The solution x = 0 of the system (2.1) is said to be stable if, for any o0 € R, € > 0,
there is a 6 = d(€,0) such that ¢ € B(0,0) implies x(o,¢) € B(0,¢€) fort > o.

Otherwise, we say that x = 0 is unstable.



(ii) The solution x = 0 of the system (2.1) is said to be asymptotically stable if it is
stable and there is a by = b(c) > 0 such that ¢ € B(0,by) implies x(o,$)(t) — 0 as

t — o0.

(11i) The solution x = 0 of the system (2.1) is said to be uniformly stable if the number

0 in the definition of stable is independent of o.

(iv) The solution x = 0 of the system (2.1) is said to be uniformly asymptotically stable
if it is uniformly stable and there is a by > 0 such that, for every n > 0, there is a
to(n) such that ¢ € B(0,by) implies xi(o,¢) € B(0,n) fort > o+ to(n), for every

o € R.

Theorem 2.1 [6]  Assume that u(-) and w(-) are nonnegative continuous, u(0) =

w(0) =0, liin u(s) = +oo, and that V : C — R is continuous and satisfies

V() = u(|o(0)])

and

V(p) < —w(|p(0)]).

Then the solution x = 0 of the system (2.1) is uniformly stable, and every solutions is

bounded. If in addition, w(s) > 0 for s > 0, then x =0 is globally asymptotically stable.

Lemma 2.1 /4] (Barbalat’s Lemma) Let f be a nonnegative function defined on

[0,00) such that f is integrable on [0,00) and uniformly continuous on [0,00). Then

lim f(t) = 0.

t—oo



3 Formulation and Equilibrium Points of the Model

The combined harvesting of competition system with time delays is of the form

in(0) = a1~ 2T o (0)a(t) — Bira()3(0) — e (1)
! (3.1)
ZL’Q(Zf) = 7’25(]2(75)[1 — %;TQ)] — Oég[L'l(t>ZL'2(t> — ﬁgxl(t)l’g(t) — QQefL'Q(t)
with the initial conditions
zi(0) = ¢i(0) >0 , 0€[-7,0] , ¢ €C([-7,0]R) (32)

T =max{m,n} , i=1,2

where z;(t) (i = 1, 2)denote the population densities of the two competing species at any
time t. r;, a;, B, ki, ¢; and e (i = 1,2) are all positive constants. Here r; and 75 denote
the natural growth rates. k; and ks are the environmental carrying capacity of the two
species. The delay 7 and 75 are constants representing a fixed period of time. After
a fixed period of time, competing species growth will affect population density. «; and
ag are the co-efficients of interspecific competition between the species. (; and [y are

co-efficients of toxicity.

Since d/dz1(612?) = 26121 > 0 and d?/dz?(512?) = 203, > 0, there is an accelerated
growth in the rate of production of the toxic substance as the density of the competing
species increase. e denote the combined harvesting effort. ¢; and ¢ are the catchability
coefficients of the species. The catch-rate function giexr; and goexs are based on the

catch-per—unit-effort (CPUE) hypothesis.[1]

All we want to discuss is biological population, so we just consider the first quadrant

in the xy — 5 plane.

a1(t) = @i(t)[r(1 - ) — arza(t) = fraa(t)z2(t) — qrel

ia(t) = a)lra( — 720

) — a1 (t) — Borr(t)xa(t) — gae]



Clearly, E = (0,0) is an equilibrium point of the system (3.1).

equilibrium points of the system (3.1) are

. ~ ~ k
E=(2,0) , 7= —1(7”1 — qi€)

1

~ R R ]{2
E=(0,25) , Zo= T—(rg — qq€)

2

and E* = (z7, 2%) where x7 and z} satisfy

.T*

ri(1— k_l) — 1wy — briay — qre =0
1
T

ro(1 — k:_) — x] — oz x5 — e =0
2

And all possible

(3.3)

The ratio 71 /¢y of the biotic potential r; to the catchability coefficient ¢; is known as

the biotechnical productivity (BTP) of the species.[1] It is easy to see that the equilibrium

point E exists if

k r
—1(7‘1 — qe) > 0=ec<-t
™ q1

A

i.e. the harvesting effort is less than the biotechinical productivity (BTP,,). Similarly, £

exists if

k r
—2(7’2 —qe)>0=c¢ <2
L) q2

i.e. the harvesting effort is less than the biotechinical productivity (BTP,,).

Remark 3.1

Let 27 and x satisfy the equation (3.3), and A;, B;, C; satisfy Aixf + Bixl +C; =0,

(i = 1,2), where
—ko s (T162_ /f104251)

A= k1 (7’251—/?204152)

_ 2 —T172
Br= (7"251—/€2041ﬁ2)[ ky
o Db

(7"251 - k?20é152)

(7“17”2 — rokacy — raqie + k2a192€)

+ kfayag — mo 81+ 11 0o+ Bigae— Pagque)]



—k1 1 (121 — ko1 52)

A pu—
> ky  (r1Be—kioaf)
By = b [_TITQ + k(o — 11 Bo+ 121+ Baqie— Frgae)]
(7“152—k10251) ko
Cy = P (r1re — rikiog — r1g2e + k1asgie)

(7"152 - /f104251)
If the follows holds

A1Cy <0 and AyCy <0

Then E* is the unique positive equilibrium point of the system (3.1).



4 Uniform Persistence

The system (3.1) has an unique positive equilibrium point if Remark 3.1 holds. In
the following, we always assume that such a positive equilibrium exists and denote it by
E*(z7,2%). The following lemmas are elementary concerned with the qualitative nature

of solutions of the system (3.1).

Lemma 4.1  All solutions of the system (3.1) with the initial conditions (3.2) are

positive for allt > 0

Proof: 1t is true because

a0 =n0e{ [ :wl%ﬂ)m(s)ﬁms)xz(s)qleus} »
ralt)=za@oxp { [ 1= =) 0 5) - B (ohan(s)— el

and z;(0) > 0 (i = 1,2). Therefore, we obtain that all solutions (x4 (t), z2(t)) of the system
(3.1) with the initial conditions (3.2) are positive. |

Lemma 4.2 Let (21(t), z2(t)) denote the solution of the system(3.1) with the initial
conditions (3.2), then

0<ai(t) <M, fori=1,2 (4.2)
eventually for all large t, where
M, = kye™ (4.3)

M2 = k2€r27—2 (44)



Proof: By Lemma 4.1, we know that the solutions of the system (3.1) with initial
conditions (3.2) are positive, and hence, by first equation of the system (3.1),

ZL‘l(t — 7'1)

o ] — arwi(t)za(t) — Bias (t)za(t) — qrexq (t)

Il(t) = 7’1$1(t)[1—

l‘l(t — 7‘1)

S Tlxl(t)[]_— ]{21

] (4.5)

Taking M| = ki (14 by), where 0 < b; < €™ — 1. Due to the variation of z;(t) with
respect to mj, we discuss the following two cases.
Case 1: Suppose z1(t) is not oscillatory about M;. That is, there exists a Ty > 0

such that either
1 (t) < M]  for t>Ty (4.6)

or
x(t) > My for t > Ty (4.7)
(i)If (4.6) holds, then for ¢t > Tj
r1(t) <K My =ki(1+b) < kye™™ = My

That is, (4.2) holds for i=1.
(ii)Suppose (4.7) holds, equation (4.5) implies that, for ¢t > Ty + 7

f) s nnh - 0
< rma(t)[1 — ]\]:[lf]
= —rlxl(t)bl

It follows that

t . t
/ xl(s)ds < / —byrids
To+71 xl(s) To+71

= —blTl(t — TO — 7'1).

9



Then 0 < 71 (t) < x1(Ty +71)e t171=T0—7) — ( as t — oo. By the Squeeze Theorem,
tlgglo x1(t) = 0 . It contradics to (4.7). Therefore, there must exist a 77 > Tj such that
x1(T1) < Mf. If z(t) < My for all t > T, then (4.2) follows. If not, then there must
exists a 7o > T3 such that Ty be the first time which x,(7%) > M;. Therefore, there
exists a T3 > Ty such that z1(73) < M] by above discussion. By above, we know that
x(Th) < My, x(Ty) > M, and 21(T5) < M{ where T} < Ty < T3. Then, by the

Intermediate Value Theorem, there exists T, and 75 such that
1'1(T4) = Ml* s T <Ty<T,
$1(T5) = Ml* s Ty <15 <13

and x4 (t) > M for Ty < t < T5. Hence there is a Ty € (Ty,T5) such that z1(7}) is local

maximum, and it follows from (4.5) that

O - xl(Tﬁ)
. I (T6 — 7'1) 2
= rlxl(Tﬁ)[l — k—] — OéliL'l(T(;)CCQ(TG) — 611’1(T6)372(T6> — Q1€$1<t)
1
(T — T
< ra(T6)[1 - %] (4.8)
1
and this implies
Jfl(Tﬁ — T1) S k?l. (49)
Integrating both sides of (4.5) on the interval [Ty — 71, Ts], we can have
Te : Ts —
/ xl(s>d$ S / 7‘1[1—$1(8 Tl)]ds
Te—11 T (S> Te—T71 kl
Ts
< / rids
Te—1
= "7 (410)

By (4.9) and (4.10) imply
iL'l(TG) S l’l(Tg — 7'1) exp(rlﬁ) S k‘l exp(rlﬂ) = M1

10



Thus
x(t) < My, te [Ty, Tl
Since any local maximum is less than or equal to My, thus there exist
r(t) < My for t > Tg. (4.11)

That is, (4.2) holds.

Case 2: Suppose z1(t) is oscillatory about Mj, for this case, the proof is similarly to
above one. And we can conclude that there exists a T’ > Tg, such that x;(t) < M, for all
t>T.

By above conclude, we can conclude zo(t) < My |, My = koe™™ for all t > T.Thus
0<uz(t) < M;, i=1,2 for t>T.

This completes the proof.

The following result shows that the system (3.1) is uniformly persistent.

Theorem 4.1  Suppose that the system (3.1) satisfy the following:

r1 — o My — Gy MMy — e > 0
(4.12)
ro — oMy — BoMi My — gze > 0

in which M; (i = 1,2) is defined by (4.3) and (4.4). Then the system (3.1) is uniformly
persistent.
That is, there exist my, my and T* > 0 such that m; < x1 < My and mo < 29 < My

for t > T, where

Lk M

my = #(h —041M2—51M1M2—Q1€)6XP{[7‘1( - k,_l) _a1M2_51M1M2_Q16]7—1}
1 1
ko M,

me = ﬁ(rz—ale — Ba My Mz —ga€)exp [T2(1_k_)_O‘2M1 — P My Mo —gselms
) 2

11



Proof: By Lemmaj.2, equation (3.1) follows that for t > T + 7

4t = a1l - %:ﬁ)) — anzo(t) — Bz (Daa(t) — qie] (4.13)
> n(Oln(1 - 1) - adh = AMLM: - i
222 > (1 — ]\Z_ll) — oy My — 1My My — qie (4.14)

Integrating both sides of (4.14) on [t — 7, t], where t > T + 71, then we have

r1(t) > 21(t — 1) exp {[7“1(1 - %) —ay My — By M My — Q1€]7'1}

1

That is

l'l(t — 7'1) S xl(t) exXp {—[7"1(1 — %) — CYlMQ — ﬁlMlMQ — qle]ﬁ} (415)

1
From (4.13) and (4.15), for t > T + 7

I’l(t)

klexp{[rl(l — ]\k/[_ll) — OélMQ — ﬁlMlMg — qle]ﬁ}]

a1 (t) 2 1 () {r:[1-
—041M2—61M1M2—Q1€}

>(7"1 —ay My — By My My — QI€)$1( ){1 -

xl(t) }
b (7"1 —01M2—51M1M2—Q1€) eXp{[rl(l— _) 041M2—61M1M2—Q1€]7'1}

k1 M,
iEl(t) <— " (7’1—041M2—51M1M2—91€) exp{[rl(l - k_) — a1 My — i My My — Q1€]7'1}
1

It follows that

lim inf 24 (¢) > b
”

t—oo

M
(7"1 —041M2—51M1M2—Q1€)GXP{[7“1(1_k_l)—a1M2—51M1M2—C]16]71}
1

1
my

and my > 0, by (4.12). So for large t, z1(¢t) > m1/2 =m; > 0.

12



Similar to above one, we can conclude

. k M.
lim inf $2<t> > —2(7“2—042M1 —52M1M2—Q2€)6XP{[7"2(1__2)_042M1—62M1M2—Q26]7'2}

t—o00 T2 kQ

msa
and my > 0, by (4.12). So for large t, z2(t) > my/2 = my > 0.
Let

D= {(21(t), 22(t))|m1 < a1(t) < My, mg < 35(t) < Mo}

For t > T+ 7 where 7 = max{7y, 72}, and ¢ is large enough. Then D is bounded compact
region in ]R%r that positive distance from coordinate hyperplancds.

Hence we obtain that exists a T* > 0 such that if ¢ > T, then every positive solution
of system (3.1) with the initial condition (3.2) eventually enters and remains in the regin

D, that is, system (3.1) is uniformly persistent.

13



5 Stability

In this chapter, we discuss the local stability and the global stability of the equilibrium

point E* of the system (3.1).

5.1 Local Stability

To investigate the local stability of the equilibrium point E*, we linearize the system (3.1).
Let
yi(t) = 21 (t) — 23

Ya(t) = wa(t) — 25
be the perturbed variables. After removing nonlinear terms, we obtain the linear varia-

tional system by using equilibria conditions as

*

i () = [ (1 — %) — an(t) — 26027 — qrelun (t)

r12}
+ [—anz} = Bralya(t) — }f Lyt — 1)
1
* % * *2 7"13’:1(
= —ﬁﬂﬂéyl(t) + [_Oﬂ% — bir} ]?JZ(t) - ey ?Jl(t - Tl)
* (5.1)
. :L. * * *
Ya(t) =[r2(1 — k_z) — i (t) — 2Box7xh — qoelya(t)
ToXs
+ [—anxl — Box?|yi(t) — Z 2yo(t — 72)
2
* *2 * % 7’2.’17;
= [—apxh — oy Y1 (t) — Bax i 5ya(t) — " Yot — 7o)

It is noticed that the asymptotical stability of E* of the system (3.1) is determined

by the asymptotical stability of the zero solution of the system (5.1).[3]

Theorem 5.1  Let E* = (x7,x3) be the unique equilibrium point of the system (3.1)

and the delays 7 and 1o satisfy

a1 — aoT — azmy > 0 (52)

14



and

b1 — b27'1 — b37’2 >0 (53)
where
* % 2T1[ET * *2 * *2
ap = 2B1xixs + it B — aoxy — Boxy
1
rizs w x  2rx] . .
a; = L2 xtwh + L+ aqr} + Biaf?)
kq kq
T‘QZE
az = : (ﬁﬂ?z + )

2rox;
o * % * *2
by = 202175+ —— — a1z — ﬁlaﬁ — sy — Bowy

ko
Ty
by = . 1(51331 + Oélxl)
ToXs v x . 27ox} . .
2 2

then the unique equilibrium point E* of the system (8.1) is local asymptotically stable.

Proof: The equation (5.1) can be written as

L@ =" (o = urts— Dy () + o~ railoa(t)
L ' . (5.4)

L0222 [ ya(s)ds] = [anas— Baailon 1)+ [ ot~ 2]y 1)
2 Jt—m 2

Let
W) =) =5 [ s+ b)) =22 [ s 55)
then

DA oty )-8 [ s)asi-traiors— Sy (- ot

2l (t) k [ )i =B e (=B = )

~2(iria )0~ 2Bty + )

15



+2(—onzy = B2y (D)y2(t) + 2(—00r] — B3 )yi (ya(t)

2r oy

k1

) [ wiom

(Brrias +

*
2r o}

t
S a4 ) [ (s
1 t—T1

2roxy . . t
2 gy 4 o) [ (Om(s)ds
2 t—1o

2raxy

k2

Toly

B [ eltm(s)ds

) +aqz] + 51I1 + oy + Bowy ] (t)

——= (P}l +

[ (/61‘7“1< ;+ kl

+H[—2(Boral + - )+a1x1+ﬁlx1 + qomy + Boxy?]ys (1)

kz

1] r1T]

o (B + ) /tn (Y7 (1) + yi(s))ds

r1T]

ki

(st + pua?) [ B0 + i (s)ds

+ R a4 ) [0 + 0l

ToT%

* t
s % ToX
+——@%%+i%/ [W2() + 43 (s)]ds
k2 kQ t—’TQ

= [-2(frajzs + + a1} + F1at? + apxy + Boxh?

]{71)

* * *

T T ToX
F L (Biatay 4+ ) 4+ =2 (agz + xR (2)
ky k1 ko

+[—2(Boz sy + + a1} + B2t + agry + Boxh?

k’g)

16



] . . rox; « » . ToT5
+ }{ oy + fray®)m + —2 2(Bowias + ——)mly3 (1)
1 2

1] riay

t
+—— (Bl + Lot + piet?) / y?(s)ds
kl kl t—71

* * t
+ 2 2(a2x2—|—52x22+ﬁ2x1$2+ 2_2>/ y%(s)ds
ko ky " Ji—r,

Now, we let

rixt rixt . o [ t
Wa(y(t)) = }{:—11(519@%5 + 2,—11 + apx] + 51%2)/ / yi(p)dpds
t—m1Js

r x* T x* t t
2 g+ a4 a4 22) [ [ gdl)dpds
kQ kQ t—7oJs
then
dWo(y(t * * t
2<y( )) — %(511.1%1_; 4 1y + Oélmi +ﬁ1x*{2)[ﬁyf(t) _/ y%(s)ds]
dt ky k1 t—m

5 ToTs

t
pXy * * Lk
2 g4 o+ Baaia D0~ [ (o))
ka ka t—7
Now, we define a Lyapunov functional W (y(t)) as

Wy(t)) = Wily(t)) +Wa(y(t))

then we have (5.10) from (5.6) and (5.8) that

dW(y(t) _ dy)  dWaly(t)
dt dt dt

IN

[—2(frxizh + - L)+ a2t + Biat? 4 ol + Boxh?
1
2]

v s T ToXs . .
—(frxiay + 17 )11+ 272 (cvoxsy + ﬁgxf)ﬁ]y%(t)
kq k1 ko

+[—2(Paziasy + —Z 2) + a2t + (Lot 4 apxh + Pors?
2

] . . rox; w s ToT

+—2 (] + i) + =2 (Bariah + —2)Talya(t)
kl k2 k2
riay P ST . .

+[_}€ - (Braias + _}{; L+ 0Ty + ﬁ1x12)]7'13/%(t)
1 1

17
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*

22 (apwy + 5251722 + Box Ty + _Z 2)]sz§(t)
2

ks
= [=2

+

(2ﬁ1 ' +2

+ a1xy + ﬁlffz)ﬁ
1

(O‘2$2 + 521?2 )7'2]91 (t)

T[E
+ ==

ol
+[—2(62x’{w§ + 2

) i+ Bt 4wy + foxs?
2

*

rix i i
+ }{;11 (051171 + ﬁ15’512)7'1
T9X - 27"23:* . .
2% (o T 2 4 anr + Bl (1)
= —{[2(Briry + }f ) arx} — Ay’ — apry — Foah’]
1T 2rx] . .
~[= 1(251 s+ —— ’ + a17} + fa?)n
1
TQ.I*

—[k—Q(O@'f; + Boas?) | o}y (1)

. . Tom
_{[2(52%352 + =2

ko )
-
roT 2ra1)
22 2ty + T+ g+ B 1)

—my; (t) — nay3 (t) (5.10)

— a2} — 12t — gl — Boxl’]

*

ki

(o} + i)

Clearly, (5.2) and (5.3) implies that 1, > 0 and 1, > 0. Denote = min{n;, 7>} then
(5.10) leads to

W(t) + 1 / y2(s) + 2(s))ds < W(T) for £>T (5.11)

and which implies y2(t) + y3(t) € Ly[T,o0). We can see from (5.1) and boundness of
y(t) that y?(t) +y3(t) is uniform continuous and then, using Barbalat’s Lemmal4], we can
conclude that tlim [y2(t)+v3(t)] = 0. Therefore, the zero solution of (5.1) is asymptotically

stable and this completes the proof.

18



5.2 Global Stability

In this section, we drive sufficient conditions which guarantee that the positive equilibrium
point E* of the system (3.1) is globally asymptotically stable. Our method in the proof
of the global asymptotic stability of the positive equilibrium E* of the system (3.1) is to

construct a suitable Lyapunov functional.

Theorem 5.2  Let E* = (a7, x3) be the unique equilibrium point of the system (3.1)

and the delays 1 and 1o satisfy

fy — poTy — f3Te > 0 (5.12)
and

Wi — WeTy — w3y > 0 (5.13)

where M;,m;(i = 1,2) defined by lemma 4.2 and Theorem 4.1, and

7“11‘* * 1 * * * ok * )k
P = k;ll + Brayms — 5(0‘1% + Qo] + i1 xy + ow )
— riJasay? + rifaiey M + naepMy | rieiMy (M — ap) Mo
H2 2k 3} 2k, ki M
_ raomriM, rofoizy(2Ms — %)
M3 2]{52 2k2
7’2$* * 1 * * * ok *
wp = k_2 + Bawzmy — 5(@15’72 + gy + fioy 2y + B )
2
o rioaqwy My Sy (2My — x7)
2 2]{;1 2]{71
wy = rofoxiay? + rafarias My + rosriMy | r3xsMy | rabhrs(Ms — @) My
3 ey ey 2k k3 ko

then the unique equilibrium point E* of the system (3.1) is global asymptotically stable.

Proof:
Define

2(t) = (21(t), %2(1))
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2i(t) = - (i=1,2)
Z;
le (t) . ide(t)
dt xt dt
* * t _
= (14 z(t)[r1 — L nzia(t —n) — aq Ty — x5y 2e(t)

ky k1

— by — Brairsa(t) — biriayze(t) — baizsz(t)2(t) — e

= (14 z1(t))[=Birizs21(t) — (ouas + Biryas)z(t)

_7’1!171(21(15 — T1>

i — Brzixyz(t)z2(t)] (5.14)

dt xy dt

7”2.1';(1 + Zg(t — 7'2))
ko

= (14 22(t))[r: — — aox] — asxyz(t)

—Oa 1 (1 + 21(8))3(1 + 22(t)) — gae]

= (1 + 2(t))[— (o] + Bax]5)21(t) — Pax T320(t)

B roxhza(t — 7o)

s — Boxixyz1(t)22(t)] (5.15)

Let
Vi(2(t)) = {z1(t) — In[1 + 21 ()]} + {z2(t) — In[1 + 22(¢)]} (5.16)

then we have (5.17) from (5.14) and (5.15) that

21 (t)zl (t) I 22('[5)2’2('[5)

Vi(z(t) =

= —Ouirszi(t) — (enas + Brajes)z (t)za(t)
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*

i Walt—m) - Braiwszi (t)ze(t)

— ot 325 (1) — () + Boximy) 21 (t)22(t)

ToT%

s (t)z2(t — 1) — Powiasz ()25 (t)

IN

_ﬁlxl%zl( ) — Bax] 55222( ) — 5155’{352“)2%(75) - 52333331(15)33@)

1
5 (0 + aor] + Prair; + Boxiw3)[21 (t) + 25 (t)]

t

* t
+—r}f1 / z1(t)z1(s)ds + rsz 29(t)22(s)ds
1 t—T11 2 t—1y
_ ;Cllz%(t)— Z; 2(t) + Btz () + Paxial 2 (t) (5.17)

By Theorem 4.1, there exists a 7% > 0 such that m; < zj[1 + z(¢)] < M, and
my < x5[1 + 25(t)] < My for t > T*. Then (5.17) implies that

7’1$

ks —51-73 m2+51$1$2]75%<t)

%(z(t))g[—ﬁlx1x2+5(a1x2+a2x1+le1x2+ﬁgmlx2)

rat ! roxy [* .
- z21(t)z1(s)ds + —= ’ 2o(t)22(s)ds
1 t—m1 2 t—7o
1 Tll‘T * 2
= [2(041% + o] + By + 52%372) _k1 - ﬁl%mﬂzl (t)
+[§(O‘1$2 + apx + Braiay + Boxias) — _k,Q Bawymia]z;(t)
Tlﬁlxzx? * * % TlZCT !
e 21 (t)z1(s)ds — (oqxy + frajas) —— 21(t)z2(s)ds
ks t—m ki Jir
i, [ i
—( ’ ) 21 (t)z1(s — 1 )ds — B — 21(t)z1(s)22(s)ds
1 t—71 1 t—71
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t rixt t
/ 21 (t)23(s)ds — (o2 + ﬁlx’{mz)%/ 21(t)21(8)22(s)ds
t—71 1 t—11

_nfiage
kl

_(TZL‘I
1

)Q/t 21(t)z1(8)z1(s — 1 )ds — %/t 21(t)23(8) z(s)ds

* %2 t 5 ¢
_%ﬂ / 2 (t)2a(8)ds — (g + Poray) 22 / 2(t)z(s)ds
2 t—T7o t-m2

roxh t rofoxtai? [
_(ﬂ)z/ z(t)22(s — m2)ds — M/ 29(t)21(8)22(s)ds
ke © Jio, ko e

* k2 t » t
_—TQBQ;le / 2(t) 25 (s)ds — (o} + 52£ET93§)%/ z(t)21(s)z2(s)ds
2 t—T7o t—72

* t * %2 t
2832 / zQ(t)zQ(s)ZQ(s—TQ)ds—’%% / 20(t)21(s)22(s)ds

* 1 * * * ok * %k
< [-—=— = Bixima + 5(041952 + aox] + STy + 523311'2)]2%(75)

1 * * Lk * ok
- ﬁga:Zml + 5(0411’; + Qo + 61x1x2 + 62$1I2)]Z§(t)

1
2

*

rfasey? 2 ' 2 27 2 ' 2
SO a0 + [ A+ (PO + [ s - )
t—71 1 t—71

2k,

*

t
Heuai + Brajo)) TonaA(0) + [ (sl
1 t—71

* 0k ¥ t ok — ¢
_nfieisin(® i / 21 () za(s)ds — AT 7 / 22(s)ds
1 t—71 1 t=m1

(s + e =L al)al)ds

_riaia

k%> ~l /ttT1 z1(8)z1(s — 71)ds

rifaifn(t) —ai] [T, *
SRR [ o) — s
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T gj*x*2
+M[T )

2k 272
+(awa} + Boriay) =2

_ rafarias[wa(t)

w0

1 (7"2.7:3
2\ &y

(t) + /t tﬁ 23(s)ds]

2
22

(s)ds] + )2z (t) + /t 22(s — 73)ds]

*

.1'
ks “[7225

[2(t)

2

ks
—(a} + Baaias)

_ ryzya(t) — ab)

_ ¥ t .
xQ] / Zl(S)ZZ(S)dS _ T252x1$2

k3

(s)ds

2

_1-3] /t .
t—To

k2

rafa(t) — )

ko | /:T2 21(8)z2(s)ds
/;2 2(8)22(s — T2)ds

2

k2

ool |xa(t) — 2k /t

(8)[x1(s) — xjlds

29

1] 1 * * * % *
< {[- }c 1 5(0411'2 + o] + Graiah + Goxiay)]
1
s x*z rx; 1 ra 9
[—21{;? + (Olle + ﬁlxl 2) 2k11 5( kl )2]7—1}21 (t)
T ,T* 1 * * * % * ok
+{[- 2 2 §(a1x2 + o] + fraixh + Goxizy)]
2
T2 P01 5 52 roxs 1 reny g 2
Z t
[—ka + (OZZII +ﬁ2$1 2) 2]{:2 2( k2 ) ]7-2}22( )
+{7n1,61x§x’{2 riBaiey(My — x7) + rizy (M, — x7)
le 2]4]1 Qk%
riaias (M, — x* « ooy MM — 2y
_I_ 1&1 1 2( 1 ]_) +(a1932—}—51x11‘2) 1( 21k 1)
k1 1
ri Byt (M — x¥) ( My — 23 !
n 15121 (M - 1)(M, 2)}/ 22(s)ds
1 t—71

+H{(aoz} + Borix})

ro Lot ay( My — )
s

ToT5
2ko
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M _ .17* t
+(aox] + o) ] 22/€2 2)}/ 22(s)ds
t—7o

+{7’262:I:*1‘x§2 rofoxiws(My — xh)  r3xy(My — x3)
2k 2k 2432
rixy(My — x rol Mo — 2
+T262 1 2( 2 2) + (Oégf{ + ﬁgf{l’;)—z( 2 2)
k2 2]€2
), [,
2

mz  raiay(My — x7)
2k 2k

+{(anzs + Brzias)

ri(M; — z% t
+(a1x;+ﬁlx’;x;)1(Tl)} /t 22(s)ds
.

r2xi(My — r x

Hllzkﬁ 5k%}/ s =m)d
raxy(My — 7’ x

wBAG=) E [ts—ma

Now, we let

Vel = (DA

rifraies(My — z7) N riaxy(My — x7)

2]{;1 kl 2k’1

AT PRI S g
1 t—71 Js

2k2

+{r252x>{m§2 N rofoxixs(My — x5)  rocex(My — %)

2k2 kQ 2]{72

2 .% My — ¥ (Mo — X\ M. t t
+7“21'2( o — T3) +7"2ﬁ2$2( ]j 5) 1}/ /zg(p)dpds
2 t—mo Js

2h2

roaiax M- rofoxirh(2Ms — x
+{221 2+25212 9 — 2}/ /21 \dpds
t—10 Js

2k 2ks

M (2M
+{7”1041£E2 1+7“151$1332 1— 2] }/ /22 dpds

2k 2k
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r 3
12]22 }/ / p — 11)dpds

7“2«723]2{:2 }/ / p — To)dpds (5.19)

then

rfsei? o uatay(My —x3)  rioqay(My — x7)

Va(z(t) = { ot . + o

rizy (M — z}) n rifiry(My — 7)Mo,

+ 2k? k1

Mnsto - [ sa

1o Boxtah? N rofoxixy(My — x5)  rocex(Msy — %)

2]{?2 k‘g 2k72

+{

ravy(My — a5) | rafawy(My — a5) M, !
o M ) - [ s

* M. T3 (2My — xb !
+{r2a2x1 2 rofpaias (2M, x2)}[72zf(t) _/ 21 (s)ds]
2k=2 Qk’g t—72

M. T (2My — a3 !
+{r1a1:1:2 Ly rifziay(2M, xl)}[ﬁzg(s) _/ 22(s)ds]
le 2k’1 t—71

2 %
rizy M

O et =) [ s =)

T2.CL'*M t
{ 22]2{:2 2 }[ngg(t —Ty) — / zg(t — T9)ds] (5.20)
2 t—1o

and we have (5.21) from (5.18) and (5.20) that for ¢ > T

Vet Vaelt) < (=750 = Braima + 3 (1 + aas + Buaiz + faoa)

* %2
+[T151$2371 7“1351 1 rmai

%y + (125 + GrriTs) ey 2( ey ) ] 1}21()

* 1 * * * % % %
+[- Ty — Boxymy + - (anwy + aoxy + B ah + Box 7))

5

r2x2 1 rexy. 5

o T2 )|}z

T2ﬁ2$*$*2
+[ 12

o 2(t)

+ (aox] + foxixy)
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+{[rlﬁlx§x*{2 riBxies (M — ) N rioqxy(My — x7)
2k, k1 2k,
2 % * * *
rigy(My —a7) | mBai(My — a7) My 2
t
2]@% k'l ]7—1}21( )
H[T2ﬁ2ﬂx§2 T25235T17§(M2—$§)+7°206236’T(M2—x§)
2]62 kz 2k2
rias(My — a3 rofoxs( My — x5) M
= 2(2;2 1) | raParil 152 2) “ra}za(t)
2
TQ()CQ:C){MQ 7”25233 .’IZ‘2<2M2 )
z
He it
riapxs My rifaies(2M — x7) 5
T 25 (s
HPE e mA()
r2xi M, raxs Moy

HI G In 2 = 7) + {2 m) 3 - m)

Let
ViGe(0) = gty i) [ ots+ (") [ s
then
VaCa(0)) = SR — 6 - i + B30 - 3 - )

Now define a Lyapunov functional V' (z(t)) as
V(z(1)) = Va(z(t) + Va(2(1)) + Va(2(1))
then we have (5.25) from (5.21) and (5.23) that for ¢t > T

V(2(1)=Vi(2(t)) + Va(=(t)) + Va(2(1))

rixy 1
<{[- }C L Braims + 2(041x2 + agx] + fraiasy + Goxixs)]
1
Bt . . oerizt 1oz, rintM
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r B xsat? N ribries(My —x3)  ragxi(M; — x})

LTS T 2k
rixy(My —x5)  rfa(My — x5) My
5 + ]Tl
2k ki
roceri My rofaxiny(2My — 13) 2
t
+] ks 2y |2}z (t)
7"2'%'; * 1 % * % % * %
+[- ko Pawymy + 5(041952 + apr] + [ra1xy + o))
2
T252I>{x§2 * * % 7"2.173 1 TQ‘%‘; 2 T%ZE;MQ
+[— e + (o] + fariTs) e 2( e ) 2k;§

+7“262x"{x§2 N rofoxiay(My — x3)  rocrt(My — xh)

2ks ko 2k,

raxs(My — x3) n T2 Baxs( My — w3) My

2k ks I

rioaqxsMy  rifaiay(2My — x7)

s e ImE)

rix¥ 1
=—{] }4; L1 Biatmy — §(a1x§ + ox} + Brixh + Boxiay)]
1

_[Tlﬁlﬁﬂz 1 rfaiay My I riagx; M,
2k, k1 2k,

7’%37ny1 n rifay(My — a7) Mo

k3 k1 In
rocari My rofByxiwy(2My — 13)
e HAOM: ~ D))
7’237; N 1 « * * % * K
—{l o oy — 5 (a1zs + gy + (12723 + Foras)]

* k2 * ok *
232775 1 122705 Mo I roaxy Mo

_[ ]{72 k2 2k2
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7’3375]\/5 n rofoxy(My — x3) My

k3 ko I
rioaqxyMy i faiay(2My — x7) 9
_ t
[ 2k1 + 2k1 ]7—1}22( )

= —&izi(t) — Lz3(t) (5.25)

Then it follows from (5.12) and (5.13) that & > 0 and & > 0. Let w(s) = £s?, where
¢ = min{&y, &}, then w is nonnegative continuous on [0, 00), w(0) = 0, and w(s) > 0 for

s > 0. Follows from (5.25) that for t > T
V(z) < —€l21(t) + ()] = —€l2(t) = —w(|2()]) (5.26)

Now, we want to find a function u such that V' (z;) > u(|z(¢)|). It follows from (5.16),
(5.19), and (5.22) that

V(z) = {z1(t) — [l + 2, ()]} + {z2(t) — In[1 + 25(£)]} (5.27)

By the Taylor Theorem, we have that

(1) — [l + z(t)] = 2[11—(9?@)]2

where 0;(t) € (0, z(t)) or (2;(t),0) for i =1,2.

(5.28)

In the following Case 1 ~ Case 4, we discuss the different relation between 6;(t) and z;(t).

Case 1: If 0 < 6;(t) < z(t) for i = 1,2. ,then

0 20
Tt =P ~Hrop =0 (5.29)

By Theorem 4.1, it follows that for ¢ > T™

m; < i1+ 2(t)] = z;(t) < M;, for i=1,2. (5.30)

Then (5.29) implies that

T \9 9 Z%(t) 2

<M1> Zl<t> = [1—|—91(t)]2 < Zl<t>

T 9 o Z%(t) 2

<M2) z(t) < TEYADIE < z(t). (5.31)



It follows that (5.27), (5.28) and (5.31) that for ¢ > T**

% (t) 2 (t)
2[1+61(6)]7  2[1 + 05(1)]?

1/ a 2 1/ x5 2
i et 2 - *2 2
2 (M1> () + 5 (Mg) (1)

o\ 2
)1 x]
mins = | —
{2(M1> ’

= m|z(t)]%.

Viz) >

Vv

v

Case 2: If —1 < z(t) < 6;(t) < 0 for i=1,2 ,then

z (1) % (1)

K TR A T

By (5.30), (5.33) implies that

Viz) >

2
> (ﬁl>zz§<t)+% (ﬁ)ng(t)
> m[27(t) + 25 (t)]
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(5.34)

(5.35)



Case 3: If 0 < 0,(t) < z1(t) and —1 < 23(t) < 6O(t) < 0, then it follows (5.27), (5.28),
(5.31) and (5.34) that for t > T*

SN (0

Vi) QL+ 6, (O] ' 2[1+ 0a(2)]2

*
T

> % (Ml>zz§<t) + %z%(t)

> 1 (5) a0+ 3 () 40
> m[2(t) + 25(t)]

= m|z(t)]%. (5.36)

Cased: If =1 < z(t) < 01(t) < 0and 0 < ,(t) < 22(t), then it follows that (5.27),(5.28),(5.31)
and (5.34) that for ¢t > T*

V()

> () a0+ 1 (2) 40
> [0 + 300)
— w0 (5.37)

Let u(s) = ms?, then w is nonnegative continuous on [0, 00), u(0) = 0,u(s) > 0 for s > 0

, and lim u(s) = +o0. So, by Casel ~ Case4, we have

§—00

Vi(z) > u(]z(t)]) for t>1T". (5.38)

Therefore, the unique equilibrium point E* of the system (3.1) is globally asymptotically

stable.
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6 Examples & Conclusions

In this chaper, we want to illustrate our results by some examples.

Example 6.1  Consider the following system:

#1(t) = 9.8921(t) [1 - %} —0.00121 ()2 (t)

—0.0000825(1)22(t) — 0.04 x 10z, (t)
(6.1)
Pa(t) = T.97zo(t) [1 - W} — 0.002; (t)2a(t)

—0.000052 (t)z3(t) — 0.01 x 10z(t)

Comparing the system (6.1) with the system (3.1), we get 11 = 9.89,ry = 7.97, k1 =
360, ko = 300, ¢, = 0.04, ¢ = 0.01, oy = 0.001, cro = 0.002, 5y = 0.00008, B = 0.00005, ¢ =
10. So the system (5.1) has the unique positive equilibrium point £* = (213.80, 199.76).

And

ay, — aeT1 — a3Ty = 12.1621 > 0
by — by — b37’2 =8.4146 > 0

Then we conclude that the unique positive equilibrium point E* of the system (6.1)
is locally asymptotically stable by Theorem5.1. The trajectory of the system (6.1) is
depicted in Figure 6.1.
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Figure 6.1: Phase portrait of the system (6.1).
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Example 6.2  Consider the following system:

#1(t) = 9.89z,(t) [1 - %} — 0.00Lay (t)2a(t)

—0.00008z2(t)z2(t) — 0.04 x 10z(t)
(6.2)

Pa(t) = T.97zo(t) [1 - %} — 00022, ()a5()

—0.00005x1 (t)z3(t) — 0.01 x 10z5(t)
Comparing the system (6.2) with the system (3.1), we get r; = 9.89, 79 = 7.97, k; =
320, ky = 250, ¢; = 0.04, ¢ = 0.01, a7 = 0.001, as = 0.002, 5; = 0.00008, B = 0.00005, e =

10. So the system (6.2) has the unique positive equilibrium point £* = (206.80, 176.61).
And

M1 — MaT1 — U3Ty = 2.2667 > 0
W1 — woTy — w3y = 1.2220 > 0

Then we conclude that the unique positive equilibrium point E* of the system (6.2)
is global asymptotically stable by Theorem 5.2. The trajectory of the system (6.2) is
depicted in Figure 6.2.
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Figure 6.2: Phase portrait of the system (6.2) .

34



References

1]

[6]

8]

C. W. Clark, 1976, Mathematical Bioeconomics: The Optimal Management of Re-

newable Resources, New York: Wiley.

K.S. Chaudhuri, 1986, A bioeconomic model of harvesting a multispecies fishery,
Ecological Modelling, 32, pp267-279.

R. Bellman and K. L. Cooke, 1963, Differential difference equations, New York:

Academic Press.

K. Gopalsamy, 1992, Stability and Oscillations in Delay Differential Equations of

Population Dynamics, Dordrecht: Kluwer Academic.

T.K. Kar and K.S. Chaudhuri, 2003, On non-selective harvesting of two competing
fish species in the presence of toxicity, Ecological Modelling. 161, pp125-137.

Y. Kuang, 1993, Delay Differential Equations with Applications in Population Dy-

namics, Boston: Academic Press.

M. Mesterton-Gibbons, 1987, On the optimal policy for combined harvesting of in-
dependent species, Nat. Res. Model. 2 , pp109-134.

I5EET > 1997 > BIRERATAMERN - &AL TR E R A IR A

35



