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Abstract

In this thesis we consider the commutator [[[f (A), X], X], ..., X], where f is a smooth function
on the space of bounded operators in a Hilbert space. We obtain formulas for the (nth order)
commutator in terms of the Fréchet derivatives D™ f (A) (1 < m < n). And we also concern the

bound of the norm of the commutator.

Keywords: Fréchet derivative; perturbation bounds; commutators; generlized commutators.



Notations

H - Hilbert space

R - Real numbers

C! - continuous differentiable

M - n X n Hermitian matrix

H - space of all n x n Hermitian matrix with the inner product (X,Y) = trXY
U - unitary of a operator or matrix U

A® B - direct sum of A and B

B (H) - space of linear and bounded operators on a Hilbert space H

L (V,W) - space of all linear operators from a vector space V' to a vector space W
d(A) (X) - operator A € B(H) induces a dervation in B (H)

diag (A1, ..., A,) - the diagonal matrix with entries A\y,..., A,

~

f - Fourier transform of f

f! - ordinary derivative of the function f.

fW(A) - matrix whose (i, j)-entries are flIl (\;, \;), and \;, \; are eigenvalues of A
A-B - Schur product (the entrywise product) of two matrices A and B

[A, X] - commutator, and [A, X| = AX — XA

Dy - domain of the fuinction f

Df(A) - Fréchet derivative f the function f to A

Def (A) - Gateaux derivative f the function f to A
D"f(A) - nth Fréchet derivative f the function f to A

| Al - norm of a operator or matrix A

|Df (A)|| - norm of Fréchet derivative of the function f to A
D - colletction of f with ||[Df (A)|| = ||f' (A)]]

O (t?) - collection of the term with the order of t > 2 in the expression e X Ae!™

5



CHAPTER 1

Introduction

1.1. Purpose of the study

In this thesis, we want to find the norm of the generalized commutator f (A) X — X f (B), i.e.,
|f(A) X — X f(B)||. Here f is a smooth function on the space of bounded linear operators in
a Hilbert space H, A is a Hermitian operator in the same space, and B is a perturbation of the

operator A. For a simple commutaor f (A) X — X f(A), and it can be found that the formula
F(A4)X = X[ (A) = Df (A) (AX - XA), (1.1)
holds and leads to the inequality for the bound of the norm:
17 (A) X = X[ (A < IDF (A IAX = XAJ.

We can find such bounds for ||f (A) X — X f(A)|. Based on this result, the perturbation bound
of the norm of the generalized commutator can be computed.

This type of problems has been sequencially studied by R. Bhatia et al [1, 2, 4, 5]. We review
the required mathematical prelimaries and reorginze their research results to provide a systematic
way to determine the perturbation bound of the norm of the generalized commutator.

Since the evaluation of Df(A) plays an key role in our study. The mathematical background
for the Fréchet and Géateaux derivatives of an operator are reviewed [3] first. The nth derivatives
of Fréchet and Gateaux derivatives are found to be n-linear. And then we can find the norm of
n-th order perturbation bound for f .

Equation (1.1) is studied for three different cases. When f is a holomorphic on a complex
domain () and let A be bouneded linear operator whose spectrum is contain in ). By using
Cauchy Integral Formula, we can verify that the relation (1.1) holds for all operator X. When f is

a continuous differentiable function on an open interval I C R, from the Weierstrass Approximation
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Theorem there is a sequence of polynomials {P, } with real coefficients such that

Py (A) = f(N),
for the eigenvalue A of f . And the convergence is uniform, and we define

F(\) = lim P, (V).

n—oo

For any operator T in the specified Hilbert space, we can evaluate f(7') by this approach, i.e.,

£(T) = lim P, (T). (1.2)

n—oo

Then the relation (1.1) holds for every Hermitian operator A with spectra in I and every skew-
Hermitian operator X. When f is any real integrable function on R, the Fourier inversion formula
is applied to obtain (1.1) for a Hermitian operator A .

Let the function f € D, where D = {f : [|[Df (A)| = ||f' (A)]|}, then the perturbation bound

on the norm of (1.1) becomes
If (A) X = Xf (A <[ £l [AX — XA, (1.3)

where || f'|| . is the supremum norm of the function f’. Finally for the generalized commutator with
f € D, the perturbation bound of the norm of the generalized commutator can also be determined
by

If (A) X = X[ (B)| <[/l IIAX = X B[, (1.4)

where || f'||, is the supremum norm of the function f'.
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1.2. Organization

This thesis is organized as follow: Chapter 1 is given a short introduction. Chapter 2 provides
mathematical preliminaries for this study. Chapter 3 offers the main results in finding the deriva-
tives of functions, its norm, and the perturbation bound of the norm. Chapter 4 ends with a short

conclusion.



CHAPTER 2

Mathematical Preliminaries

2.1. Basic preliminaries

The space of all linear and continuous operators from a normed space V' to a normed space W

is defined as

L(V,W):={T:V — W|T is linear and continuous }.

The space of linear and bounded operators on a Hilbert space H is defined as

B(H):={T : H — H|T is linear and bounded } .

If H is complete, then B (H) is a Banach space.
We will use o (||h]|) to describle those expressions which, roughly speaking, are of higher then

first order in h as h — 0.
Definition 2.1.1. Let a function f: Dy CV — W , with V' and W are Banach spaces.

(1) If f is Fréchet differentiable (or F-differentable) at x if and only if 37 € £ (V,W) such
that
fle+h)=f@) +Th+o(|hl), h—0 (2.1)

we define T'= Df (z) or T = f'(x) is the F-derviative of f at x, and df (x;h) := f' (z)h
is the F-differential at x.
(2) If f is Gateauz differentiable (or G-differentable) at x if and only if 37 € L (V, W) such
that
flx+tk)=f(z)+tTk+o(t), ast— 0 (2.2)

with ||k|]| = 1, Vk € V. We define T' = Dgf (z) is the G-derviative of f at x, and

def (x;h) = Dgf (z) h is the G-differential at x.
9
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Theorem 2.1.2. F-differentiability implies G-differentiability.

Proof. Suppose the function f is F-differentable at = in its domain so that there is a Df(x) €
L (V,W) satistying

flet+h) = fx)+Df(@)h+o([hl) as [|h] — 0,

ie.,

i M@+ h) = f(@) = Df@)| _
(= Al

Taking h = tk with k = h/ ||h|| or ||k|| = 1 for every h, it follows that

0. (2.3)

fx+tk) = f(z)+tDf(x)k+o(]t]), as t — 0,

ie., 3T = Df(x) € L(V,W) such that

flx+tk) = f(x)+tTk+o(t), as t — 0,

for all k, hence f is also G-differentiable. Thus F-differentiability implies G-differentiability. [

The converse statement of this theorem is not true. We verify usingthe following example.

Example 2.1.3. The function

Ty :
2t if z # 0,
flay)=3""
0 ifz=0.
is G-differentable but not F-differentable .
Let k = (a,b) be any vector in R?. Then we have
0+ tk 0 ta, th Ay
—_ 2 2
i L O tR) = f(O) _ . flath) . GoPr)
t—0 t t—0 t t—0 t
ab? b?

im —m = —.
20 a? + t2p* a
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and hence

2 ifa#0,
T =Dgf(0) =
0 ifa=0.

Thus D¢ f (0) exists for all &, and this function is G-differentable.

But if we take = y? the function f(y?,y) = %, then f is not continuous at (0,0) since

£(0,0) = 0. Hence it is not F-differentable. O

Let the function f : Dy CV — W with V and W being Banach spaces and f be defined on

the domain Dy. f” (x) arises from the differentiation of f’ at z. i.e.,
[ DV —-W,

f/ : Df/gVHE(V,W),

f”IDf// QVHE(‘/,L(V,W)),

and then we can compute the higher order dervatives of f inductively.

2.2. Derivatives of linear operators

The operator mapping
M :VixVox---xV, =W, Vi, 1 <1 <n, W are Banach spaces.

is called n-linear and bounded if and only if M is linear in each argument and Ja fixed constant

d > 0 such that
1M (21, @2, ) || < dfaa|[ Jzo]] - lzall, 2 € Vi 1<i<n.
Since the induced norm of any operator M can be defined by

| M| = sup |M (z1,29,...,2,)],

z1]l==llzal=1
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we have

IM (21, @, - ) [| < (M o[ 2] - - 2] -

By taking a d = || M||

M (21, 2, xn) | < ([M ][ 2] - -l

= dllzif [Jzall - [lzall,

for all z; € V;, 1 <1 < n, thus for any operator is linear in each argument must also be n-linear
and bounded.
Let T : H — 'H be a bounded linear Hermitian operator on a complex Hilbert space H. If a

function f be continuous differentiable function on [m, M] C R where

m = inf (Tx, x), M = sup (Tz,x).

llzll=1 |z)|=1

From Weierstrass Approximation Theorem there is a sequence of polynomials {P,} with real

coefficients such that

uniformly on A € [m, M|, then we can define

F(T) := lim P, (T),

where
Py (T) = ap T 4 py 1T M4+ gl (2.1)
if
P (A) = amA™ 4 1t AT g,
for some ag, ..., q,, € R.

If its spectrum of T lies inside [m, M|. The upper bound of the associated operator norm given
by

P, (T)|| < P, (N)].
1B (Tl < | masc P ()
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We choose polynomials P, (T') and P, (T') in {P, (T')} where P, (A\) — f(A\) uniformly for all

A € [m, M], then for any given € > 0, AN € N such that for all n, r € N,

1P, (T) = B (T)| < max [P, (A) = B (M)

T AE[m,M]

< €.

Then {P, (T)} is a Cauchy sequence and has a limit in B (H) since B (H) is complete. For any

operator T in the specified Hilbert space, we can evaluate f(7') by this approach, i.e.,

£(T) = lim P, (T) (2.2)

n—oo

whenever f is continuous differentiable on [m, M| where

m= inf (Tx, x), M = sup (Tz,x).

llzll=1 |z)|=1

Let the function f : B(H) — B (H) be n times Fréchet differentiable. D™f (A) denotes the
nth dervative of f at the point A. When n = 1, the first derviative D f (A) is a linear operator on
B (H) which is computed by

lim : = gi| JA+D). (2.3)

When n = 2, the second dervative D?f (A) : B(H) x B (H) — B (H) is bilinear and computed by

: _ DI (A+By) (B) = Df (4) (B)
DRf(A) (B1,By) = lim :

82
Oty 0t

f(A+ 1By + t2By),

t1=t2=0

and

t—0
82
O0t10ty

f(A+t1B; +t2Bs).

t1=t2=0

Direct verification gives us D?f(A)(By, Bs) = D?f(A)(By, By), i.e., D?f(A) is symmetric and

bilinear in By, Bs.
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Similarly, we can compute higher order dervatives of f inductively by using

D f(A+tB,)(B1,...,By1) = D" 1f(A)(B,...,B,_

D"f(A)(B,....B,) = lim f(A+1B,) (B, ntl) f(A)(By,...,Bu)
- f(A+tBy + - +1,B,)
T Ot Oty . nen

with D"f(A) : B(H) x --- x B(H) — B(H) which is n-linear and symmetric in variables

By, ..., B,. The norm of the nth derivative of f is defined by

10" f (Al = sup [D"f (A) (B, Bn)l. (2.4)

[ B1ll=-=l[IBn|l=1

The Taylor Theorem says that for all B sufficiently close to A, the Taylor expansion of f(B)

about A can be expressed by

1

f(B):f(A)—i-[Df(A)](B—A)—F-”—i-H [Dkf(A)] (B—A,...,.B—A)+---. (2.5)
From this we have
1f(B)— f(A) = Z% ID*F(A)||[IIB—AIF+0(|B—A"™). (2.6)

k=1

which is called the nth order perturbation bound for the function f .

Example 2.2.1. Given the function f(¢t) = t" with n € N, let the operators A and B to be
nonegative, i.e., A, B > 0. We have f (A) = A". Find Df (A) (B) and D*f (A) (B).

By the definition of the derivative, the first and second F-derivatives are computed as follows:

Df(A)(B) = lim
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t—0 t
— lm Y (A +1By)" By (A+ tBy)** — A1 By Ak
- t—0 t
k1+ko=n—1

= > AM(BIARB, + B,AMBy) A,
k1+ka+ks=n—2

Example 2.2.2. Let f be a holomorphic function on a complex domain 2 and let A be a bouneded

linear operator whose spectrum is contained in 2. Find Df (A) (B).

By the Cauchy’s integral formula, we have

where 7 is a curve in in {2 with winding number 1 around the spectrum of A. Let A > 0, we have

FA) = 5 / f(2) (21 — Ay dz.
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By the definition of the derivative, we have

Df(A)(B) = lim I ATB) =T (A)

t—0 t
BN (AB) = [ () T A) s
t—0 t
= Tmlg%t{/f )(zI = (A+1tB))" dz—/f ) (2] — A)” d}
_ %mlg%%Lf(z){(zI—(A+tB)) (2l Ay M) de
= %%i_r}r&%/f(z){((zl—A)—tB) — (2 — A)” }dz
_ Q_Mg%t/f {1~ tB G- A7) (2~ A7 — (a1~ 4) }d
_ %g&t/f {z] A) [(I—tB(zI—A)—l)‘l—I”dz
= 2_7m1£%t/f {zl A)” [(IHB(ZI—A)*W(tB(zI—A)*l)QJr---)—I”dz
- Qm/f ) (2] — A B (21 — A)" M dz.
thus the derivative is given by
1 -1 -1
Df(A)(B)zZ—m,/f(z)(zI—A) B (2l — A) " dz. (2.7)



CHAPTER 3

Main Results

3.1. The first derivation

The operators in B(H) are characterized as following:

Definition 3.1.1. An operator A is called Hermitian or self-adjoint if A = A*. An operator A is

called skew-Hermitian if A = —A*. An operator U is unitary if UU* = U*U.

The commutativity on the product of two operators in B(H) is measured in term of the

derivation between them which is defined below:

Definition 3.1.2. Every Hermitian operator A € B (H) induces a dervation in B (H), and for

every skew-Hermitian X € B(H), then the derivation is defined as
d(A)(X)=[AX]=AX — XA. (3.1)
The second derivation §% (4) (X) can be defined by (3.1), and
(A (X) =16 (A)(X),X]=[[A X],X] = AX? - 2XAX + X2A.
We define the nth derivation 6" (A) inductively by
5 (4) (X) = 37 (4) (X), X] (32
When f is F-differentiable on R, the derivation 0 (f (A)) is determined by

0 (f(A)) =Df(A)ed(A) (3:3)

or equivalently,

FIA)X = Xf(A) = Df(A)(AX — XA) (3.4)
17
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for every skew-Hermitian X.

We want to find some conditions on the function f to satisfy the relation (3.3) or (3.4). There
are three different cases to be considered in our study. The first one is address by the following
theorem. The other two cases are addressed later. The following discuss focuos in the space B (H).

The space B(H) is considered in the following discussion unless it is explicitly described.

Theorem 3.1.3. Let [ be a holomorphic on a complex domain Q0 and let A be bouneded linear

operator whose spectrum is contained in 2. Then the relation (3.4) holds for all operator X.

Proof. By the Cauchy’s integral formula, it follows that
1 [ f(z)
A)=— d
J &) 271 [y 2

where v is a curve in €2 with winding number 1 enclosed the spectrum of A. When A > 0, we have

FA) =5 / f(2) (21 — A dz.

From (2.7), the associated derivative is computed according to the formula

Df (A)(B) = 5 / F2) (I = A Bl — A de,

so that
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Df(A) (A a]) = —11m/f (2] — A) " ([A, X)) (21 — A) " dz

271 t—0

271 t—0

= —hm/f ) (2] — AN (AX — XA) (2] — A) " dz

= —hm/f ) (2] — A7 (AX — 2X + Xz — XA) (2 — A) ' dz

271 t—0

= —hm/f (2 —A) (X (2l — A) = (2] — A) X ) (2] — A) " dz

271 t—0

= —hm/f ) (2] — A)” Xdz—z—hm f() (21 — A" dz

271 -0 i t—0
= {2—7”11_{%/]” ) (2] — A)” Adz}X X{E}tl—{%/f ) (2] — A)” Adz}
= A)X = XT(4).
Then we have Df (A) (AX — XA)=f(A)X - Xf(A). O

Theorem 3.1.4. AX — X A is Hermitian if A is Hermitian and X is skew-Hermitian.

Proof.
(AX — XA)" = (AX)" — (XA)" = (—XA) — (-AX) = AX — X A.

Since (AX — XA)" = AX — XA, then AX — XA is Hermitian. O

The second case for verification of equation (3.4) is consider now. Let I be any open interval
on the real line, and let f be a function of class C* on I. If A is a Hermitian operator on H whose
spectrum is contained in I, we define f (A) via the spectral theorem and the derivative Df (A) is

a linear map on the real linear space consisting of all Hermitian operators.

Theorem 3.1.5. Let a function f € C' on an open interval I. Then the relation (3.4) holds for

every Hermitian operator A with their spectrum in I, and for every skew-Hermitian operator X.

Proof. If f € C' (I), we consider the following relations
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FAX =Xf(A) = —| e f(A)e”

t=0

- f (eftXAetX)

t=0

_ %tzof(Ath[A,X]JrO(tQ))
= %tzof(Ath[A,X])

= Df(A) (A X]),

where O (#?) is the collection of the term with the order of t+ > 2 in the expression e X Ae!X .

Three parts are computed in advance. First part is

L I Y e L L A )
@, W =
o NS (A) X — N (A) e (A) - £ (A)
t—0 ;
e AN — e X P (A) e F(A) — f(A)
= r + :
_ 12% e X f (A)t(etX _ ]) . 12% (eftX _tI) £(4)
o CNA [ X)) + (X)) — ]
t—0 p
t—0 t

= [(AX-X[(4),

the second part is



and the third one is

i X AEXN
dttzof(e Ae ) =

The relation (3.4) is held.

3.1.

THE FIRST DERIVATION

n—oo

e f(A) X = X ( lim P, (A)) et

= lim (e P, (A) ™)

n—oo

= lim P, (e Ae'Y)

n—oo

— f(eftXAetX>’

d = (—tX)" = (tX)"
(S5 ))
d

Etof(AJﬂt(AX XA) +(

Sl rarimxvo@) (osee
d

%tzof(A—i—t[A,X])

Df (A) ([A, X]).

21
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3.2. For the case of finite-dimensional spaces

Definition 3.2.1. The function f : I C R — R, where [ is an interval. Let D = diag (A1, A2, ..., \p)

is a diagonal matrix whose diagonal entries \; are in I for j € N, we define

[ f) 0 0|
I LD
0
0 0w |

Let A be a Hermitian matrix whose eigenvalues \;, 1 < j < n counting multiplicitices, are in I,

and

A =UDU",

where a matrix U is unitary. Then the function f (A) is defined by
fA)=Uf(D)U". (3.1)

Theorem 3.2.2. Let H is a space of all n x n Hermitian matrix with an inner product (X,Y) =

trXY. Given A € H, we can find two subspaces of H:

Ly={Y cH : [A4Y]=0}, (3.2)

La={AX]: X" =X} (3.3)

In other words, L4 consists of all Hermitian matrices that commute with A and £, consists of all

commutators of A with skew-Hermitian matrices. Then we have a direct sum decomposition

H=L,& La. (3.4)

Proof. We review the linear algebra in [10], for every Hermitian matrix can be divided two parts,

one is Hemitian, another is skew-Hermitian. Then we consider the space of all n x n Hermitian
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matrix , we have

H=1L4s&® L4.

Now we consider the derivative by (2.3). The matrix Y € L4, and choose an orthonormal baisis

in which both A and Y are diagonal, and

Df(A)(Y)=f(A)Y, (3:5)

where f’ is the ordinary derivative if the function f.

Then Y € 1Ly, d; is the eigenvalues of D4, and y; is the eigenvalues of Dy for 1 < i < n.

Df(A)(Y)

fA+TY) = F(A)

lim
t—0 t
UL (Da+tDy) U = Uf (Do) U
t—0 t
Ul | L (Pa+tDy) = F(Da) | 1
t—0 t
[ fldi+ty1)—f(ds ]
J(dittyr)—f(d1) +yt) ) o0 ... 0
0 :
U lim U~
t—0 L 0
0 0 f(dn‘*'tyz)—f(dn)
frdi)y: 0 0
0
U U*
0
i 0 0 f/ (dn> Yn ]
Ulf' (Da) Dy] U
f(A)Y,

where D4 and Dy are the diagonal of A and Y. If a Hermitian matirx H = [A, X] where a matrix

X is skew-Hermitian, and H € L4, then by the definition of dercative and (3.4), we have



where
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Df(A) (A, X]) =

U*[A, XU

f(A+tH) - f(A)

lim

t—0 t

I Uf(Da+tUHU)U* = Uf (Da)U*
tg% t

Ulleir% f(Dg+tU ];[U)_f(DA) [+

U{Df (Da) (U*[A, X]U)} U

U{Df (Da) ([Da, U X U]} U”

ULf (Da) (U XU) = (UXU) f(Da)}U”

U f(Da)(U'XU)U*~U (U*XU) f(Da)U"

fA)X =X [(A),

= U (AX —XA)U

= U'AXU-U*XAU

= UA{UUNXU-UX(UU*) AU
= DA(U'XU)— (U'XU)Dy4

= [Da, U X U],

and D, is the diagonal of A. Hence the n x n Hermitian matrix H =L, & L4 is decomposed. [

Definition 3.2.3. Let a function f continuous differentiable, and fl!/ be the function on I x I

defined as

) =

N = .
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If A is a Hermitian matrix whose eigenvalues A;, 1 < j < n counting multiplicitiesy, are in I,

and let the diagonal A = UAU* . Then we have flll (A) defined the matrix whose(i, j)-entries are

(O, A), and

fHA)y =vin o

(3.6)

Theorem 3.2.4. Let a function f continuous differentiable and a Hermitian matriz A with all its

eigenvalues in I. Then for all Hermitian matriz H, we have

Df (A) (H) = " (4) - H,

(3.7)

where - defines the Schur product (the entrywise product) of two matrices in an orthonormal basis

in which A s diagonal.

Proof. We consider a special case H = [A, X]|, H is a Hermitian matrix, and H € H by (3.4). If

H=1A X] € Ly,

Df(A)(H)

[(A+tH) - f(A)

t—0 t

U (Da+tUHU)U* ~Uf (Da) U*

t—0 t
U%in% f(Dg+tU [jU)_f(DA) [+

U[Df (Da) (U*HU)| U*
U [fY(Da) - (U HU)] U”

Ay - (H).
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If H €L, and h; is the eigenvalues of Dy for 1 <i <n, by (3.5)

fA+tH) - f(A)

Df (A)(H) = lim

t—0 t
_ iy U (Da+ D) U = Uf (D) U”
o tg% t 3
_ Ul | L PattDr) — fF(DA)|
t—>0_ t
[ f(ditthy)—f(dy) T
fhtth)=fd) g .. 0
0 :
= Ulim e
e : 0
0 e Lldatth)=f(dn)
f'(di)hs 0 0
0
0
0 0 f'(dn) hn

= U[f[l] (DA)‘DH] U*

= (UfM(Da)U") - (UDKU")

= ). H.
Then the matrix H holds Df (A) (H) = fl(A)- H . O
A 0O
Example 3.2.5. The function f (t) = t? , a diagonal matrix A = , and a Hermitan
0 X
hi he
matrix H = | . Prove
ho hs
Df (A (H) = fU(n)- H.
A1 0
IfA= is diagonal, then Df (A) (H) = AH + HA, we have

0 A
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Df(A)(H) = AH+HA

/\1 0 hl hz n hl hg )\1 0
0 )\2 h_g h3 h2 h3 0 /\2

Athi Ahe Ahi Ajhg
_l’_
| Moh2 Aohg Noha Ashy

2M\ by (A1 + A2) heo
(A1 + Xo) by 2X2h3

For the definition of fI (A), we have

FO)—-f(A2)
A -H = (M) % e
fA1)—f(A2) f/ ()\ ) e h
AL—o 2 2 3
[ o M4 hy h
A A 2X hy hs
B 20hi (A + A) By
| i+ A)he 2Xhs

Then Df (A) (H) = fl (A) - H holds. O

Lemma 3.2.6. Let A and B be two operators, t, s € R. We have

oH(A+hB) _ otA t
llm —mM8M = / =94 BesA (s, (3.8)
h—0 h 0
Proof. we consider
di [e(t_s)XeSY] = =X (—=X)eY + el XesVy
s

— e(t—s)X (Y o X) esY
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we have

t
/ p(t=9)X Y — X) Y ds — [e(t—s)XesY] |S:t
0

s=0

Y X

fY=A+hBX=A andY — X = hB,

t
6t(A-i-hB) o €tA — / e(t—s)AhBes(A-i-hB) ds.
0

As h — 0,

oHA+RB) _

6tA t
lim ———— = / =94 BesA (s, (3.9)
h—0 h 0

O

Definition 3.2.7. Let f be any real integrable function on R. The function f () defines the

Fourier transform of f , and
for= [ e

From the Fouier inversion formula

fo= [ faeca (3.10)

Let the Hermitian operator A > 0, we have

f(A):/OO f (@) et at. (3.11)

Theorem 3.2.8. Let f be any real integrable function on R, and for every skew-Hermitian operator
X, then we have
Df (4) (AX — XA) = f(4) X — X[ (4).

Proof. Let the Hermitian operator A, we have

fa= [ foeta



t
z/ eilt=
0

3.2. FOR THE CASE OF FINITE-DIMENSIONAL SPACES

Df(A)(B)

f(A+hB) - f(4)

i h

. f_o; f (t) it(A+hB) ¢ _ f f citA it
h—0 h

. LO; f(t) [eit(A-l-hB) . eitA} dt

h—0 h

. f—O:o f (t) [et(iAJrihB) _ etiA} dt

h—0 h

/OO ft) {/t et=2)i1 (jB) 54 ds] dt
—oo 0
z/_: ft) {/Ot ellt=s)4 peisA ds] dt.

t
A(AX — XA)etds = / DA (AX — X A) e ds

— ztA efzsA AX XA) isA ds
0

— 1tA |: e—zsAX wA:H
s=0

— eitA (_efitAXeitA + X)

— eltAX o XeZtA.

29
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prayaxh =i fw)
|

= ( _: f(t)e“Adt)X—X</_: f(t)e“Adt)
f

(A)X = X[ (4).

Then we have Df (A) ([A, X]) = f(A) X — X f(A). O

Theorem 3.2.9. If a function f is holomorphic on a complex domain. Show that the operators

Df (A) and § (A) commute, and we have
Df(A)od(A)=6(A)oDf(A). (3.12)

Proof. If a function f is holomotphic on a complex domain, a Hermitian operator A, and a

skew-Hermitian operator X. We have
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_ . -1
DFAYG(A) = gl [ £ GI= 47 6() G147

271 t—0

= —hm/f ) (2l — AN (AX — XA) (2] — A) " dz

_ —{hm/f ) (21 — A)7" (AX) (2 — A)” d}

27 | t—0

S {lun/f (21 — A" (XA) (2T — A dz}

1 : _ _
= %A{llg%[yf(z) (21 — A" X (21 — A) dz}
_% {g]%lf(z) (21 —A)" X (2 —A)7! dz} A
— ADJ(4)(X) - Df (4) (X) A
= [ADf(4)(X)].
Then we have Df (A) ([A, X]) = [A, Df (A) (X)], and the relation (3.12) holds. O

Definition 3.2.10. If
Df(A)([AX]) = F(A)X ~Xf(A)=5(f(A)(X),
and by (3.12), the operators D f (A) and & (A) are commute, i.e.,
Df (A) 0§ (A) =5(A)oDf (A).

Then we have
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3.3. The Chain rule and higher order derivations

Theorem 3.3.1. The map ¢ is the composite of two maps and ¢ (x) = f (g (x)) for all x in the

domain of g. Then the first four derivatives of ¢ is computed by the Chain Rule:
Dy (x) = Df(g9(x)) Dy (z),

D*p (x) = D*f (g (x)) [Dg (x)]" + Df (g (2)) [D?g ()] .

D3p(x) = D*f (g (2)) [Dg (x)]* + 3D*f (g (x)) [Dg (x)] [D*g (x)] + Df (g (x)) [D*g (x)],

D'o(z) = D'f(g(x))[Dg ()" +6D*f (g () [Dg ()" [D?g (x)] + 3D f (9 () [D?g (x)]",
+4D?f (9 (x)) [Dg (x)] [D°g (x)] + Df (g (x)) [D*g ()]

Proof. It can be verifed by direct computation. O

Example 3.3.2. The derivation § (f (A)) (X) = Df (A) (6 (A) (X)) is given by (3.1) or (3.3). Find
the second derivation 62 (f (A)) (X) and the third derivation 58 (f (A)) (X).

The second derivation is computed by

0P (f(A)(X) = §(Df(A)(8(A4) (X)) (X)

= D(Df(A)(6(4) (X)) (6 (A) (X))

For any Y € B (H), we consider D (Df (A) (6 (A) (X))) (Y), and

D (DF(A)(5(A) (X)) (V) = lim 2LAFH)OA+TY) (X)) = DF(A) (0(4) (X))

t—0 t
DI A ) [F(A)(X) +1 (V) (X)] = DJ (A) (5(4) (X))
t—0 t

_ (Df(A+1Y) = Df (A)
- tin{ : (5(4) (%)

= D*f(A)(0(4)(X),Y)+Df(4) (3 (Y)(X)).

_th(A+tY)6(Y)(X)}
t
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Here
F(A+ 1Y) (X) = [A+ 1Y, X] = (A+tY) X=X (A+ 1Y) = [A, X]+t[Y, X] = 6 (A) (X)+£5 (V) (X).
Let Y = 6 (A) (X), then

OB (f (A)) (X) = D2f (A) (5(A) (X),6(A) (X)) + Df (A) (0¥ (4) (X))

Similarly to compute the third derivation, we have

OFL(F(A) (X) = 8(D?f(A)(8(A)(X),8(A) (X)) (X) + 08 (Df (4) (67 (4) (X))) (X).

We divide the derivation into two parts.The first part,

0 (D*f (A) (6 (A) (X),0(A) (X)) (X) =D (D*f(A)(6(4)(X),0(4)(X))) (6(A)(X)).
For any Y € B (H), we obtain
D (D*f (A4) (4 (4) (X)), (4) (X)) (V)

o DA (6 (A+ 1Y) (X), 8 (A+ 1Y) (X)) — D2f (4) (6 (4) (X) 6 (4) (X))

t—0 t

=l DR (A4 1) [(9(4) (X).5(4) () + 26 (5(4) (X).6 (¥) (X)) + £ (35 (¥) (X) 6 (¥) (X))
~DPF (A) (3(4) (X) .6 (4) (X))}
fim L {[D2F (A4 1Y) — D27 (4)] (6(4) (X).6(4) (X))

+[2tD*f (A+1Y)] (6 (4) (X),0 (V) (X)) + [#*D*f (A+tY)] (0 (V) (X),0 (V) (X)) }

= D*f(A)(0(A4)(X),0(A4) (X),Y) +2D*f (A) (6 (A) (X), 8 (V) (X)),
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where

(O(A+tY)(X),0(A+tY)(X)) = (0(A)(X)+t(Y)(X),d(A)(X)+1t(Y)(X))
= (0(4) (X),0(A) (X) + 15 (V) (X))
+ (10 (V) (X)), 6 (A) (X) + 15 (V) (X))
= (0(4) (X),0(4) (X)) +1(3(A4) (X),0(Y) (X))
+ (3 (V) (X),0(A) (X)) +#2 (0 (Y) (X) 6 (Y) (X))
= (0(4) (X),0(A) (X)) +2t (5 (A) (X),0(Y) (X))

+2 (8 (V) (X),0(Y) (X))
Let Y =06 (A) (X), then

D[D*f(A) (3 (A)(X),0(A) (X))] (0(A) (X)) = D°f(A)(8(A)(X),0(A) (X),d(A) (X))

1207 (4) (5 (4) (X), 67 (4) (X)) .

The second part,

0 (Df (4) (0%(4) (X)) (X) = D(Df(A) (8% (4)(X))) (8 (4) (X))

For any Y € B (H), then we consider the derivation D [D?f (A) (6 (A) (X),d (A) (X))] (6 (A4) (X)),

and

D ((Df (A)) (6% (4) (X))) (V)

~ lim2 {Df(A+1Y) (P (A+1Y) (X)) — D*f (A) (6% (4) (X))}

t—0 ¢

= PL%% {Df(A+1tY) (6P1(A) (X) + 6% (V) (X)) — D*f (A) (6P (A) (X)) }
= Pi%% {[Df(A+tY)=D*f(A) — D*f (A)] (6”1 (A) (X)) —tDf (A+tY) (¥ (V) (X))}

= D*f(A) (87 (A) (X).,Y) + Df (A) (67 (v) (X)).
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Here

SA+Y)(X) = 6(6(A+tY) (X)) =80 (A) (X)+1t6(Y) (X))

= B (A) (X)) + 6P (V) (X).
Let Y = 6 (A) (X), then
D [(Df (A)) (6% (A4) (X))] (5 (A) (X)) = D*f (A) (6% (A) (X),6 (A) (X)) +Df (A) (67 (4) (X)) .
Finally, the derivation 6B (f (A4)) (X) is found to be

0P (F(A) (X) = D’f(A)(6(A)(X),8(A)(X),8(A) (X)) +2D*f (4) (5 (4) (X),0%(4) (X))
FDRF(A) (52 (4) (X),8.(4) (X)) + Df (4) (5% (4) (X))
= D’f(A)(0(A)(X),8(A)(X),8(A) (X)) +3Df (4) (5 (4) (X), 6" (4) (X))
+Df (A) (87 (4) (X))
0
If we want to find the higher order derivations 6™ (f (A)) (X), as n > 3. How to find the deriva-
tion 6™ (f (A)) (X)? If we consider the expression ¢ (x) by 6" (f (A)) (X) and the expression

of the form £ (g () ¢ (x) g (x) g (x) by D™ (511 (A) (X) 84 (A4) (X), 6 (4) (X)) . The

higher derivation will be found accordingly.

Theorem 3.3.3.

U ( (A) (X) = 303 e, ) D7 (A) ([057 () ()] ™ [ (4) (X)]™) e,

r=1 m,j

where ¥r, n € N, with r < n , m and j are multindices, m = (my, ..., mg), 7= (J1,-- -, Jx), for

k > 1 with those entries satisfying the three condition that
m1+...+mk:7“’

Ji1> > g > 1,
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myji + -+ mjr = n,

for 1 <i <k, and the symbol [5V (A) (X)]™ stands for 6U (4) (X),...,00 (A) (X) (repeated

m; times), and

n!

c(n,r,m,j) = —mr——ram —— . 3.1
( 7) (D™ (52D - (D)™ malma! - - - my! (3:1)
Proof. If a composition function ¢ (z) = f(g(z)), we have a similar expression for the nth
derivative
P () =YY clnrm, ) (g (@) (¢" ()™ (¢ ()™, VYneN (3.2)
r=1 m,j
c(n,r,m,j) can be found and ¢" (z) be in term of 6" (f (A)) (X). O

Example 3.3.4. For the Chain Rule, we have the third derivative D3y (z), and

D¢ (x) = D*f (g (x)) [Dg ()]’ + 3D*f (¢ (x)) (Dg (x)) (D¢ (z)) + Df (g (z)) [D*g ()] .

We consider the coefficients of the derivation 68 f (4) (X), by (3.1).

3!
c(3,3,m,j) = =1,
( J) (11)* 3!
3!
0(3727777’7.]) =

— = =3,
(' 2n* 11!

Then we have

0P (F(A)(X) = D’f(A)(6(A)(X),8(A)(X),8(A) (X)) +3Df (A4) (8 (4) (X),0%(4) (X))
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Example 3.3.5. For the Chain Rule, we have the third derivative D¢ (z), and

D*o(z) = D'f(g(x))[Dg(x)]' +6D%f (g (x))[Dg(x)) [D?g (x)] + 3D?f (g (x)) [D?g ()]
+4D?f (g9 (2)) (Dg (x)) [D?g (x)] + Df (g (x)) [D*g (2)] .

We consider the coefficients of the derivation 64 f (4) (X), by (3.1)

4!

c(4,4,m,j) = (1|)4 m = ]_7
) 4!
c(4,3,m,j) = W =0,
) 4!
c(4,2,m,j) = m = 37
) 4!
c(4,2,m,j) = W =4,
|
C<4, 1,m,j) = (431 0 = 4.

Then we have

O (F(A) (X) = D'f(A)(8(A)(X),8(A4)(X),d(A)(X),0(A) (X))

There are some interesting results in this paper. In perturbation theory, given a function f on
B (H), how to find bounds for ||f (A) — f (B)|| in terms of ||A — B||? If we can get the formula.
More generally, we may ask for bounds for the generalized commutator ||f (A) X — X f(B)| in
terms of |AX — XB].

Definition 3.3.6. The norm of an operator A is defined as

[A]l = sup [Az],

flzf|=1
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and the norm of the derivative D f (A) is defined as

IDf (A = i [Df(A)(B)]. (3:3)

We know (3.4), and given a bound. We have the inequality
If (A) X = X[ A < [IDf (A [AX — XA (34)

Theorem 3.3.7. If a function [ is holomorphic on a complex domain 2, the relation (3.4) holds

for every operator A with spectra in I, and for every operator X.

Proof. If f is holomorphic on €2, we have

1 -1
:%Af(z)(z—A) dz,

Df (A 2m/f (z—A)"'B(z—A) "dz.

Then the norm of the derivative D f (A) (B) is defined by (3.3), and

and

IDfF (A = sup [Df(A)(B)

1 BlI=1

i./f(z) (z—A)'B(z— A) "dz

T |2

1Bll=1

gt /7N =7 o

For the Cauchy—Schwarz inequality, and by (3.4), we have the inequality

IN

IF(A)X =XfAI = [IDf(A)(AX = XA

< [Df(A]AX = XAl

O

Theorem 3.3.8. If f € C'(I) , the relation (3.4) holds for every Hermitian operator A with
spectra in I, and for every skew-Hermitian operator X. And if for every Hermitian X, then the

wnequality also holds.
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Proof. If f € C'(I), for a Hermitian operator A and a skew-Hermitian operator X , we have
F(A4)X = X[ (A) = Df (A) (AX — X4).
And find the norm, then the inequality is
1F (A) X = Xf (A < [|1DF (AIAX — XAJ.

If we consider a Hermitian operator X and (AX — XA)" = AX — X A, then [|[(AX — XA)"|| =
|AX — X A|| .the inequality (3.4) also holds for a Hermitian operator X. O

There is a familiar device by which the inequality (3.4) can be extended.

A 0 0 X
Given operators A, Band X on H, consider the operators and on
0 B 0 0
HoH.
Then note that
A 0 0 X 0 X A 0 0 AX - XB
0 B 0 0 0 0 0 B 0 0
From this and the inequality (3.4) we have
If(AX -XfAl <|Df(A® B)|[[AX - XBJ, (3.5)

where a function f is any holomorphic function on a complex domain 2, A and B are operators
. . . . A 0
with their spectra in 0, X is any operator , and A @ B stands for the operator on
0 B
HoH.

With a slight modification, we consider this situation when f € C' (I) and Hermitian operators
. . O X* . . .
A and B with spectra in I. Note that for any operator X, the operator is Hermitian,
X 0
and



3.4. THE NORM OF COMMUATATORS. 40

A0 0 X 0 X A0 0 AX - XB
0 B X 0 X 0 0 B BX*— X*A 0
0 AX - XB
If the operator X is also Hermitian , then the norm of is |AX — XB||.
BX*— X*A 0

Then the inequality (3.4) holds from (3.4).

3.4. The norm of commuatators.

Reference 5| proposed the problem of finding the norm of the derivative |[Df (A)||. In |2, 3,

4, 5|, for Hermitian operator A, there is a function f on the interval [0, c0) such that

IDf (A= 117 (A (3.1)

where [’ is the ordinary derivative of f on R.

The class of the function f satisfying (3.1) is defined by D i.e.,
D=A{f: IDF A= Il (DI}
From the inequality (3.4), for every f € D we have
If (A) X = X[ (B)| <1/l IAX — XBJ|.

where || ||, stands for the supremum norm of the function f.

In particular, if we take a Hermitian operator X , we have the following inequality.

1F(A) = fF B < 17l 1A= Bl VfeD, (3.2)

where || ||, stands for the supremum norm of the function f.

If a function f (x) = 2™, we have the kth derivative of the function f, satisfying
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Let a Hermitian operator A > 0, then we have
f(A)=A",

and the kth derivative of the function f (A), satisfying

Dkf (A) (Bh cee Bk) = Z Z AleU(l) .. -Aj’“Bg(k)Aj’“H,
ocE€SE  §;>0,1<i<k+1
jl+"'+jk+1=’nfk

where Sy is the set of permutatuins on {1,2,...,k}. And the norm of the kth derivative of the

function f, satisfying

|D*f(A)]] = sup  DFf(A)(Bi,...,B)

[ Bil=IIBkl=1

%)

Theorem 3.4.1. Let a function [ be a power series representation,

)= ant",
n=1
with a, > 0 for alln € N. Then
fe (D
k=1

Proof. A function f has a power series expression:

o0

f (t) = Z antn7

n=1

with a,, > 0 for all n € N. If a Hermitian operator A > 0, then we have
/ (A> = Z an A",
n=1

and kth derivative of the function f (A), satisfying
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Dkf (A) (Bh SR Bk:) - Z,Zo:k Z Z Z Aleo’(l) Ce A]kBo_(k)A]k"Fl

c€SE  §;>0,1<i<k+1
Jite+jk1=n—k

where Sy is the set of permutatuins on {1,2,...,k}.

In other word, we have
DFf(A)(By,...,By Zan [D* (A™)] (B, ..., By).

And the norm for the kth derivative D*f (A), satisfying

D= s D) (B Bl o { A ]

| Bill=--[1Brll=1 n=k

The norm for the kth ordinary derivative of the function f

FM (A Z T

then

P (Al =

nf:l Lk
- i Aty }HAH" :

Then the function f € (-, Dk, and

DR F ()] = || £ A, vk

If we collect the function f of the class D,,, and for all Hermitian operator A > 0,

Do ={f [P (A = [/ (A}

42

(3.3)
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Example 3.4.2. Let a Hermitian operator A , the function f € D; N Dy, and the derivation
S (f (A)) (X). Find the inequality for the norm of the derivation 612 (f (A)) (X).
The derivation 612 (f (A)) (X) satisfying

0P (f (A4)) (X) = D*f (A) (6 (A) (X),0(A) (X)) + Df (4) (6% (4) (X))

The inequality is found, and

[ (£ (AN COYl = [D2F (4) (5 (4) (X) 6 (4) (X)) + Df (4) (57 (4) (X)) |

A

< Moo 118 (A) GOI + 11F 1l 1|62 (A4) ()| -

where || f”|| and || ||, stands for the supremum norm of the functions f” and f'. O

Example 3.4.3. Let a Hermitian operator A , the function f € D; N Dy N D3, and the derivation
SBL(f (A)) (X) . Find the inequality for the norm of the derivation 6% (f (A4)) (X).
The derivation 6% (f (A)) (X) satisfying

0P (F(A) (X) = D’f(A)(6(A)(X),8(A4)(X),8(A) (X)) +3D*f (A4) (8 (4) (X),0% (4) (X))

+Df (4) (67 (4) (X)) .

The inequality is found, and

165 (F () O < 172, 16 (A4) GO + 311l 18 (A) N[ (4) (0]

+11/'llso (10 (A4) (X))

where , an stands for the supremum norm of the tunctions j°, an .
h 13 1" d [ flle ds for th f the f i 3, f" and f’ 0

The inequalities can be writen down for higher order derivations.



3.4. THE NORM OF COMMUATATORS. 44

Conclusions

In this thesis, we present a systematic way to find the perturbation bound for the norm of
generalized commutators associated with three different types of functions. The derivative of such
functions is the key to evaluate the bound. In the same way we can obtain estimates for higer
order commutators form the results. An extension to higher order derivation is also considered.

THe Sylvester Equation has been widely used in applied mathematics. It states that for any
given A, B, and Y find X such that

AX —XB=Y.

The solution X of the Sylvester Equation can be expressed as
X :/ e Y etP dt.
0

It can be extended that we takes the form of f (A) X — X f(B) =Y, and want to find X.
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