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中文摘要

在本篇論文中，當一個平滑(smooth)的函數落在希爾伯特空間上的有界算子空間 ，

我們來考慮到這一類的交換子。根據 Fréchet 導函數的觀念，我們可以得到一個交換

子的公式。並且我們也可以去找到這類交換子的範數。

關鍵字： Fréchet 導函數、擾動邊界、交換子、廣義交換子。
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Abstract

In this thesis we consider the commutator [[[f (A) , X] , X] , . . . , X], where f is a smooth function

on the space of bounded operators in a Hilbert space. We obtain formulas for the (nth order)

commutator in terms of the Fréchet derivatives Dmf (A) (1 ≤ m ≤ n). And we also concern the

bound of the norm of the commutator.

Keywords: Fréchet derivative; perturbation bounds; commutators; generlized commutators.

4



Notations

H - Hilbert space

R - Real numbers

C1 - continuous di�erentiable

M - n× n Hermitian matrix

H - space of all n× n Hermitian matrix with the inner product 〈X, Y 〉 = trXY

U - unitary of a operator or matrix U

A⊕B - direct sum of A and B

B (H) - space of linear and bounded operators on a Hilbert space H

L (V,W ) - space of all linear operators from a vector space V to a vector space W

δ (A) (X) - operator A ∈ B (H) induces a dervation in B (H)

diag (λ1, . . . , λn) - the diagonal matrix with entries λ1, . . . , λn

f̂ - Fourier transform of f

f ′ - ordinary derivative of the function f .

f [1] (A) - matrix whose (i, j)-entries are f [1] (λi, λj), and λi, λj are eigenvalues of A

A ·B - Schur product (the entrywise product) of two matrices A and B

[A,X] - commutator, and [A,X] = AX −XA

Df - domain of the fuinction f

Df (A) - Fréchet derivative f the function f to A

DGf (A) - Gâteaux derivative f the function f to A

Dnf (A) - nth Fréchet derivative f the function f to A

‖A‖ - norm of a operator or matrix A

‖Df (A)‖ - norm of Fréchet derivative of the function f to A

D - colletction of f with ‖Df (A)‖ = ‖f ′ (A)‖

O (t2) - collection of the term with the order of t ≥ 2 in the expression e−tXAetX
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CHAPTER 1

Introduction

1.1. Purpose of the study

In this thesis, we want to �nd the norm of the generalized commutator f (A)X −Xf (B), i.e.,

‖f (A)X −Xf (B)‖. Here f is a smooth function on the space of bounded linear operators in

a Hilbert space H, A is a Hermitian operator in the same space, and B is a perturbation of the

operator A. For a simple commutaor f (A)X −Xf (A), and it can be found that the formula

f (A)X −Xf (A) = Df (A) (AX −XA) , (1.1)

holds and leads to the inequality for the bound of the norm:

‖f (A)X −Xf (A)‖ ≤ ‖Df (A)‖ ‖AX −XA‖ .

We can �nd such bounds for ‖f (A)X −Xf (A)‖. Based on this result, the perturbation bound

of the norm of the generalized commutator can be computed.

This type of problems has been sequencially studied by R. Bhatia et al [1, 2, 4, 5]. We review

the required mathematical prelimaries and reorginze their research results to provide a systematic

way to determine the perturbation bound of the norm of the generalized commutator.

Since the evaluation of Df(A) plays an key role in our study. The mathematical background

for the Fréchet and Gâteaux derivatives of an operator are reviewed [3] �rst. The nth derivatives

of Fréchet and Gâteaux derivatives are found to be n-linear. And then we can �nd the norm of

n-th order perturbation bound for f .

Equation (1.1) is studied for three di�erent cases. When f is a holomorphic on a complex

domain Ω and let A be bouneded linear operator whose spectrum is contain in Ω. By using

Cauchy Integral Formula, we can verify that the relation (1.1) holds for all operator X. When f is

a continuous di�erentiable function on an open interval I ⊆ R, from the Weierstrass Approximation

6
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Theorem there is a sequence of polynomials {Pn} with real coe�cients such that

Pn (λ)→ f (λ) ,

for the eigenvalue λ of f . And the convergence is uniform, and we de�ne

f (λ) = lim
n→∞

Pn (λ) .

For any operator T in the speci�ed Hilbert space, we can evaluate f(T ) by this approach, i.e.,

f (T ) = lim
n→∞

Pn (T ) . (1.2)

Then the relation (1.1) holds for every Hermitian operator A with spectra in I and every skew-

Hermitian operator X. When f is any real integrable function on R, the Fourier inversion formula

is applied to obtain (1.1) for a Hermitian operator A .

Let the function f ∈ D, where D = {f : ‖Df (A)‖ = ‖f ′ (A)‖}, then the perturbation bound

on the norm of (1.1) becomes

‖f (A)X −Xf (A)‖ ≤ ‖f ′‖∞ ‖AX −XA‖ , (1.3)

where ‖f ′‖∞ is the supremum norm of the function f ′. Finally for the generalized commutator with

f ∈ D, the perturbation bound of the norm of the generalized commutator can also be determined

by

‖f (A)X −Xf (B)‖ ≤ ‖f ′‖∞ ‖AX −XB‖ , (1.4)

where ‖f ′‖∞ is the supremum norm of the function f ′.
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1.2. Organization

This thesis is organized as follow: Chapter 1 is given a short introduction. Chapter 2 provides

mathematical preliminaries for this study. Chapter 3 o�ers the main results in �nding the deriva-

tives of functions, its norm, and the perturbation bound of the norm. Chapter 4 ends with a short

conclusion.



CHAPTER 2

Mathematical Preliminaries

2.1. Basic preliminaries

The space of all linear and continuous operators from a normed space V to a normed space W

is de�ned as

L (V,W ) := {T : V → W |T is linear and continuous } .

The space of linear and bounded operators on a Hilbert space H is de�ned as

B (H) := {T : H → H |T is linear and bounded} .

If H is complete, then B (H) is a Banach space.

We will use o (‖h‖) to describle those expressions which, roughly speaking, are of higher then

�rst order in h as h→ 0.

De�nition 2.1.1. Let a function f : Df ⊆ V → W , with V and W are Banach spaces.

(1) If f is Fréchet di�erentiable (or F-di�erentable) at x if and only if ∃ T ∈ L (V,W ) such

that

f (x+ h) = f (x) + Th+ o (‖h‖) , h→ 0 (2.1)

we de�ne T = Df (x) or T = f ′(x) is the F-derviative of f at x, and df (x;h) := f ′ (x)h

is the F-di�erential at x.

(2) If f is Gâteaux di�erentiable (or G-di�erentable) at x if and only if ∃ T ∈ L (V,W ) such

that

f (x+ tk) = f (x) + tTk + o (t) , as t→ 0 (2.2)

with ‖k‖ = 1, ∀ k ∈ V . We de�ne T = DGf (x) is the G-derviative of f at x, and

dGf (x;h) := DGf (x)h is the G-di�erential at x.

9
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Theorem 2.1.2. F-di�erentiability implies G-di�erentiability.

Proof. Suppose the function f is F-di�erentable at x in its domain so that there is a Df(x) ∈

L (V,W ) satisfying

f (x+ h) = f (x) +Df(x)h+ o (‖h‖) as ‖h‖ → 0,

i.e.,

lim
‖h‖→0

‖f (x+ h)− f (x)−Df(x)h‖
‖h‖

= 0. (2.3)

Taking h = tk with k = h/ ‖h‖ or ‖k‖ = 1 for every h, it follows that

f (x+ tk) = f (x) + tDf(x)k + o (|t|) , as t→ 0,

i.e., ∃T = Df(x) ∈ L (V,W ) such that

f (x+ tk) = f (x) + tTk + o (t) , as t→ 0,

for all k, hence f is also G-di�erentiable. Thus F-di�erentiability implies G-di�erentiability. �

The converse statement of this theorem is not true. We verify usingthe following example.

Example 2.1.3. The function

f (x, y) =


xy2

x2+y4
if x 6= 0,

0 if x = 0.

is G-di�erentable but not F-di�erentable .

Let k = (a, b) be any vector in R2. Then we have

lim
t→0

f (0 + tk)− f (0)

t
= lim

t→0

f (ta, tb)

t
= lim

t→0

(ta)(tb)2

(ta)2+(tb)2

t

= lim
t→0

ab2

a2 + t2b4
=
b2

a
.
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and hence

T = DGf (0) =


b2

a
if a 6= 0,

0 if a = 0.

Thus DGf (0) exists for all k, and this function is G-di�erentable.

But if we take x = y2 the function f (y2, y) = 1
2
, then f is not continuous at (0, 0) since

f (0, 0) = 0. Hence it is not F-di�erentable. �

Let the function f : Df ⊆ V → W with V and W being Banach spaces and f be de�ned on

the domain Df . f
′′ (x) arises from the di�erentiation of f ′ at x. i.e.,

f : Df ⊆ V → W,

f ′ : Df ′ ⊆ V → L (V,W ) ,

f ′′ : Df ′′ ⊆ V → L (V, L (V,W )) ,

and then we can compute the higher order dervatives of f inductively.

2.2. Derivatives of linear operators

The operator mapping

M : V1 × V2 × · · · × Vn → W, Vi, 1 ≤ i ≤ n, W are Banach spaces.

is called n-linear and bounded if and only if M is linear in each argument and ∃a �xed constant

d ≥ 0 such that

‖M (x1, x2, . . . , xn)‖ ≤ d ‖x1‖ ‖x2‖ · · · ‖xn‖ , xi ∈ Vi, 1 ≤ i ≤ n.

Since the induced norm of any operator M can be de�ned by

‖M‖ = sup
‖x1‖=···=‖xn‖=1

|M (x1, x2, . . . , xn)| ,
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we have

‖M (x1, x2, . . . , xn)‖ ≤ ‖M‖ ‖x1‖ ‖x2‖ · · · ‖xn‖ .

By taking a d = ‖M‖

‖M (x1, x2, . . . , xn)‖ ≤ ‖M‖ ‖x1‖ ‖x2‖ · · · ‖xn‖

= d ‖x1‖ ‖x2‖ · · · ‖xn‖ ,

for all xi ∈ Vi, 1 ≤ i ≤ n, thus for any operator is linear in each argument must also be n-linear

and bounded.

Let T : H → H be a bounded linear Hermitian operator on a complex Hilbert space H. If a

function f be continuous di�erentiable function on [m,M ] ⊂ R where

m = inf
‖x‖=1

〈Tx, x〉 , M = sup
‖x‖=1

〈Tx, x〉 .

From Weierstrass Approximation Theorem there is a sequence of polynomials {Pn} with real

coe�cients such that

Pn (λ)→ f (λ) ,

uniformly on λ ∈ [m,M ] , then we can de�ne

f (T ) := lim
n→∞

Pn (T ) ,

where

Pn (T ) = αmT
m + αm−1T

m−1 + · · ·+ α0I, (2.1)

if

Pn (λ) = αmλ
m + αm−1λ

m−1 + · · ·+ α0,

for some α0, . . . , αm ∈ R.

If its spectrum of T lies inside [m,M ]. The upper bound of the associated operator norm given

by

‖Pn (T )‖ ≤ max
λ∈[m,M ]

|Pn (λ)| .
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We choose polynomials Pn (T ) and Pr (T ) in {Pn (T )} where Pn (λ) → f (λ) uniformly for all

λ ∈ [m,M ], then for any given ε > 0, ∃N ∈ N such that for all n, r ∈ N,

‖Pn (T )− Pr (T )‖ ≤ max
λ∈[m,M ]

|Pn (λ)− Pr (λ)|

< ε.

Then {Pn (T )} is a Cauchy sequence and has a limit in B (H) since B (H) is complete. For any

operator T in the speci�ed Hilbert space, we can evaluate f(T ) by this approach, i.e.,

f (T ) = lim
n→∞

Pn (T ) (2.2)

whenever f is continuous di�erentiable on [m,M ] where

m = inf
‖x‖=1

〈Tx, x〉 , M = sup
‖x‖=1

〈Tx, x〉 .

Let the function f : B (H) → B (H) be n times Fréchet di�erentiable. Dnf (A) denotes the

nth dervative of f at the point A. When n = 1, the �rst derviative Df (A) is a linear operator on

B (H) which is computed by

Df (A) (B) = lim
t→0

f (A+ tB)− f (A)

t
=

d

dt

∣∣∣∣
t=0

f (A+ tB) . (2.3)

When n = 2, the second dervative D2f (A) : B (H)×B (H)→ B (H) is bilinear and computed by

D2f (A) (B1, B2) = lim
t→0

Df (A+ tB2) (B1)−Df (A) (B1)

t

=
∂2

∂t2∂t1

∣∣∣∣
t1=t2=0

f (A+ t1B1 + t2B2) ,

and

D2f (A) (B2, B1) = lim
t→0

Df (A+ tB1) (B2)−Df (A) (B2)

t

=
∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

f (A+ t1B1 + t2B2) .

Direct veri�cation gives us D2f(A)(B1, B2) = D2f(A)(B2, B1), i.e., D
2f(A) is symmetric and

bilinear in B1, B2.
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Similarly, we can compute higher order dervatives of f inductively by using

Dnf (A) (B1, . . . , Bn) = lim
t→0

Dn−1f (A+ tBn) (B1, . . . , Bn−1)−Dn−1f (A) (B1, . . . , Bn−1)

t

=
∂n

∂t1 · · · ∂tn

∣∣∣∣
t1=···=tn=0

f (A+ t1B1 + · · ·+ tnBn) .

with Dnf (A) : B (H) × · · · × B (H) → B (H) which is n-linear and symmetric in variables

B1, . . . , Bn. The norm of the nth derivative of f is de�ned by

‖Dnf (A)‖ = sup
‖B1‖=···=‖Bn‖=1

|Dnf (A) (B1, . . . , Bn)| . (2.4)

The Taylor Theorem says that for all B su�ciently close to A, the Taylor expansion of f(B)

about A can be expressed by

f (B) = f (A) + [Df (A)] (B − A) + · · ·+ 1

k!

[
Dkf (A)

]
(B − A, . . . , B − A) + · · · . (2.5)

From this we have

‖f (B)− f (A)‖ =
n∑
k=1

1

k!

∥∥Dkf (A)
∥∥ ‖B − A‖k +O

(
‖B − A‖n+1) . (2.6)

which is called the nth order perturbation bound for the function f .

Example 2.2.1. Given the function f (t) = tn with n ∈ N, let the operators A and B to be

nonegative, i.e., A, B ≥ 0. We have f (A) = An. Find Df (A) (B) and D2f (A) (B).

By the de�nition of the derivative, the �rst and second F-derivatives are computed as follows:

Df (A) (B) = lim
t→0

f (A+ tB)− f (A)

t
= lim

t→0

(A+ tB)n − An

t

=
∑

k1+k2=n−1

Ak1BAk2 .
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D2f (A) (B1, B2) = lim
t→0

Df (A+ tB2) (B1)−Df (A) (B1)

t

= lim
t→0

∑
k1+k2=n−1

(A+ tB2)
k1 B1 (A+ tB2)

k2 − Ak1B1A
k2

t

=
∑

k1+k2+k3=n−2

Ak1(B1A
k2B2 +B2A

k2B1)A
k3 .

�

Example 2.2.2. Let f be a holomorphic function on a complex domain Ω and let A be a bouneded

linear operator whose spectrum is contained in Ω. Find Df (A) (B).

By the Cauchy's integral formula, we have

f (λ) =
1

2πi

ˆ
γ

f (z)

z − λ
dz,

where γ is a curve in in Ω with winding number 1 around the spectrum of A. Let A ≥ 0, we have

f (A) =
1

2πi

ˆ
γ

f (z) (zI − A)−1 dz.
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By the de�nition of the derivative, we have

Df (A) (B) = lim
t→0

f (A+ tB)− f (A)

t

= lim
t→0

1
2πi

´
γ
f (z) (zI − (A+ tB))−1 dz − 1

2πi

´
γ
f (z) (zI − A)−1 dz

t

=
1

2πi
lim
t→0

1

t

{ˆ
γ

f (z) (zI − (A+ tB))−1 dz −
ˆ
γ

f (z) (zI − A)−1 dz

}
=

1

2πi
lim
t→0

1

t

ˆ
γ

f (z)
{

(zI − (A+ tB))−1 − (zI − A)−1} dz
=

1

2πi
lim
t→0

1

t

ˆ
γ

f (z)
{

((zI − A)− tB)−1 − (zI − A)−1} dz
=

1

2πi
lim
t→0

1

t

ˆ
γ

f (z)
{[(

I − tB (zI − A)−1) (zI − A)
]−1 − (zI − A)−1

}
dz

=
1

2πi
lim
t→0

1

t

ˆ
γ

f (z)
{

(zI − A)−1
[(
I − tB (zI − A)−1)−1 − I

]}
dz

=
1

2πi
lim
t→0

1

t

ˆ
γ

f (z)
{

(zI − A)−1
[(
I + tB (zI − A)−1 +

(
tB (zI − A)−1)2 + · · ·

)
− I
]}

dz

=
1

2πi

ˆ
γ

f (z) (zI − A)−1B (zI − A)−1 dz.

thus the derivative is given by

Df (A) (B) =
1

2πi

ˆ
γ

f (z) (zI − A)−1B (zI − A)−1 dz. (2.7)

�



CHAPTER 3

Main Results

3.1. The �rst derivation

The operators in B(H) are characterized as following:

De�nition 3.1.1. An operator A is called Hermitian or self-adjoint if A = A∗. An operator A is

called skew-Hermitian if A = −A∗. An operator U is unitary if UU∗ = U∗U .

The commutativity on the product of two operators in B(H) is measured in term of the

derivation between them which is de�ned below:

De�nition 3.1.2. Every Hermitian operator A ∈ B (H) induces a dervation in B (H), and for

every skew-Hermitian X ∈ B(H), then the derivation is de�ned as

δ (A) (X) = [A,X] = AX −XA. (3.1)

The second derivation δ[2] (A) (X) can be de�ned by (3.1), and

δ[2] (A) (X) = [δ (A) (X) , X] = [[A,X] , X] = AX2 − 2XAX +X2A.

We de�ne the nth derivation δ[n] (A) inductively by

δ[n] (A) (X) =
[
δ[n−1] (A) (X) , X

]
. (3.2)

When f is F-di�erentiable on R, the derivation δ (f (A)) is determined by

δ (f (A)) = Df (A) ◦ δ (A) (3.3)

or equivalently,

f (A)X −Xf (A) = Df (A) (AX −XA) (3.4)

17
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for every skew-Hermitian X.

We want to �nd some conditions on the function f to satisfy the relation (3.3) or (3.4). There

are three di�erent cases to be considered in our study. The �rst one is address by the following

theorem. The other two cases are addressed later. The following discuss focuos in the space B (H).

The space B(H) is considered in the following discussion unless it is explicitly described.

Theorem 3.1.3. Let f be a holomorphic on a complex domain Ω and let A be bouneded linear

operator whose spectrum is contained in Ω. Then the relation (3.4) holds for all operator X.

Proof. By the Cauchy's integral formula, it follows that

f (λ) =
1

2πi

ˆ
γ

f (z)

z − λ
dz,

where γ is a curve in Ω with winding number 1 enclosed the spectrum of A. When A ≥ 0, we have

f (A) =
1

2πi

ˆ
γ

f (z) (zI − A)−1 dz.

From (2.7), the associated derivative is computed according to the formula

Df (A) (B) =
1

2πi

ˆ
γ

f (z) (zI − A)−1B (zI − A)−1 dz,

so that
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Df (A) ([A, x]) =
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1 ([A,X]) (zI − A)−1 dz

=
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1 (AX −XA) (zI − A)−1 dz

=
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1 (AX − zX +Xz −XA) (zI − A)−1 dz

=
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1 (X (zI − A)− (zI − A)X ) (zI − A)−1 dz

=
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1 X dz − 1

2πi
lim
t→0

ˆ
γ

f (z) X (zI − A)−1 dz

=

{
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1Adz

}
X −X

{
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1Adz

}
= f (A)X −Xf (A) .

Then we have Df (A) (AX −XA) = f (A)X −Xf (A) . �

Theorem 3.1.4. AX −XA is Hermitian if A is Hermitian and X is skew-Hermitian.

Proof.

(AX −XA)∗ = (AX)∗ − (XA)∗ = (−XA)− (−AX) = AX −XA.

Since (AX −XA)∗ = AX −XA, then AX −XA is Hermitian. �

The second case for veri�cation of equation (3.4) is consider now. Let I be any open interval

on the real line, and let f be a function of class C1 on I. If A is a Hermitian operator on H whose

spectrum is contained in I, we de�ne f (A) via the spectral theorem and the derivative Df (A) is

a linear map on the real linear space consisting of all Hermitian operators.

Theorem 3.1.5. Let a function f ∈ C1 on an open interval I. Then the relation (3.4) holds for

every Hermitian operator A with their spectrum in I, and for every skew-Hermitian operator X.

Proof. If f ∈ C1 (I), we consider the following relations
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f (A)X −Xf (A) =
d

dt

∣∣∣∣
t=0

e−tXf (A) etX

=
d

dt

∣∣∣∣
t=0

f
(
e−tXAetX

)
=

d

dt

∣∣∣∣
t=0

f
(
A+ t [A,X] +O

(
t2
))

=
d

dt

∣∣∣∣
t=0

f (A+ t [A,X])

= Df (A) ([A,X]) ,

where O (t2) is the collection of the term with the order of t ≥ 2 in the expression e−tXAetX .

Three parts are computed in advance. First part is

d

dt

∣∣∣∣
t=0

e−tXf (A) etX = lim
t→0

e−tXf (A) etX − f (A)

t

= lim
t→0

e−tXf (A) etX − e−tXf (A) + e−tXf (A)− f (A)

t

= lim
t→0

{
e−tXf (A) etX − e−tXf (A)

t
+
e−tXf (A)− f (A)

t

}
= lim

t→0

e−tXf (A)
(
etX − I

)
t

+ lim
t→0

(
e−tX − I

)
f (A)

t

= lim
t→0

e−tXf (A)
[(
I + (tX) + (tX)2 + · · ·

)
− I
]

t

+ lim
t→0

[(
I + (−tX) + (−tX)2 + · · ·

)
− I
]
f (A)

t

= f (A)X −Xf (A) ,

the second part is



3.1. THE FIRST DERIVATION 21

e−tXf (A) etX = e−tX
(

lim
n→∞

Pn (A)
)
etX

= lim
n→∞

(
e−tXPn (A) etX

)
= lim

n→∞
Pn
(
e−tXAetX

)
= f

(
e−tXAetX

)
,

and the third one is

d

dt

∣∣∣∣
t=0

f
(
e−tXAetX

)
=

d

dt

∣∣∣∣
t=0

f

((
∞∑
n=1

(−tX)n

n!

)
A

(
∞∑
n=1

(tX)n

n!

))

=
d

dt

∣∣∣∣
t=0

f

(
A+ t (AX −XA) +

(
(−tX)2

2!
A− tXAtX +

(tX)2

2!
A+ · · ·

))

=
d

dt

∣∣∣∣
t=0

f
(
A+ t [A,X] +O

(
t2
)) (
∵ f ∈ C1

)
=

d

dt

∣∣∣∣
t=0

f (A+ t [A,X])

= Df (A) ([A,X]) .

The relation (3.4) is held. �
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3.2. For the case of �nite-dimensional spaces

De�nition 3.2.1. The function f : I ⊆ R→ R , where I is an interval. LetD = diag (λ1, λ2, . . . , λn)

is a diagonal matrix whose diagonal entries λj are in I for j ∈ N, we de�ne

f (D) =


f (λ1) 0 · · · 0

0 f (λ2)
...

...
. . . 0

0 · · · 0 f (λn)


.

Let A be a Hermitian matrix whose eigenvalues λj, 1 ≤ j ≤ n counting multiplicitices, are in I,

and

A = UDU∗,

where a matrix U is unitary. Then the function f (A) is de�ned by

f (A) = Uf (D)U∗. (3.1)

Theorem 3.2.2. Let H is a space of all n× n Hermitian matrix with an inner product 〈X, Y 〉 =

trXY . Given A ∈ H, we can �nd two subspaces of H:

LA = {Y ∈ H : [A, Y ] = 0} , (3.2)

LA = {[A,X] : X∗ = X} . (3.3)

In other words, LA consists of all Hermitian matrices that commute with A and LA consists of all

commutators of A with skew-Hermitian matrices. Then we have a direct sum decomposition

H = LA ⊕ LA. (3.4)

Proof. We review the linear algebra in [10], for every Hermitian matrix can be divided two parts,

one is Hemitian, another is skew-Hermitian. Then we consider the space of all n × n Hermitian
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matrix , we have

H = LA ⊕ LA.

Now we consider the derivative by (2.3). The matrix Y ∈ LA, and choose an orthonormal baisis

in which both A and Y are diagonal, and

Df (A) (Y ) = f ′ (A)Y, (3.5)

where f ′ is the ordinary derivative if the function f .

Then Y ∈ LA, di is the eigenvalues of DA, and yi is the eigenvalues of DY for 1 ≤ i ≤ n.

Df (A) (Y ) = lim
t→0

f (A+ tY )− f (A)

t

= lim
t→0

Uf (DA + tDY )U∗ − Uf (DA)U∗

t

= U lim
t→0

[
f (DA + tDY )− f (DA)

t

]
U∗

= U lim
t→0



f(d1+ty1)−f(d1)
t

0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 f(dn+tyn)−f(dn)
t


U∗

= U


f ′ (d1) y1 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 f ′ (dn) yn


U∗

= U [f ′ (DA)DY ]U∗

= f ′ (A)Y,

where DA and DY are the diagonal of A and Y . If a Hermitian matirx H = [A,X] where a matrix

X is skew-Hermitian, and H ∈ LA, then by the de�nition of dercative and (3.4), we have
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Df (A) ([A,X]) = lim
t→0

f (A+ tH)− f (A)

t

= lim
t→0

Uf (DA + tU∗HU)U∗ − Uf (DA)U∗

t

= U lim
t→0

[
f (DA + tU∗HU)− f (DA)

t

]
U∗

= U {Df (DA) (U∗ [A,X]U)}U∗

= U {Df (DA) ([DA, U
∗X U ])}U∗

= U {f (DA) (U∗X U)− (U∗X U) f (DA)}U∗

= U f (DA) (U∗X U) U∗ − U (U∗X U) f (DA)U∗

= f (A)X −Xf (A) ,

where

U∗ [A,X]U = U∗ (AX −XA)U

= U∗AX U − U∗XAU

= U∗A (U U∗)X U − U∗X (U U∗)AU

= DA (U∗X U)− (U∗X U)DA

= [DA, U
∗X U ] ,

and DA is the diagonal of A. Hence the n×n Hermitian matrix H = LA⊕LA is decomposed. �

De�nition 3.2.3. Let a function f continuous di�erentiable, and f [1] be the function on I × I

de�ned as

f [1] (λ, µ) =
f (λ)− f (µ)

λ− µ
if λ 6= µ,

f [1] (λ, λ) = f ′ (λ) .
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If A is a Hermitian matrix whose eigenvalues λj, 1 ≤ j ≤ n counting multiplicitiesy, are in I,

and let the diagonal ∧ = UAU∗ . Then we have f [1] (A) de�ned the matrix whose(i, j)-entries are

f [1] (λi, λj), and

f [1] (A) = Uf [1] (∧)U∗. (3.6)

Theorem 3.2.4. Let a function f continuous di�erentiable and a Hermitian matrix A with all its

eigenvalues in I. Then for all Hermitian matrix H, we have

Df (A) (H) = f [1] (A) ·H, (3.7)

where · de�nes the Schur product (the entrywise product) of two matrices in an orthonormal basis

in which A is diagonal.

Proof. We consider a special case H = [A,X], H is a Hermitian matrix, and H ∈ H by (3.4). If

H = [A,X] ∈ LA,

Df (A) (H) = lim
t→0

f (A+ tH)− f (A)

t

= lim
t→0

Uf (DA + tU∗HU)U∗ − Uf (DA)U∗

t

= U lim
t→0

[
f (DA + tU∗HU)− f (DA)

t

]
U∗

U [Df (DA) (U∗HU)]U∗

= U
[
f [1] (DA) · (U∗HU)

]
U∗

= f [1] (A) · (H) .
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If H ∈ LA and hi is the eigenvalues of DH for 1 ≤ i ≤ n, by (3.5)

Df (A) (H) = lim
t→0

f (A+ tH)− f (A)

t

= lim
t→0

Uf (DA + tDH)U∗ − Uf (DA)U∗

t
,

= U lim
t→0

[
f (DA + tDH)− f (DA)

t

]
U∗

= U lim
t→0



f(d1+th1)−f(d1)
t

0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 f(dn+thn)−f(dn)
t


U∗

= U


f ′ (d1)h1 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 f ′ (dn)hn


U∗

= U [f ′ (DA)DH ]U∗

= U
[
f [1] (DA) ·DH

]
U∗

=
(
Uf [1] (DA)U∗

)
· (UDHU

∗)

= f [1] (A) ·H.

Then the matrix H holds Df (A) (H) = f [1] (A) ·H . �

Example 3.2.5. The function f (t) = t2 , a diagonal matrix ∧ =

 λ1 0

0 λ2

 , and a Hermitan

matrix H =

 h1 h2

h2 h3

. Prove
Df (∧) (H) = f [1] (∧) ·H.

If ∧ =

 λ1 0

0 λ2

 is diagonal, then Df (∧) (H) = ∧H +H∧, we have
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Df (∧) (H) = ∧H +H ∧

=

 λ1 0

0 λ2

 h1 h2

h2 h3

+

 h1 h2

h2 h3

 λ1 0

0 λ2


=

 λ1h1 λ1h2

λ2h2 λ2h3

+

 λ1h1 λ1h2

λ2h2 λ2h3


=

 2λ1h1 (λ1 + λ2)h2

(λ1 + λ2)h2 2λ2h3

 .
For the de�nition of f [1] (∧), we have

f [1] (∧) ·H =

 f ′ (λ1)
f(λ1)−f(λ2)

λ1−λ2

f(λ1)−f(λ2)
λ1−λ2

f ′ (λ2)

 ·
 h1 h2

h2 h3


=

 2λ1 λ1 + λ2

λ1 + λ2 2λ2

 ·
 h1 h2

h2 h3


=

 2λ1h1 (λ1 + λ2)h2

(λ1 + λ2)h2 2λ2h3


Then Df (A) (H) = f [1] (A) ·H holds. �

Lemma 3.2.6. Let A and B be two operators, t, s ∈ R. We have

lim
h→0

et(A+hB) − etA

h
=

ˆ t

0

e(t−s)ABesA ds. (3.8)

Proof. we consider

d

ds

[
e(t−s)XesY

]
= e(t−s)X (−X) esY + e(t−s)XesY Y

= e(t−s)X (Y −X) esY
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we have

ˆ t

0

e(t−s)X (Y −X) esY ds =
[
e(t−s)XesY

]∣∣s=t
s=0

= etY − etX .

If Y = A+ hB,X = A, and Y −X = hB,

et(A+hB) − etA =

ˆ t

0

e(t−s)AhBes(A+hB) ds.

As h→ 0,

lim
h→0

et(A+hB) − etA

h
=

ˆ t

0

e(t−s)ABesA ds. (3.9)

�

De�nition 3.2.7. Let f be any real integrable function on R. The function f̂ (t) de�nes the

Fourier transform of f , and

f̂ (t) =

ˆ ∞

−∞
f (t) e−itξdξ.

From the Fouier inversion formula

f (ξ) =

ˆ ∞

−∞
f̂ (t) eitξ dt. (3.10)

Let the Hermitian operator A ≥ 0, we have

f (A) =

ˆ ∞

−∞
f̂ (t) eitA dt. (3.11)

Theorem 3.2.8. Let f be any real integrable function on R, and for every skew-Hermitian operator

X, then we have

Df (A) (AX −XA) = f (A)X −Xf (A) .

Proof. Let the Hermitian operator A, we have

f (A) =

ˆ ∞

−∞
f̂ (t) eitA dt.
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Df (A) (B) = lim
h→0

f (A+ hB)− f (A)

h

= lim
h→0

´ ∞
−∞ f̂ (t) eit(A+hB) dt−

´ ∞
−∞ f̂ (t) eitA dt

h

= lim
h→0

´ ∞
−∞ f̂ (t)

[
eit(A+hB) − eitA

]
dt

h

= lim
h→0

´ ∞
−∞ f̂ (t)

[
et(iA+ihB) − etiA

]
dt

h

=

ˆ ∞

−∞
f̂ (t)

[ˆ t

0

e(t−s)iA (iB) esiA ds

]
dt

= i

ˆ ∞

−∞
f̂ (t)

[ˆ t

0

ei(t−s)ABeisA ds

]
dt.

i

ˆ t

0

ei(t−s)A (AX −XA) eisA ds =

ˆ t

0

ei(t−s)Ai (AX −XA) eisA ds

= eitA
ˆ t

0

e−isAi (AX −XA) eisA ds

= eitA
[
−e−isAXeisA

]∣∣s=t
s=0

= eitA
(
−e−itAXeitA +X

)
= eitAX −XeitA.
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Df (A) ([A,X]) = i

ˆ ∞

−∞
f̂ (t)

[ˆ t

0

ei(t−s)A ([A,X]) eisA ds

]
dt

= i

ˆ ∞

−∞
f̂ (t)

[ˆ t

0

ei(t−s)A (AX −XA) eisA ds

]
dt

=

ˆ ∞

−∞
f̂ (t)

[ˆ t

0

ei(t−s)Ai (AX −XA) eisA ds

]
dt

=

ˆ ∞

−∞
f̂ (t)

[
eitAX −XeitA

]
dt

=

ˆ ∞

−∞
f̂ (t) eitAX dt−

ˆ ∞

−∞
f̂ (t)XeitA dt

=

(ˆ ∞

−∞
f̂ (t) eitA dt

)
X −X

(ˆ ∞

−∞
f̂ (t) eitA dt

)
= f (A)X −Xf (A) .

Then we have Df (A) ([A,X]) = f (A)X −Xf (A). �

Theorem 3.2.9. If a function f is holomorphic on a complex domain. Show that the operators

Df (A) and δ (A) commute, and we have

Df (A) ◦ δ (A) = δ (A) ◦Df (A) . (3.12)

Proof. If a function f is holomotphic on a complex domain, a Hermitian operator A, and a

skew-Hermitian operator X. We have
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Df (A) (δ (A)) =
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1 (δ (A)) (zI − A)−1 dz

=
1

2πi
lim
t→0

ˆ
γ

f (z) (zI − A)−1 (AX −XA) (zI − A)−1 dz

=
1

2πi

{
lim
t→0

ˆ
γ

f (z) (zI − A)−1 (AX) (zI − A)−1 dz

}
− 1

2πi

{
lim
t→0

ˆ
γ

f (z) (zI − A)−1 (XA) (zI − A)−1 dz

}
=

1

2πi
A

{
lim
t→0

ˆ
γ

f (z) (zI − A)−1 X (zI − A)−1 dz

}
− 1

2πi

{
lim
t→0

ˆ
γ

f (z) (zI − A)−1 X (zI − A)−1 dz

}
A

= ADf (A) (X)−Df (A) (X) A

= [A,Df (A) (X)] .

Then we have Df (A) ([A,X]) = [A,Df (A) (X)], and the relation (3.12) holds. �

De�nition 3.2.10. If

Df (A) ([A,X]) = f (A)X −Xf (A) = δ (f (A)) (X) ,

and by (3.12), the operators Df (A) and δ (A) are commute, i.e.,

Df (A) ◦ δ (A) = δ (A) ◦Df (A) .

Then we have

δ (f (A)) = δ (A) ◦Df (A) .
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3.3. The Chain rule and higher order derivations

Theorem 3.3.1. The map ϕ is the composite of two maps and ϕ (x) = f (g (x)) for all x in the

domain of g. Then the �rst four derivatives of ϕ is computed by the Chain Rule:

Dϕ (x) = Df (g (x))Dg (x) ,

D2ϕ (x) = D2f (g (x)) [Dg (x)]2 +Df (g (x))
[
D2g (x)

]
,

D3ϕ (x) = D3f (g (x)) [Dg (x)]3 + 3D2f (g (x)) [Dg (x)]
[
D2g (x)

]
+Df (g (x))

[
D3g (x)

]
,

D4ϕ (x) = D4f (g (x)) [Dg (x)]4 + 6D3f (g (x)) [Dg (x)]2 [D2g (x)] + 3D2f (g (x)) [D2g (x)]
2
,

+4D2f (g (x)) [Dg (x)] [D3g (x)] +Df (g (x)) [D4g (x)] .

Proof. It can be verifed by direct computation. �

Example 3.3.2. The derivation δ (f (A)) (X) = Df (A) (δ (A) (X)) is given by (3.1) or (3.3). Find

the second derivation δ[2] (f (A)) (X) and the third derivation δ[3] (f (A)) (X).

The second derivation is computed by

δ[2] (f (A)) (X) = δ (Df (A) (δ (A) (X))) (X)

= D (Df (A) (δ (A) (X))) (δ (A) (X))

For any Y ∈ B (H), we consider D (Df (A) (δ (A) (X))) (Y ), and

D (Df (A) (δ (A) (X))) (Y ) = lim
t→0

Df (A+ tY ) (δ (A+ tY ) (X))−Df (A) (δ (A) (X))

t

= lim
t→0

Df (A+ tY ) [δ (A) (X) + tδ (Y ) (X)]−Df (A) (δ (A) (X))

t

= lim
t→0

{
Df (A+ tY )−Df (A)

t
(δ (A) (X))− tDf (A+ tY ) δ (Y ) (X)

t

}
= D2f (A) (δ (A) (X) , Y ) +Df (A) (δ (Y ) (X)) .
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Here

δ (A+ tY ) (X) = [A+ tY,X] = (A+ tY )X−X (A+ tY ) = [A,X]+t [Y,X] = δ (A) (X)+tδ (Y ) (X) .

Let Y = δ (A) (X), then

δ[2] (f (A)) (X) = D2f (A) (δ (A) (X) , δ (A) (X)) +Df (A)
(
δ[2] (A) (X)

)
.

Similarly to compute the third derivation, we have

δ[3] (f (A)) (X) = δ
(
D2f (A) (δ (A) (X) , δ (A) (X))

)
(X) + δ

(
Df (A)

(
δ[2] (A) (X)

))
(X) .

We divide the derivation into two parts.The �rst part,

δ
(
D2f (A) (δ (A) (X) , δ (A) (X))

)
(X) = D

(
D2f (A) (δ (A) (X) , δ (A) (X))

)
(δ (A) (X)) .

For any Y ∈ B (H), we obtain

D
(
D2f (A) (δ (A) (X) , δ (A) (X))

)
(Y )

= lim
t→0

D2f (A+ tY ) (δ (A+ tY ) (X) , δ (A+ tY ) (X))−D2f (A) (δ (A) (X) , δ (A) (X))

t

= lim
t→0

1

t

{
D2f (A+ tY )

[
(δ (A) (X) , δ (A) (X)) + 2t (δ (A) (X) , δ (Y ) (X)) + t2 (δ (Y ) (X) , δ (Y ) (X))

]
−D2f (A) (δ (A) (X) , δ (A) (X))

}
lim
t→0

1

t

{[
D2f (A+ tY )−D2f (A)

]
(δ (A) (X) , δ (A) (X))

+
[
2tD2f (A+ tY )

]
(δ (A) (X) , δ (Y ) (X)) +

[
t2D2f (A+ tY )

]
(δ (Y ) (X) , δ (Y ) (X))

}
= D3f (A) (δ (A) (X) , δ (A) (X) , Y ) + 2D2f (A) (δ (A) (X) , δ (Y ) (X)) ,
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where

(δ (A+ tY ) (X) , δ (A+ tY ) (X)) = (δ (A) (X) + tδ (Y ) (X) , δ (A) (X) + tδ (Y ) (X))

= (δ (A) (X) , δ (A) (X) + tδ (Y ) (X))

+ (tδ (Y ) (X) , δ (A) (X) + tδ (Y ) (X))

= (δ (A) (X) , δ (A) (X)) + t (δ (A) (X) , δ (Y ) (X))

+t (δ (Y ) (X) , δ (A) (X)) + t2 (δ (Y ) (X) , δ (Y ) (X))

= (δ (A) (X) , δ (A) (X)) + 2t (δ (A) (X) , δ (Y ) (X))

+t2 (δ (Y ) (X) , δ (Y ) (X)) .

Let Y = δ (A) (X), then

D
[
D2f (A) (δ (A) (X) , δ (A) (X))

]
(δ (A) (X)) = D3f (A) (δ (A) (X) , δ (A) (X) , δ (A) (X))

+2D2f (A)
(
δ (A) (X) , δ[2] (A) (X)

)
.

The second part,

δ
(
Df (A)

(
δ[2] (A) (X)

))
(X) = D

(
Df (A)

(
δ[2] (A) (X)

))
(δ (A) (X))

For any Y ∈ B (H), then we consider the derivation D [D2f (A) (δ (A) (X) , δ (A) (X))] (δ (A) (X)),

and

D
(
(Df (A))

(
δ[2] (A) (X)

))
(Y )

= lim
t→0

1

t

{
Df (A+ tY )

(
δ[2] (A+ tY ) (X)

)
−D2f (A)

(
δ[2] (A) (X)

)}
= lim

t→0

1

t

{
Df (A+ tY )

(
δ[2] (A) (X) + tδ[2] (Y ) (X)

)
−D2f (A)

(
δ[2] (A) (X)

)}
= lim

t→0

1

t

{[
Df (A+ tY )−D2f (A)−D2f (A)

] (
δ[2] (A) (X)

)
− tDf (A+ tY )

(
δ[2] (Y ) (X)

)}
= D2f (A)

(
δ[2] (A) (X) , Y

)
+Df (A)

(
δ[2] (Y ) (X)

)
.
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Here

δ[2] (A+ tY ) (X) = δ (δ (A+ tY ) (X)) = δ (δ (A) (X) + tδ (Y ) (X))

= δ[2] (A) (X) + tδ[2] (Y ) (X) .

Let Y = δ (A) (X) , then

D
[
(Df (A))

(
δ[2] (A) (X)

)]
(δ (A) (X)) = D2f (A)

(
δ[2] (A) (X) , δ (A) (X)

)
+Df (A)

(
δ[3] (A) (X)

)
.

Finally, the derivation δ[3] (f (A)) (X) is found to be

δ[3] (f (A)) (X) = D3f (A) (δ (A) (X) , δ (A) (X) , δ (A) (X)) + 2D2f (A)
(
δ (A) (X) , δ[2] (A) (X)

)
+D2f (A)

(
δ[2] (A) (X) , δ (A) (X)

)
+Df (A)

(
δ[3] (A) (X)

)
= D3f (A) (δ (A) (X) , δ (A) (X) , δ (A) (X)) + 3D2f (A)

(
δ (A) (X) , δ[2] (A) (X)

)
+Df (A)

(
δ[3] (A) (X)

)
.

�

If we want to �nd the higher order derivations δ[n] (f (A)) (X), as n ≥ 3. How to �nd the deriva-

tion δ[n] (f (A)) (X)? If we consider the expression ϕ[n] (x) by δ[n] (f (A)) (X) and the expression

of the form f (m) (g (x)) g(i) (x) g(j) (x) g(k) (x) by D(m)
(
δ[i] (A) (X) , δ[j] (A) (X) , δ[k] (A) (X)

)
. The

higher derivation will be found accordingly.

Theorem 3.3.3.

δ[n] (f (A)) (X) =
n∑
r=1

∑
m,j

c (n, r,m, j)Drf (A)
([
δ[j1] (A) (X)

]m1
, . . . ,

[
δ[jk] (A) (X)

]mk
)
, ∀n ∈ N,

where ∀r, n ∈ N, with r ≤ n , m and j are multindices, m = (m1, . . . ,mk), j = (j1, . . . , jk), for

k ≥ 1 with those entries satisfying the three condition that

m1 + · · ·+mk = r,

j1 > · · · > jk ≥ 1,
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m1j1 + · · ·+mkjk = n,

for 1 ≤ i ≤ k, and the symbol
[
δ[ji] (A) (X)

]mi stands for δ[ji] (A) (X) , . . . , δ[ji] (A) (X) (repeated

mi times), and

c (n, r,m, j) =
n!

(j1!)
m1 (j2!)

m2 · · · (jk!)mk m1!m2! · · ·mk!
. (3.1)

Proof. If a composition function ϕ (x) = f (g (x)), we have a similar expression for the nth

derivative

ϕn (x) =
n∑
r=1

∑
m,j

c (n, r,m, j) f r (g (x))
(
gj1 (x)

)m1
(
gjk (x)

)mk , ∀n ∈ N. (3.2)

c (n, r,m, j) can be found and ϕn (x) be in term of δ[n] (f (A)) (X) . �

Example 3.3.4. For the Chain Rule, we have the third derivative D3ϕ (x), and

D3ϕ (x) = D3f (g (x)) [Dg (x)]3 + 3D2f (g (x)) (Dg (x))
(
D2g (x)

)
+Df (g (x))

[
D3g (x)

]
.

We consider the coe�cients of the derivation δ[3]f (A) (X), by (3.1).

c (3, 3,m, j) =
3!

(1!)3 3!
= 1,

c (3, 2,m, j) =
3!

(1!)1 (2!)1 1!1!
= 3,

c (3, 1,m, j) =
3!

(3!)1 1!
= 1.

Then we have

δ[3] (f (A)) (X) = D3f (A) (δ (A) (X) , δ (A) (X) , δ (A) (X)) + 3D2f (A)
(
δ (A) (X) , δ[2] (A) (X)

)
+Df (A)

(
δ[3] (A) (X)

)
.

�
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Example 3.3.5. For the Chain Rule, we have the third derivative D(4)ϕ (x), and

D4ϕ (x) = D4f (g (x)) [Dg (x)]4 + 6D3f (g (x)) [Dg (x)]2 [D2g (x)] + 3D2f (g (x)) [D2g (x)]
2

+4D2f (g (x)) (Dg (x)) [D3g (x)] +Df (g (x)) [D4g (x)] .

We consider the coe�cients of the derivation δ[4]f (A) (X), by (3.1)

c (4, 4,m, j) =
4!

(1!)4 4!
= 1,

c (4, 3,m, j) =
4!

(1!)2 (2!)1 2!1!
= 6,

c (4, 2,m, j) =
4!

(2!)2 2!
= 3,

c (4, 2,m, j) =
4!

(1!)1 (3!)1 1!1!
= 4,

c (4, 1,m, j) =
4!

(4!)1 1!
= 4.

Then we have

δ[4] (f (A)) (X) = D4f (A) (δ (A) (X) , δ (A) (X) , δ (A) (X) , δ (A) (X))

+6D3f (A)
(
δ (A) (X) , δ (A) (X) , δ[2] (A) (X)

)
+3D2f (A)

(
δ[2] (A) (X) , δ[2] (A) (X)

)
+4D2f (A)

(
δ (A) (X) , δ[3] (A) (X)

)
+Df (A)

(
δ[4] (A) (X)

)
.

�

There are some interesting results in this paper. In perturbation theory, given a function f on

B (H), how to �nd bounds for ‖f (A)− f (B)‖ in terms of ‖A−B‖? If we can get the formula.

More generally, we may ask for bounds for the generalized commutator ‖f (A)X −Xf (B)‖ in

terms of ‖AX −XB‖.

De�nition 3.3.6. The norm of an operator A is de�ned as

‖A‖ = sup
‖x‖=1

|Ax| ,
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and the norm of the derivative Df (A) is de�ned as

‖Df (A)‖ = sup
‖B‖=1

|Df (A) (B)| . (3.3)

We know (3.4), and given a bound. We have the inequality

‖f (A)X −Xf (A)‖ ≤ ‖Df (A)‖ ‖AX −XA‖ (3.4)

Theorem 3.3.7. If a function f is holomorphic on a complex domain Ω, the relation (3.4) holds

for every operator A with spectra in I, and for every operator X.

Proof. If f is holomorphic on Ω, we have

f (A) =
1

2πi

ˆ
γ

f (z) (z − A)−1 dz,

and

Df (A) (B) =
1

2πi

ˆ
γ

f (z) (z − A)−1B (z − A)−1 dz.

Then the norm of the derivative Df (A) (B) is de�ned by (3.3), and

‖Df (A)‖ = sup
‖B‖=1

|Df (A) (B)|

= sup
‖B‖=1

∣∣∣∣ 1

2πi

ˆ
γ

f (z) (z − A)−1B (z − A)−1 dz

∣∣∣∣
≤ 1

2πi

ˆ
γ

f (z)
∥∥(z − A)−1

∥∥2
dz.

For the Cauchy�Schwarz inequality, and by (3.4), we have the inequality

‖f (A)X −Xf (A)‖ = ‖Df (A) (AX −XA)‖

≤ ‖Df (A)‖ ‖AX −XA‖

�

Theorem 3.3.8. If f ∈ C1 (I) , the relation (3.4) holds for every Hermitian operator A with

spectra in I, and for every skew-Hermitian operator X. And if for every Hermitian X, then the

inequality also holds.
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Proof. If f ∈ C1 (I), for a Hermitian operator A and a skew-Hermitian operator X , we have

f (A)X −Xf (A) = Df (A) (AX −XA) .

And �nd the norm, then the inequality is

‖f (A)X −Xf (A)‖ ≤ ‖Df (A)‖ ‖AX −XA‖ .

If we consider a Hermitian operator X and (AX −XA)∗ = AX−XA, then ‖(AX −XA)∗‖ =

‖AX −XA‖ .the inequality (3.4) also holds for a Hermitian operator X. �

There is a familiar device by which the inequality (3.4) can be extended.

Given operators A, Band X on H, consider the operators

 A 0

0 B

 and

 0 X

0 0

 on

H⊕H.

Then note that A 0

0 B

 0 X

0 0

−
 0 X

0 0

 A 0

0 B

 =

 0 AX −XB

0 0

 .

From this and the inequality (3.4) we have

‖f (A)X −Xf (A)‖ ≤ ‖Df (A⊕B)‖ ‖AX −XB‖ , (3.5)

where a function f is any holomorphic function on a complex domain Ω, A and B are operators

with their spectra in Ω, X is any operator , and A ⊕ B stands for the operator

 A 0

0 B

 on

H⊕H.

With a slight modi�cation, we consider this situation when f ∈ C1 (I) and Hermitian operators

A and B with spectra in I. Note that for any operator X, the operator

 0 X∗

X 0

 is Hermitian,

and
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 A 0

0 B

 0 X∗

X 0

−
 0 X∗

X 0

 A 0

0 B

 =

 0 AX −XB

BX∗ −X∗A 0

 .

If the operatorX is also Hermitian , then the norm of

 0 AX −XB

BX∗ −X∗A 0

 is ‖AX −XB‖.

Then the inequality (3.4) holds from (3.4).

3.4. The norm of commuatators.

Reference [5] proposed the problem of �nding the norm of the derivative ‖Df (A)‖. In [2, 3,

4, 5], for Hermitian operator A, there is a function f on the interval [0,∞) such that

‖Df (A)‖ = ‖f ′ (A)‖ (3.1)

where f ′ is the ordinary derivative of f on R.

The class of the function f satisfying (3.1) is de�ned by D i.e.,

D = {f : ‖Df (A)‖ = ‖f ′ (A)‖} .

From the inequality (3.4), for every f ∈ D we have

‖f (A)X −Xf (B)‖ ≤ ‖f ′‖∞ ‖AX −XB‖ .

where ‖f ′‖∞ stands for the supremum norm of the function f ′.

In particular, if we take a Hermitian operator X , we have the following inequality.

‖f (A)− f (B)‖ ≤ ‖f ′‖∞ ‖A−B‖ . ∀f ∈ D, (3.2)

where ‖f ′‖∞ stands for the supremum norm of the function f ′.

If a function f (x) = xn, we have the kth derivative of the function f , satisfying

fk (x) = n (n− 1) · · · (n− k + 1)xn−k =
n!

(n− k)!
xn−k.
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Let a Hermitian operator A ≥ 0, then we have

f (A) = An,

and the kth derivative of the function f (A), satisfying

Dkf (A) (B1, . . . , Bk) =
∑
σ∈Sk

∑
ji≥0,1≤i≤k+1

j1+···+jk+1=n−k

Aj1Bσ(1) · · ·AjkBσ(k)A
jk+1,

where Sk is the set of permutatuins on {1, 2, . . . , k}. And the norm of the kth derivative of the

function f , satisfying

∥∥Dkf (A)
∥∥ = sup

‖B1‖=···‖Bk‖=1

Dkf (A) (B1, . . . , Bk)

≤ n!

(n− k)!
‖A‖n−k .

Theorem 3.4.1. Let a function f be a power series representation,

f (t) =
∞∑
n=1

ant
n,

with an ≥ 0 for all n ∈ N . Then

f ∈
∞⋂
k=1

Dk.

Proof. A function f has a power series expression:

f (t) =
∞∑
n=1

ant
n,

with an ≥ 0 for all n ∈ N . If a Hermitian operator A ≥ 0, then we have

f (A) =
∞∑
n=1

anA
n,

and kth derivative of the function f (A), satisfying
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Dkf (A) (B1, . . . , Bk) =
∑∞

n=k


∑
σ∈Sk

∑
ji≥0,1≤i≤k+1

j1+···+jk+1=n−k

∑
Aj1Bσ(1) · · ·AjkBσ(k)A

jk+1

 ,

where Sk is the set of permutatuins on {1, 2, . . . , k} .

In other word, we have

Dkf (A) (B1, . . . , Bk) =
∞∑
n=k

an
[
Dk (An)

]
(B1, . . . , Bk) .

And the norm for the kth derivative Dkf (A), satisfying

∥∥Dkf (A)
∥∥ =≤ sup

‖B1‖=···‖Bk‖=1

∣∣Dkf (A) (B1, . . . , Bk)
∣∣ ∞∑
n=k

an

{
n!

(n− k)!
‖A‖n−k

}
.

The norm for the kth ordinary derivative of the function f

f (k) (A) =
∞∑
n=1

an
n!

(n− k)!
An−k,

then

∥∥f (k) (A)
∥∥ =

∥∥∥∥∥
∞∑
n=1

an
n!

(n− k)!
An−k

∥∥∥∥∥
=

∞∑
n=1

an

{
n!

(n− k)!

}
‖A‖n−k .

Then the function f ∈
⋂∞
k=1Dk, and

∥∥Dkf (A)
∥∥ =

∥∥fk (A)
∥∥ , ∀k. (3.3)

�

If we collect the function f of the class Dn, and for all Hermitian operator A ≥ 0,

Dn =
{
f :

∥∥Dkf (A)
∥∥ =

∥∥fk (A)
∥∥} .
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Example 3.4.2. Let a Hermitian operator A , the function f ∈ D1 ∩ D2, and the derivation

δ[2] (f (A)) (X). Find the inequality for the norm of the derivation δ[2] (f (A)) (X).

The derivation δ[2] (f (A)) (X) satisfying

δ[2] (f (A)) (X) = D2f (A) (δ (A) (X) , δ (A) (X)) +Df (A)
(
δ[2] (A) (X)

)
.

The inequality is found, and

∥∥δ[2] (f (A)) (X)
∥∥ =

∥∥D2f (A) (δ (A) (X) , δ (A) (X)) +Df (A)
(
δ[2] (A) (X)

)∥∥
≤ ‖f ′′‖∞ ‖δ (A) (X)‖2 + ‖f ′‖∞

∥∥δ[2] (A) (X)
∥∥ .

where ‖f ′′‖ and ‖f ′‖∞ stands for the supremum norm of the functions f ′′ and f ′. �

Example 3.4.3. Let a Hermitian operator A , the function f ∈ D1 ∩D2 ∩D3, and the derivation

δ[3] (f (A)) (X) . Find the inequality for the norm of the derivation δ[3] (f (A)) (X).

The derivation δ[3] (f (A)) (X) satisfying

δ[3] (f (A)) (X) = D3f (A) (δ (A) (X) , δ (A) (X) , δ (A) (X)) + 3D2f (A)
(
δ (A) (X) , δ[2] (A) (X)

)
+Df (A)

(
δ[3] (A) (X)

)
.

The inequality is found, and

∥∥δ[3] (f (A)) (X)
∥∥ ≤ ∥∥f 3

∥∥
∞ ‖δ (A) (X)‖3 + 3 ‖f ′′‖∞ ‖δ (A) (X)‖

∥∥δ[2] (A) (X)
∥∥

+ ‖f ′‖∞
∥∥δ[3] (A) (X)

∥∥ .
where‖f 3‖ ,‖f ′′‖ and ‖f ′‖∞ stands for the supremum norm of the functions f 3, f ′′ and f ′. �

The inequalities can be writen down for higher order derivations.
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Conclusions

In this thesis, we present a systematic way to �nd the perturbation bound for the norm of

generalized commutators associated with three di�erent types of functions. The derivative of such

functions is the key to evaluate the bound. In the same way we can obtain estimates for higer

order commutators form the results. An extension to higher order derivation is also considered.

THe Sylvester Equation has been widely used in applied mathematics. It states that for any

given A, B, and Y �nd X such that

AX −XB = Y.

The solution X of the Sylvester Equation can be expressed as

X =

ˆ ∞
0

e−tAY etB dt.

It can be extended that we takes the form of f (A)X −Xf (B) = Y , and want to �nd X.
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