摘要

本論文研究 Pd@SiO₂ 和 Pd@SiO₂(H₂,100)核設式觸媒催化對羧 基苯甲醛(4-CBA)氫化反應之性能。討論反應溫度、加熱過程、反 應時間對於對甲基苯甲酸(p-TOL或 PT)生成率的影響。通過 BET 分 析觸媒的比表面積、孔徑分佈,XRD 分析晶體結構,SEM 分析觸媒粒 子表面狀況,TEM 分析觸媒內部結構。

本研究結果顯示在氫氣過量的條件下,過高的反應溫度將導致 副產物對甲基環己甲酸(MCHCA)的產生。觸媒 Pd@SiO2在反應條件為 氫氣壓力 200psi、溫度 210 、反應時間 1 小時,PT 產率可達 99% 以上;觸媒 Pd@SiO2(H2,100)在反應條件為氫氣壓力 200psi、溫 度 150~170 、反應時間 1 小時,PT 產率可達 99%以上。

Abstract

This thesis studied the performance of $Pd@SiO_2$ and $Pd@SiO_2$ ($H_2,100$) catalyst for hydrogenation of 4-carboxybenzaldehyde (4-CBA) to p-Toluic acid (PT), which is used for the purification of terephthalic acid . The catalyst were characterized with BET , XRD , SEM , TEM and CO chemisorption .

Experiment results indicated that PT generation rate was sensitive to the reaction temperature and reaction time . For Pd@SiO₂, the optimum reaction condition was 200 psi, 210 and one hour reaction time, the best PT yield was more than 99 % . For Pd@SiO₂ (H_2 ,100), the optimum reaction condition was 200 psi, 150~170 and one hour reaction time, the best PT yield was more than 99 % .

致謝

本篇論文之得以完成,首先要感謝的是我的指導教授李國禎博 士,於東海化工所這兩年時間內,在學業上和實驗上的指導與糾正, 使我獲益良多,並得以順利完成學業,在此景線上個人最深的謝意。

感謝實驗室同學楊正妮、周佩青於課業與實驗上的問題共同討論,也要感謝學長劉明玨在研究所期間,學業與實驗上的指導與協助,另外也要感謝學弟朱伯勳在電腦軟硬體上的協助。

最後,僅以此文之研究成果獻給所有關愛我的師長、家人與朋 友。 目錄

中文摘要

英文摘要

目錄

表目錄

圖目錄

第一	·章 緒論	1
1-1	前言	1
1-2	對苯二甲酸製程簡介	4
1-3	研究動機	6
1-4	研究目的	7
第二	章 文獻回顧	8
2-1	前言	8
2-2	氫化反應	10
2-3	制備奈米級鈀粒子	11
2-3.	1液相化學合成法	11
2-3.2	2 PVP 穩定化金屬奈米粒	11
2-4	核-殼結構(Core-shellstructure)之奈米粒子	14

2-4.1 高分子披覆	15
2-4.2 無機物披覆	17
2-4.3 生化分子的披覆	18
第三章 實驗系統	19
3-1 材料	19
3-1.1 實驗藥品	19
3-1.2 實驗氣體	20
3-1.3 實驗儀器設備	21
3-2 觸媒製備的方法	23
3-3 對羧基苯甲醛(4-CBA)的觸媒氫化反應	24
3-4 產物分析-高效能液相層析儀	26
3-4.1 高解析液相層析儀	27
3-4.2 定性分析	28
3-4.3 定量分析	30
3-5 熱場發射掃描式電子顯微鏡(TFSEM)	34
3-6 X 射線繞射實驗(XRD)	35
3-7 表面積與孔洞分析實驗(BET)	37
3-7.1 BET 表面積之測定原理	37
3-7.2 BET 表面積及孔徑大小之測定實驗	42

V

3-8	電子顯微鏡(Transmission Electron Microscopy)	44
3-9	程溫還原(TPR)	45
3-10	感應耦合電漿原子發射光譜分析法(ICP-AES)	47
3-11	金屬分散度測定	48
第四	章 實驗結果與討論	.50
4-1	改變反應溫度對PT生成率與4-CBA轉化率之影響	52
4-2	加熱過程對PT生成率與4-CBA轉化率之影響	63
4-3	反應時間對PT產率與4-CBA轉化率之影響	67
4-4	熱場發掃描式電子顯微鏡(TFSEM)之分析	70
4-5	穿透式電子顯微鏡(TEM)之分析	77
4-6	X 光繞射分析儀(XRD)之分析	78
4-7	表面積與孔洞測定儀(BET)之分析	81
4-8	觸媒之金屬含量與分散度	83
4-9	反應級數及活化能	84
4-10	程溫還原結果	93
第五	章 結果與建議	94
5-1	結論	94
5-2	建議	94
第六	章 參考文獻	95

VI

表目錄

表 3-1	藥品等級與製造商一覽表	19
表 3-2	氣體純度與購買公司一覽表	20
表 3-3	儀器設備型號與廠商一覽表	21
表 3-4	HPLC 滯留時間	28
表 3-5	4-(Hydroxymethyl) benzoic acid 濃度與面積	31
表 3-6	4-carboxybenzaldehyde 濃度與面積	32
表 3-7 p·	-Toluic acid 濃度與面積	33
表4-1	Pd@SiO ₂ 不同反應溫度對 PT 生成率之影響	53
表 4-2	Pd@SiO2(H2,100) 不同反應溫度對 PT 生成率之影響	56
表 4-3	Pd/C 不同反應溫度對 PT 生成率之影響	59
表 4-4	加熱過程 PT 生成率 VS 溫度	63
表 4-5	加熱過程 PT 生成率 VS 溫度	64
表 4-6	在 150 下,反應時間對 PT 生成率之影響	67
表4-7	在 150 下,反應時間對 PT 生成率之影響	68
表4-8	不同觸媒之晶格大小	79
表 4-9	觸媒 Pd@SiO2比表面積、孔洞大小分	81
表4-10	觸媒之金屬含量與分散度	83
表 4-11	觸媒 Pd@SiO₂,0 ,-In(1-x) vs. t	87

VII

表 4-12	觸媒 Pd@SiO₂,30 ,-	ln(1-x) vs. t	87
表 4-13	觸媒 Pd@SiO₂,溫度(K)	vs. k	89
表 4-14	觸媒 Pd@SiO₂(H₂,100),0 ,-In(1-x) vs. t	90
表 4-15	觸媒 Pd@SiO₂(H₂,100),30 ,-In(1-x) vs. t	90
表 4-16	觸媒 Pd@Si0₂(H₂,100),溫度(K) vs. k	92

圖目錄

圖 3-1	氫化反應實驗裝置圖	25
圖 3-2	4-(Hydroxymethyl) benzoic acid 波峰滯留時間分析圖	29
圖 3-3	4-carboxybenzaldehyde 波峰滯留時間分析圖	29
圖 3-4	p-Toluic acid 波峰滯留時間分析圖	30
圖 3-5	4-(Hydroxymethyl) benzoic acid 標準曲線	31
圖 3-6	4-carboxybenzaldehyde 標準曲線	32
圖 3-7	p-Toluic acid 標準曲線	33
圖 3-8	吸附曲線的形式	38
圖 3-9	遲滯現象的型態	42
圖 3-10	TPR 裝置圖	46
圖 4-1	Pd@SiO2 不同反應溫度對 PT 生成率之影響	54
圖 4-2	Pd@SiO2(H2,100) 7同反應溫度對 PT 生成率之影響	57
圖 4-3	Pd/C 不同反應溫度對 PT 生成率之影響	60
圖 4-4	觸媒 Pd/C、Pd@SiO』 Pd@SiO2(H2,100)PT 生成率疊圖	61
圖 4-5	加熱過程對 4-CBA 殘留量之影響	65
圖 4-6	加熱過程對 4-(Hydroxymethyl) benzoic acid 產率之	と影
響		66
圖 4-7	加熱過程對 PT 生成率之影響	66

IX

圖 4-8	恆溫過程對 PT 生成率之影響	69
圖 4-9	Pd@SiO₂觸媒之 TFSEM 圖(太 00)	71
圖 4-10	Pd@SiO₂ (air) 觸媒之 TFSEM 圖(x 550)	71
圖 4-11	Pd@SiO₂(�2500)觸媒之 TFSEM 圖(�2,500)	72
圖 4-12	Pd@SiO₂ (air) 觸媒之 TFSEM 圖(�2,500)	72
圖 4-13	Pd@SiO₂觸媒之 TFSEM 圖(% 000)	73
圖 4-14	Pd@SiO2 (air) 觸媒之 TFSEM 圖(& ,000)	73
圖 4-15	Pd@Si0₂觸媒之 TFSEM 圖(メ 4,000)	74
圖 4-16	Pd@SiO2 (air)觸媒之 TFSEM 圖(14,000)	74
圖 4-17	Pd@SiO₂觸媒之 TFSEM 圖(30,000)	75
圖 4-18	Pd@SiO2 (air)觸媒之 TFSEM 圖(&0,000)	75
圖 4-19	Pd@Si0₂ 觸媒之 TFSEM 圖(★0,000)	76
圖 4-20	Pd@SiO2 (air)觸媒之 TFSEM 圖(¥0,000)	76
圖 4-21	Pd@SiO₂觸媒之 TEM 圖(20000 倍)	77
圖 4-22	Pd@SiO₂觸媒之 TEM 圖(╡00000 倍)	77
圖 4-23	Pd@SiO2觸媒之 XRD 分析圖譜	79
圖 4-24	Pd@SiO2(H2,50) 觸媒之 XRD 分析圖譜	80
圖 4-25	Pd@SiO2(H2,100))觸媒之 XRD 分析圖譜	80
圖 4-26	Pd@SiO2觸媒之吸脫附平衡曲線	81

Х

圖 4-27	Pd@SiO₂觸媒之孔徑分布		82
圖 4-28	觸媒 Pd@SiO₂,-In(1-x) \	/s.t作圖求反應級數	88
圖 4-29	觸媒 Pd@SiO₂,Ink vs. 1	/T 作圖求反應活化能	89
圖 4-30	觸媒 Pd@SiO2(H2,100),-In(1-x) vs.t 作圖求反應	餦級
數			91
圖 4-31	觸媒 Pd@SiO2(H2,100), Ink vs. 1/T 作圖求反應流	舌化
能			92
圖 4-32	Pd@SiO₂ TPR 圖譜		93