第一章 緒論

1-1 前言[1][2]

純對苯二甲酸 (Purified Terephthalic Acid;以下簡稱為 PTA) 為石油化學中間原料,亦是聚酯工業的主要原料,主要用於生產聚對 苯二甲酸乙二醇酯 (PET),可供製造塑膠容器,如飲料用寶特瓶及 後續的聚酯纖維,提供製成衣料 (如特多隆、太子龍、台麗綾、衣絲 龍、珍珠龍、華隆絲等)、不織布、輪胎簾布、汽車安全帶等;聚酯 薄膜已使用於錄影帶、錄音帶、醫療 X 光底片及包裝材料等;聚對苯 二甲酸丁二醇酯 (PBT) 是一種熱塑性工程塑料,PBT 樹脂可在較寬 廣的溫度範圍內保持良好的機械性能,且具有耐熱、耐化學藥品、電 氣性能優良等特性。主要用於電子電氣、汽車和機械等工業產品領 域,用途相當廣泛。

工業生產的 PTA 是用對二甲苯(p-xylene; 簡稱 PX)氧化所得, 但氧化副產物如對羧基苯甲醛 4-carboxybenzaldehyde; 簡稱 4-CBA) 含量較多時,與乙二醇(EG)聚合會產生斷鏈,甚至顏色加深,所以 粗對苯二甲酸(CTA)不能直接與乙二醇聚合製備 PET。

目前已商業化運轉的純對苯二甲酸製程如下,一是先進行氧化反

應產生目標產物,再進行純化反應去除不純物的二段式製程。

隨著人類科技的發展,對微小材料的需求,已由原來的微米(10^{*}) 範圍進入奈米(10⁻⁹)範圍的時代。奈米材料的定義是尺度(Dimension) 介於 1~100 奈米之間。進入奈米尺度後,由於結構尺寸變小,表面原 子數/體積比例增大,表面位能增加,造成材料性質(光、電、機械、 化學等特性)隨著尺寸的縮小、組成的變化、結構的不同而有許多新 的「奈米特性」產生。在奈米技術的研發中,膠體粒子(colloidal particle)是一項有效的工具,可以用來製造規則且複雜的材料,也 可應用在化學工程、製藥及生化技術上。

而新技術的開發對其應用價值有絕對的關聯性。科學家們製造了 一種新的結構—Core-Shell,改變內核與外殼的材料、結構、光學或 表面特性,因而造成許多特殊性質,可以應用於許多新材料的合成、 鍍膜工程、電子工程、觸媒工程、分離技術及症狀診斷學上。

利用「奈米粉體技術」(nano-particle engineering)。我們將 一尺寸為微米至奈米級的核心,在其表面鍍上一層或數層均勻的奈米 級殼層,以致形成類似「包心粉圓」的構造,這就是所謂的 Core-Shell

結構。這樣的結構,改變了中心核膠體粉粒表面的電性、功能性、活性,並且讓中心的膠體粉粒在溶劑中有良好的分散性及穩定性。中心的膠體粉粒由於受到外殼的保護,也比較不會受到外來化學上或物理上的影響。

1-2 對苯二甲酸製程簡介

氧化反應過程中 PX 與醋酸、觸媒溶劑混和液,在反應器中與高 壓空氣進行氧化反應,以產生未純化的對苯二甲酸 (CTA) , CTA 產出後大部分析出成固體,在反應器中形成泥漿狀態(slurry)。製 程如下⁽³⁾:

氧化工廠產生的 CTA 含有少量難溶於水的雜質,須以純水(270 280)為溶劑於純化反應器中經 Pd/C 觸媒催化與氫氣反應,並且 所有這些雜質被氫化在一種顆粒狀,重量比為 0.5% Pd/C 催化劑在 滴流床反應器中,轉化為較易溶於水的化合物,再經一連串的結晶分 離過程加以純化。

4-CBA 是主要的雜質,為氧化反應的中間產物,因其不易溶於水, 將被轉化為較易溶於水的對甲基苯甲酸(p-Toluic acid; 簡稱 PT 或 p-TOL),在後續的結晶與分離過程中, PT 將被溶於水而去除。製 程如下⁽³⁾:

純化製程

1-3 研究動機

PTA 絕大部分用來與乙二醇反應生產聚對苯二甲酸乙二醇酯,是 生產聚酯纖維、薄膜、瓶子的主要原料。而 4-CBA 及 PT 是 PTA 產品 中重要的品質指標,因它們會引起側鏈反應,均為聚合物鏈的終止 劑,其含量多寡直接影響到後續產品的生產及產品品質。

TPA 加氫純化過程的主要控制指標是將粗對苯二甲酸中的對羧基 苯甲醛脫除至 25 mg/L 以下,才能達到生產聚酯產品的要求,由於 CTA 中 4-CBA 與產品 PTA 的性質相似,不易分離,而要將 4-CBA 含量 降至如此低濃度須經氫化反應還原成容易分離的對甲基苯甲酸 (p-T0L)。

p-TOL 是一種重要的精細化工產品,廣泛地用作合成醫藥、感光 材料、農藥、有機顏料等的中間體。聚酯工業的迅速發展,純對苯二 甲酸生產過程中產生了大量氧化殘渣廢料,PT 亦是其中的一個主要 組成,且出於對環境保護和資源充分利用的目的,對氧化殘渣進行分 離回收的研究也越來越受到人們的重視。

1-4 研究目的

本實驗是以如何降低對苯二甲酸中 4-CBA 的含量為目的,利用自 製的 Pd@SiO₂核殼觸媒催化 4-CBA 氫化成 p- TOL 的反應,由不同的反 應溫度、氫氣壓力、反應時間,來求得最佳 PT 生成率,以降低 4-CBA 含量。

第二章 文獻回顧

2-1 前言

PTA,在工業上主要由對二甲苯(PX)氧化、氫化精製等程序組成,最後得到純度 99.95%以上的白色結晶粉末。總反應式如下⁽⁴⁾:

其生產方式是以 PX 為原料, 醋酸為溶劑, 醋酸鈷、醋酸錳為催 化劑, 溴化氫或四溴乙烷為促進劑, 在進料中按比例混合, 經計量後 送氧化反應器, 在壓力為 28 30 atm 及 180 230 條件下, 通入空 氣,將 PX 氧化為粗對苯二甲酸(CTA)。此反應為一多步驟反應, 有 許多副產物產生, 如下所示^[5]:

之後,將 CTA 定量加入進料桶中,以溶劑純水混合,在高溫、高 壓的條件下,將物料加入氫化反應器中,並在鈀碳觸媒催化作用下於 水溶液中進行加氫還原反應。氫化反應過程中,雜質 4-CBA 一般被轉 化為易溶於水的 PT,並被分離除去。最後經產物結晶、乾燥等程序 處理,即製得 PTA。氫化反應如下⁽⁶⁾:

2-2 氫化反應

利用氫氣來進行氫化反應,使反應物在觸媒的作用下,氫化成某一特定的產物。對於氫化反應如何提高轉化率亦或生成率,則有賴於 觸媒的選擇,觸媒的活性、反應溫度、時間和氫氣壓力等變數的考量。

觸媒氫化反應在工業上是一個重要的程序。TPA 的純化過程中, 將主要雜質 4-CBA 氫化成 PT,是現在工業上重要的加氫純化反應。 目前大多是以鈀金屬負載於活性碳上的 Pd/C 觸媒為主要氫化觸媒。

而本實驗嘗試以 Pd@SiO2核-殼粒子為氫化觸媒, 觀察其將 4-CBA 氫化成 PT 的能力。

2-3 制備奈米級鈀粒子

2-3.1 液相化學合成法^[7]

奈米金屬微粒製備,在溶液中加入鈀的前驅物(硝酸鈀)後,利用 甲醛作為還原劑,將前驅物還原為奈米級鈀粒子。在無電電鍍液中常 用之還原劑聯胺,由於其具有較強的還原力,再奈米微粒生成時,不 易控制合成均勻的鈀微粒。因此改利用甲醛當還原劑,而甲醛的還原 力受到 pH 值的影響,當溶液成鹼性時,具有較佳的還原能力。在鹼 性環境中,甲醛的標準還原電位為:

HCHO+30H[™] HCOO[®]+2H₂O+2e[™] E⁰=0.927 V (3-1) 鈀離子的標準還原電位與式(3-1)合併後,還原電位如下所示: Pd²⁺+HCHO+30H[™] Pd+HCOO[®]+2H₂O E⁰=1.878 V (3-2)

迎藉由甲醛還原時,還原電位極大,表示氧化還原反應劇烈。在
製備奈米微粒時,若反應速率大,生成之微粒未能及時被保護劑保護
住,因此所合成出來的粒子較易彼此產生凝聚而沉澱;若反應速率
小,反應的進行便較和緩,因此所合成出的粒子其粒徑較為均一。

2-3.2 PVP 穩定化金屬奈米微粒^[8]

金屬觸媒的活性及選擇性往往與觸媒粒徑、形狀等結構特性,以 及反應媒介、擔體等環境因素息息相關。奈米金屬微粒更因極高的表

面原子數,表面配位不飽和致表面活性增加,表面粗操程度隨粒徑減 小而增加,形成凹凸不平的原子臺階,增加化學反應的接觸面,使其 備受學術界及產業界矚目,以然成為 21 世紀催化反應的主角之一。 製備金屬奈米微粒的技術有化學還原法、電化學還原法、氣相層積 法、微波幅射法、UV光解法、熱分解法等,其中化學還原法因具有 容易製備、分散穩定、粒徑較小及分散較窄的優點,在催化應用上被 廣泛應用。 而在工業生產要求觸媒能有再現性 , 金屬奈米微粒通常於 製備過程負載於異相擔體或添加高分子、微乳液、配位基或適當溶液 為穩定劑,並分散於溶劑中加以保存及使用,以避免奈米微粒聚集成 長。分散在液體媒介中之穩定化金屬微粒以所添加穩定劑之種類概分 為四類:溶劑穩定型、表面活性劑穩定型、配位基穩定型及高分子穩 定型,前三類用為觸媒時較不穩定易分解,而以高分子穩定之金屬簇 較為穩定,可容許較嚴苛的反應條件。高分子穩定劑為能與金屬奈米 微粒表面產生弱作用力而對金屬微粒形成一高分子鏈保護層的官能 性高分子,以水溶性高分子為主,PVP(poly-N-vinyl pyrolidone, 聚乙烯? 咯酮)、PVA(poly-vinyl alcohol, 聚乙烯醇)、 PEI(poly-ethyleneimine,聚乙烯亞胺)、PVM(poly-methyl vinyl ether,聚乙烯甲基醚)、PEG(poly-ethlene glycol,聚乙二醇)均曾 被使用 , 其中以與金屬吸附效果良好保護效果顯著之 PVP 最受青睞。

在製備鈀金屬微粒時,由於在合成的過程中添加了含有 NO₃ 的前 驅物及含有 Na^{*}的鹼性溶液,這些殘存的鹽類有可能在後來的反應時 造成污染;此外,在合成微粒時,為了避免粒子凝聚而添加了過量的 保護劑 PVP,然而過多的 PVP 在後續進行鍛燒程序時,可能會產生過 多殘餘的碳,影響氫化反應時鈀金屬微粒吸氫能力。因此在合成鈀金 屬微粒過程中,需要進行清洗與再分散程序,以期能將多餘的鹽類及 PVP 分離,以其減低後續製程及反應的缺失。 2-4 核-殼結構(Core-shell structure)之奈米粒子^[9]

製備核-殼形式之奈米粒子,除了可將多功能結合在一起外,也 可能產生新的特性。一般而言,其目標可區分為四大項:一、修飾奈 米粒子的塊材特性或產生不同於原成份的新特性;二、調整奈米粒子 的表面特性,以改變其表面電荷密度、功能性、反應性、生物相容性、 穩定性及分散性;以核心粒子為板模,製備中空球殼;四、創造多功 能性複合奈米粒子。 其製備除了提供在膠體粒子科學上的研究外, 在觸媒、生物、生醫、與光、電、磁、熱及高性能機械材料等多方面 更具潛力及應用價值。

核-殼形式之奈米粒子從金屬、陶瓷、高分子或生化分子間的結 合,目的在於調整奈米粒子表面特性、製被中空球殼材料,或創造多 功能性的複合奈米粒子。

製備核-殼形式之奈米粒子,除了藉由各成分反應、成核 (nucleation),成長(growth)速率過大的差異性來產生外,最常 見的製備方法是以兩步驟來完成。先以一般單成分奈米粒子合成法合 成所需要的核心粒子,再進一步的以披覆技術產生奈米殼層。在製備 殼層的部分,其可分為高分子、無機物及生化分子披覆等三部份,分 別在以下詳述之。

2-4.1 高分子披覆

製作高分子披覆的技術,可分為兩種:

(一) 在粒子表面吸附及聚合高分子:

在此部份又可以利用三種不同的聚合反應加以分類:

1、聚合反應:

Matijevic 等人^[10]將聚二乙烯苯(poly(divinylbenzene),PDVB) 鍍在二氧化矽的粒子上(silica)。他是先將中心核 SiO2 的表面利用 4-vinylpyridine 或 1-vinyl-2-pyrrolidone 偶合劑(coupling agent)進行改質,然後再與 PDVB 和適當的起始劑混合反應,使高分 子的單體在核心表面行聚合作用。

如果核心粒子表面便具有催化活性可以促使單體聚合,則起始劑 便可以省略。例如在赤鐵礦(- Fe203, hematite)、氧化矽修飾的 hematite 或氧化鈰(Ce02)表面上可鍍上聚?咯(polypyrrole)。 方法是將無機氧化物粒子浸泡在?咯的酒精及水的混合物中,加熱至 100 即可使?咯聚合。由於聚?咯是熟知之導電高分子,聚?咯包 富的 - Fe203或Ce02粒子,便具有導電性。包覆的厚度可以用反 應時間來控制。另外一種新穎的方法,是在金屬粒子表面鍍聚?咯, 由Feldheim提出,他利用真空過濾法(vacuum filtration)將金的 粒子吸附排列在多孔性的Al203 滲透膜 200nm 微孔中,然後將?咯的

單體由下而上進入微孔,將起始劑 Fe(CI04)3 擺在微孔的上方。當 ? 咯的單體由下而上進入微孔與起始劑接觸而在微孔中聚合。便會在 金的粒子表面形成聚? 咯的包覆薄層。隨後我們可以用 KOH 將多孔滲 透膜溶解掉,造成一顆顆聚? 咯包覆的金奈米粒子。或者用 KCN / K3 [Fe(CN)6]水溶液透過聚? 咯外殼溶蝕掉金粒子,再將多孔滲透 膜一起溶解掉,形成中空聚? 咯奈米粒子容器。

2、 異質凝集聚合:

利用高分子的離子性質不同的異相凝集成高分子—高分子的 Core-Shell結構。

利用半徑較小的陽離子型高分子 – 聚丁基甲丙烯酸酯 PBMA (poly (butyl methacrylate),約 167nm)異質凝集在半徑較大的陰離子 型高分子 – PS (polystyrene,約 600nm)表面上,在保持電中性的 原理下,當加熱溫度超過 PBMA 的玻璃轉換溫度 (glass-transition temperature,約 45)時,PBMA 就會均勻的覆蓋於 PS(polystyrene) 上,形成 Core-Shell 結構。

3、乳化聚合常會造成核心凝聚包覆的現象。近來,此技術已改進, 例如將銀的奈米粒子表面包覆一層聚苯乙烯(polystyrene)及甲 基丙烯酸酯(methacrylate)做法是將金屬粒子置於乳化的 oleic acid 中,控制聚合時間及單體濃度,則十分容易得到 2-10nm 的 鍍膜。

(二)自行組合(Self-assembled)的高分子:

此法也就是熟知層接層 LbL (Layer – by – Layer)的方法,可得 到單層或多層均勻且一致性的包覆薄膜。在使用 LbL 法時,選取相反 電性的多電解質乳劑,一層接著一層,由於相反電性的緣故,每層均 容易因為電性的吸引而達到成膜的效果。

2-4.2 無機物披覆

許多無機物可以藉由在核心粒子表面析出,或是在核心粒子表面藉 由官能基的反應達到披覆的目的,目前已有 Si02,Ti02,Si3N4,Zr02 等無機材可作成奈米殼層的披覆。

目前而言,將無機物披覆在核心粒子外表面,大多利用矽或鈦的 烷氧化物為起始劑,進行水解與縮合反應,造成二氧化鈦或是二氧化 矽的披覆,例如 Ohmori 和 Matijevic¹⁰⁰就是利用四乙基氧矽(TEOS (tetraethoxysilane))當起始物,在針狀赤鐵礦(– Fe2O3)表 面成功鍍上氧化矽薄膜,這個方法亦稱為 Stober process,指利用 TEOS 的水解及縮合反應,形成 SiO2 的方法;同樣的方法也應用於氧 化鋯核心粒子外披覆二氧化矽上。或是銀粒子的外面披覆上二氧化 鈦,也是利用鈦的烷氧化物起始劑進行水解與縮合反應的結果。在利

用 Stober process 成長氧化矽殼層的過程中, TEOS 溶液的濃度必須低, 以避免形成矽的成核, 才能使氧化矽均勻鍍上金屬粒子表面, 形成核殼形式奈米粒子。本實驗即以 Stober Process 製作以鈀為核、二氧化矽為外殼的核-殼觸媒

2-4.3 生化分子的披覆

在生化科技中,如何將生化分子—蛋白質、酵素、抗體、抗原 (protein、enzymes、antibodies、antigens)等,固定於固體粒子 支撐物的表面,是長久以來便吸引許多科學家研究的課題。

一般而言,將生化分子鉗合於固體粒子的表面常使用的方法有:
被動吸附(passive adsorption)、共價鍵結(covalent bonding)、
sol-gel法、特定分子附著法(specific recognition)及靜電的自行排列法(electrostatic self-assembly method)等。這些方法都
是將生化分子與中心核粒子偶合(coupling)來達成。而常用的中心
核粒子有聚苯乙烯(polystyrene)聚丙烯胺(polyacylamide)等。
這些鍍上生化分子的Core-Shell微粒將會為生物化學應用上帶來嶄
新的貢獻。

第三章 實驗系統

本章將分述實驗所需材料、儀器、實驗步驟及產物、觸媒分析方法及條件。

3-1 材料

3-1.1 實驗藥品

藥品	等級	製造廠商
p-toluic acid	98%	ACROS
4-Carboxybenzaldehyde	98%	Alfa Aesar
4-(Hydroxymethyl)	99%	ALDRICH
benzoic acid		
Terephthalic Acid	рр%	SHOWA
Palladium(II) nitrate	Pd~40%	STREM CHEMICALS
hydrate	99.9%	
Polyvinylpyrrolidone	*	ACROS
(M.W.8000)		
Sodium hydroxide	試藥特級	SHOWA
Tetraethyl	98%	ACROS
orthosilicate		

表 3-1 藥品等級與製造商一覽表

Formaldehyde	37%	Scharlau
Ammonia solution	28%	SHOWA
Acetone	*	景明
Ethanol	99.5%	景明
Acetonitrile	95+%	ECHO
Acetic acid glacial	ACS	Scharlau

3-1.2 實驗氣體

氣體名稱	純度	廠商
氦氣 N2	99.9%	東洋氣體公司
氫氣 H2	99.99%	翔源氣體公司
液態氮 Liquid N2	*	翔源氣體公司
空氣	79%N ₂₊ 21%O ₂	三福氣體公司
氬氣 Ar	99.9%Ar	東洋氣體公司
混和氣	90%Ar+10%H2	翔源氣體公司

表 3-2 氣體純度與購買公司一覽表

3-1.3 實驗儀器設備

表 3-3	儀器設備型號與廠商-	-覽表
-------	------------	-----

儀器設備名稱	型號	製造廠商
氣體流量控制器	5850E series	Brooks
質量流量控制器	Model 5878	Brooks
高溫鍛燒爐	訂製	登盈儀器公司
熱電偶	Туре К	登盈儀器公司
加熱板	04644-series	COLE PARAMA
高壓反應系統	4842 (600ml)	PARR
電子天平	XB 220A	Precisa
熱風循環烘箱	CDV-60	伸隆
手套箱	OMNI-LAB	VAC
UV 偵測器	L-4250	HITACHI
HPLC 幫浦	LC-10AD	SHIMADZU
HPLC 烘箱	CTO-10A	SHIMADZU
管柱	C₁₃ 250 ×4.6 mm (5µm)	HYPERSIL

3-2 觸媒製備的方法^{[11][12]}

第一部份

- 1.在 3ml 去離子水中加入 0.0692g Pd(NO3)2 , 攪拌使之溶解 配製
- 成 Pd(NO₃)_{2(aq)}前驅物水溶液
- 2. 將 0.255g 之 PVP 溶於上述溶液中 , 攪拌使之完全溶解
- 3.在室溫下將甲醛 0.0692ml 加入溶液中
- 4. 最後將 0.0184g NaOH 加入 , 攪拌至完全溶解

(到這步結束 , 總溶液大概 4ml , 倒入離心管)

- 5.加入丙酮到刻度 15ml
- 6.每分鐘 6000 轉 , 離心 10 分鐘
- 7.取出底部黑色膠體溶液

(取出上層丙酮後,總溶液剩 9ml)

8.加入不同比例調配之丙酮水溶液

(加去離子水到刻度 12ml, 在加丙酮到刻度 15ml)

- 9.重複5 8步驟
- 10.在小玻璃瓶中乾燥

第二部份

1. 將去離子水 0.998ml , 氨水 0.339ml , 乙醇 6.643ml , 與第一部 份乾燥後的溶質互溶

2. 超音波震盪 30 分鐘

- 3. 加入 0.535mI TEOS
- 4. 攪拌 24 小時
- 5. 加入去離子水以每分鐘 6000 轉 , 離心 10 分鐘

6. 取出底部黑色溶液並乾燥

7. 研磨

第三部份

1. 通空氣鍛燒(400 , 3小時)

第四部份

1. 通氫氣鍛燒 (100 ,1 小時)

3-3 對羧基苯甲醛(4-CBA)的觸媒氫化反應

4-CBA 的氫化反應是在 600 ml 的高壓不鏽鋼批次反應器裡進行, 反應器中的溫度是由內部所裝置的 J-type thermocouple 測得,而攪 拌速度和溫度是利用 PID 控制系統所控制,如圖 3-1 所示。

操作條件

- 攪拌速度:200 rpm
- 反應溫度:0 270

反應壓力:25 200 psi

實驗步驟:

- (1) 秤取約 0.1 g 的 4-CBA 和 0.0035 g 的觸媒, 加入乾燥後之反應器
- (2) 再量取 50 ml 的二次去離子水, 倒入反應器中。
- (3) 將反應器的所有閥件鎖緊,裝置好冷凝系統,設定攪拌速度,通 入氫氣,排出反應器內的空氣。
- (4) 填充氫氣至反應的壓力,設定好溫度,開始反應。
- (5) 待反應結束,降溫、洩壓、打開反應器,先加入6ml的NH4OH,

混合均勻後,將溶液倒入100 ml 樣品瓶。

(6) 取 1 ml 溶液,用二次去離子水稀釋至 20 ml,為避免取出之樣品

分析時阻塞層析管,去除溶液中之離子,利用過濾膜予以過濾雜 質,然後取5 µ | 注入 HPLC 中,由產生之訊號波峰面積計算出生 成率。

圖 3-1 氫化反應實驗裝置圖

- 1. 氫氣
- 2. 氣體控制閥
- 4. 氣體進料口

- 5. 攪拌器
- 6. 溫度感測計
- 3. 高壓不銹鋼反應器 7. 攪拌速率與溫度控制器

3-4 產物分析-高效能液相層析儀 (HPLC)^[13]

高效能液相層析(High Performance Liquid Chromatography), 簡稱 HPLC。高效能液相層析適用於半揮發性和非揮發性化合物或是 遇熱易被裂解的待測物,應用此方法進行分析的先決條件是待測物需 溶於移動相中。HPLC 分析的原理係藉由移動相通過固定相達到分離 的效果:混合物中各成份在移動相和固定相之間的分配係數不相同 (即親和力不同),使其在管柱中的滯留時間不同而得以分離出來。 若化合物與固定相親和力較強,則沖堤較慢(即滯留時間長),而化 合物與移動相的親和力較強,則沖堤較快(即滯留時間短),依此原 理將樣品中的待測物與共萃取出來的干擾物分離的方法。

高效能層析法是所有分析分離技術中最廣泛的。此法之所以受歡 迎是因為它的靈敏度,易於準確定量測定,適用於分離非揮發性或熱 不安定的物質。像胺基酸、蛋白質、核酸、碳氫化合物、有機金屬和 各種不同無機物。

HPLC 包含三大部分:固定相、流動相和偵測儀器。

固定相:固定填充於管柱(column)內之物質,依其填充物質不同,分離的原理不同分為四種類型:分配層析法(partition)

chromatography)、吸附層析法(adsorption chromatography)、 離子交換層析法(ion exchange chromatography)和大小排除法 (size chromatography),但各種不同的液相層析法在其應用範 圍內有互補的關係。因此對於分子量大的溶質,經常使用大小排 除層析法,或是使用逆相分配層析法來處理這些化合物。對於低 分子量的離子物質,則廣泛使用離子交換層析法。

- 2.移動相:指待測混合液與攜載液。待測混合液經採樣點進入攜載 液後,在高壓幫浦推動下,高速流經管柱,混合液中不同分子與 填充物親和力有差異,故被分離。

3-4.1 高解析液相層析儀

本實驗主要的分析儀器為高解析液相層析儀。所選用的 column 為 250 ¥.6 mm(填充顆粒 5µm)的 C₁₈ column。取出 sample 1ml, 用二次去離子水稀釋至 20ml,混合均勻後取 5µl注入 HPLC,藉由分 析圖譜及反應物和產物的校正曲線,如圖 3-2、3-3 及 3-4,可計算

出 4-(Hydroxymethyl) benzoic acid、PT 的產率以及 4-CBA 殘留量。

HPLC 之操作條件:

Oven set temp: 35

移動相組成:50% CH₃CN / 50% (90%H₂O / 10% CH₃COOH)

移動相流速:1 ml/min

UV-VIS 使用波長: 254 nm

Sample 注射量:5µl

3-4.2 定性分析

將 sample 注入 HPLC, 偵測出之訊號, 傳輸至個人電腦, 利用訊 華公司的積分軟體計算 peak 的滯留時間, 如表 3-4 及圖 3-2 圖 3-3 圖 3-4 所示:

	表 3-4	HPLC 滯	留時間
--	-------	--------	-----

sample	Time (min)
4-(Hydroxymethyl) benzoic acid	3.1
4-carboxybenzaldehyde	3.4
p-Toluic acid	4.3

圖 3-2 4-(Hydroxymethyl) benzoic acid 波峰滯留時間分析圖

圖 3-3 4-carboxybenzaldehyde 波峰滯留時間分析圖

圖 3-4 p-Toluic acid 波峰滯留時間分析圖

3-4.3 定量分析

將已知的標準品注入層析儀中,改變其濃度,量計得到的波峰面 積。利用不同濃度對應不同面積作圖,以濃度為橫座標,面積為縱座 標,便可得到如圖 3-5、3-6及 3-7 之反應物及其產物之校正曲線圖。

反應後欲分析混合液中各成份含量時,將溶液依比例稀釋過濾後,注入層析儀,得到層析圖譜各成份的波峰面積。再由校正曲線方 程式計算出對應之濃度。

重量 (g)	濃度(M)	稀釋 20 倍濃度 (mM)	面積
0	0	0	0
0.0108	0.001268	0.063377	48630
0.0198	0.002324	0.116192	75997
0.0315	0.003697	0.18485	106732
0.0419	0.004918	0.24588	139936

表 3-5 4-(Hydroxymethyl) benzoic acid 濃度與面積

圖 3-5 4-(Hydroxymethyl) benzoic acid 標準曲線

表 3-6 4-carboxybenzaldehyde 濃度與面積

重量 (g)	濃度(M)	稀釋 20 倍濃度 (mM)	面積
0	0	0	0
0.0097	0.001154	0.057688	157425
0.0277	0.003295	0.164738	439636
0.0456	0.005424	0.271194	695172
0.0669	0.007957	0.397869	1068113

圖 3-6 4-carboxybenzaldehyde 標準曲線

表 3-7 p-Toluic acid 濃度與面積

重量 (g)	濃度(M)	稀釋 20 倍濃度 (mM)	面積
0	0	0	0
0.0266	0.003489	0.17444	110641
0.0564	0.007397	0.369865	227365
0.0883	0.011581	0.579062	355066
0.1187	0.015568	0.778422	475522

3-5 熱場發射掃描式電子顯微鏡(TFSEM) 掃描式電子顯微鏡包括兩部份:

一為提供並聚集電子於樣品上產生訊息的主體,包含電子槍、電磁透鏡、樣品室及真空系統;二為顯像系統。

電子槍所產生的電子束,經過電磁透鏡聚成極小的電子束後,照 射於樣品上後形成作用,並在不同層面釋放歐傑電子、二次電子、背 向散射電子及 X 射線。電子束撞擊樣品後,產生的訊號由偵測器接 收,並經轉換放大後顯示於螢光幕上,即可顯像以及元素分析光譜圖 (Spectrum)。

而場發射式電子槍則比一般電子槍所使用之? 燈絲和六硼化鑭 燈絲的亮度又分別高出 10 100 倍,同時電子能量散佈僅為 0.2 0.3 eV,所以目前市售的高解析度掃描式顯微鏡都是採用場發式電子槍。

熱場發式電子槍是在 1800K 溫度下操作,避免了大部份的氣體 分子吸附在針尖表面,所以免除了針尖 flashing 的需要。熱式能維持 較佳的發射電流穩定度,並能在較差的真空度下(10⁻⁹ torr)操作。 雖然亮度與冷式相類似,但其電子能量散佈卻比冷式大 3 5 倍,影 像解析度較差,通常較不常使用。本實驗 TFSEM 所用儀器之機型為 JOEL TEM-2100。 3-6 X 射線繞射實驗(XRD)

X 射線是定義為短波長的電磁波,它乃由於高能量電子經過減速 作用或是電子在原子內層軌域發生電子躍遷而產生的。X 光波長範圍 大約在 10⁻⁵ A 100 A 左右,然而用於 X 射線光譜學的 X 射線波長範 圍則大約 0.1 A 25 A。X 射線繞射與其他種的電磁輻射相似,X 輻 射的電向量與被其穿過物質的電子間,因交互作用而造成散射。當 X 射線被晶體內有規則的環境所散射時,散射的光線間會發生建設性或 破壞性干涉,因為散射中心之間的距離與輻射波長大小約在同一等 級,結果產生繞射。

X 射線繞射實驗是用來判斷結晶物質的組成及結構。一般具有結 晶構造的化合物在 X 射線繞射圖上有特定的波峰出現,因此許多化合 物可直接經由繞射圖形與參考圖形的對照來確認其結構。X 射線繞射 也可以用來做定量的分析,用以決定樣品某一特定相所佔的大約比 例,不過其儀器須經校正程序。

樣品若為粉末狀,通常取適量置於載具裡,利用玻璃片將樣品刮 平均匀放入儀器中分析,若是高分子亦可先熱壓成片之後置入載具中 分析。

本實驗中所使用 X 光射線光源為銅靶的 K 射線,測量時電壓與 電流為 40kv 與 30mA。XRD 所用儀器之機型為 Shimazu XRD-6000。
3-7 表面積與孔洞分析實驗(BET)^[13]

3-7.1 BET 表面積之測定原理

觸媒的性能與其表面積之大小和孔徑度的分佈有密切的關係,因 為觸媒表面直接接觸到反應物氣體,所以表面積的大小控制了觸媒的 活性,而孔洞大小和孔洞的形式控制其選擇性。標準特性分析包含總 表面積的測定及孔徑大小分佈的測定。總表面包含觸媒的內表面積與 外表面積,藉由 Brunauer-Emmett-Teller(BET)方法來測量。而孔徑 的大小定則藉由不等量氮氣吸附觸媒的孔洞中,再分別以氦氣填充, 由此可得出吸附前後所吸附上去的量,再利用 BJH (Barrett-Joyner-Halenda)吸附法,可得出孔徑的大小分佈。

藉由氣體的物理吸附來測定表面積,表面積是由氣體的分子數以 單層覆蓋於固體表面而決定。由測定氣體體積或氣體重量計算單層的 吸附氣體分子數目進而求出固體的表面積。等溫線是表示氣體在一固 定溫度下的吸附量,在固體上達到一個平衡。通常吸附曲線可分為六 種形式,如圖 3-8:

圖 3-8 吸附曲線的形式

- (1) Type I:又稱作 Langmuir-type 等溫曲線,通常發生在具有微小孔 洞(micropore)的多孔性固體中。在相對壓力值遠小於1時,所 吸附之氣體便已將所有孔洞填滿。
- (2) Type II:又稱作 S-type 等溫曲線,通常發生在非多孔性(nonporous) 和大孔隙(macroporous)物質。曲線圖中的轉彎點 B,一般認為 是單層吸附已經完成,開始轉往多層吸附。
- (3) Type III:此類吸附曲線呈下凹形,發生於氣體分子與固體間之吸 附力遠小於氣體分子間的作用力時,會有此類型的圖型,且通常 在單層吸附尚未完成前就開始多層吸附。
- (4) Type IV:多發生於多孔性物質。在低相對壓力時圖形和 Type II 相似。但隨著壓力上升吸附劑開始在孔洞中凝結而發生毛細現象 (capillary condensation),造成吸附量驟劇增。其脫附曲線常具有 遲滯現象(hysteresis),為典型的中孔洞物質之吸附曲線。
- (5) Type V: 其低分壓區類似 Type III, 高分壓則有毛細現象。此類吸附曲線較為少見。
- (6) Type VI:此類型的吸附行為多發生在具有規則且均勻的非孔洞物 質,會發生多重吸附,此類吸附曲線亦相當少見。

典型的中孔洞物質其吸附等溫線主要有兩個特徵,一個是受毛細現象的影響,而使得在某一段分壓範圍時吸附量急遽上升;另一個則

是遲滯現象發生,亦即吸脫附曲線中,吸附與脫附所走的路徑不一樣,在特定分壓下吸附量總是比脫附量來的高。而遲滯現象的形狀則 會受孔洞結構的不同而有所影響,因此常被用來說明孔洞的大小和形 狀。

根據 IUPAC 的報告,遲滯現象的型態可分為四類,如圖 3-9。 H1 的吸附曲線跟脫附曲線幾乎垂直且互相平行,主要是發生在具有 規則球體陣列間的孔或是具規則圓柱孔的物質,被吸附物在吸附與脫 附的行為有著較大的差異。H2 則是認定為具有墨水瓶孔(ink bottle pores)之物質。H3 通常出現在粒子以平版狀排列造成的狹縫型孔隙 (slit-like shaped)。H4 的型態和 H3 相似,由平版型孔隙所造成。而 在高分壓相異行為則是因為 H4 平版孔隙較 H3 窄的緣故。

Brunauer、Emmett 及 Teller (BET)吸附理論為 Langmuir 吸附理 論的延伸,可用以計算非孔洞性固體表面之多層吸附現象。利用不同 吸附分子層中氣體分子蒸發及冷凝速率之平衡,可導出 BET 吸附方 程式。此理論係假設氣體的吸附熱與表面分子的覆蓋率無關。其吸附 方程式為:

$$\frac{P}{V(P_0 - P)} \equiv \frac{1}{V_m C} + \frac{C - 1}{V_m C} \times \frac{P}{P_0}$$

其中, P_0 為吸附氣體的飽和蒸氣壓, V_m 為單一吸附層的容積, P

為平衡壓力, V 為吸附氣體的總體積, C 為常數,此常數可由吸附熱 (Hi)和氣體凝結(Hc)來算得。以 $\frac{P}{V(P_0 - P)}$ 對 $\frac{P}{P_0}$ 之作圖應 該是一條直線,而斜率是 $\frac{C-1}{V_mC}$,截距為 $\frac{1}{V_mC}$,即可求出 V_m,相對 壓力值有正確範圍是介於 0.05 0.35 之間。在高的相對壓力下,BET 方程式是不正確的因為毛細管凝結的效應關係,當 $\frac{P}{P_0}$ 低於 0.05 時, 吸附氣體的量是太小以至於偵測不到充分的正確值。

若氣體吸附僅限定於 n 個分子層 (n 與孔隙大小有關),則其方 程式為:

$$V = \frac{V_m C}{1 - x} \times \frac{1 - (n + 1)x^n + nx^{n+1}}{1 + (C - 1)x - Cx^{n+1}}$$

其中, $x = \frac{P}{P_0}$, 當n = 1時, 此公式即成為 Langmuir 吸附方程 式; 而當n =時,此式即為 BET 吸附方程式

Relative Pressure

圖 3-9 遅滯現象的型態

3-7.2 BET 表面積及孔徑大小之測定實驗

活性碳載體之表面積測定利用 BET 計算在液態氮溫度下之氮分 子物理吸附量。取約 0.200 0.500 g 之樣本置於石英管中以專用管塞 塞住,為防止粉末樣品流入儀器內。將石英管置於除氣(Degases) 處抽真空,並以加熱包加熱,以去除表面水分及不純物。完成除氣 (Degases)步驟後,將樣品稱重並與石英管直接連接至樣品分析處。 使石英管慢慢浸入於液態氮中,使其吸附氮氣於樣品上呈飽和狀態, 再於室溫下量測脫附之氮氣量。以氮氣在室溫脫附量及氮氣之單分子 面積(約0.162nm²)計算觸媒之表面積,亦可進行實驗計算其孔徑大 小及體積。由於表面積的大小會影響觸媒活性成分的分佈,進而對反 應產量有直接的影響;而孔徑分佈及大小會影響反應物吸附速率及擴 散速率、觸媒的催化特性,但是並不一定與觸媒的活性與生成物產量 成正比,所以在此觸媒的表面積只當作輔助其他分析的工具。

BET 所用儀器之機型為 Micrometerics ASAP 2020。

3-8 電子顯微鏡 (Transmission Electron Microscopy)

穿透式電子顯微鏡 (Transmission Electron Microscopy) 是利 用電子束照射樣品,若樣品含有多電子的原子,則電子無法穿過樣 品,在偵測器上顯示黑點;若電子束可以穿透或較輕的原子,在偵測 器上顯示亮點,這種不同亮度與對比的影像即代表了樣品的結構與形 狀。 3-9 程溫還原(TPR)^[14]

TPR 是對觸媒本身對於氧鍵結的強弱作測試 , 還原是製備金屬觸 媒中非常重要的活化步驟,還原溫度對於觸媒的金屬分散性有絕對的 影響,因為當觸媒在低溫還原時,會引起觸媒的不完全還原;而在高 溫還原時,會導致觸媒燒結,降低催化效果。在程溫還原過程中,取 0.1g Pd@SiQ 觸媒置於 U 形管中,每分鐘升高 10, U 形管中通入氫 氣(30ml/min)再流經熱傳導偵測器(TCD)再由積分器顯示其結果。因 為 TCD 是利用惠斯登電橋(Wheatstone bridge)來偵測不同溫度下, 還原氣流中 品的變化情形,不同的氣體有其不同的熱傳導係數,當氣 體流經熱電阻絲時可將其電阻絲上的熱帶走;故藉其失熱速率不同, 而紀錄器上會顯示不同結果,當電阻絲的失熱速率降低時,表示 Ha i减少, (H₂+Pd0 H₂0+Pd), 積分器會顯現出一個正向的波峰; 反之 若積分器上顯現出的是一個負向波峰則表示氣已從鈀中脫離出來。在 通入氫氣時,我們基於安全的考量,在H2中加入氫氣(Ar)稀釋成 10%H₂/90%Ar 還原氣體。 本實驗裝置如圖 3-10 所示。

3-10 感應耦合電漿原子發射光譜分析法(ICP-AES)

感應耦合電漿原子發射光譜分析法,乃是以感應耦合電漿(ICP) 作為能量來源,以揮發、原子化、游離及激發樣品,進行原子發光光 譜分析的儀器。利用每一個元素的原子能階各不相同,發出之線狀光 譜各有特性,由特性光譜來判定光譜的元素為何,達到定性的目的。 且由光譜線的強度,經由檢量線可導出未知試樣的濃度,做定量分 析。因此可提供樣品中各種元素的主成分、副成分及微量成分的分析 服務。

ICP-AES 可分析的元素已達 80 餘種,均可精確定量,相較於其 他分析法,可減少繁複的樣品前處理步驟,如萃取、濃縮等,為一優 秀多元素分析系統。ICP-AES 可分為兩種,一為連續式儀器可在短時 間連續測定樣品中各元素之濃度,另一種為同時式儀器可同時測定樣 品中多種元素之濃度。

本實驗觸媒載 Pd@SiO2 為粉末固體,因此需先使用 HF 將其溶 解成液體才能測定樣品中元素之濃度。本實驗是在清華大學國科會貴 重儀器中心完成,所用儀器之型號為德國 Kontron, S-35。

3-11 金屬分散度測定^[15]

金屬顆粒在觸媒上分散的情形,對於催化效果往往是很重要的關鍵,而測量金屬分散度最常用的極為化學吸附法。過程中必須利用氫氣將金屬離子還原成活性狀態(activated)的金屬顆粒,活化後的金屬原子常能吸附一些氣體(如氫氣、氧氣、一氧化碳等),這種過程就稱為化學吸附。由化學吸附的係數和氣體測得的消耗量,可算出觸媒的金屬分散度。操作步驟如下:

(1)取 0.1 克的觸媒,裝置在 U 形管中,載流氣體為氦氣(30ml / min),
升溫至 150 ,恆溫 1 小時。

(2)拆下U形管,用橡皮墊塞住兩端,秤取精確的觸媒重量,才能換 算觸媒的金屬含量。

(3)裝回 U 形管,載流氣體改為氫氣(30ml / min),同時等待溫度回升
至 150 ,恆溫 1 小時進行還原。

(4)將氫氣改換回氦氣,氣體流速保持不變,等待一段時間除去物理 吸附的氫氣。將溫度降至室溫,開始以脈衝方式注入定量的一氧化碳 直到吸附飽和,吸附的量由 TCD 紀錄。

金屬分散度的計算方式如下:

本實驗金屬分散度測量,委託東海大學應用化學系柯安男老師實驗室代為檢測。

第四章 實驗結果與討論

本研究主要為 4-CBA 氫化反應在觸媒 Pd@SiO₂ 和 Pd@SiO₄ H₂,100)催化下,得到最佳的 PT 生成率反應條件。並探討(1)反應溫度、 (2)加熱過程、(3)反應時間 對觸媒 Pd@SiO₂ 和 Pd@SiO₂ (H₂,100) 催化能力的影響情形。

本章內容包括下列各項:

- (1) 改變變因為反應溫度
- (2) 改變變因為加熱過程
- (3) 改變變因為反應時間
- (4) 熱場發掃描式電子顯微鏡(TFSEM)之分析
- (5) 穿透式電子顯微鏡(TEM)之分析
- (6) X 光繞射分析儀(XRD)之分析
- (7) 表面積與孔洞測定儀 (BET) 之分析
- (8) 觸媒之金屬含量與分散度
- (9) 反應級數及活化能
- (10) 程溫還原結果

根據實驗所得到的結果,推斷以 Pd@SiO₂和 Pd@SiO₂(H₂,100) 為觸媒,氫化 4-CBA 的反應過程中,其反應步驟如下

A B C

A 為反應物 4-CBA, B 為中間產物, C 為目標產物 PT。

由反應後所得到的產物經由 HPLC 的分析之後,發現中間產物 B 的波峰出現時間與 4-(Hydroxymethyl) benzoic acid 出現時間相 同;且各個反應後所得到的 4-(Hydroxymethyl) benzoic acid 產量 可跟反應物 4-CBA、目標產物 PT 達莫耳平衡,所以推斷中間產物為 4-(Hydroxymethyl) benzoic acid⁽^{附課-)}。

4-1 改變反應溫度對 PT 生成率與 4-CBA 轉化率之影響

探討溫度對 PT 生成率的影響,在不同的反應溫度條件下,其他 反應條件為 0.1g4-CBA, 0.0035g 觸媒 (Pd@SiO₂),50ml 二次去離子 水,氫氣壓力 200psi,攪拌速度 200rpm,反應時間 1 小時,結果如 表 4-1 及圖 4-1。

由 110 為起始溫度,逐漸升高反應溫度,PT 生成率隨著反應溫 度的升高而逐漸提升,在以 210 為反應溫度時,可以得到 99%以上 的 PT 生成率。之後隨著溫度的提高,PT 產率卻有下降的趨勢。造成 PT 生成率下降應該是副產物對甲基環己甲酸(MCHCA)的產生。

表 4-1 Pd@SiO2 不同反應溫度對 PT 生成率之影響

溫度()	4-CBA 殘留量	4-(Hydroxymethyl)	PT 生成率(%)
	(%)	benzoic acid 產率	
		(%)	
110	0.341215	33.95421	66.51113
120	0.486386	16.99151	83.57286
130	0.166947	11.46982	87.78003
140	0.1175	7.053961	94.755
150	0.253859	6.538235	91.80738
170	0.214492	8.767724	92.37129
190	0.204602	4.714025	95.17705
210	0.149323	1.628779	99.84464
230	0.204285	4.719624	95.77188

圖 4-1 Pd@SiO2 不同反應溫度對 PT 生成率之影響

將 Pd@SiO2 觸媒先以氫氣在 100 下還原 1 小時,產生新的觸媒 (Pd@SiO2 (H2,100))。

再以新觸媒 (Pd@SiO₂(H₂, 100)) 0.0035g, 0.1g 4-CBA , 50ml 二次去離子水,氫氣壓力 200psi,攪拌速度 200rpm,反應時間 1 小 時,在不同的反應溫度下參與反應。結果如表 4-2 及圖 4-2。

PT 生成率隨著反應溫度的升高而逐漸提升,在以 150~170 為反應溫度時,可以得到 99%以上的 PT 生成率。之後隨著溫度的提高, PT 產率也因有 MCHCA 的生成,而有下降的趨勢。 表 4-2 Pd@SiO2(H2,100) 不同反應溫度對 PT 生成率之影響

溫度()	4-CBA 殘留量	4-(Hydroxymethyl)	PT 生成率
	(%)	benzoic acid 產率	(%)
		(%)	
100	0.960125	47.67922	51.54536
110	0.602966	44.43256	54.99706
120	1.347395	45.52824	54.93247
130	0.217217	22.40802	78.96561
140	0.330375	22.7316	77.90257
150	0.115788	0.20215	99.62026
170	0.07959	0.21162	99.117
190	0.102412	1.239481	95.65433
210	0.126311	3.808571	94.31636
230	0.093791	1.648186	96.83175
250	0.097214	1.08299	94.2896
270	0.162572	0.479772	92.43989

表 4-3 及圖 4-3 為已商業化的 5% Pd/C 觸媒 0.0035g、0.1g 4-CBA、50ml 二次去離子水,氫氣壓力 200psi,攪拌速度 200rpm, 反應時間 1 小時,改變反應溫度條件下所得到的 PT 生產率趨勢圖^[18]。

表 4-3 Pd/C 不同反應溫度對 PT 生成率之影響

反應溫度()	PT 生成率(%)
200	53.74
220	66.95
240	78.30
250	79.06
260	86.96
270	95.46
280	86.71

圖 4-3 Pd/C 不同反應溫度對 PT 生成率之影響

圖 4-4 觸媒 Pd/C、Pd@SiO2、Pd@SiO2(H2,100) PT 生成率疊圖

圖 4-4 比較上述三種觸媒之 PT 生成率和溫度之關係。經過氫氣 鍛燒的 (Pd@SiO₂ (H₂,100)) 觸媒可以在較低的反應溫度 (150~170

)下得到 99%以上的 PT 生成率。自製的兩種觸媒(Pd@SiO₂, Pd@SiO₂ (H₂, 100))皆可在較低反應溫度下,達到和已商業化的 Pd/C 觸媒 同樣的氫化 4-CBA 效果。 4-2 加熱過程對 PT 生成率與 4-CBA 轉化率之影響

以只加熱到設定溫度即終止反應,其他反應條件為 0.1g 4-CBA, 0.0035g 觸媒 Pd@SiO₂,50mI 二次去離子水,氫氣壓力 200psi,攪拌 速度 200rpm 下,探討加熱過程對 PT 生成率的影響。結果如表 4-4 及 所示。

溫度()	4-CBA 殘	4-(Hydroxymethyl)	PT 生成率	加熱時間
	留量(%)	benzoic acid 產率	(%)	(min)
		(%)		
150	7.490343	66.05306	28.5149	12:47
170	6.359341	52.31025	42.06241	13:55
190	3.642046	50.79023	43.78016	16:21
210	0.553583	32.70419	67.41346	18:20
230	0.232115	16.5804	83.31506	21:48
250	0.310469	19.99641	82.45604	23:18
270	0.236362	9.090847	91.32435	27:05

表 4-4 加熱過程 PT 生成率 VS 溫度

以只加熱到設定溫度即終止反應,其他反應條件為 0.1g 4-CBA, 0.0035g 觸媒 Pd@SiO₂(H₂,100), 50ml 二次去離子水,氫氣壓力 200psi,攪拌速度 200rpm 下,探討加熱過程對 PT 生成率的影響。結 果如表 4-5 所示。

溫度()	4-CBA 殘留量	4-(Hydroxymethyl)	PT 生成率(%)
	(%)	benzoic acid 產率	
		(%)	
150	26.52694	63.76707	12.74355
170	20.07301	67.71492	13.73915
190	18.74463	68.1057	14.74166
210	12.29011	66.28243	19.52875
230	8.233567	60.11835	26.3777
250	0.55447	54.85187	40.91944
270	0.616848	49.92103	47.37821

表 4-5 加熱過程 PT 生成率 VS 溫度

圖 4-5~4-7 比較上述兩種觸媒之 PT 生成率和升溫過程之關係。 發現觸媒 Pd@SiO2在加溫過程中,催化 4-CBA 氫化反應的能力優於觸 媒 Pd@SiO2(H2,100),具有反應物 4-CBA 轉化率高、中間產物 4-(Hydroxymethyl) benzoic acid 在升溫過程中易轉化成 PT, PT 選 擇率高的特性。

圖 4-5 加熱過程對 4-CBA 殘留量之影響

圖 4-6 加熱過程對 4-(Hydroxymethyl) benzoic acid 產率之影響

圖 4-7 加熱過程對 PT 生成率之影響

4-3 反應時間對 PT 產率與 4-CBA 轉化率之影響

探討反應時間對 PT 生成率的影響,在反應時間為變因的情況 下,反應條件為 0.1g4-CBA, 0.0035g 觸媒 (Pd@SiO₂), 50ml 二次去 離子水,反應器加熱到 150 再通入氫氣至 200psi,攪拌速度 200rpm。結果如表 4-6 所示。

時間(hr)	4-CBA 殘留量	4-(Hydroxymethyl)	PT 產率(%)
	(%)	(%) benzoic acid 產率	
		(%)	
1	0.595042	52.07845	47.02555
2	0.449744	50.65005	50.09544
3	0.401249	19.68642	80.14555
4	0.313575	26.59753	74.50938
5	0.345145	26.0597	75.69815
6	0.383435	27.1494	73.43249

表 4-6 在 150 下,反應時間對 PT 生成率之影響

【註:溫度 150 ,水蒸氣分壓大約為 70psi】

以氫氣鍛燒過的 0.0035g 觸媒 (Pd@SiO₂ (H₂,100)), 在同樣反 應條件下(0.1g 4-CBA, 50ml 二次去離子水,反應器加熱到 150 再 通入氫氣至 200psi ,攪拌速度 200rpm),反應時間為變因下進行反 應。結果如表 4-7 所示。

時間(hr)	4-CBA 殘留量	4-(Hydroxymethyl)	PT 產率(%)
	(%)	benzoic acid 產率	
		(%)	
1	0.153063	79.03296	21.10854
2	0.76836	72.16278	29.18186
3	0.317125	48.06567	57.1806
4	0.364163	34.57177	70.04073
5	0.289993	25.64211	75.56597
6	0.304637	15.6373	83.85315

表 4-7 在 150 下,反應時間對 PT 生成率之影響

【註:溫度 150 ,水蒸氣分壓大約為 70psi】

圖 4-8 比較上述兩種觸媒之 PT 生成率和反應時間之關係。經過 氫氣鍛燒的觸媒 (Pd@SiO₂ (H₂,100)),隨著反應時間的增加, PT 的產量隨著增加。而未經過氫氣鍛燒的觸媒 Pd@SiO₂在反應時間超過 4 小時候, PT 產量幾乎不再變化。恆溫過程對於觸媒 (Pd@SiO₂ (H₂,100

)) 將中間產物 4-(Hydroxymethyl) benzoic acid 轉化成 PT 有重 要影響。

圖 4-8 恆溫過程對 PT 生成率之影響

4-4 熱場發掃描式電子顯微鏡(TFSEM)之分析

圖 4-9、圖 4-11、圖 4-13、圖 4-15、圖 4-17、圖 4-19 為尚未經 過空氣鍛燒的 Pd@SiO2觸媒在不同倍率下所照之 TFSEM 圖片;圖 4-10、圖 4-12、圖 4-14、圖 4-16、圖 4-18、圖 4-20 為經過空氣在 400 、鍛燒 3 小時後所得到的 Pd@SiO2觸媒在不同倍率下所照之 TFSEM 圖片。由較高倍率的圖片可以看出 Pd@SiO2觸媒形狀近似圓球 形,顆粒大小也頗均勻。Pd@SiO2 觸媒經過空氣鍛燒,去除了形狀呈 不規則狀的塊狀雜質,其可能為觸媒製作過程中所殘留的 PVP 高分 子。空氣鍛燒過後,減低了觸媒顆粒間群聚的現象,觸媒粒子團之間 的空隙變得更大,有助於提高催化氫化反應的能力。

圖 4-9 Pd@SiO2觸媒之 TFSEM 圖(水00)

圖 4-10 Pd@SiO₂ (air) 觸媒之 TFSEM 圖(水50)

圖 4-11 Pd@SiO₂ (2500) 觸媒之 TFSEM 圖(2,500)

圖 4-12 Pd@SiO₂ (air) 觸媒之 TFSEM 圖(2,500)

圖 4-13 Pd@Si02 觸媒之 TFSEM 圖(*8000)

圖 4-14 Pd@SiO₂ (air) 觸媒之 TFSEM 圖(%,000)

圖 4-15 Pd@SiO₂觸媒之 TFSEM 圖(★14,000)

圖 4-16 Pd@SiO2 (air) 觸媒之 TFSEM 圖(14,000)

圖 4-17 Pd@SiO2觸媒之 TFSEM 圖(30,000)

圖 4-18 Pd@SiO₂ (air) 觸媒之 TFSEM 圖(30,000)

圖 4-19 Pd@SiO2 觸媒之 TFSEM 圖(*40,000)

圖 4-20 Pd@SiO2 (air) 觸媒之 TFSEM 圖(*40,000)

4-5 穿透式電子顯微鏡(TEM)之分析

圖 4-21、圖 4-22 為 Pd@SiO2 觸媒在不同倍率下所照之 TEM 圖, 從圖可以看出鈀金屬以極小顆粒形式分部於以二氧化矽為外殼的圓 形球體內。

圖 4-21 Pd@SiO2觸媒之 TEM 圖 (20000 倍)

圖 4-22 Pd@SiO₂觸媒之 TEM 圖 (★00000 倍)

4-6 X 光繞射分析儀 (XRD) 之分析

本實驗使用之 X 光射線光源為銅靶的 K 射線,測量所使用的電 壓為 40kV 與 30mA,粗掃範圍:10 ~80°,參數設定:scane rate: 6 %min, sampling interval=0.02 進行分析。

由圖 4-23~4-25 分別為未氫化及分別在 50 、100 下氫化之觸 媒所掃描得到的 XRD 圖譜,可得其每個繞射峰的半波峰寬及所在之 2

角。氫化過的觸媒, Pd 繞射峰位置出現在 2 =40 °(111)、46° (200)、68°(220)。未氫化的觸媒, 鈀以氧化態 PdO 形式存在, PdO 繞射峰位置出現在 2 =33°、42°、55°、60°、71°。

表 4-8 為利用 Scherrer equation 方程式求得結晶顆粒之晶格 大小。

Scherrer equation: $D = \frac{K}{\cos k}$

其中 D: 晶格大小(A)

K: Scherrer's number = 0.94

: 半波峰寬, 單位弧度

:X-ray 波長, 值為 0.154nm

:布拉格繞射角

媒媒種類	40 °(A)	46 °(A)	68 °(A)
Pd@SiO ₂	74.86232	50.76821	51.1522
(H ₂ ,50)			
Pd@SiO ₂	93.9401	80.6305	63.50737
(H ₂ ,100)			

表 4-8 不同觸媒之晶格大小

圖 4-23 Pd@SiO2 觸媒之 XRD 分析圖譜

圖 4-24 Pd@SiO2(H2,50) 觸媒之 XRD 分析圖譜

4-7 表面積與孔洞測定儀 (BET) 之分析

藉由 MICROMERITICS 的 ASAP 2020 表面積與孔洞分析儀精準的分析, 可輕易分析出經空氣在溫度 400 鍛燒 3 小時後, Pd@SiO2觸媒表面狀態的情形。

表 4-9 觸媒 Pd@SiO2比表面積、孔洞大小分析

觸媒種類	比表面積(m²/g)	平均孔洞大小(A)
Pd@SiO ₂	104.1811	26.0094

圖 4-27 Pd@SiO2 觸媒之孔徑分布

【註:pore size distribution 以氮氣為分析測量氣體有其限制, 當 pore diameter > 200 A 為 insignificant】

4-8 觸媒之金屬含量與分散度

Pd@SiO2 觸媒中金屬鈀的重量百分比是以感應耦合電漿原子發 射光譜分析儀(Inductively Coupled Plasma Atomic Emission Spectroscopy, ICP-AES)所測得。Pd@SiO2觸媒金屬含量與分散度如 表 4-8.1 所示。

觸媒種類	金屬鈀的重量百分比	金屬分散度
	(wt%)	(%)
Pd@SiO ₂	7.22	60.98
(100 氫化)		
5%Pd/C	5	30.99

表 4-10 觸媒之金屬含量與分散度

100 氢化過的觸媒 Pd@SiO₂(H₂,100) 有較佳的金屬分散度, 而金屬顆粒在觸媒上分散的情形,對於催化效果往往是很重要的關 鍵,分散度的測量結果符合 4-CBA 氫化實驗結果, Pd@SiO₂核殼觸媒 在 4-CBA 的氫化反應催化能力上優於 Pd/C 觸媒。

4-9 反應級數及活化能

以下四組實驗條件為探討觸媒 Pd@SiO2催化 4-CBA 氫化反應之反應級數及活化能:

1.觸媒 Pd@SiO 0.0035 克,4-CBA 0.1 克,氫氣 50 psi,改變反應 溫度(T=0 、30)

a.固定反應溫度 T=0 , 改變反應時間(1 小時、2 小時、3 小時)

b.固定反應溫度 T=30 ,改變反應時間(1 小時、2 小時、3 小時) 2.觸媒(Pd@SiO(H₂,100))0.0035 克,4-CBA 0.1 克,氫氣 50 psi, 改變反應溫度(T=0 、30)

c.固定反應溫度 T=0 , 改變反應時間(1 小時、2 小時、3 小時)

d.固定反應溫度 T=30 , 改變反應時間(1 小時、2 小時、3 小時)

對一批式反應器(batch reactor),其反應設計方程式可寫成如下: - r_A=-dC_A/dt

反應速率可表示為:-r_A=kC_A

兩式合併: -dC_A/dt= kC_A , 假設 =1 (一級反應)

 $= > \ln(C_{A0}/C_A) = kt$

 $X C_{A} = C_{A0}(1 - X_{A})$

 $= > -\ln(1-X_{A})=kt$

由上式可知,若反應為一級,則以-In(1-X₄) vs.t 做圖,可得斜率 為 k 之直線。

以-ln(1-X_A) vs. t 做圖, 如圖 4-28、圖 4-30 分別為 a、b、c、 d 實驗之數據,這些數據之-ln(1-X_A) vs. t 皆可得一直線, 因此就本 系統而言, 顯示其為一級反應。

由得到之反應動力式,可進一步求得活化能,根據阿瑞尼斯方程式(Arrhenius equation):

- $k = A e^{(-Ea/RT)}$
- = > Ink=InA+(-Ea/RT)

其中 k: 速率常數

- A:頻率因子
- Ea:活化能
- R: 氣體常數=8.314J/mole K
- T:溫度(K)

由圖 4-29 可知以 Pd@SiO2觸媒催化 4-CBA 氫化反應,

Ea=3260.8 x8.314=27110.29 (J/mole)。

由圖 4-31 可知以 Pd@SiQ(H₂,100)觸媒催化 4-CBA 氫化反應, Ea=4101.3 x8.314=34098.21(J/mole)。

時間(hr)	4-CBA 殘留量(%)	- ln(1-x)
1	86.27421	0.147639
2	76.45824	0.268425
3	69.29549	0.36679

表 4-11 觸媒 Pd@SiO₂,0 ,-In(1-x) vs. t

表 4-12 觸媒 Pd@SiO₂, 30 , -In(1-x) vs. t

時間(hr)	4-CBA 殘留量(%)	- In(1-x)
1	66.44558	0.408787
2	45.67472	0.783625
3	27.79354	1.280367

圖 4-28 觸媒 Pd@SiO2, -In(1-x) vs. t 作圖求反應級數

溫度(K)	k
273.15	0.1275
303.15	0.4155

表 4-13 觸媒 Pd@SiO2, 溫度(K) vs. k

圖 4-29 觸媒 Pd@SiO2, Ink vs. 1/T 作圖求反應活化能

時間(hr)	4-CBA 殘留量(%)	- ln(1-x)
1	74.95024	0.288346
2	65.37543	0.425024
3	59.53449	0.518614

表 4-14 觸媒 Pd@SiO2 (H2,100),0 ,-In(1-x) vs. t

表 4-15 觸媒 Pd@SiO₂ (H₂,100),30 ,-In(1-x) vs. t

時間(hr)	4-CBA 殘留量(%)	- ln(1-x)
1	37.55568	0.979346
2	17.04132	1.769529
3	8.531199	2.46144

圖 4-30 觸媒 Pd@SiO2(H2,100),-In(1-x) vs.t 作圖求反應級數

溫度(K)	k
273.15	0.1924
303.15	0.8502

表 4-16 觸媒 Pd@SiO₂(H₂,100), 溫度(K) vs. k

圖 4-31 觸媒 Pd@SiO2 (H2,100), Ink vs. 1/T 作圖求反應活化能

4-10 程溫還原結果

在觸媒製作過程中,以空氣在溫度 400 下,鍛燒 3 小時,以去除包覆在鈀金屬粒子外面的 PVP 高分子,此步驟會使鈀金屬氧化,形成氧化鈀(PdO),空氣鍛燒後的 Pd@SiO₂觸媒在程溫還原的反應中,從 TPR 圖譜發現觸媒約從 80 開始還原,在 130 達到還原高峰。符合 文獻中鈀金屬還原溫度約在 80 ⁽²⁰⁾。

第五章 結論與建議

5-1 結論

- 1. 觸媒 Pd@SiO₂ 0.0035 克、在 210 、氫氣壓力 200psi、反應時 間 1 小時條件下,有最佳的 PT 生成率。
- 7. 觸媒 Pd@SiO2(H2,100) 0.0035 克、在 150~170 、氫氣壓力
 200psi、反應時間 1 小時條件下,有最佳的 PT 生成率。
- 3. 在過高的溫度條件下,會有副產物 MCHCA 生成,影響 PT 產量。

5-2 建議

- 對於核殼觸媒中金屬含量及活性金屬種類可加以改變,對其氫化 能力再加以探討。
- 7. 觸媒製作過程混參其他金屬(如:鉑、銅),嘗試是否能得到更好的 催化效果。
- 3. 改變製作過程中高分子 PVP 濃度,觀察其對鈀金屬粒徑及觸媒催 化能力的影響
- 4. 改變製作過程中 TEOS 濃度, 觀察其對外殼厚度及觸媒催化能力的 影響。
- 5. 檢測觸媒 Pd@SiO2和觸媒 Pd@SiO2(H2,100)的使用壽命。

第六章 參考文獻

- 1. Keith, "Process for producing palladium on carbon catalysts", US:3138560, ENGELHARD IND INC, 1964.
- 第一銀行徵信室,石油化工原料製造業-純對苯二甲酸(PTA)製造業,一銀產經資訊第438期,90年9月。
- 3. 環保署空保處,「某石化廠廢水處理場現勘輔導記錄」,行政院環 保署,民國 88 年 1 月。
- 4. Sheehan R.J. Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH:Germany,2002.
- 5. Basudeb Saha, James H. Espenson "Combined acid additives and the MC catalyst for the autoxidation of p-xylene to terephthalic acid" Joural of Molecular Catalysis A: Chemical, 2005, 241:33-38.
- 6. Sung Hwa Jhung, Anatoly V. Romanenko, Ki Hwa Lee, Youn-Seok PARK, Ella M. Moroz, Vladmir A. Likholov "Carbon-supported palladium-ruthenium catalyst for hydropurification of terephthalic acid" Applied Catalyst A:Gerenal, 2002,225:131-139.

7 賴岳生, 奈米銀/鈀微粒之化學合成與其特性分析之研究 2003 8 陳世文, "奈米非晶態 CoNiB 雙金屬觸媒的製備與氫化探討" 國 立中央大學化學工程與材料工程研究所碩士論文 2005

9 王志銘, "以 TiO2-ZrO2 為主的觸媒進行正庚烷的轉化反應研究" 清華大學化學工程學系碩士論文 2004

10.林彥宏, "Fe304-Si02 奈米核-殼結構粒子的製備與磁性研究"

東海大學物理學系碩士論文 2003

11.伍安義,"以化學還原法合成奈米銀-銅粒子及其特性分析研究" 清華大學化學工程學系碩士論文 2005

12.林孟萱, "Ag-SrTiO₃ 奈米核-殼結構粒子之研究與製備"中原 大學化學系碩士學位論文 2003

13. 馬守青, "Pd/C 觸媒催化對羧基苯甲醛氫化反應之研究" 東海 大學化學工程研究所論文 2007

14. 王景澄, " 鈀-銅雙金屬觸媒之酸處理效應及其對乙炔選擇性氫化活性之影響" 逢甲大學化學工程學系碩士論文 2002

15. 饒光宇 , " 奈米鎳觸媒之製備、鑑定與氫化反應 " 東海大學 應用化學研究所論文 2005

96

附錄:

一、中間產物 4-(Hydroxymethyl) benzoic acid 的結構式如下:

__он о но