
 III

Abstract

An Intelligent Agent to Support Personalized Service

A lifestyle website is an electronic commerce website of providing

daily necessities and services. But nowadays, most of them are lack of

automatically notifying services and personalized learning mechanism.

Therefore, users have to login the website and search suitable services in

a large database. This is really a time-wasted and inefficient work.

This thesis proposed an extensible structure of the intelligent agent

for the lifestyle website. We integrate three techniques to build this

structure: (1) Data Cube structure, (2) Bit-Mapping technique, and (3)

FP-Tree algorithm. With these techniques, the intelligent agent will not

only analyze the user’s shopping habits, but automatically notify users of

suitable services before the habits happen. With this agent, the lifestyle

website can mine more potential customers and let the user feel more

convenient.

Keywords: E-Commerce, Partial Periodic Pattern, Intelligent Agent,

Push Services

 IV

中文摘要

個人化服務支援之智慧型代理人

「生活網」是一種以提供日常必需品服務為主的電子商務網站。

但是，現今大部分的「生活網」都缺乏所謂的主動服務通知跟個人化

學習機制。因此，使用者必須登入網站，並且在眾多的資料裡，找出

符合需求的服務，這實在是相當浪費時間，並且沒效率的服務方式。

本論文針對「生活網」，提出一個擴充性相當高的智慧型代理人

架構。我們整合了三種技術來建造此架構：(1)資料立方體技術(Data

Cube structure)，(2)位元比對技術(Bit-Mapping technique)，以及(3)

FP-Tree 演算法。藉由這些技術，此智慧型代理人除了可以主動對使

用者進行通知外，還可以進一步蒐集使用者的消費習慣，並在習慣發

生前，預先通知使用者適當的服務。藉由此代理人，「生活網」便可

以挖掘出更多的潛在顧客並且讓使用者感到更加的便利。

關鍵字：電子商務，部分週期樣版分析，智慧型代理人，主動服務

 V

Contents

Abstract..III

中文摘要 ...IV

Contents ..V

Figures ... VII

Chapter 1 Introduction ... 1

Chapter 2 Background.. 4

2.1 A Multidimensional Data Model – Data Cube Structure......... 4

2.2 Mining Association Rules in Large Database......................... 8

2.3 The Apriori Algorithm: Finding Frequent Itemsets Using

Candidate Generation .. 9

2.4 Frequent Pattern Tree: Finding Frequent Patterns without

candidate generation.. 14

2.5 Mining Time-Series and Sequence Data.............................. 19

2.6 The Intelligent Agent ... 21

Chapter 3 Structure of the System... 24

Chapter 4 Vertical Habits (VH) and Horizontal Habits (HH)................ 27

Chapter 5 Mining Vertical Habits – Using Data Cube-based Structure .. 28

Chapter 6 Mining Horizontal Habits–Using FP-Tree Algorithm........... 33

Chapter 7 Tool Simulation.. 38

Chapter 8 Discussion ... 42

Chapter 9 Conclusion and Future Work ... 43

Reference.. 45

 VI

Tables

Table 1: Transactional data for an AllElectronics branch...................... 10

Table 2: Mining the FP-Tree by creating conditional (sub)pattern bases 18

Table 3: An example of vertical habits .. 33

Table 4: The frequent behaviors of vertical habits................................ 34

Table 5: Mining of all-patterns by creating conditional (sub) - pattern

bases.. 35

Table 6: Cyclic Patterns.. 35

 VII

Figures

Figure 1: A 3-D view of sales data for AllElectronics, according to the

dimensions time, item, and location. The measure displayed is

dollars_sold (in thousands).. 5

Figure 2: A 3-D cube representation of the data in Figure1..................... 6

Figure 3: A 4-D data cube representation of sales data 7

Figure 4: Generation of candidate itemsets and frequent itemsets, where

the minimum support count is 2 ...11

Figure 5: An FP-Tree that registers compressed, frequent pattern

information .. 16

Figure 6: The structure of the system.. 24

Figure 7: Template Cube.. 29

Figure 8: Mining Cube... 31

Figure 9: Mining cube where period-index = All 32

Figure 10: The FP-Tree in Table 4 .. 34

Figure 11: A template structure of a RSS2.0 seed................................. 36

Figure 12: The snapshot of the tool - 1.. 38

Figure 13: The snapshot of the tool - 2.. 39

Figure 14: The snapshot of the tool - 3.. 39

Figure 15: The snapshot of the tool - 4.. 40

Figure 16: The snapshot of the tool - 5.. 40

Figure 17: The snapshot of the tool - 6.. 41

Figure 18: The structure of whole system in the future......................... 43

 1

Chapter 1 Introduction

A lifestyle website is an electronic commerce website providing

daily necessities and services. Nowadays, most of the famous lifestyle

websites in Taiwan are lack of the “Push” mechanism. Therefore, the user

must login the website, and search suitable services in such a large

system. This is really a time-wasted and inefficient work.

What is the “Push” mechanism? That is, automatically provide the

“right service” to the “right customer” in “right time.” Therefore, how to

collect user’s shopping habits and analyze it correctly and efficiently are

the key points to realize it.

This thesis proposed an intelligent agent for the lifestyle website.

The agent will record the user habits, and automatically notify users of

suitable services before the habits happen. For example, Laura has lunch

in the restaurant near her home at about 12:10 every noon. After the agent

records this habit, it will automatically login the lifestyle website and

collect the suitable services for Laura before this habit happens. In order

to realize it, the agent must retrieve the user’s basic shopping attributes

(including shopping time, location , and category) and analyze these

 2

attributes in a correct way.

Personal agents are computer programs that can learn users’ interests,

preferences, and habits and give them proactive, personalized assistance

with a computer application [1]. In other words, an agent must have the

ability to retrieve basic shopping attributes and translate them to shopping

habits in user’s shopping transaction list. The shopping habits we called

in this thesis, is a kind of Full Periodic Patterns and Partial Periodic

Patterns (see chapter 2). Both of two patterns belong to Time-Series

databases of data mining.

There are a lot of researches about data mining in Time-Series

databases [6][7][8][9][10]. Among them, an interesting research [13] is

similar to our approach. The author developed an Apriori-like algorithm

to mine imperfect partial periodic pattern. But the Apriori pruning in

mining partial periodicity may not be as effective as in mining association

rules [11]. We use a more effective approach, FP-Tree [4], to improve the

speed of mining. Furthermore, we also use FP-Tree to mine the relations

between shopping behaviors to improve the accuracy of predicting habits.

The remaining of the thesis is organized as follows. In chapter 2, we

 3

will describe the background of our techniques. In chapter 3, we

introduce the structure of our system. We list two kinds of habits in

chapter 4 and analyze them in chapter 5 and 6 respectively. And in order

to prove our research, we build up a tool to simulate it in chapter 7. In

chapter 8, we have a discussion for our ideas. Finally, we conclude our

study and introduce the future works in chapter 9.

 4

Chapter 2 Background

2.1 A Multidimensional Data Model – Data Cube Structure [5][13]

A data cube allows data to be modeled and viewed in multiple

dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with

respect to which an organization wants to keep records. For example [5],

AlEectronics may create a sales data warehouse in order to keep records

of the store’s sales with respect to the dimensions item, time, branch, and

location. These dimensions allow the store to keep track of things like

monthly sales of items, and the branches and locations at which the items

were sold. Each dimension may have a table associated with it, called a

dimension table, which further describes the dimension. For example, a

dimension table for item may contain the attributes item_name, brand,

and type. Dimension tables can be specified by users or experts, or

automatically generated and adjusted based on data distributions.

A multidimensional data model is typically organized around the

central theme, like sales. The scheme is represented by a fact table. Facts

are numerical measures. Think of them as the quantities by which we

want to analyze relationships between dimensions.

 5

Now, suppose that we would like to view the sales data with a third

dimension. For instance, suppose we would like to view the data

according to time, item, as well as location for the cities Chicago, New

York, Toronto, and Vancouver. These 3-D data are shown in Figure 1[5].

The 3-D data of Figure 1 are represented as a series of 2-D tables.

Conceptually, we may also represent the same data in the form of a 3-D

data cube, as in Figure 2.

Figure 1: A 3-D view of sales data for AllElectronics, according to the
dimensions time, item, and location . The measure displayed is

dollars_sold (in thousands)

 6

7
LP

H
4

XD
UW

HU
V

Figure 2: A 3 -D cube representation of the data in Figure1

Suppose that we would now like to view our sales data with an

additional fourth dimension, such as supplier. Viewing things in 4-D

becomes tricky. However, we can think of a 4-D cube as being a series of

3-D cubes, as shown in Figure 3.

 7

Figure 3: A 4-D data cube representation of sales data

In this thesis, we use the 4-D data cube structure to mine our habits.

We will discuss it later.

 8

2.2 Mining Association Rules in Large Database [5]

Association rule mining finds interesting association or correlation

relationships among a large set of data items. With large amounts of data

continuously being collected and stored, many industries are becoming

interested in mining association rules from their databases. The discovery

of interesting association relationship among huge amounts of business

transaction records can help in many business decision making processes,

such as catalog design, cross-marketing, and loss-leader analysis.

A typical example of association rule mining is market basket

analysis. This process analyzes customer’s buying habits by mining

association between the different items place in their “shopping baskets”.

The discovery of such associations can help retailers develop marketing

strategies by gaining insight into which items are frequently purchased

together by customers. For instance, if customers are buying milk, how

likely are they also to buy bread on the same trip to the supermarket?

Such information can lead to increased sales by helping retailers do

selective marketing and plan their shelf space. For example, placing milk

and bread within close proximity may further encourage the sale of these

items together within single visits to the store.

 9

2.3 The Apriori Algorithm: Finding Frequent Itemsets Using

Candidate Generation[5][13]

Apriori is an influential algorithm for mining frequent itemsets for

Boolean association rules. The name of the algorithm is based on the fact

that the algorithm uses priori knowledge of frequent itemset properties.

Apriori employs an iterative approach known as a level-wise search,

where k-itemsets are used to explore (k+1)-itemsets. First, the set of

frequent 1-itemsets is found. This set is denoted L1. L1 is used to find L2,

the set of frequent 2-itemsets, which is used to find L3, and so on, until no

more frequent k-itemsets can be found. The finding of each Lk requires

one full scan of the database.

To improve the efficiency of the level-wise generation of frequent

itemsets, an important property called the Apriori property , presented

below, is used to reduce the search space.

Apriori property: All nonempty subsets of a frequent itemset must

also be frequent. By definition, if an itemset I does not satisfy the

minimum support threshold (min_sup), then I is not frequent, that is, P(I)

< min_sup, where P(I) is the probability of the itemset I happened. If an

item A is added to the itemset I, then A∪I is not frequent either, that is,

P(A∪I) < min_sup.

 10

To understand the Apriori property used in the algorithm, we

present an example from [5], illustrated by Figure 4 and Table 1. Table 1

shows a concrete example of Apriori, based on the AllElectronics

transaction database, D. There are nine transactions in the database, that

is, |D| = 9.

Table 1: Transactional data for an AllElectronics branch

TID List of item_IDs
T100 I1, I2, I5
T200 I2, I4
T300 I2, I3
T400 I1, I2, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I1, I2, I3, I5
T900 I1, I2, I3

 11

Figure 4: Generation of candidate itemsets and frequent itemsets,
where the minimum support count is 2

 12

1. In the first iteration of the algorithm, each item is a member of the set

of candidate 1-itemsets, C1. The algorithm simply scans all of the

transactions in order to count the number of occurrences of each

item.

2. Suppose that the minimum transaction support count required is 2

(Example: min_sup = 2/9 = 22%). The set of frequent 1-itemsets, L1,

can then be determined. It consists of candidate 1-itemsets satisfying

minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses

L1 > < L1
1 to generate a candidate set of 2 -itemsets, C2. C2 consists of







2

|| 1L
 2-itemsets.

4. Next, the transactions in D are scanned and the support count of each

candidate itemset in C2 is accumulated, as shown in the middle table

of the second row in Figure 4.

5. The set of frequent 2-itemsets, L2, is then determined, consisting of

those candidate 2-itemsets in C2 having minimum support.

6. C3 is the generation of the set of candidate 3-itemsets. Let C3 = L2×L2

1 L1 > <L1 is equivalent to L1 × L1 since the definition of Lk× Lk requires the two joining
itemsets to share k - 1 = 0 items.

 13

= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4,

I5}}. Based on the Apriori property that all subsets of a frequent

itemset must also be frequent, we can determine that the four latter

candidates cannot possibly be frequent. We there fore remove them

from C3, thereby saving the effort of unnecessarily obtaining their

counts during the subsequent scan of D to determine L3. Note that

when given a candidate k-itemset, we only need to check if its

(K-1)-subsets are frequent since the Apriori algorithm uses a

level-wise search strategy.

7. The transactions in D are scanned in order to determine L3, consisting

of those candidate 3-itemsets in C3 having minimum support.

8. The algorithm use L3 > <L3 to generate a candidate set of 4-itemsets,

C4. Although the join results in {{I1, I2, I3, I5}}, this itemset is

pruned since its subset {{I2, I3, I5}} is not frequent. Thus, C4 =φ , and

the algorithm terminates, having found all of the frequent itemsets.

 14

2.4 Frequent Pattern Tree: Finding Frequent Patterns without

candidate generation[5][6]

In many cases, the Apriori candidate generate-and-test method

reduces the size of candidate sets significantly and leads to good

performance gain. However, it may suffer from two nontrivial costs as

follows:

ü It may need to generate a huge number of candidate sets. For

example, if there are 10 4 frequent 1-itemsets, the Apriori

algorithm will need to generate more than 107 candidate

2-itemsets and accumulate and test their occurrence frequencies.

Moreover, to discover a frequent pattern of size 100, such as

{a1, … , a 100}, it must generate more than 2100 ~ 1030 candidate in

total.

ü It may need to repeatedly scan the database and check a

large set of candidates by pattern matching. This is especially

the case for mining long patterns.

In order to solve these two drawbacks, we adapt the FP-Tree

technique to mine the relationship between the shopping behaviors. We

reexamine the mining of transaction database, D, of Table 1 in chapter

 15

2.3. We will use FP-Tree technique to find frequent patterns again.

The first scan of the database is the same as Apriori, which derives

the set of frequent items (1-itemsets) and their support counts

(frequencies). Let the minimum support count be 2. The set of frequent

items is sorted in the order of descending support count. This resulting set

of list is denoted L. Thus, we have L = {I2:7, I1:6, I3:6, I4:2, I5:2}.

As FP-Tree technique is then constructed as follows. First, create the

root of the tree, labeled with “null”. Scan database D a second time. The

items in each transaction are processed in L order (i.e., sorted according

to descending support count) and a branch is created for each transaction.

For example, the scan of the first transaction, “T100: I1, I2, I5”, which

contains three items (I2, I1, I5) in L order, leads to the construction of the

first branch of the tree with three nodes: {(I2:1), (I1:1), (I5:1)}, where I2

is linked as a child of the root, I1 is linked to I2, and I5 is linked to I1.

The second transaction, T200, contains the items I2 and I4 in L order,

which would result in a branch where I2 is linked to the root and I4 is

linked to I2. However, this branch would share a common prefix, I2, with

the existing path for T100. Therefore, we instead increment the count of

the I2 node by 1, and create a new node, {I4:1}, which is linked as a child

of {I2:2}. In general, when considering the branch to be added for a

transaction, the count of each node along a common prefix is incremented

 16

by 1, and nodes for the items following the prefix are created and linked

accordingly.

To facilitate tree traversal, an item header table is built so that each

item points to its occurrences in the tree via a chain of node-links. The

tree obtained after scanning all of the transactions is shown in Figure 5

with the associated node-links. Therefore, the problem of mining frequent

patterns in databases is transformed to that of minin g the FP-Tree.

Figure 5: An FP-Tree that registers compressed, frequent pattern
information

The mining of the FP-Tree proceeds as follows. Start from each

frequent length-1 pattern (as an initial suffix pattern), construct its

conditional pattern base (a “subdatabase”) which consists of the set of

prefix paths in the FP-Tree co-occurring with the suffix pattern), then

 17

construct its (conditional) FP-Tree, and perform mining recursively on

such a tree. The pattern growth is achieved by the concatenation of the

suffix pattern with the frequent patterns generated from a conditional

FP-Tree.

Mining of the FP-Tree is summarized in Table 2 and detailed as

follows. Let’s first consider I5 which is the last item in L, rather than the

first. The reasoning behind this will become apparent as we explain the

FP-Tree mining process. I5 occurs in two branches of the FP-Tree of

Figure 5. The paths formed by these branches are {(I2 I1 I5: 1)} and {(I2

I1 I3: 1)}. Therefore, considering I5 as a suffix, its corresponding two

prefix paths are {(I2 I1: 1)} and {(I2 I1 I3: 1)}, which form its

conditional pattern base. Its conditional FP-Tree contains only a single

path, {(I2: I1: 2)}; I3 is not included because its support count of 1 is less

than the minimum support count. The single path generates all the

combinations of frequent patterns: I2 I5:2, I1 I5: 2, I2 I1 I5: 2.

For I4, its two prefix paths form the conditional pattern base, {(I2 I1:

1), (I2: 1)}, which generates a single -node conditional FP-Tree (I2: 2) and

derives one frequent pattern, I2 I4: 2.

Similar to the above analysis, I3’s conditional pattern base is {(I2 I1:

2), (I2: 2), (I1: 2)}. Its conditional FP-Tree has two branches, (I2: 4, I1: 2)

 18

and (I1: 2), which generates the set of patterns: {(I2 I3: 4), (I1 I3: 2), (I2

I1 I3: 2)}. Finally, I1’s conditional pattern base is {(I2: 4)}, whose

FP-Tree contains only node (I2: 4), which generates one frequent pattern,

I2 I1: 4.

Table 2: Mining the FP-Tree by creating conditional (sub)pattern
bases

Item Conditional pattern base Conditional FP-Tree Frequent patterns generated
I5 {(I2 I1:1), (I2 I1 I3: 1)} (I2: 2), (I1: 2) I2 I5: 2, I1 I5: 2, I2 I1 I5:2

I4 {(I2 I1: 1), (I2: 1)} (I2: 2) I2 I4: 2

I3 {(I2 I1: 2), (I2: 2), (I1: 2)} (I2: 4, I1: 2), (I1: 2) I2 I3: 4, I1 I3: 4, I2 I1 I3: 2
I1 {(I2: 4)} (I2: 4) I2 I1: 4

At last, we get the same frequent pattern as Apriori algorithm. But

the FP-Tree technique is more efficient than Apriori algorithm[4], so we

adapt it to mine the related shopping behaviors.

 19

2.5 Mining Time-Series and Sequence Data[5]

A time-series database consists of sequences of values or events

changing with time. The values are typically measure at equal time

intervals. Time-series databases are popular in many applications, such as

studying daily fluctuations of a stock market, traces of a dynamic

production process, scientific experiments, medical treatments, and so on.

A time-series database is also a sequence database. However, a sequence

database is any database that consists of sequences of ordered events,

with or without concrete notions of time. For example, Web page

traversal sequences are sequence data, but may not be time-series data.

In our thesis, we will discuss the periodicity analysis. Periodicity

analysis is the mining of periodic patterns, that is, the search for recurring

patterns in time-series databases. Periodicity analysis can be applied to

many important areas. For example, seasons, tides, planet trajectories,

daily power consumptions, daily traffic patterns, and weekly TV

programs all present certain periodic patterns.

The problem of mining periodic patterns can be partitioned into

three categories:

ü Mining full periodic patterns, where every point in time

 20

contributes (precisely or approximately) to the cyclic behavior of

the time series. For example, all of the days in the year

approximately contribute to the season cycle of the year.

ü Mining partial periodic patterns, which specify the periodic

behavior of the time series at some but not all of the points in

time. For example, Laura has lunch in the restaurant near her

home at about 12:10 every noon, but her activities at other times

do not have much regularity. Partial periodicity is a looser form

of periodicity than full periodicity, and it also occurs more

commonly in the real world.

ü Mining cyclic or periodic association rules, which are rules

that associate a set of events that occur periodically. An example

of a periodic rule is “Based on day-to-day transactions, if

afternoon tea is well received between 3:00-5:00 pm, dinner will

sell well between 7:00-9:00 pm on weekends.”

In this thesis, mining the habits is similar to mine partial periodic

patterns. After we mine the habits, we will automatically notify users of

suitable services before the shopping habits happened. With this

mechanism, users will not need to waste time searching the services they

want, and the stores will have more chances to sale their goods.

 21

2.6 The Intelligent Agent

In this thesis, the agent will not only record the user’s shopping

behaviors, but automatically notify users of suitable services. But, what

are personal agents? Personal agents are computer programs that learn

users’ interests, preference, and habits and give them proactive,

personalized assistance with a computer application [15].

What is the different between expert systems? Expert systems are

computer programs designed to emulate the behavior of a human being

who is expert at solving problems within a specialized area. Intelligent

agents are computational entities capable of autonomously achieving

goals by executing needed actions [16].

The intelligent agents have four common agent characteristics that

have been identified in [17]:

Ø Situatedness: Agents receive sensory information from their
surroundings and perform actions based on this information.

Ø Autonomy: Agents maintain their own internal state and are able to
act without direct intervention from humans or other agents.

Ø Adaptivity: Agents are able to react to a changing environment.
Agents with this characteristic can learn from experience and create
goals to be achieved.

Ø Sociability: Agents have the ability to confer with other agents and/or

 22

humans.

In our tool simulation, the agent we proposed have last three

characteristic s. We do not have a large lifestyle website to collect user

shopping behaviors, so we lack of first characteristic. We must record

user’s shopping behaviors by user input them, and it’s a critical problem

we need to solve in the future.

There are many different types of agent in data mining. Lewis [18]

categorizes three general types of intelligent agents— anticipatory agents,

filtering agents, and semiautonomous agents.

Ø Anticipatory agents attempt to anticipate the intentions of a user. A

rudimentary example of an anticipatory agent is Microsoft Word’s

animated paperclip. A more complex anticipatory agent might do our

bidding on Ebay once we provide a product description, bidding

criteria (e.g., only bid on items sold by someone who has sold

previous items through Ebay), and a maximum offering price.

Ø Filtering agents are able to carry the categorization process one step

further in that they can evaluate, prioritize, and delete information

such as incoming e-mail messages. MAXIMS [19] and MAGI [20]

are two systems offering these types of filtering capabilities.

Ø Semiautonomous agents deal with tasks requiring complex

sequences of actions. The agent is provided with a goal to achieve by

interacting with the user through a form-based interface. A typical

goal is to have the agent search for an item, such as an airline ticket,

 23

which meets a set of constraints. Once found, the agent notifies the

user via e-mail. The user is then responsible for making the actual

ticket purchase.

There are still a lot of researches about intelligent agents. If

you are interested in it, you can read more from [21][22][23].

 24

Chapter 3 Structure of the System

Figure 6 shows the structure of the system we proposed. There are

two ways to provide services for the users. The first way is that the agent

receives the users’ request “passively”, and searches the suitable services

from the service profile to notify him. The second way is that when the

agent learns the user’s habits, it will “actively” notify the user of suitable

services before the habits happen. This thesis was focus on the

personalized learning mechanism and we will not specify other functions

in detail. We will discuss them in our future writings.

Figure 6: The structure of the system

 25

The intelligent agent will divide a day into 24 segments (hours). The

agent will automatically notify users of suitable services before the old

segment pass. Services can be easily pushed to the right users through the

agent. In order to realize the “push” ability, the agent must have two

mechanisms as follows:

Ø Automatic notification mechanism

Most of the lifestyle websites are lack of the automatic

notification mechanism, so the services were in a passive situation to

wait for customers finding. In our system, the agent will use RSS2.0

(Really Simple Syndication 2.0) [12] to notify users.

There are three notification channels. They are “Advertisement”,

“User subscribed”, and “Personalized” channels. The channel of

“Advertisement” and “User subscribed” are not the key points in this

thesis, so we will not discuss them here. The agent will use

personalized learning mechanism to notify users of suitable services

through the “Personalized” channel.

Ø Personalized learning mechanism

The shopping habits we proposed, including Vertical Habits

 26

(VH) and Horizontal Habits (HH). Vertical habits are the periodic

shopping habits and horizontal habits are the relations between

shopping behaviors. For example, Laura has lunch at 12:10 every

Monday (VH), and she likes to buy drinks after lunch except Monday

(HH).

After integrating vertical habits and horizontal habits, the agent

will notify Laura of drinks’ services after she finished lunch every

Monday. The purpose of this approach is to reduce the deviation

when the user had a temporary trip and improve the accuracy of

predicting habits.

In order to realize this mechanism, we integrated three

techniques to build it: (1) Data Cube structure [5][13], (2)

Bit-Mapping technique, and (3) FP-Tree algorithm. It shows that data

cube structure provides an efficient and effective structure for on-line

analytical processing (OLAP) and on-line analytical mining [5]. As to

FP-Tree algorithm, it mines frequent patterns without candidate

generation. It is also more effective than Apriori algorithm [4].

We retrieve user’s vertical habits based on data cube structure,

and use FP-tree to retrieve horizontal habits.

 27

Chapter 4 Vertical Habits (VH) and Horizontal Habits (HH)

Vertical habits are the periodic shopping habits. We denote VH =

(Day, Bi). Bi is the number of shopping behaviors. “Day” is the day when

the shopping habits happened, where Day = {1, 2, … , 7}.

Horizontal habits are the relations between shopping behaviors. We

denoted HH = (Bi, {Bj}), where Bj is a set of shopping behaviors, i ? j, i >

0, j≧0 (j = 0 means that there are not any related behaviors with B i)

After integrating horizontal habits and vertical habits, we can call it

Cyclic Pattern, CP=(Day, {BH}∪{HH}). The cyclic patterns are also the

shopping habits we called in this thesis.

 28

Chapter 5 Mining Vertical Habits – Using Data Cube -based

Structure

In this chapter, we discuss how the agent mining vertical habits with

data cube-based structure after it record basic shopping attributes

(location, category and time).

We construct two data cubes, template cube and mining cube .

Template cube is used to record users’ basic attributes and mining cube is

used to mine vertical habits.

Ø Template Cube

Template cube is a 4-D data cube. It records the basic shopping

attributes, including shopping location, category of services, shopping

segments, and shopping day . The concept hierarchies for these attributes

are as follows:

ü Shopping location: shopping districtàcity

ü Category of services: food, clothes, live, traffic, education,

entertainment, and the others.

 29

ü Shopping segments: 24 hours

ü Shopping day: dayàweekàmonthàyear.

The number of the cell represents the number of Behaviors (Bi),

where Bi = (Location, Service, segment, Day), i = 1, 2, 3, … , n, n > 0,

and n is the total number of the cells.

Figure 7: Template Cube

Figure 7 is the template cube based on shopping environment in

Taiwan. For example, B145 = (Hsinchu, Food, 1, 15). When the agent

record B145, it shows that the user have a night snack at 1:00 in Hsinchu

 30

in Day15. After retrieving the shopping information, we can mine vertical

habits using mining cube.

Ø Mining Cube

Mining cube, as Figure 8, is used to mine vertical habits. We fold

time dimension into two parts: time-index dimension and period-index

dimension. Notice that each cell needs only a bit (existent, nonexistent).

Each slice of the mining cube can be implemented as a bit-array, except

the last slice, period-index = All, which contains the number of nonzero

bits of all weeks slices and each cell is an integer.

 31

7K
H

QX
P

EH
U

RI
D

EH
KD

YL
RU

Figure 8: Mining Cube

Through mining cube, we can easily record the shopping behaviors.

But in the real world, a habit will not be happened with 100%. So we

must introduce the concept of confidence to tolerate misses. We denote

confidence as a, total number of period-index as ß, and minimum support

as a × ß . The vertical habits must no less than minimum support.

For example, as Figure 9, if we assume a = 50% and ß = 4 (weeks),

we can figure out that minimum support = 2 (50% × 4). Now, only (Day1,

Bn), (Day3, B n-1) and (Day6, B2) can pass the threshold, and they are the

vertical habits.

 32

Figure 9: Mining cube where period-index = All

 33

Chapter 6 Mining Horizontal Habits–Using FP-Tree

Algorithm

After analyzing vertical habits, we almost know the user’s habits.

But if user has a temporary trip, it will induce the deviation. In order to

solve this problem, we use FP-Tree to retrieve horizontal habits and

improve the accuracy of predication.

We made a table for example, as Table 3.

Table 3: An example of vertical habits

Time Period The number of a Behavior
Day1 B1, B 2, B5
Day2 B2, B 4
Day3 B2, B 3
Day4 B1, B 2, B4
Day5 B1, B 3, B5
Day6 B1, B 2, B6
Day7 B1, B 2, B3, B5

We assumed that the minimum support is 3. First, we scan Table 3

and derive Table 4 after deleting the infrequent behaviors (less than 3).

Through Table 4, we derive a list of frequent items, {B2: 6, B1: 5, B3: 3,

B5: 3}, and translate it to FP-Tree, as Figure 10.

 34

Table 4: The frequent behaviors of vertical habits

Time Period The number of a Behavior
Day1 B2, B1, B5
Day2 B2,
Day3 B2, B3
Day4 B2, B1
Day5 B1, B3, B5
Day6 B2, B1
Day7 B2, B 1, B3, B5

Figure 10: The FP-Tree in Table 4

The conditional pattern bases and the conditional FP-Trees

generated are summarized in Table 5. Through Table 5, we found the

horizontal habits, HH = (B1, B2). Notice that through template cube, we

can know which behaviors happened earlier.

 35

Table 5: Mining of all-patterns by creating conditional (sub) -

pattern bases

Behavior ID
Conditional Pattern

Based
Conditional

FP-Tree
Sequence

Pattern

B5
{(B 2 B1:1),

(B2 B1 B3:1)}
Null null

B3
{(B2 B1:1), (B2:1),

(B1:1)}
Null null

B1 {(B2:4)} (B2:4) B2 B1:4

After integrating vertical habits and horizontal habits, we modify the

habits of “Day 5”, translate to cyclic patterns, as Table 6, and it is the

final habits we proposed.

Table 6: Cyclic Patterns

Cyclic Pattern(CP)

Day1, B1, B2, B5

Day2, B2, B4

Day3, B2, B3

Day4, B1, B2, B4
Day5, B1, B2, B3, B5

Day6, B1, B2, B6

Day7, B1, B2, B3, B5

Finally, after we retrieve the shopping behaviors (CP), we will

automatically notify the user of suitable services. How to automatically

 36

notify a user? Because we know the user’ shopping behavior hour and the

day, the server will automatically generate the RSS Seed in the

personalized channel. Figure 11 shows a template structure of a RSS 2.0

seed. From the specification of RSS2.0, we can know the seed’s

information [14]. We can know what kind of services the seed belong by

the category element and what time it broadcast by the pubDate element.

With these two information, we can easily search the seed of right

category service and right time satisfying the user’s habits.

Figure 11: A template structure of a RSS2.0 seed

 Take Figure 7 for an example. After we have analyzed the user’s

shopping behaviors, we found that the user will need the food information

in Taipei about 1:00 am in Taipei. The server will automatically search

 37

the RSS 2.0 seed generated from the store, and rebroadcast in

personalized channel before 1:00. So, the agent combined RSS reader

function will receive the seed, and notify the user of food information in

Taipei before 1:00 am in Day1.

With this mechanism, users will not need to waste time searching for

services in large databases, and we can let stores have more opportunities

to publish their services.

 38

Chapter 7 Tool Simulation

In this chapter, we build up a tool to simulate our research. At first, it

is hard to collect the user log file from a really lifestyle website because

we don’t have a large lifestyle website. In order to solve it, we let users to

input their shopping behavior, as the red circle of Figure 12 shows.

Figure 12: The snapshot of the tool - 1

After the user input his behaviors, the agent will retrieve his

shopping habits and show in Figure 13.

 39

Figure 13: The snapshot of the tool - 2

In order not to bother users work, the agent will hide in the right

corner, as Figure 14 shows.

Figure 14: The snapshot of the tool - 3

If the user’s habits will happen, the agent will automatically notify

user, as Figure 15 shows. When the user press this notification, the agent

will pop a web browser program will the suitable services about user’s

behaviors, as Figure 16 and Figure 17 show.

 40

Figure 15: The snapshot of the tool - 4

Figure 16: The snapshot of the tool - 5

 41

Figure 17: The snapshot of the tool - 6

Note: behaviors in Figure 16 and Figure 17 are associated, so they

will notify together at the same time.

In our tool simulation, the agent we proposed can not actively record

user’s shopping behaviors because we do not have a large lifestyle

website to collect user shopping behaviors. We only can record user’s

shopping behaviors by user input them, and it’s a critical problem we

need to solve in the future.

 42

Chapter 8 Discussion

After integrating template cube and mining cube, we successfully

retrieve the vertical habits. But, why we use the data cube-based structure?

It is because that it has high extension. For example, we can change 24

segments to 48 or 12, and so do the location, category, and day. Moreover,

not only the high extension, but it provides an efficient and effective

structure for on-line analytical processing (OLAP) and on-line analytical

mining.

Beside data cubed-based approach, we also use FP-Tree to find the

horizontal behaviors. But we must remind that we use FP-Tree just

because it is an efficient approach. If there is a new approach faster than it,

we can adapt the new one to improve the prediction’s efficiency. It is the

most v ariable advantage of our high extensible structure.

 43

Chapter 9 Conclusion and Future Work

We proposed an intelligent agent for the lifestyle website. The

intelligent agent will not only analyze the user’s shopping habits, but

automatically notify users of suitable services before the habits happen.

In order to build the agent, we construct a personalized learning

mechanism. The advantage of this mechanism is its high extension. In

other words, we can easily modify and adapt to it. With this mechanism,

users will not need to waste time searching for services in large databases,

and we can let stores have more chances to publish their services.

Figure 18: The structure of whole system in the future

 44

As Figure 18, we hope to integrate pervasive computing to retrieve

users’ behaviors and construct a preference elicitation rule to elicit users’

shopping habits. With this technique, we can automatically collect user

habits and retrieve more shopping habits. With more accurate habits

records, we can push more suitable services to users and let them feel

more convenient.

 45

Reference

[1] S. J. Soltysiak and I. B. Crabtree, “Automatic Learning of User
Profiles — Towards the Personalisation of Agent Services,” BT
Technology Journal, Vol. 16, No. 3, pp.110-117, July 1998.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499, September 1994.

[3] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proceedings
of the 11th International Conference on Data Engineering , pp. 3–14,
March 1995.

[4] J Han, J Pei, and Y Yin, “Mining Frequent Patterns without Candidate
Generation,” Proceedings of the 2000 ACM SIGMOD International
Conference on Management of data, pp. 1-12, 2000.

[5] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 1998.

[6] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient Similarity Search
in Sequence Databases,” Proceedings of the 4th International Conference
on Foundations of Data Organization and Algorithms, pp. 69-84,
October1993.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast
Subsequence Matching in Time-Series Databases,” ACM SIGMOD
Record , Vol. 23, No. 2, pp. 419-429, June 1994.

[8] K. Chan and A. Fu, “Efficient Time-Series Matching by Wavelets,”
Proceeding of the 15th International Conference on Data Engineering ,
pp.126-133, March 1999.

[9] H. Mannila, H. Toivonen, and A. Verkamo, “Discovering Frequent
Episodes in Sequences,” Proceedings of the First International
Conference on Knowledge Discovery and Data Mining, pp. 210-215,
1995.

[10] D. Rafiei, “On Similarity-Based Queries for Time-Series Data,”
Proceeding of 15th International Conference on Data Engineering , 1999.

 46

[11] J. Han, G. Dong, and Y. Yin, “Efficient mining of partial periodic
patterns in time series database,” Proceeding of 15th International
Conference on Data Engineering, Sydney, Australia, Mar. 1999.

[12] Hammond, T, Hannay, and B. Lund, “The Role of RSS in Science
Publishing,” D-Lib Magazine, Vol. 10, No. 12, December 2004.

[13] J. Han, W. Gong, and Y. Yin, “Mining segment-wise periodic
patterns in time-related databases,” Proceeding of 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’98), pp. 43-52, August 1998.

[14] http://cyber.law.harvard.edu/rss/rss.html

[15] S. Schiaffino and A. Amandi, “Polite Personal Agents,” IEEE
Intelligent Systems, vol. 21, no. 1, pp. 12-19, Jan/Feb, 2006

[16] R. J. Roiger and M. W. Geatz, Data Mining: A Tutorial-Based Primer,
2003.

[17] K. P. Sycara, “The Many Faces of Agents,” AI Magazine, Vol. 19,
no.2, pp. 11-12, 1998.

[18] M. Lewis, “Designing for Human – Agent Interaction,” AI Magazine,
Vol.19, No. 2, pp. 67-78, 1998.

[19] Y. Lashkari, M. Metral, and P. Maes, “Collaborative Interface
Agents,” Proceeding of the Twelfth National Conference on Artificial
Intelligence, Menlo Park, CA: American Association of Artificial
Intelligence, pp. 444-450.

[20] T. Payne and P. Edwards, “Interface Agents that Learn: An
Investigation of Learning Issues in a Mail Agent Interface,” Applied
Artificial Intelligence, Vol. 11, No. 1, pp. 1 -32, 1997.

[21] S. Haag, M. Cummings, and D. McCubbery, Management
information systems for the Information Age, 3rd ed. Boston:
McGraw-Hill, 2002.

[22] S. Case, N Azarmi, M. Thint, and T. Ohtani, “Enhancing
E-Communities with Agent – Based System,” Computer, pp. 64-69, July,
2001.

 47

[23] E. H. Durfee, “Scaling Up Agent Coordination Strategies,” Computer,
pp. 39-46, July, 2001.

