私立東海大學應用化學研究所碩士論文

原兒茶素與五氰鐵(III)錯合物外圈電子轉移反應之 動力學探討

The Kinetic Studies of the Outer-Sphere Electron Transfer Reaction between Protocatechuic Acid and Pentacyanoferrate(III) Complexes

> 指導教授:葉玉堂 博士 研 究 生:潘家穎

> > 中華民國九十五年十月

本文乃探討在 pH 5-9 條件下,原兒茶素與一系列五氰鐵錯合物 $[Fe(CN)_5L]^{2-}$ (L = 4-cyano-pyridine, isonicotinamide, 4,4'-bipyridine, pyridine, pyrazine)之外圈電子轉移反應動力學,反應速率受到溶液 pH 值影響,主要乃由於原兒茶素在不同 pH 條件下分別以 H₂cat-COO⁻(k₁)、Hcat-COO²⁻(k₂)及 cat-COO³⁻(k₃)存在,動力學結果分 別為 $k_1 = 1.5 \times 10^2$ (cp), 3.9 × 10¹(isn), 8.0 × 10¹(bpy), 5.4 × 10² M⁻¹s⁻¹(pz); $k_2 = 3.0 \times 10^5$ (cp), 1.2×10^5 (isn), 1.1×10^5 (bpy), 3.4×10^4 (py), 2.9×10^5 $M^{-1}s^{-1}(pz)$; $k_3 = 3.2 \times 10^8 (cp)$, 1.6 $\times 10^8 (isn)$, 9.2 $\times 10^7 (bpy)$, 5.5 $\times 10^7 (py)$, k₁、k₂及k₃值皆符合外圈電子轉移反應之 Marcus 理論值。根據進一 步 Marcus 理論分析,發現在不同 pH 條件下之所以有如此大的還原 速率差異 $k_1:k_2:k_3$ 1:10³:10⁶, 主要乃由原兒茶素在不同型態中與 [Fe(CN)5L]² 錯合物之反應能障差異所引起,而與反應物之電荷效應 及原兒茶素在不同形態反應活性並無太大關聯。

Abstract

The reductions of $[Fe(CN)_5L]^{2-}(L=4-cyano-pyridine, isonicotinamide,$ 4,4'-bipyridine, pyridine, pyrazine)complexes by protocatechuic acid have been subjected to a detailed kinetic study in the range of pH 5-9. The rate law of the reaction is interpreted as a rate determining reaction between Fe(III) complexes and the protocatechuic acid in the form of H₂cat-COO⁻(k_1), Hcat-COO²⁻(k_2), and cat-COO³⁻(k_3), depending on the pH of the solution, follow by a rapid scavenge of the protocatechuic acid radicals by Fe(III) complex. With given K_{a1} , K_{a2} , and K_{a3} , the rate constants are $k_1 = 1.5 \times 10^2$ (cp), 3.9×10^1 (isn), 8.0×10^1 (bpy), and 5.4×10^2 $M^{-1}s^{-1}(pz)$; $k_2 = 3.0 \times 10^5(cp)$, 1.2 $\times 10^5(isn)$, 1.1 $\times 10^5(bpy)$, 3.4 $\times 10^4(py)$, and 2.9 $\times 10^5$ M⁻¹s⁻¹(pz); $k_3 = 3.2 \times 10^8$ (cp), 1.6 $\times 10^8$ (isn), 9.2 $\times 10^7$ (bpy), and 5.5 \times 10^{7} (py), respectively, at $\mu = 0.10$ M LiClO₄, T = 25 . The kinetic results are compatible with the Marcus theory for out-sphere electron transfer. Moreover, the detailed theoretical analysis indicates that, the tremendously large rate difference with $k_1 \cdot k_2 \cdot k_3$ $1:10^{3}:10^{6}$. arises predominantly from the equilibrium barrier of the different acid forms of the protocatechuic acid, and is rather insensitive to the intrinsic reactivities and the charge effect of the reactants.

總目錄

中文摘要	₹		Π
英文摘要	₹		III
總目錄			IV
圖目錄			V
表目錄			VI
第一章	序 論		1
第二章	實 驗		6
	—	主要的藥品來源	.6
	<u> </u>	藥品的純化與溶液配製	.7
	三、	合成	.9
	四、	去氧系統	15
	五、	分析儀器及方法	17
第三章	結果		21
	—	光譜鑑定	21
	Ξ,	電化學ź	23
	三、	還原反應動力學	24
第四章	討 論		48
	—	[Fe(CN)5L] ²⁻ 錯合物之合成	48
	<u> </u>	[Fe(CN)sL] ²⁻ 錯合物之光譜吸收	48
	三、	還原反應動力學	49
第五章	結 論.		50
參考文慮	犹		51
附錄		i-`	vii

圖目錄

圖一、隔氧處裡方法1	15
圖二、注射器轉移錯合物溶液裝置1	16
圖三、 [Fe(CN)5L] ²⁻ 還原反應圖1	8
圖四、環路伏安儀電池裝製圖2	20
圖五、 [Fe(CN) ₅ bpy] ^{2-/3-} 吸收光譜圖2	21
圖六、[Fe(CN) ₅ bpy] ^{2-/3-} IR 吸收光譜圖2	22
圖七、PA之吸收光譜2	22
圖八、[Fe(CN) ₅ py] ^{2-/3-} 錯合物之環路伏安圖2	23
圖九、PA還原[Fe(CN)5L]2錯合物於 pH=5.00 以 ln(A -At)對時間	
作圖2	26
圖十、不同 p H 值下,[Fe(CN)₅cp] ²⁻ 錯合物還原反應之 k _{obs} 與 PA	
濃度線性關係圖3	32
圖十一、不同 pH 值下, [Fe(CN) ₅ isn] ² 錯合物還原反應之 k _{obs} 與 PA	
濃度線性關係圖	33
圖十二、不同 pH 值下, $[Fe(CN)_{5}bpy]^{2}$ 錯合物還原反應之 k_{obs} 與 PA	
濃度線性關係圖3	34
圖十三、不同 pH 值下, [Fe(CN) _s py] ² 錯合物還原反應之 k _{obs} 與 PA	
濃度線性關係圖3	35
圖十四、不同 pH 值下, [Fe(CN) _s pzH] 錯合物還原反應之 k_{obs} 與 PA	
濃度線性關係圖3	36
圖十五、不同 pH 值下, [Fe(CN) ₅ cp] ² 錯合物還原反應之 k 與[H ⁺]	
關係圖	11
圖十六、不同 pH 值下, [Fe(CN) ₅ isn] ²⁻ 錯合物還原反應之 k 與[H ⁺]	
關係圖	12
圖十七、不同 p H 值下, [Fe(CN) ₅ bpy] ²⁻ 錯合物還原反應之 k 與[H ⁺]	
關係圖	13
圖十八、不同 pH 值下, $[Fe(CN)_{spy}]^2$ 錯合物還原反應之 k 與 $[H^+]$	
關係圖	14
圖十九、不同 p H 值下, [Fe(CN) _s pzH] ⁻ 錯合物還原反應之 k 與[H ⁺]	
關係圖4	15
圖二十、pH6.75—pH7.75, [Fe(CN)5L] ² 錯合物還原反應之 1/k 與	
[H ⁺]關係圖	1 6
圖二十一、以PA 還原[Fe(CN)₅L] ² 錯合物之 logkn 對 bgKn作圖	
(n = 2,3)	56

表目錄

表 1、[Fe(CN) ₅ L] ^{2-/3-} 錯合物之電荷轉移吸收光譜21
表 2、Fe(CN) ₅ L ² 錯合物之還原電位23
表 3、pH 5 - pH 9, [Fe(CN) ₅ cp] ²⁻ 錯合物還原反應之 k _{obs} 27
表 4、pH 5 - pH 9, [Fe(CN) ₅ isn] ²⁻ 錯合物還原反應之 k _{obs} 28
表 5、pH 5 - pH 9, [Fe(CN)5bpy] ² 錯合物還原反應之 kobs29
表 6、pH 6.75 - pH 9, [Fe(CN) ₅ p y] ² 錯合物還原反應之 k _{obs} 30
表 7、pH 5 - pH 7.75, [Fe(CN)spzH] 錯合物還原反應之 kobs31
表 8、pH 5 - pH 9, [Fe(CN)5cp] ²⁻ 錯合物還原反應之 k
表 9、pH 5 - pH 9, [Fe(CN) ₅ isn] ²⁻ 錯合物還原反應之 k38
表 10、pH 5 - pH 9, [Fe(CN)5bpy]2- 錯合物還原反應之 k
表 11、pH 6.75 - pH 9, [Fe(CN) ₅ py] ²⁻ 錯合物還原反應之 k 40
表 12、pH 5 - pH 7.75, [Fe(CN)5pzH] 错合物還原反應之k40
表 13、反應式(4) 之參數 a、b 值47
表 14、protocatechuic acid 之 pKa值及電位值
表 15、[Fe(CN)5L]2-錯合物之還原反應速率常數54
表 16、[Fe(CN)5L] ²⁻ 在不同 pH 值下與 PA 反應之平衡常數 K55

第一章 序論

自由基(free radicals)通常指存在於價殼層(valence shell)含未成 對電子之原子、分子或離子,為達穩定的成對電子,自由基通常反應 性活潑,且不同自由基具有不同活躍性。人體內亦有許多自由基,主 要來源有三方面:生物合成、代謝產物及環境因素。生物合成大多針 對人體需求經由體內胺基酸合成,例如一氧化氮為腦神經系統訊息傳 遞分子,乃由L-精胺酸(arginine)藉一氧化氮合成?(nitric oxide synthase, NOS)與氧作用而成。代謝產物則主要是經由食物攝取,藉 由體內生物?在新陳代謝過程中形成,其中以超氧自由基(O2⁻⁻)為主。 而環境因素則主要是由污染而來,包括空氣、水質、輻射、藥物、防 腐劑、農藥等等。

超氧自由基為人體必經代謝過程之產物,反應性非常活潑,容 易造成各種慢性疾病,為細胞老化及死亡之元兇¹⁻⁵。超氧自由基之消 除,乃靠體內的超氧化物歧?(superoxide dismutase, SOD),及 catalase^{6.7}。體內三種 SOD 酵素(Cu-SOD、Mn-SOD、Fe-SOD)促使毒 性超氧自由基轉變成過氧化氫(H₂O₂)。

 $2O_2^{-} + 2H^{+} \xrightarrow{\text{SOD}} H_2O_2 + O_2$ (1)

(Haber-Weiss Reaction)

而後再藉 Fe(III)及 Mn(III)-catalase 幫助過氧化氫的代謝。

 $2H_2O_2 \xrightarrow{\text{catalase}} 2H_2O + O_2$ (2)

VII

當體內 SOD 缺乏或失去調節功能,為了防止體內自由基造成的 困擾,可藉由補充抗氧化物質來彌補,蔬菜、水果為最普遍的抗氧化 食物,另外維他命也是常用的抗氧化物。

由於科技發達,加工食品普遍,使得維他命使用量也隨之增加, 一般較為熟悉具抗氧化性的維他命為維他命 C 及 E。兩者皆為雙電子 之自由基消除劑。維他命 C 結構如下:

在不同 pH 下,分別以三種型態存在,H₂A、HA⁻、A²⁻,且皆為

有效的還原劑,還原反應機構⁸如式(3)-(8)

(3)
(4)
(5)
fast (6)
fast (7)
fast (8)

H₂A⁺、HA⁻、A⁻皆為活性極強的分子,會立即與體內自由基作用而消除(式 6-8),即使體內無自由基,本身亦可結合形成 A₂,加上具有良好的水溶性,因此不會對身體造成傷害。

維他命 E 屬脂溶性維生素,為八種化合物總稱。其結構式如下 圖。維他命 E 苯環上之-OH 必需先行去質子化(deprotonation)後方有 還原能力,不僅如此,單電子氧化後形成的 ·o

VIII

相當程度的穩定性,不易進一?反應,殘留體內將有害健康,加上為 脂溶性,不易代謝,因此維他命E不適合過量服用,且最好與維他命 C並行服用,用以消除所形成的維他命E自由基。

最近在生物系統的研究上,在完成維他命 C 探討後,本實驗室開 始轉向類黃酮(flavonoids)的探討,類黃酮廣泛存在於植物,屬於多 酚(polyphenols)天然化合物,目前已有超過8000種天然生物類黃酮 (bioflavonoids)被分離⁹,類黃酮為含有兩個苯環(A 環及 B 環)結合? 喃(C 環)為主體的化合物,以最常見之槲皮素(quercetin)為例,其結 構如下:

 $X_1 =$

類黃酮之所以引起科學家的興趣主要在於具有抗氧化性¹⁰及螯 合金屬^{11,12}能力,也因此兩種特性,使得類黃酮具有醫藥應用之潛在 功能^{13,14}。

基於本實驗室長期對電子轉移反應的興趣,我們仍從探討類黃酮 還原反應開始,藉以了解其抗氧化性,唯初步實驗發現其反應過程相 當複雜且發現還原性似乎受 catechol(B 環)很大影響¹⁵⁻¹⁸,為使問題簡 化,我們將從探討 catechol之還原反應開始。

Catechol 及其衍生物亦為具有雙電子還原能力之有機酚類,且其 氧化態 quinone 在生物系統中亦扮演著傳遞電子的角色¹⁹⁻²¹,例如植 物行光合作用時,用以開啟整個電子傳遞鏈,利用電子載體的氧化還 原電位不同傳遞電子。化學系統中,Yamazaki²²等發現 ferroferricytochrome c交換過程 quinol 佔重要的地位,使其能維持平衡。 為了解 catechol 之還原能力及反應活性,我們乃決定對 catechol 之還 原反應進行探討,在本論文中,我們選用原兒茶素(protocatechuic acid, PA)作為研究的主題。

原兒茶素

(protocatechuic acid)

選擇 PA,除藉以為模擬 flavonoids 的抗氧化性與 B 環關係外, phenolic acids 也是存在植物體內次要於 flavonoids 之重要化合物,具 有抗氧化、抗血栓、抗癌症之多種特性^{23,24}。截至目前為止,有關於 PA 研究大多止於一系列酚酸類結構化合物之抗氧化力比較、植物體 中含有酚酸類結構化合物之含量比分析以及酚酸類對於生物體內還 原過氧化物之觀察等^{15,23-26},但相關化學活性與反應機制並未深入去 探討。

基於本實驗室過去對 Fe(CN)₅L³⁻²⁻錯合物研究經驗及所建立的資 訊²⁷⁻³⁰,本研究將以一系列 Fe(CN)₅L³⁻²⁻(L=4-cyanopyridine(cp); isonicotinamide(isn);4,4'-bipyridine(bpy);pyridine(py);pyrazine(pz)) 錯合物為氧化劑,探討與 PA 之電子轉移反應動力學,藉所得結果進 一?了解反應機構及 PA 活性。

第二章 實驗部份

一、主要的藥品來源

藥品英文名	藥品中文名	藥品化學式	來源
Sodium nitroprusside	五氰鐵鈉鹽	Na ₂ [Fe(CN) ₅ NO].	RDH
dihydrate		$2H_2O$	
Ammonia gas	氨氣	NH ₃	大統氣體
Ammonia water (25%)	氨水	NH ₄ OH	BDH
4,4'-Bipyridine	4,4'-聯? 啶	$C_{10}H_8N_2$	Fluka
Lithium perchlorate	過氯酸鋰	LiClO ₄	Aldrich
Sodium persulfate	過氧二硫酸鈉	$Na_2S_2O_8$	Sigma
Pyridine	?啶	C ₅ H ₅ N	Merck
Isonicotinamide	異菸鹼醯胺	$C_6H_6N_2O$	Merck
Zinc granular	鋅粒	Zn	Merck
Ethanol	乙醇	C ₂ H ₅ OH	Merck
Diethyl ether	乙醚	C ₂ H ₅ OC ₂ H ₅	Merck
Sodium acetate	醋酸鈉	CH ₃ COONa	Merck
Acetic acid	醋酸	CH ₃ COOH	Merck
Tris(hydroxymethyl) -aminomethone	三甲醇硝基甲烷	$C_4H_{11}NO_3$	Merck
Pyrazine	??	$C_4H_4N_2$	Fluka
4-Cyanopyridine	4-氰基? 啶	$C_6H_4N_2$	Aldrich
Chromium(III) chloride	三氯化鉻	CrCb⋅6H2O	Merck
hexahydrate			
Mercury(II) chloride	氯化汞	HgCb	Merck
MES		$C_6H_{13}NO_4S$. xH_2O	Sigma
MOPS		$C_7H_{15}NO_4S$	Sigma

二、藥品的純化與溶液配製

異菸鹼醯胺(isonicotinamide)的純化

將 10 克的 isonicotinamide 溶於 15 mL 的二次去離子純水,加熱(不 超過 60)溶解後,加入一小匙活性碳攪拌,趁熱過濾,將濾液置於冰浴 冷卻 2 小時後過濾,以乙醚清洗,可得白色針狀結晶,置於真空乾燥器 抽乾三小時左右。

4- 氰基? 啶(4-cyanopyridine)的純化

將 10 克的 4-cyanopyridine 溶於適量的乙醇,加熱(不超過 60)溶解, 加入一小匙活性碳攪拌,趁熱過濾,將濾液置於冰浴冷卻 2小時後過濾, 可得白色針狀結晶,置於真空乾燥器抽乾三小時左右。

鋅汞齊(zinc/mercury amalgam)之製備

將適量的鋅粒,以 6M 鹽酸(HCl)洗數分鐘以去除表面氧化物,再 以二次去離子純水反覆清洗鋅粒,使表面的鹽酸殘留物完全去除;加入 飽和氯化汞溶液(於 0.1M 硫酸溶液中)汞化,即得閃亮的鋅汞齊,再以 二次去離子純水清洗鋅汞齊的表面,以 kimwipe 拭紙拭乾,所得的鋅汞 齊必須立即使用以免被空氣氧化。

亞鉻溶液(chromous solution)的製備

將 40g 三氯化鉻 CrCl₃ 6H₂O 溶於 500mL 的 1M 過氯酸中,加入適量鋅汞齊,再持續通入氬氣直到所有的三價鉻離子完全還原成藍色二價 鉻溶液為止。

緩衝溶液(buffer solution)的配製

(a) pH=5~5.55 acetate -acetic buffer

將 8.2 g 醋酸鈉溶於 200mL 二次去離子純水,以醋酸或鹽酸滴定 此溶液達到所需 pH 值,再稀釋此溶液至 250mL,即為 0.4M 之 OAc⁻/HOAc buffer,依所需不同濃度而加以稀釋。 (b) pH=5.75~6.5 MES hydrate buffer

(MES: 2-morpholinoethanesulfonic acid)

將 19.52g MES 溶於 200mL 二次去離子純水,以 NaOH 滴定此溶 液達到所需 pH 值,再稀釋此溶液至 250mL,即為 0.4M 之 buffer,依所 需不同濃度而加以稀釋。

(c) pH=6.75~7.75 MOPS buffer

(MOPS: 3-(4-morpholino)propanesulfonic acid)

將 20.926g MOPS 溶於 200mL 二次去離子純水,以 NaOH 滴定此 溶液達到所需 pH 值,再稀釋此溶液至 250mL,即為 0.4M 之 buffer,依 所需不同濃度而加以稀釋。

(d) pH=8~8.5 tris buffer

(tris: tris(hydroxy methyl) amimomethane buffer)

取三-(烴基甲基)-胺基甲烷 12.1 克,溶於 200 mL 二次去離子純水 中,以 HCl滴定到所需 pH 值,再以量瓶稀釋到 250 mL 的標線刻度, 即為 0.4M 之 tris buffer,依所需不同濃度而加以稀釋。

(e) pH=9 NH₃/NH₄⁺ buffer

取 3mL 氨水溶液,加入 70ml二次去離子純水中,以 HCl 滴定到 所需 pH 值,再以量瓶稀釋到 100 mL 的標線刻度,即為 0.4M 之 NH₃/NH₄⁺ buffer,依所需不同濃度而加以稀釋。

蒸餾水系統(distilled water system)

自來水經過三個活性碳濾心處理顆粒狀雜質,直接進入 Aries 48547 逆滲透裝置,再通過 Barnstead 離子交換樹脂,純化後得二次去離子純水, 本實驗室的合成、緩衝溶液的配製,以及所有反應需要水溶液的均採用 二次去離子純水。 Na₃[Fe(CN)₅NH₃] 3H₂O 之合成³¹

將 10 克(30 mmol)的 Na₂[Fe(CN)₅NO] 2H₂O 加入盛有 40 mL 二 度蒸餾水的錐形瓶,置於冰鹽混合浴中冷卻,通以氨氣並隨時控制氨 氣流量,使反應溫度不超過 10 ,15 分鐘後開始有黃色晶體產生, 繼續反應直至反應完全,直到有氨氣溢出且反應溫度明顯下降(約 3 小時),過濾,以乙醇及乙醚清洗數次,得黃色結晶粗產物。

再結晶:

將初產物溶於 25 % 氨水中(約 20mL),過濾去除雜質,將乙醇逐 滴加入濾液中,直到溶液成為混濁狀,置於冰浴中冷卻約兩小時,過 濾,以乙醇和乙醚沖洗數次所得淡黃色針狀結晶,置於真空乾燥器中 乾燥,放置冰櫃中保存,其產率為(3.37 克)30.7%,產物的純度除元 素分析外,可以與? 啶形成之錯合物吸收光譜鑑定。光譜結果顯示 ?max=365nm, max=3706 M⁻¹cm⁻¹與文獻值相符³²。

complex		N%	С%	H%
Na ₃ [Fe(CN) ₅ NH ₃] 3H ₂ O	理論值	25.78	18.42	2.79
	實驗值	25.77	18.38	2.47

XV

H_2 bpy[Fe(CN)₅cp] 3H₂O 之合成 (cp = 4-cyanopyridine)

將 0.625 克(6 mmol)的配位基(L=4-cyanopyridine)溶於 7mL 的水 中,加入 0.26g(0.8 mmol)的 Na₃[Fe(CN)₅NH₃] 3H₂O 於避光的環境下 反應 1 小時,再以 0.95g(4 mmol)Na₂S₂O₈ 氧化 15min 後加入 0.5mL 濃 鹽酸,再加入固體 4,4'-bipyridine 持續攪拌直到溶液混濁後冰浴二小 時,過濾收集沉澱物用乙醚清洗。

再結晶:

將粗產物溶於 5ml 熱水,溫度維持在 40-50 ,趁熱過濾後加入 0.1mL HCl,將濾液置於冰浴冷卻二小時後過濾,用乙醚清洗產物, 真空乾燥三小時。產率 0.17g (45.2%)。

Co	omplex		N%	С%	H%
H ₂ bpy[Fe(CN) ₅ cp]	3H ₂ O	理論值	25.10	50.22	4.01
		實驗值	26.62	51.30	4.01

H₂bpy[Fe(CN)₅isn] 2H₂O之合成 (isn = isonicotinamide)

將 0.73 克(6 mmol)的配位基(L=isonicotinamide)溶於 10mL 的水 中,加入 0.26g(0.8 mmol)的 Na₃[Fe(CN)₅NH₃] 3H₂O 於避光的環境下 反應 1 小時,再以 0.95g(4 mmol)Na₂S₂O₈ 氧化 15min 後加入 0.5mL 濃 鹽酸,再加入固體 4,4'-bipyridine 持續攪拌直到溶液混濁後冰浴二小 時,過濾收集沉澱物用乙醇、乙醚清洗。

再結晶:

將粗產物溶於 5ml 熱水,溫度維持在 40-50 ,趁熱過濾後加入 0.1mL HCl,將濾液置於冰浴冷卻二小時後過濾,用乙醇、乙醚清洗 產物,真空乾燥三小時。產率 0.20g(49.7%)。

Co	mplex		N%	С%	H%
H ₂ bpy[Fe(CN) ₅ isn]	2H ₂ O	理論值	25.10	50.22	4.01
		實驗值	26.43	50.62	4.08

H₂bpy[Fe(CN)₅bpy] 3H₂O 之合成 (bpy = 4,4 '-bipyridine)

將 0.94 克(6 mmol)的配位基(L=4,4'-bipyridine)溶於 10mL 的水中,加入 0.26g(0.8 mmol)的 Na₃[Fe(CN)₅NH₃] 3H₂O 於避光的環境下 反應 1 小時,再加入 0.5ml 氫溴酸(HBr)酸化溶液,之後再用 Br₂ 氧化 直到溶液呈黃綠色混濁,冰浴二小時,過濾收集沉澱物用乙醇、乙醚 清洗。

再結晶:

將粗產物溶於 5mL 熱水,溫度維持在 40-50 ,趁熱過濾後加入 0.1mL HBr,將濾液置於冰浴冷卻二小時後過濾,用乙醇、乙醚清洗產物,真空乾燥三小時。產率 0.178g(40.3%)。

cor	nplex		N%	С%	H%
H ₂ bpy[Fe(CN) ₅ bpy]	3H ₂ O	理論值	22.74	54.16	4.37
		實驗值	22.73	54.88	4.33

H₂bpy[Fe(CN)₅py]之合成 (py = pyridine)

將 0.48ml(6 mmol)的配位基(L=pyridine)溶於 10mL 的水中,加入 0.26g(0.8 mmol)的 Na₃[Fe(CN)₅NH₃] 3H₂O 於避光的環境下反應 1 小時,再以 0.95g(4 mmol)Na₂S₂O₈氧化 15min 後加入 0.5mL 濃鹽酸, 再加入固體 4,4'-bipyridine 持續攪拌直到溶液混濁後冰浴二小時,過 濾收集沉澱物用乙醇、乙醚清洗。

再結晶:

將粗產物溶於 5mL 熱水,溫度維持在 40-50 ,趁熱過濾後加入 0.1mL HCl,將濾液置於冰浴冷卻二小時後過濾,用乙醇、乙醚清洗 產物,真空乾燥三小時。產率 0.20g(47.3%)。

Complex		N%	С%	H%
H ₂ bpy[Fe(CN) ₅ py]	理論值	26.47	56.75	3.58
	實驗值	26.46	58.25	3.58

$[Fe(CN)_5pzH]pzH$ H₂O 之合成 (pz = pyrazine)

將 0.48 克(6 mmol)的配位基(L=pyrazine)溶於 7mL 的水中,加入 0.26g(0.8 mmol)的 Na₃[Fe(CN)₅NH₃] 3H₂O 於避光的環境下反應 1 小時,再以 0.95 g (4 mmol)Na₂S₂O₈ 氧化 15min 後加入 0.7mL 濃鹽酸, 持續攪拌直到溶液混濁後冰浴二小時,過濾收集沉澱物用乙醚清洗。

再結晶:

將粗產物溶於 5mL 熱水,溫度維持在 40-50 ,趁熱過濾後加入 0.1mL HCl,將濾液置於冰浴冷卻二小時後過濾,用乙醚清洗產物, 真空乾燥三小時。產率 0.16g (37.3%)。

co	mplex		N%	С%	H%
[Fe(CN)5pzH]pzH	H ₂ O	理論值	34.43	41.05	3.02
		實驗值	34.26	41.30	3.15

四、去氧處理

隔氧處理系統

由於 PA 及[Fe(CN)₅L]² 對空氣敏感,所有溶液的配製包括 PA 及 [Fe(CN)₅L]²溶液,及反應過程,均需維持在氫氣或氮氣下操作,以 防止滲入空氣的干擾,我們所使用的隔氧系統如圖一所示,鋼瓶中的 氫氣,先經過含過量鋅汞齊的 Cr(II)溶液的氣體洗滌瓶,以除去氫氣 鋼瓶中少量的空氣,再經裝有二度水的氣體洗滌瓶,以防止含鋅汞齊 的溶液直接與空氣接觸而容易被氧化,同時平衡反應瓶內水溶液的含 量,氮氣系統(N₂-line)與氫氣系統(Ar-line)的組合相同,僅以氯化亞 釠取代鉻(II)化合物。

圖一、隔氧處裡方法

處理過程乃以針筒及不銹鋼針連結反應物溶液,如圖二所示, 先將溶劑置於血清瓶內,瓶口以血清塞塞住,再將兩根(一長一短)注 射鋼針插入,長針沒入溶劑中,為氬氣(或氦氣)入口,短針則遠離液 面,為氬氣(或氦氣)出口,通入氬氣至少五分鐘,以除去溶劑中的溶 氧,然後加入錯合物。

五、分析儀器及方法

1.微量秤重測量

三位天平 OHAUS TS 400D

四位天平 PRECISA 125A

五位天平 METTLERAE-42C

2.酸鹼度測量

使用 Orion 420A pH 儀, 量測之前視緩衝液之 pH 分別以 pH= 4、7 及 10 標準溶液先校正儀器。

3.吸收光譜分析測量

以 Hitachi U-2000 或 HP 8453 UV/VIS 光譜儀測量錯合物之 紫外-可見光區(UV-Vis)吸收光譜,樣品槽(cell)使用 1.0 公分的 石英材質樣品槽。

消光係數 e_{max}可從錯合物吸收波? 的吸收依 Beer's law(A=bc)求得。

4.IR 光譜分析測量

使用 FT-IR spectrometer 1725X 儀以及 spectrum V 2.0 軟 體,以 KBr 透明薄片作校正,將待測化合物混合 KBr 壓片測量,以穿透率(T%)10%以上為標記。

反應動力學按照反應速率快慢,分別以 SF-61 DX2 Double Mixing Stopped-Flow Spectrophotometer 或 Hewlett Packard HP 8453 UV-Vis Spectrophotometer 測量,並用 Hotech 63HP 恆溫槽 控制反應溫度。反應在偽一級(pseudo first-order reaction)條件下 進行,並以 PA 為過量,藉觀測 Fe(II)的形成求得,反應的變化 隨時間改變成單指數曲線,且 ln $A_i - A_t$ 對時間變化呈線性關 係,如圖三。 k_{obs} 可利用線性最小平方差(linear least-square fit) 分析 ln $A_i - A_t$ 對 t(時間)之關係圖,從斜率求得。

圖三、[Fe(CN)5L]²⁻還原反應圖

pH=6, 0.2M MES buffer , $\mu = 0.1M (\text{LiClO}_4)$, T=25 [Fe(CN)₅-cp]²⁻ $\cong 2 \times 10^{-4}$ M [H₂cat-COOH] $\cong 2 \times 10^{-3}$ M (a) A_t vs time

(b) $\ln | A_t - A_i | vs$ time

錯合物之還原電位是以 Princeton Applied Research (PAR)
Model 273A Potentiostat/Galvanostat 測量,所得結果由與儀器連 接之個人電腦 PC 486 DX 利用 PAR Model 270/250 Research
Electrochemistry software ver.4.0 記錄存檔,並由 EPSON Stylus
800 Printer 列印所得之循環伏安圖。圖四為實驗所使用之環路伏
安電池裝置,以飽和甘汞電極(Saturated calomel electrode, SCE)
作為參考電極(reference electrode),鉑絲(Platinum wire)作為輔助
電極(auxiliary electrode),用碳電極(carbon paste electrode)做工作
電極(working electrode),電化電池一端接氮氣系統在每次測試前
反應溶液必先通以氮氣,以清除電極表面附著物,並重新將溶液
混合均匀。

7.元素分析

所有化合物均送往中興大學或交通大學貴重儀器中心,以 Heraeus CHN-O Rapid 元素分析儀, 偵測樣品之 N、C、H 元素的 含量百分比。

- (a) Working Electrode
- (b) Saturated Calomel Electrode
- (c) Counter Electrode
- (d) N₂-line

第三章 結果

一、光譜鑑定

Fe(CN)₅L²⁻錯合物之 _{CN} d 和 Fe(CN)₅L³⁻錯合物之 d_{L}^{*} 電荷轉移(charge transfer)吸收以及 Fe(CN)₅L²⁻錯合物之 _{CN} 列於表 1,圖五、六為[Fe(CN)₅bpy]^{2-/3-}之 UV-Vis 及 IR 吸收光譜圖。圖七為 protocatechuic acid 吸收光譜(_{max}(_{max}))。

表 1、[Fe(CN)₅L]²⁻³⁻錯合物之電荷轉移吸收光譜 *

	UV	IR	
	Fe(II)	Fe(III)	Fe(III)
L	$\max(10^{-3} \max)$	$\max(10^{-3} \max)$	$_{\rm CN}({\rm cm}^{-1})^{\rm b}$
pz	452(5.06)	420(1.00)	2124
ср	476(6.37)	420(2.33)	2112
isn	438(4.84)	419(1.05)	2122
bpy	438(5.60)	425(1.73)	2118
ру	367(3.61)	415(1.16)	2118
^a . pH 8.00 (tris buf	fer) , $\mu = 0.1 M$, T=25 .	^b . In KBr pellets.	

圖五、[Fe(CN)₅bpy]^{2-/3-}吸收光譜圖 (a) [Fe(CN)₅bpy]²⁻ (b) [Fe(CN)₅bpy]³⁻

圖六、[Fe(CN)5bpy]^{2-/3-}IR 吸收光譜圖

圖七、PA 之吸收光譜

pH 8.00 (tris buffer) , $\mu=0.1M$, T=25 . [H_2cat-COOH]=2.00 $\bigstar 0^4\,M$

二、電化學

[Fe(CN)₅L]^{2-/3-}(L = pz、cp、isn、bpy、py)之環路伏安圖,皆同 時呈現有氧化還原波,顯示所有錯合物均屬於為單電子可逆氧化還原 過程,E_{1/2}結果列於表2中,圖八為[Fe(CN)₅py]^{2-/3-}錯合物在pH 8下 之環路伏安圖。

L	E _{1/2} Volt(vs. NHE) ^a			
pz	0.58			
ср	0.53			
isn	0.50			
bpy	0.49			
ру	0.44			
a. $[Fe(CN)_5L]^2 = 1.00 \times 10^{-3} M$, pH 5 & 8 , $\mu=0.1M$, T=25			

(CNI) T 12/3-

圖八、在 pH 8 下, [Fe(CN)₅py]^{2-/3-}錯合物之環路伏安圖。

三、還原反應動力學

Fe(CN)₅L²⁻ - H₂cat-COOH 反應如式(1)所示,我們由動力學的觀 測中得知,無論[Fe(CN)₅L]²⁻錯合物或 PA 為限量試劑, h A_i - A_i 對時間作圖皆呈線性關係,如圖九所示,顯示反應對 PA 及 Fe(III)皆 為一級,因此可以確定反應速率決定步驟應為單電子的還原過程。反 應速率式如式(2)

$$2Fe(CN)_{5}L^{2-} + H_{2}cat\text{-COOH}$$

$$2Fe(CN)_{5}L^{3-} + o\text{-quinone} -COO^{-} + 3H^{+} \qquad (1)$$

$$-\frac{d[\text{Fe(III)}]}{dt} = 2 k_{\text{obs}}[\text{Fe(III)}]$$
(2)
$$k_{\text{obs}} = k[\text{H}_2\text{cat-COOH}]$$
(3)

$$\kappa_{\rm obs} = \kappa [H_2 \text{cat-COOH}] \tag{3}$$

式(2)中之2為統計因子(statistical factor),為考慮兩電子的還原。

在動力學探討中,因PA吸收在近紫外光區(圖七),不會影響 Fe(CN)₅L²⁻的觀察,因此仍以之為過量([H₂Cat-COOH]≥10[Fe(III)]), 以維持反應在偽一級條件下進行,分別在 pH=5~9 範圍下,於µ = 0.1 M LiClO_4 , T = 25 的條件下,藉觀察 Fe(CN)₅L³⁻錯合物之形成測 量還原反應速率,所得之觀測反應速率常數 k_{obs} 列於表 3 7, k_{obs} 與 [H₂cat-COOH]濃度呈線性關係,如圖十 十四所示,以線性最小平方 差(linear-least-squares fit)方法分析 k_{obs} vs [H₂cat-COOH]數據,得不同 pH 值條件下之 k 值,結果列於表 8 12,從表 8 12 得知 k 隨著[H⁺] 濃度增加而遞減但呈非線性關係,如圖十五 十九所示。

當在 pH 6.75 - pH7.75 下, 1/k 隨著 [H⁺]濃度增加呈線性關係,如圖二十所示。根據 k 與[H⁺]的關係在此 pH 範圍內反應速率式可簡化為

$$k = \frac{\mathbf{a}}{\mathbf{b} + [\mathbf{H}^+]} \tag{4}$$

以非線性平方差(non-linear least square fit)分析式(4)的 a、b 值列於表 13 中。

pH	[H ₂ cat-COOH], M	$k_{\rm obs}, {\rm s}^4$	pН	[[H ₂ cat-COOH], M	$k_{\rm obs}, s^1$	pН	[H ₂ cat-COOH], M	$k_{\rm obs}, {\rm s}^{-1}$
5.01	1.50×10 ⁻³	5.80×10 ⁻¹	6.25	1.50×10 ⁻³	7.40	7.75	1.51 x 0 ³	1.19 ×10 ²
	2.53×10 ⁻³	9.50×10 ⁻¹		2.46×10 ⁻³	1.15×10 ¹		2.53 × 0 ³	$1.77 \mathrm{x}10^2$
	3.49×10 ⁻³	1.45		3.47×10 ⁻³	1.76×10^{1}		3.46 × 0°3	2.42×10^2
	4.61×10 ⁻³	1.80		4.56×10 ⁻³	2.42×101		4.57 × 0 ³	3.34×10^2
							5.54 × 0 ⁻³	3.86 x 10 ²
5.24	1.50×10 ⁻³	1.04	6.74	1.52 ×10 ⁻³	1.16 x 10 ¹			
	2.50×10 ⁻³	1.69		2.51 ×10 ⁻³	2.10 ×10 ¹	8.00 ^b	$1.79 \mathrm{k} 0^4$	5.43 ×10 ¹
	3.48×10 ⁻³	2.19		3.50 × 0 ⁻³	2.60 ×10 ¹		3.58 × 0 ⁴	$1.09 \mathrm{k} 0^2$
	5.50×10 ⁻³	3.50		4.51 ×10 ⁻³	3.45 ×10 ¹			
				5.50 × 0 ⁻³	$4.11 \ \mathbf{M}0^1$	8.24 ^b	$1.84 \mathrm{M} \mathrm{O}^4$	9.25 ×10 ¹
5.50	1.51×10 ⁻³	1.60					3.69 × 0 ⁴	1.57×10^2
	2.5×10 ⁻³	2.80	7.00	1.50 × 0 ⁻³	2.29 x10 ¹			
	4.53×10 ⁻³	5.00		2.52 ×10 ⁻³	3.80 x 10 ¹	8.50 ^b	1.79 x 0^4	1.36 x 10^2
	5.54×10 ⁻³	6.20		3.47 ×10 ⁻³	5.24 ×10 ¹		$3.80 t x 0^4$	2.83×10^2
				4.50 × 0 ⁻³	6.95 x 10 ¹			
5.77	1.51×10 ⁻³	3.00				8.75 ^b	1.52×0^4	2.28×10^2
	2.53×10 ⁻³	4.39	7.25	1.52 ×10 ⁻³	3.43 ×10 ¹		3.8×10^{-4}	3.87 ×10 ²
	3.50×10 ⁻³	6.69		2.50 × 0 ⁻³	6.23 x101			
	4.50×10 ⁻³	8.20		3.47 ×10 ⁻³	7.75 x10 ¹	9.00 ^b	1.51×10^4	3.32 ×10 ²
	5.49×10 ⁻³	1.02×10 ¹		4.55 ×10 ⁻³	9.92 x 10 ¹		2.55 × 0 ⁴	6.62×10^2
				5.49 ×10 ⁻³	1.31×10^2			
6.00	1.54×10 ⁻³	4.50						
	2.51×10 ⁻³	7.05	7.50	1.51 ×10 ⁻³	5.99 ×10 ¹			
	3.48×10 ⁻³	9.92		2.55 x10 ⁻³	1.01×10^2			
	4.50×10 ⁻³	1.29×10 ¹		3.45 ×10 ⁻³	1.37×10^2			
				4.56 ×10 ⁻³	$1.81 extbf{k} 0^2$			
				5 49 MO ⁻³	2.18×10^2			

表 3、pH 5 - pH 9, [Fe(CN)5cp]²⁻錯合物還原反應之 kobs^a

pН	[H ₂ cat-COOH], M	$k_{\rm obs}, { m s}^4$	pН	[[H ₂ cat-COOH], M	$k_{\rm obs}, s^1$	pН	[H ₂ cat-COOH], M	$k_{\rm obs}, {\rm s}^{-1}$
5.01	2.50×10 ⁻³	3.51×10 ⁻¹	6.24	1.48×10 ⁻³	3.32	7.75	$1.49 t k 0^3$	3.93 ×10 ¹
	3.52×10 ⁻³	5.22×10 ⁻¹		2.49×10 ⁻³	4.73		2.51×0^3	6.42 ×10 ¹
	4.53×10 ⁻³	6.81×10 ⁻¹		3.49×10 ⁻³	6.83		3.51×0^3	8.65 x 10 ¹
	5.50×10 ⁻³	8.35×10 ⁻¹					4.51 × 0 ³	$1.05 \mathrm{xl} 0^2$
			6.75	1.49 × 0 ⁻³	4.27		5.48×0^{-3}	1.35×10^2
5.26	1.51×10 ⁻³	4.19×10 ⁻¹		2.46 ×10 ⁻³	6.6			
	3.48×10 ⁻³	8.37×10 ⁻¹		4.48 × 0 ⁻³	1.27 ×10 ¹	8.00 ^b	1.57×10 ⁻⁴	2.70×10 ¹
	4.49×10 ⁻³	1.04		5.48 ×10 ⁻³	1.44 ×10 ¹		3.14×10 ⁻⁴	5.34×10 ¹
	5.50×10 ⁻³	1.34						
			6.99	2.53 ×10 ⁻³	1.25 ×10 ¹	8.25 ^b	1.56×10 ⁻⁴	4.29×10 ¹
5.51	1.46×10 ⁻³	6.10×10 ⁻¹		3.53 ×10 ⁻³	1.90×10^1		3.11×10 ⁴	8.44×10 ¹
	2.41×10 ⁻³	1.12		4.3×10 ⁻³	2.20×10^{1}			
	3.50×10 ⁻³	1.44		5.51 ×10 ⁻³	2.71 ×10 ¹	8.51 ^b	1.50×10 ⁻⁴	6.40×10 ¹
	4.51×10 ⁻³	1.96					3.01×10 ⁻⁴	1.29×10 ²
			7.27	1.59 ×10 ⁻³	2.15 ×10 ¹			
5.74	1.47×10 ⁻³	1.18		2.55 ×10 ⁻³	3.13 ×10 ¹	8.75 ^b	1.57×10 ⁻⁴	1.10×10 ²
	2.51×10 ⁻³	1.96		4.54 × 0 ⁻³	5.12 ×10 ¹		3.14×10 ⁻⁴	2.18×10 ²
	3.50×10 ⁻³	2.56		5.50 ×10 ⁻³	6.43 ×10 ¹			
	4.54×10 ⁻³	3.23				9.00 ^b	1.50×10^{-4}	1.50×10 ²
	5.52×10 ⁻³	4.25	7.49	1.49×10^{-3}	2.83 ×10 ¹		3.01×10 ⁻⁴	3.00×10 ²
				2.51 ×10 ⁻³	3.9 ×10 ¹			
6.00	1.30×10 ⁻³	2.24		3.49 × 0 ⁻³	5.47 ×10 ¹			
	2.43×10 ⁻³	3.22		4.53 ×10 ⁻³	7.12 ×10 ¹			
	3.50×10 ⁻³	4.32		5.49 ×10 ⁻³	8.33 ×10 ¹			
	4.57×10 ⁻³	5.85						
	5.61×10 ⁻³	7.12						

表 4、pH 5 - pH 9, [Fe(CN)₅isn]²⁻錯合物還原反應之 k_{obs} ^a

b. $[Fe(CN)_5 isn]^{2-} \cong 1 \times 10^5 \text{ M}$, $\mu = 0.1 \text{ M}(\text{LiClO}_i)$, T = 25

pН	[H2cat-COOH], M	$k_{\rm obs}, { m s}^4$	pН	[[H ₂ cat-COOH], M	$k_{\rm obs}, s^1$	pН	[H2cat-COOH], M	$k_{\rm obs}, {\rm s}^{-1}$
5.00	1.50×10 ⁻³	3.65×10 ⁻¹	6.25	1.56×10 ⁻³	3.02	7.79	1.47×0^{3}	4.92 ×10 ¹
	2.53×10 ⁻³	6.30×10 ⁻¹		2.71×10 ⁻³	5.98		2.49 × 0 ³	6.45×10^{1}
	3.44×10 ⁻³	8.26×10 ⁻¹		3.54×10 ⁻³	7.31		3.49 x 0 ³	8.68 ×10 ¹
				5.48×10 ⁻³	1.17×10^{1}		4.77 × 0 ⁻³	1.26×10^2
5.21	1.45×10 ⁻³	4.25×10 ⁻¹						
	2.54×10 ⁻³	8.63×10 ⁻¹	6.75	1.52 × 0 ⁻³	4.07	8.00 ^b	1.51×10 ⁻⁴	200×101
	3.87×10 ⁻³	1.16		2.49 ×10 ⁻³	6.03		3.02×10 ⁻⁴	392×10 ¹
	4.7×10 ⁻³	1.39		3.67 × 0 ⁻³	8.30			
	5.48×10 ⁻³	1.61		4.51 ×10 ⁻³	1.00×10^1	8.22 ^b	1.51×10 ⁻⁴	3.08×10 ¹
							3.02×10 ⁻⁴	5.9×10 ¹
5.50	1.48×10 ⁻³	5.82×10 ⁻¹	7.00	1.54 ×10 ⁻³	6.63			
	2.56×10 ⁻³	1.29		2.57 ×10 ⁻³	9.92	8.50 ^b	1.53×10 ⁻⁴	4.84×10 ¹
	3.67×10 ⁻³	1.70		3.70 × 10 ⁻³	1.38 ×10 ¹		3.06×10 ⁻⁴	1.13×10 ²
	4.56×10 ⁻³	2.02		4.53 ×10 ⁻³	.1.61 $\star 10^1$			
				5.49 ×10 ⁻³	2.06×10^{1}	8.74 ^b	1.50×10 ⁻⁴	8.19×10 ¹
5.74	1.51×10 ⁻³	1.11					3.00×10 ⁻⁴	1.8×10^{2}
	2.44×10 ⁻³	1.65	7.27	1.45 ×10 ⁻³	1.32 ×10 ¹			
	3.52×10 ⁻³	2.29		2.46 × 0 ⁻³	2.07×10^{1}	9.00 ^b	1.51×10 ⁻⁴	1.28×10 ²
	4.55×10 ⁻³	2.93		3.55 ×10 ⁻³	2.79 ×10 ¹		3.02×10 ⁻⁴	2.66×10 ²
	5.60×10 ⁻³	3.80		4.62 × 10 ⁻³	3.57 ×10 ¹			
6.00	2.65×10-3	3.30	7.49	1.47 × 0 ⁻³	2.23 ×10 ¹			
	3.49×10 ⁻³	4.29		2.53 ×10 ⁻³	3.42 ×10 ¹			
	4.82×10 ⁻³	5.79		3.51 ×10 ⁻³	4.74×10^{1}			
	5.76×10 ⁻³	6.93		4.48 × 0 ⁻³	6.14 ×10 ¹			
a.	$[Fe(CN)_5 bpy]^2 \cong 1 \times 1$	l0 ⁴ Μ , μ	= 0.1 N	$A(\text{LiClO}_4)$, T = 25				
b.	$[Fe(CN)_5 bpy]^2 \cong 1 \times 1$	l0 ⁵ Μ , μ	= 0.1 N	$A(\text{LiClO}_4)$, T = 25				

表 5、pH 5 - pH 9, $[Fe(CN)_5 bpy]^2$ - 錯合物還原反應之 k_{obs}^a

pН	[H ₂ cat-COOH], M	$k_{\rm obs}, {\rm s}^{1}$	рН	[H ₂ cat-COOH], M	$k_{ m obs},{ m s}^{-1}$
6.76	1.51×10 ⁻³	1.28	7.75	1.47×10 ⁻³	1.07×10 ¹
	2.50×10 ⁻³	2.16		2.46×10 ⁻³	1.70×10 ¹
	3.50×10 ⁻³	3.03		3.50×10 ⁻³	2.53×10 ¹
	4.47×10 ⁻³	3.89		5.60×10 ⁻³	4.08×10 ¹
7.01	2.49×10 ⁻³	3.26	8.00 ^b	1.02×10 ⁻⁴	7.40
	3.50×10 ⁻³	4.43		2.03×10 ⁻⁴	1.42×10 ¹
	4.54×10 ⁻³	5.81			
	5.47×10 ⁻³	6.91	8.25 ^b	1.02×10^{-4}	1.63×10 ¹
				2.03×10 ⁻⁴	2.59×10 ¹
7.24	1.50×10 ⁻³	4.20		3.07×10 ⁻⁴	3.75×10 ¹
	2.50×10 ⁻³	6.00			
	4.53×10 ⁻³	1.02×101	8.50 ^b	1.00×10^{-4}	1.99×10 ¹
	5.57×10 ⁻³	1.28×10 ¹		3.07×10 ⁻⁴	5.21×10^{1}
7.51	1.54×10 ⁻³	7.94	8.75 ^b	1.01×10 ⁻⁴	3.51×10 ¹
	2.56×10 ⁻³	1.18×10 ¹		2.02×10 ⁻⁴	6.34×10 ¹
	3.47×10 ⁻³	1.52×10 ¹			
	4.54×10 ⁻³	1.95×101	8.99 ^b	1.01×10^{-4}	5.62×10 ¹
	5.57×10 ⁻³	2.43×10 ¹		3.07×10 ⁻⁴	1.46×10 ²
a	$[\mathbf{Fe}(\mathbf{CN})_{5}\mathbf{py}]^{2} \cong 1 \times 10^{5}$	4 M , $\mu = 0$.1 M(LiClO ₄)	, T = 25	
b.	$[\mathbf{Fe}(\mathbf{CN})_{5}\mathbf{py}]^{2} \cong 1 \times 10^{3}$	⁵ M , $\mu = 0$.1 M(LiClO ₄)	, T = 25	

表 6、pH 6.75 - pH 9, [Fe(CN)₅py]²-錯合物還原反應之 k_{obs}^a

рН	[H ₂ cat-COOH], M	$k_{\rm obs}, {\rm s}^{-1}$	pH	[[H ₂ cat-COOH], M	$k_{\rm obs}$, s ⁻¹
5.01	1.54×10 ⁻³	1.70	6.75	1.44×0^{3}	1.51×10^{1}
	2.5×10 ⁻³	2.98		3.47×0^{3}	3.63 ×1 0 ¹
	3.5×10 ⁻³	3.80		4.09×0^{3}	4.28 × 0 ¹
	4.6×10 ⁻³	5.24		4.53 × 0 ³	4.74 ×1 0 ¹
5.24	1.51×10 ⁻³	2.46	7.06	1.52×0^{3}	2.49 x 0 ¹
	2.53×10 ⁻³	4.13		3.43×0^{3}	$5.60 extbf{k} 0^{1}$
	3.51×10 ⁻³	5.73		4.52×0^3	7.38 ×1 0 ¹
	4.58×10 ⁻³	7.47		5.50×0^{3}	¹ 0 ا x 8.98
5.50	2.55×10 ⁻³	6.93	7.31	1.47×0^3	3.83 ×1 0 ¹
	3.48×10 ⁻³	9.41		2.40×0^{3}	6.25 ×1 0 ¹
	4.5×10 ⁻³	1.08		3.40×0^{-3}	8.85 لا 0 ¹
	5.49×10 ⁻³	1.43		5.66 × 0^3	$1.47 extbf{k} 0^2$
5.74	1.53×10 ⁻³	5.94	7.58	1.09×10^{3}	$4.64 \mathrm{x} 0^1$
	2.51×10 ⁻³	8.04		2.00×0^{3}	8.51 x 0 ¹
	3.49×10 ⁻³	$1.16 \mathrm{sk} 0^1$		3.04×0^{3}	1.29 ×1 0 ²
	5.54×10 ⁻³	$1.86 extbf{k} 0^1$		4.01×10^3	$1.71 \mathrm{sk} \mathrm{O}^2$
				5.04×0^{3}	2.15×10^2
6.00	1.55×10 ⁻³	9.74			
	2.55×10 ⁻³	$1.32 \star 0^1$	7.75	1.08×10^{3}	6.75 ×1 0 ¹
	3.54×10 ⁻³	$1.87 \mathrm{sk} \mathrm{0}^1$		2.00×0^{3}	$1.25 extbf{k} 0^2$
	4.55×10 ⁻³	$2.32 \star 0^1$		3.03 × 0 ³	1.89 x 0 ²
				4.06×0^{3}	2.54×0^2
6.24	1.52×10 ⁻³	$1.11 \ \mathrm{st} 0^1$		5.03×0^{3}	3.14×10^2
	2.50×10 ⁻³	$2.12 extbf{k} 0^1$			
	3.48×10 ⁻³	2.9×10^{1}			
	4.49×10 ⁻³	3.75×0^{1}			
a. [Fe(CN	$\mathbf{D}_{5\mathbf{p}\mathbf{z}\mathbf{H}}^{-} \cong 1 \times 10^{-4} \mathrm{M}$, $\mathbf{\mu} = 1 \times 10^{-4} \mathrm{M}$	0.1 M(LiClQ ₁)	, T = 25		

表 7、pH 5.00 - pH 7.75, [Fe(CN)₅pzH]⁻錯合物還原反應之 k_{obs}^a

圖十二、不同 pH 值下, [Fe(CN)₅bpy]²⁻錯合物還原反應之 k_{obs}與 PA 濃度線性關係圖

- (a) pH 5.00 pH6.25
- (b) pH 6.75 pH7.75
- (c) pH 8.00 pH 9.00

濃度線性關係圖

- (a) pH 6.75 pH7.75
- (b) pH 8.00 -pH 9.00

- (a) pH 5.00 pH6.25
- (b) pH 6.75 –pH 7.75

pН	$k, M^{-1} s^{-1}$
5.01	3.46×10^2
5.24	5.70×10^2
5.50	1.20×10^{3}
5.77	1.86×10^{3}
6.00	2.85×10^{3}
6.25	5.12×10^{3}
6.74	7.60×10^{3}
7.00	1.53×10^{4}
7.25	2.31×10^{4}
7.50	3.98×10^{4}
7.75	6.26×10^4
8.00^{b}	3.04×10^{5}
8.24 ^b	4.41×10^{5}
8.50^{b}	7.47×10^{5}
8.75 ^b	1.31×10 ⁶
9.00 ^b	2.29×10^{6}
a. $\left[\textbf{Fe}(\textbf{CN})_{5}\textbf{cp} \right]^{2\text{-}} \cong 1{\times}10^{-4}~M$, μ	= 0.1 M(LiClQ _i) , T = 25
b. $[\mathbf{Fe}(\mathbf{CN})_{5}\mathbf{cp}]^{2-} \cong 1 \times 10^{-5} \text{ M}$, μ	$= 0.1 \text{ M(LiClO_i)}$, T = 25

表 8、pH 5-pH 9, [Fe(CN)5cp]²錯合物還原反應之 k^a

pH	$k, \mathbf{M}^{-1} \mathbf{s}^{-1}$				
5.01	1.68×10^2				
5.26	2.50×10^{2}				
5.51	4.32×10^2				
5.74	7.33×10^{2}				
6.00	1.28×10^{2}				
6.24	2.20×10^{2}				
6.75	2.71×10^{3}				
6.99	5.05×10^3				
7.27	1.04×10^4				
7.49	1.56×10^4				
7.75	2.44×10^4				
8.00	1.70×10^{5}				
8.25	2.73×10 ⁵				
8.51	4.53×10 ⁵				
8.75	6.80×10^5				
9.00	1.00×10^{6}				
a $[\![Fe(CN)_5isn]^{2\!\!-}\cong\!1\!\times\!10^4~M$, $\mu=$	a $[Fe(CN)_5isn]^2\cong 1\times 10^4~M$, $\mu=0.1~M(LiClO_4)$, $T=25$				
b. $\left[\textbf{Fe}(\textbf{CN})_{\textbf{s}} \textbf{isn} \right]^2 \cong 1 \times 10^{-5} \; M$, $\mu =$	$= 0.1 \text{ M}(\text{LiClO}_4)$, T = 25				

表 9、pH 5 -pH 9, [Fe(CN)₅isn]² 錯合物還原反應之 k^a

pH	$k, \mathbf{M}^{-1} \mathbf{s}^{-1}$				
5.00	2.73×10^{2}				
5.21	2.99×10^2				
5.50	4.65×10^2				
5.74	6.66×10^2				
6.00	1.21×10^{3}				
6.25	2.12×10^3				
6.75	2.29×10^3				
7.00	3.72×10^3				
7.27	7.93×10^3				
7.49	1.37×10^4				
7.79	2.63×10 ⁴				
8.00 ^b	1.30×10^{5}				
8.22 ^b	1.97×10^5				
8.50 ^b	3.59×10^{5}				
8.74 ^b	5.89×10^{5}				
9.00 ^b	8.74×10^{5}				
a. [Fe(CN) ₅ bpy] ²⁻ $\cong 1 \times 10^4$ M , $\mu = 0$.	1 M(LiClO ₄) , T = 25				
b. $[Fe(CN); bpy]^2 \cong 1 \times 10^5 \text{ M}$, $\mu = 0$.	b. $[Fe(CN)bpy]^{2-} \cong 1 \times 10^5 \text{ M}$, $\mu = 0.1 \text{ M}(\text{LiClO}_4)$, $T = 25$				

表 10、pH 5-pH 9, [Fe(CN), bpy]²錯合物還原反應之 k^a

pН	$k, \mathbf{M}^{-1} \mathbf{s}^{-1}$			
6.76	8.67×10^2			
7.01	1.28×10^3			
7.24	2.31×10^{3}			
7.51	4.39×10^{3}			
7.75	7.23×10^3			
8.00	7.05×10^4			
8.25	1.26×10^5			
8.50	1.26×10^5			
8.75	3.21×10 ⁵			
8.99	4.83×10 ⁵			
a $[\![Fe(CN)_5py]\!]^{\!\!2}\cong l{\times}10^{-4}~M$, $\mu=0.1~M(LiClO_4)$, $T=25$				

表 11、pH 6.75-pH9, [Fe(CN)₅py]²錯合物還原反應之 k^a

b. $\left[\textbf{Fe}(\textbf{CN})_{\textbf{F}} \textbf{py} \right]^2 \cong 1 \times 10^{-5} \ \text{M}$, $\mu = 0.1 \ M(\text{LiClO}_4)$, T = 25

表 12、pH 5-pH 7.75, [Fe(CN)spzH] - 錯合物還原反應之 k^a

pН	$k, \mathbf{M}^{-1} \mathbf{s}^{-1}$			
5.01	1.13×10^{3}			
5.24	1.63×10^{3}			
5.50	2.27×10^{3}			
5.74	3.35×10^{3}			
6.00	5.23×10^{3}			
6.24	8.31×10^{3}			
6.75	1.05×10^4			
7.06	1.62×10^4			
7.31	2.60×10^4			
7.58	4.26×10 ⁴			
7.75	6.25×10 ⁴			
a [Fe(CN) ₅ pzH] ⁻ \cong 1×10 ⁻⁴ M , μ = 0.1 M(LiClQ _i) , T = 25				

圖十五、不同 pH 值下, [Fe(CN)₅cp]²錯合物還原反應之 k 與[H⁺] 關係圖

- (a) pH 5.00 pH6.25
- (b) pH 6.75– pH7.75
- (c) pH 8.00 -pH 9.00

圖十六、不同 pH 值下, $[Fe(CN)_{5}isn]^{2-}$ 錯合物還原反應之 k 與 $[H^{+}]$ 關係圖

- (a) pH 5.00 pH6.25
- (b) pH 6.75– pH7.75
- (c) pH 8.00 pH 9.00

圖十七、不同 pH 值下, [Fe(CN)₅bpy]²錯合物還原反應之 k 與[H⁺] 關係圖

- (a) pH 5.00 pH6.25
- (b) pH 6.75- pH7.75
- (c) pH 8.00 pH 9.00

^[H⁺] 圖十八、不同 pH 值下, [Fe(CN)₅py]²⁻錯合物還原反應之 k 與[H⁺] 關係圖

- (a) pH 6.75 pH7.75
- (b) pH 8.00-pH 9.00

 $[H^+]$

[11]

圖十九、不同 pH 值下, [Fe(CN)₅pzH] 錯合物還原反應之 k 與[H⁺] 關係圖

- (a) pH 5.00 pH6.25
- (b) pH 6.75-pH7.75

圖二十、pH6.75—pH7.75, [Fe(CN)₅L]²錯合物還原反應之 1 / 與[H⁺]關係圖

Fe(III)				
L	L a b			
ср	(1.49 ±0.06) ×10 ⁻³	$(3.4 \pm 0.2) \times 10^{-9}$		
isn	(6.72 ±0.05) ×10 ⁻⁴	(2.8 ± 0.1) × 10 ⁹		
bpy	$(4.0\pm0.1) \times 10^{-4}$	$(1.9 \pm 0.1) \times 10^{-9}$		
ру	$(2.03 \pm .49) \times 10^{-4}$	(7.1 ± 0.5) × 10 ⁻⁹		
pz	$(1.6 \pm 0.1) \times 10^{-3}$	$(1.1 \pm 0.2) \times 10^{-8}$		

表 13、反應式(4)之參數 a、b 值

第四章 討論

一、[Fe(CN)₅L]²⁻錯合物之合成(L=cp、isn、bpy、pz)

由於[Fe(CN)₅L]² 錯合物帶負電荷,較難沉澱,特別是再結晶步 驟。合成產物雖 N、C、H 元素分析值不十分理想,但結果仍可接受, 而且合成產物之溶液經維他命 C 還原,所得 Fe(II)吸收光譜之_{max} 及_{max}值均與文獻符合^{28,29,33,34},因此我們相信合成的 Fe(III)錯合物 即使有少量不純物質,亦不會影響反應之觀察。

二、[Fe(CN)₅L]²⁻錯合物之光譜吸收

所有[Fe(CN)₅L]²-錯合物在可見光區皆有吸收,屬於 CN⁻的 電子 躍遷至 Fe(III)的 d 軌域的電子洞(electronic hole)之 LMCT 吸收 ²⁷, 吸收在光譜 max 415-425nm 範圍,結果列於表 1;當 Fe(III)還原成 Fe(II)錯合物時,此吸收迅速消失另在可見光區皆有一強 d Fe(II) $\stackrel{*}{L}$ 電荷轉移吸收(MLCT),其光譜結果亦列於表 1,結果與文獻值相符 28,29,33,34

IR 光譜進一步印證合成產物屬於 Fe(III)狀態,根據文獻^{8,35 37} Fe(II)-cyanide 拉伸頻率(stretching frequencies) $_{CN}$ 在 2040cm⁻¹ 2080cm⁻¹,而 Fe(III)-cyanide 之則在 2100 2140cm⁻¹,而我們所合成 之[Fe(CN)₅L]²⁻錯合物之 $_{CN}$ 在 2120 \pounds cm⁻¹,明顯屬於 Fe(III)錯合物。

LIV

三、還原反應動力學

PA 有三個鹼基位置³⁹,在不同的 pH 條件下分別以 H₂cat-COOH H₂cat-COO⁻、Hcat-COO²⁻、cat-COO³的型態存在(scheme I),其 pK_a 值及電位值列於表 14。

scheme I

由於 Fe(CN)₅L^{2-/3-}為取代反應惰性(substitution inert)之錯合物, 且無額外可供鍵結之位置,因此與 PA 的反應屬於外圈電子轉移反

應,根據動力學結果,我們推測反應機構為:

$$H_{2}cat-COOH \xrightarrow{K_{a1}} H_{2}cat-COO^{-} + H^{+}$$
(1)
$$H_{2}cat-COO^{-} \xrightarrow{K_{a2}} Hcat-COO^{2-} + H^{+}$$
(2)

Heat-COO²⁻
$$\underbrace{K_{a3}}_{cat-COO^{3-}} + H^+$$
 (3)

$$Fe(CN)_5 L^{2-} + H_2 cat-COOH \xrightarrow{k_0} Fe(CN)_5 L^{3-} + H_2 cat-COOH^+$$
(4)

$$Fe(CN)_5L^{2-} + H_2cat-COO^{-} \qquad Fe(CN)_5L^{3-} + H_2cat-COO^{-}$$

$$k_2 \qquad Fe(CN)_5L^{3-} + H_2cat-COO^{-}$$

$$(5)$$

$$Fe(CN)_5L^{2^-} + Hcat-COO^{2^-} \qquad Fe(CN)_5L^{3^-} + Hcat-COO^{2^-} \qquad (6)$$

$$Fe(CN)_5L^{2^-} + cat-COO^{3^-} \qquad \underbrace{k_3}_{Fe(CN)_5L^{3^-}} + cat-COO^{2^{--}} \qquad (7)$$

$$Fe(CN)_5L^{2-} + H_2cat-COOH^+ \xrightarrow{fast} Fe(CN)_5L^{3-} + o-quinone-COO^- + 3H^+$$
(8)

$$Fe(CN)_5L^{2-} + H_2cat-COO^{-} \xrightarrow{fast} Fe(CN)_5L^{3-} + o-quinone-COO^{-} + 2H^{+}$$
(9)

$$Fe(CN)_5 L^{2-} + Hcat-COO^{-} \qquad \xrightarrow{fast} \qquad Fe(CN)_5 L^{3-} + o\text{-quinone-COO}^{-} + H^+ \qquad (10)$$

$$Fe(CN)_5L^{2-} + cat-COO^{2-\bullet} \xrightarrow{fast} Fe(CN)_5L^{3-} + o$$
-quinone-COO⁻ (11)

根據此反應機構,速率常數 k 值應為

$$k = \frac{k_0 [\mathrm{H}^+]^3 + k_1 \mathrm{K}_{a1} [\mathrm{H}^+]^2 + k_2 \mathrm{K}_{a1} \mathrm{K}_{a2} [\mathrm{H}^+] + k_3 \mathrm{K}_{a1} \mathrm{K}_{a2} \mathrm{K}_{a3}}{[\mathrm{H}^+]^3 + \mathrm{K}_{a1} [\mathrm{H}^+]^2 + \mathrm{K}_{a1} \mathrm{K}_{a2} [\mathrm{H}^+] + \mathrm{K}_{a1} \mathrm{K}_{a2} \mathrm{K}_{a3}}$$
(12)

由於 k 值隨 pH 值改變而有很大的差異,因此我們分別在不同 pH 範圍下討論其反應。

1. pH5-pH6.25

我們曾在低 pH 值(pH<5)中嘗試探討反應,但發現一系列 Fe(III) 錯合物反應皆不完全,只達 Fe(II)理論形成之值的 50-70%,且無法獲 得良好的再現性結果,我們猜想可能在 pH<5 酸性條件下,還原產物 Fe(II)錯合物易受空氣干擾 ³² 而影響結果,因此我們動力學探討皆在 pH>5 條件下進行

當 pH 5- pH 6.25,由於 $K_{al}[H^+]^2 + K_{al}K_{a2}[H^+] >> [H^+]^3, K_{al}K_{a2}K_{a3}$ 且 $k_1K_{a1}[H^+]^2 + k_2K_{a1}K_{a2}[H^+] >> k_0[H^+]^3, k_3K_{a1}K_{a2}K_{a3}, 使式(12)可簡化為$ $式(13),代入 <math>K_{a1}$ 、 K_{a2} 值利用非線性最小平方差分析 k vs $[H^+]$ 數據求 得之 k_1 、 k_2 值,列於表 15。

$$k = \frac{k_1 K_{a1} [H^+] + k_2 K_{a1} K_{a2}}{[H^+] + K_{a1}}$$
(13)

實驗中發現當 L= py,在此條件下觀測 Fe(II)生成之再現性不好, 且吸收不達理論應有最高吸收值(60%以下),可能是因為 [Fe(CN)₅py]^{2-/3-}錯合物氧化還原電位低(0.44 V),還原成 Fe(II)過程已 經受空氣干擾,故無法探討此範圍動力學。

2.pH6.75 - pH7.75

在此範圍下由於 $K_{a1}[H^+]^2 + K_{a1}K_{a2}[H^+] >> [H^+]^3$, $K_{a1}K_{a2}K_{a3}$ 且 $k_2K_{a1}K_{a2}[H^+] >> k_0[H^+]^3$, $k_1K_{a1}[H^+]^2$, $k_3K_{a1}K_{a2}K_{a3}$, 使式(12)可簡化為式 (14), 若以 1/k 對[H⁺]作圖(圖二十)可成線性關係式(15)

$$k = -\frac{k_2 K_{a2}}{[H^+] + K_{a2}}$$
(14)

$$1/k = \frac{1}{k_2 K_{a2}} [H^+] + \frac{1}{k_2}$$
(15)

比較式(4)與(14),我們發現在此 pH 範圍內,根據反應機構所推導的 反應速率式(式 14)與實際觀測(式 4)所得一致,從 a、b 值求得 k_2 及 K_{a2} ,根據表 13,不同錯合物 b(= K_{a2})的平均值為 5.24 ×10⁻⁹,與 K_{a2} 文 獻值(2.1 ×10⁻⁹)接近,我們設 b= K_{a2} 為定值,根據式(14)重新分析表 8 12 之 k vs [H⁺] 數據,得 k_2 值列於表 15。

LVII

3. pH8.00 - pH9.00

在此範圍下由於 $K_{a1}[H^+]^2 + K_{a1}K_{a2}[H^+] >> [H^+]^3$, $K_{a1}K_{a2}K_{a3}$, 且 $k_2K_{a1}K_{a2}[H^+] + k_3K_{a1}K_{a2}K_{a3} >> k_0[H^+]^3$, $k_1K_{a1}[H^+]^2$, 使式(12)可簡化為式 (16), 代入 K_{a1} , K_{a3} , K_{a3} , 以非線性最小平方差根據式(16)分析 k vs $[H^+]$ 數據(表 8 12)求得之 k_2 、 k_3 列於表 15。

$$k = \frac{k_2 K_{a1} K_{a2} [H^+] + k_3 K_{a1} K_{a2} K_{a3}}{K_{a1} [H^+]^2 + K_{a1} K_{a2} [H^+]}$$
(16)

當 L=pz 時,由於反應速率過快已超過儀器偵測極限,因此在此範圍無法找到適合條件量測動力學。

根據三個不同範圍內之 rate law 求得之 k₂彼此之間相當一致,由 於在 pH 6.75-pH 7.75 範圍 1/k₂ vs [H⁺]呈線性圖形,變數最少關係較 為簡單,所求出之 k₂值較為可靠,因此我們選擇此範圍 k₂值作為式 (6)之反應速率常數。

從 protocatechuic acid 與 Fe(CN)₅L^{2-/3-}錯合物之還原電位我們求得 反應(6)(7)之平衡常數 K₃ K₃,結果列於表 16,以 logk_n對 logK_n(n=2,3) 作圖,如圖二十一(a)(b)所示,兩者呈線性關係,斜率分別為斜率 分別為 0.41 ±0.09 及 0.47 ±0.04 與外圈電子轉移反應的預測值 0.5^{42,43} 相符,進一?印證反應為外圈電子轉移機構。

表 14、	protocatechuic	acid 之	pK _a 值	国及電位	ī值
-------	----------------	--------	-------------------	------	----

	\mathbf{pK}_{a}^{a}
H_2 cat-COOH \longrightarrow H_2 cat-COO ⁻ + H^+	4.48
H_2 cat-COO ⁻ \longrightarrow Hcat-COO ²⁻ + H^+	8.67
Hcat-COO ²⁻ \leftarrow cat-COO ³⁻ + H ⁺	11.48
	E _{1/2} , V
H_2 cat-COOH ^{+•} + e \longrightarrow H_2 cat-COOH	1.38 ^b
H_2 cat-COO + e \longrightarrow H_2 cat-COO ⁻	0.93 [°]
Hcat-COO ^{-•} + e \longrightarrow Hcat-COO ²⁻	0.56 ^d
$cat-COO^{2-}$ + e \leftarrow $cat-COO^{3-}$	0.119 [°]

^{a.} Reference 39 ^{b.}Reference 38 ^{c.}本實驗利用 Marcus 理論求得

^{d.} 公式 $E_2^0 = E_3^0 + 0.059$ (pK_{a2} - pK_{r2}), Reference 40; pK_{r2} = 4.2, Reference 39

^{e.} Refernece 41

	<i>k</i> 1		k_2		k3		_
L	Meas	Cal ^d .	Meas	Cal.	Meas	Cal.	E^{0}
p z	(5.4±0.2)×10 ^{2, a}	4.99.×10 ²	(1.0±0.1)×10 ^{6, a}	1.74×10 ⁶		1.11×10 ⁹	0.58
			(2.88±0.02)×10 ^{5, b}				
ср	(1.5±0.2)×10 ^{2, a}	1.59×10 ²	(6.41±0.02)×10 ^{5, a}	7.82×10 ⁵		6.27×10 ⁸	0.53
			(3.00±0.02)×10 ^{5, b}				
			(6.20±0.07)×10 ^{5, c}		(3.2±0.1)×10 ^{8, c}		
isn	(3.9±0.3)×10 ^{1, a}	8.63×101	(2.9±0.3)×10 ^{5, a}	3.57×10 ⁵		5.88×10 ⁸	0.50
			(1.2±0.3)×10 ^{5, b}				
			(4.64±0.08)×10 ^{5, c}		(1.6±0.3)×10 ^{8, c}		
bpy	(8.0±0.1)×10 ^{1, a}	8.93×10 ¹	$(2.57\pm0.01)\times10^{5, a}$	2.90×10 ⁵		5.15×10 ⁸	0.48
			(1.10±0.02)×10 ^{5, b}				
			(3.5±0.2)×10 ^{5, c}		(9.2±0.2)×10 ^{7, c}		
ру			(3.37±0.04)×10 ^{4, b}	1.01×10^{5}		2.60×108	0.44
			(1.8±0.4)×10 ^{5, c}		(5.5±0.2)×10 ^{7, c}		

表 15、 $[Fe(CN)_5L]^2$ 錯合物之還原反應速率常數

^{a.} calculated according to eq.13

^{b.} calculated according to eq.14

^{c.} calculated according to eq.16

^d E_1^0 =0.93V, 利用 Marcus Theory 求得 [Fe(CN)₅L]²-錯合物之理論 k_1 值

$[Fe(CN)_5L]^{2-}$		_		
L	E ⁰ ,V	$\boldsymbol{K}_{1}^{a,b}$	$oldsymbol{K}_2^{c,d}$	$K^{c,e}_{3}$
ср	0.53	1.67 × 10 ⁻⁷	3.11 ×10 ⁻¹	9.00×10^{6}
isn	0.50	5.30×10^{-8}	9.66×10 ⁻²	2.8×10^6
bpy	0.49	3.59 × 10 ^{−8}	6.54×10 ⁻²	1.94×10^{6}
ру	0.44	7.55×10^{-9}	9.32×10 ⁻³	2.76×10^5
pz	0.58	1.17×10^{-6}	2.10×10 ⁻¹	1.96×10^7

表 16、 $[Fe(CN)_{c}L]^{2}$ 在不同 pH 值下與 PA 反應之平衡常數 K

^{a.}利用 k 實驗值及式(18)求得

^{b.} eq. (5) 之平衡常數

^{c.} 利用 PA 及 Fe(III) 錯合物還原電位,依 Nerst equation 求得

^{d.}eq.(6) 之平衡常數

^{e.} eq. (7) 之平衡常數

圖二十一、以 PA 還原 [Fe(CN)₅L]²錯合物之 logk 對 logK 作圖 (a) logk₂ vs logK₂ (b) logk₃ vs logK₃

四、Marcus Theory

根據 Marcus 理論^{42,43}, 外圈電子轉移反應(式 17)

$$\operatorname{Red}_1 + \operatorname{Ox}_2 \Longrightarrow \operatorname{Ox}_1 + \operatorname{Red}_2 \tag{17}$$

反應速率常數為

$$k_{12} = \sqrt{k_{11}k_{22}K_{12}f_{12}}W_{12} \tag{18}$$

$$\ln f_{12} = \frac{\left[\ln K_{12} + (w_{12} - w_{21})/RT\right]^2}{4\left[\ln(k_{11}k_{22})/10^{22} + (w_{11} + w_{22})/RT\right]}$$
(19)

$$W_{12} = exp\left[-\left(w_{12} + w_{21} - w_{11} - w_{22}\right)/2RT\right]$$
(20)

$$w_{ij} = \frac{z_i z_j e^2}{D_s a_{ij} \left(1 + \boldsymbol{b} a_{ij} \boldsymbol{m}^{\frac{1}{2}}\right)}$$
(21)

$$\boldsymbol{b} = \left(\frac{8N\boldsymbol{p}\boldsymbol{e}^2}{1000\,\boldsymbol{D}_s\boldsymbol{k}\boldsymbol{T}}\right)^{1/2} \tag{22}$$

 k_{11} 、 k_{22} 為還原劑及氧化劑之自身電子轉移反應速率常數, w_{11} 、 w_{22} 為相對的 work terms, w_{12} , w_{21} 為式(19)反應物及生成物之 work terms, *K* 為反應平衡常數, a_{ij} 為反應物的原子核間最近距離(distance of closest approach),通常為反應物的半徑和, z_k , z_j 為離子電荷數, e 為電子的電荷, μ 為離子強度, N 為亞佛加厥常數。

 $[Fe(CN)_5L]^{2-/3-}$ 錯合物的自身電子轉移速率 $k_{22}=7 \times 10^{5,44} M^{-1} s^{-1}$, H₂cat-COO⁻、Hcat-COO²⁻、cat-COO³⁻的自身電子轉移速率常數相似皆 為 $k_{11}=2 \times 10^{6,39} M^{-1} s^{-1}$, $[Fe(CN)_5L]^{2-/3-}$ 及 H₂cat-COOH 半徑分別為 $g_{F_{e(III)}} = 5.0 \times 10^{-8.44} \,\mathrm{cm}$ 、 $g_{H_{2}cat-COOH} = 5.0 \times 10^{-8.39} \,\mathrm{cm}$, K 值列於表 17。

利用以上數據,根據式(18),求得 k₂及 k₃值列於表 15,所得結 果與實驗值相當吻合,進一步證實我們所推測的反應機構為外圈電子 轉移。

對[Fe(CN)₅pz]²錯合物,在 pH>8 時,根據 Marcus 理論之 k_3 理論值(1.11 × 0⁹ M⁻¹s⁻¹)及 k_2 測量值(2.88 × 10⁵ M⁻¹s⁻¹),根據式(16),當 [Fe(III)] = 1 × 10⁻⁵ M、[H₂cat-COOH] = 1 × 10⁻⁴ M,在 pH 8.00 時, k = 1.15 × 10⁵, k_{obs} = 6.92 × 10¹,已超過 stopped-flow 的時間尺度極限,動力學 無法觀測,這是我們無法測得反應速率的原因。

另外,H₂cat-COO⁻還原電位由於缺少資料,無法求得,假設 k_1 質與理論值相符,以[Fe(CN)₅cp]²⁻還原反應之 k_1 值(1.5×10²M⁻¹s⁻¹)為依 據,利用式(18)可求得 K_1 值=1.6×10⁻⁷,再從 K_1 進一步求得 E_1 =0.93 V,以此 E_1 值,利用式(18)求[Fe(CN)₅L]²⁻(L=isn、bpy、pz)還原反 應之 k_1 計算值結果列於表 15,從表中我們得知理論值亦與實驗值相 符。

從表15中得知[Fe(CN)₅cp]²⁻·H₂cat-COOH反應系統之 $k_1:k_2:k_3 \cong$ 1:10³:10⁶,根據Marcus 理論(式18),影響反應速率因素有三,分 別為work term(W)、平衡能障(K)及反應物本身反應活性(intrinsic reactities, k_{ex})所影響,其中W分別求得為1.19、1.19及1.00 kcal

LXIV

mole⁻¹, 顯示 work term 對反應速率幾乎沒有影響,又因 PA 三種型態 k_{ex} 均相同,反應活性亦無影響,因此反應速率的差異應來自於平衡 能障。若將反應平衡常數修正平衡能障的影響,發現將 $\frac{k_1}{\sqrt{K_1}} : \frac{k_2}{\sqrt{K_2}} : \frac{k_3}{\sqrt{K_3}} = 1:3.2:0.30$,與我們期盼一致。

最後,維他命 C、E 及 PA 雖然皆為雙電子還原劑,但維他命 C 及 PA 速率決定步驟皆為第一個電子,因此還原過程不致有自由基中 間產物的干擾,而維他命 E 第一個電子還原後,自由基中間體卻有相 當程度穩定性,究其原因在於維他命 E 單電子氧化上形成自由基可共 振到苯環上(delocalized) ,得以穩定;而維他命 C 與 PA 單電子 氧化後之自由基可藉 keto-enol 型態(tautomerization),定域在 enolate 氧上容易被進一步氧化成穩定的 diketo 結構之故。

第五章 結論

- 1. PA 為雙電子還原劑,速率決定步驟為第一個電子。
- 還原速率差異 k₁:k₂:k₃ 1:10³:10⁶, 主要乃由 PA 在不同型態中與 [Fe(CN)₅L]²-錯合物之反應能障(K)差異所引起。
- [Fe(CN)₅L]²-錯合物在 pH 5-6.25 條件下的反應速率 k₁,進一步推測 H₂cat-COO⁻/H₂cat-COO⁻之還原電位為 0.93V。

參考文獻

- 1. P. Greenwald, C.K. Clifford and J.A. Milner, Eur. J. Cancer, 37, 948(2001)
- E. Cadenas, A. Boveris, C. I. Ragan and A. O. M. Stoppani, Arch. Biochem. Biophys, <u>180</u>, 248(1977)
- 3. F. Visioli, L. Borsani and C. Galli, Cardiovascular Research, <u>47</u>, 419(2000)
- 4. Y.-H. Wei and H.-C. Lee, Oxidative Stress and Mtdna Mutation in Aging, 617
- 5. B. Halliwell, Chem. Phys. Lipids, <u>44</u>, 327(1987)
- 6. J. M. McCord and I. Fridovich, Free Rradic. Biol. Med., 5, 363(1988)
- 7. T. D. H. Bugg, Tetrahedron, <u>59</u>, 7075(2003)
- 8. L.-M. Lin, M.-H. Lien, A. Yeh, Int. J. Chem. Kin., 37, 126(2005)
- 9. J. B. Harborne, H. Baxter, *Handbook of Natural Flavonoids*(2 Vols), wiley, Chichester, 1999
- 10. K. Beckman and B. Ames. Physiol. Rev., 78, 547(1998)
- 11. J. P. Cornard and J. C. Merlin, J. Inorg. Biochem., <u>92</u>, 19(2002)
- M. T. Fernandez, M. L. Mira, M. H. Floiencio, and K. R. Jennings, J. Inorg. Biochem., <u>92</u>, 105(2002)
- 13. B. A.Bohm, Introduction to Flavonoids, Harwood, Reading, 1999
- 14. J. B. Harborne and C. A. Williams, *Phytochemistry*, 55, 481(2000)
- C. A. Rice-Evans, N. J. Miller and G. Paganga, *Free Radic. Biol. Med.*, <u>20</u>, 933(1996)
- 16. C. A. Rice-Evans, N. J. Miller and G. Paganga, *Elsevier Science Ltd*, 2, 152(1997)
- N. Salah, N. J. Miller, G. Paganga, L. Tijburg, G. P. Bolwell and C. Rice-Evans, Arch. Biochem. Biophys., 322, 339(1995)
- 18. S. Steenken and P. Neta, J. Phys. Chem. <u>86</u>, 3661(1982)
- 19. J. Amesz, Biochim. Biophys. Acta, 301, 35(1973)
- 20. P. R. Rich, Farada Discuss. Chem. Soc., 74, 349(1982)
- 21. P. R. Rich and D. S. Bendall, Biochim. Biophys. Acta, <u>592</u>, 506(1980)
- 22. I. Yamazaki and T. Ohnishi, Biochim. Biophys. Acta, II2, 469(1965)
- 23. C.-L. Hsu, S.-L. Huang and G.-C. Yen, J. Agric. Food Chem. 54, 4191(2006)
- 24. Z. Sroka, W. Cisowski, Food Chem. Toxicol., <u>41</u>, 753(2003)
- 25. H. Hotta, S. Nagano, M. Ueda, Y. Tsujino, J. Koyama, T. Osakai, *Biochim. Biophs. Acta*, <u>1572</u>, 123(2002)
- 26. Y. Nakamura, K. Torikai and H. Ohigashi, Free radic. Biol. Med., 30, 967(2001)
- 27. C. H. Hung, H. Y. Huang, J. Y. Liao and A. Yeh, Inorg. Chem., 29, 2940(1990)
- 28. H.-Y. Huang, W.-J. Chen, C.-C. Yang, and A. Yeh, Inorg. Chem., <u>30</u>, 1862(1991)

- 29. M. H. Chen, S. Lee, S. Liu, and A. Yeh, Inorg. Chem., 35, 2627(1996)
- C.-N. Chen, M.-C. Wu, A. Yeh, Thomas Y. R. Tsai, *Inorg . Chim. Acta, 267*, 81(1998)
- 31. G. Brauer. "Handbook of preparative Inoroanic Chemistry" vol.2 and ed., Academic Press, New York, N.Y.,9, 1511(1965)
- 32. A. Yeh and A. Haim, J. Am. Chem. Soc., <u>107</u>, 269(1985)
- 33. J. Phillips and A. Haim, Inorg. Chem., <u>19</u>, 1616(1980)
- 34. N. V. Hrepoc and J. M. Malin, Inorg. Chem., 18, 409(1979)
- 35. H. E. Toma and J. M. Malin, Inorg. Chem., <u>12</u>, 1039(1973)
- 36. A. Yeh, A Haim, M. Tanner and A. Ludi, Inorg. Chim. Acta, <u>33</u>, 51(1979)
- R. Glauser, U. Haser, F. Herren, A. Ludi, P. Roder, E. Schmidt, H. Siegenthaler, F. Wenk, J. Am. Chem. Soc., <u>95</u>, 8457(1973)
- 38. J. W. Herbert and D. H. Macaetney, Dalton Trans. 1931(1986)
- S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, and M. G. Simic, *J. Am. Chem. Soc.*, <u>116</u>, 4846(1994)
- 40. D. H. Macartney and N. Sutin, Inorg. Chim. Acta, 74, 221(1983)
- 41. S. Steenken and P. Neta, J. Phys. Chem., <u>83</u>, 1134(1979)
- 42. R. A. Marcus, Ann. Rev. Phy. Chem., 15, 155(1964)
- 43. R. A. Marcus and N. Sutin, *Biochim. Biophy. Acta.*, <u>811</u>, 265(1985)
- 44. H. E. Toma and C. Creutz, Inorg. Chem. 16, 545(1977)