第一章 序論

人體新陳代謝過程中因氧化會產生不穩定的自由基(free radicals),過量的自由基便會損害 DNA、蛋白質和脂質等重要生物 分子,進而影響細胞膜轉運過程,使各組織、器官的功能受損,促進 機體老化[1]。人體中有著抵抗氧化的內在能力,例如體內的酵素及 微量元素都發揮著防禦氧化侵襲的責任,然而隨著年齡的增加,體內 的抗氧化力也逐漸降低,許多疾病的致病機轉都與氧化所帶來的傷害 密不可分。因此必須藉由外在抗氧化物的補充,以維持人體的正常功 能。

抗氧化物種類繁多,主要來自於天然的植物蔬果例如:維他命 E (a-tocopherol)、維他命 C (ascorbic acid)以及類黃酮 (flavonoids) 化合物等[2]。1948 年在檸檬中抽取維生素 C 時意外的發現另一種成 分---維生素 P,當時並未特別的注意,而如今研究卻發現原來維生 素 P 即為類黃酮[3]。

一. 類黃酮

類黃酮(Flavonoids)為多酚類植物中最大組成成分,截至目前為止 已有8000多種類黃酮被確認[21]。類黃酮存在植物體內的一種抗氧化 成分,通常存在於水果、蔬菜、堅果類、種子或茶及酒類中。由於許 多類黃酮屬於植物色素,所以才使蔬果具有多種顏色,如深綠、淺綠、

1

紫色及紅色等。類黃酮物質對植物而言,所扮演的角色為保護作用, 如保護植物免於紫外線、昆蟲、蕈類、病毒、細菌之侵害、吸引授粉 者(pollinator attractor)、植物荷爾蒙調控者、酵素抑制者等作用[4]。 類黃酮已被研究一段時間,對於疾病的抵抗有一定的貢獻,可作為結 構性殺菌劑或者植物抗毒素[4],這些乃歸因於類黃酮的生物活性, 因此對於類黃酮的活性便是我們研究討論的重點。

類黃酮具有抗氧化能力,可以提供電子給其他物質,這種提供電子的能力,也就是所謂的抗氧化特性。早期類黃酮被發現與維生素 C,相同對血管壁的完整性及血管彈性的維持具有一定效力,因此類 黃酮素除了抗氧化能力外,還能調節免疫力,對抗病毒、發炎、過敏, 對癌症細胞也有抑制效果[9]。

類黃酮的基本的骨架是由 C6-C3-C6 所組成,其中 A 環為 resorcinol 部分,C 環為一雜環 2-或 3-的位置可運載著 phenyl 結構,依黃酮類 分類的不同,C 環可為飽和或者不飽和的 3 碳環,接著是 B 環 catechol 部分,每個環之碳位置上均可接上羥基、甲基等官能基,亦可能接上 各種糖類,故類黃酮種類十分繁多[5,7,11,18]。類黃酮基本結構如下 所示:

Flavonoids

C6-C3-C6

compound	R_1	R_2	R ₃	R_4	R_5
quercetin	OH	OH	OH	OH	OH
kaempferol	OH	OH	OH		OH
luteolin		OH	OH	OH	OH
taxifolin ^a	OH	OH	OH	OH	OH
(+)catechin ^b	OH	OH	OH	OH	OH

a.C2與C3之間無雙鍵

b. C2與C3之間無雙鍵, C-4無keto group

另外由結構變化來區分黃酮類化合物的子類,中央C 圓環一個keto 官能基出現在結構C-4的位置,C-2與C-3 間的雙鍵,都是決定黃酮類 類別的主要因素,類黃酮概分為flavones、flavonols、flavanones、 flavanonols、isoflavones 及chalcones 等6 類。

黄酮類化合物的抗氧化行動利用各種方式進行,包括直接捕捉易 反應的活性氧[22,23],或抑制酵素反應過程中自由基產生,抑或與低 價金屬離子的螯合作用(Fe²⁺, Cu²⁺)[17,18,19,20]。 類黃酮化合物的抗氧化能力取決於 hydroxyl groups (-OH)的數量 與共軛性質所引起環的共振,而許多研究也指出,類黃酮化合物之所 以有如此活躍的抗氧化力,主要 B 環 catechol (H₂Q)部分的影響 [5,24], catechol 及其衍生物與維他命 C 一樣都是 2 個電子的還原劑, 在生物體電子運輸系統中十分重要,在電子轉移的研究中,其中包含 過渡金屬離子及其化合物,反應為 2 個單電子的氧化中而形成 o-quinone 產物[13],而反應過程可經由內圈電子轉移,或者外圈電子 轉移的機制。

基於本實驗室長期對電子轉移反應的興趣,特別在探討過維他命 C的還原反應後,我們希望繼續延伸至類黃酮的還原反應,初步實驗 發現其反應過程相當複雜,由於類黃酮化合物的抗氧化活性與 B 環 的 catechol 部分有著密切關係,因此為了使問題簡化,本論文選擇 探討對(+)-catechin 的還原反應,(+)-catechin 唯一還原位置僅為 B 環 位置,為進一步了解 A、C 環對還原能力的影響,同時也比較 catechol (H₂Q)與維他命 C (H₂A)反應活性差異,我們將同時探討 pyrocatechol、4-nitrocatechol 及維他命 C 的反應。

Pyrocatechol

4-nitro catechol

Ascorbic acid

最初被認定具有藥性的類黃酮構造是帶有 Flavon-3-ol 構造的黃 烷醇(Flavanol)。或稱兒茶素(catechin),在茶葉中含量最多,其功能可 抗氧化、發炎、抗病毒以及抗癌[13]。結構上的重要特徵為 A 環 resorcinol 與 B 環 catechol 以及 C3 位置有一 OH 官能基的 C 環。

兒茶素(catechin)在抗氧化活性的探討中,因A環與B環並不共軛,因此環上的OH離子性互不影響[14],且具有水溶性及脂溶性的雙重特點[15.16],引起許多學者研究的興趣。

我們將以[Ru^{III}(NH₃)₅pzCH₃]⁴⁺錯合物為氧化劑,選用 Ru(III)錯合物,除 Ru(NH₃)₅L^{3+/2+}反應活性強,取代穩定(substitution inert)使反應容易進行,產物分析容易外,乃由於本實驗室過去對 Ru(II)/Ru(III) 錯合物已有長期研究經驗,並且建立相當完整的資訊,方便我們探討。

在本文裡我們主要將探討不同酸性條件下的反應動力學,以其了 解不同 catechol 型態, H₂Q、HQ⁻及 Q²⁻的反應活性,所得結果將以 Marcus 理論分析,以確立反應為外圈電子轉移機構。

5

第二章 實驗部份

一、藥品

燕品	化學式	來源
Hexaammineruthenium(III) chloride	Ru(NH ₃) ₆ Cl ₃	Strem
L-ascorbic acid	$C_6H_8O_6$	Merck
Silver oxide	Ag ₂ O	RDH
Lithium perchlorate	LiClO ₄	Aldrich
Perchloric acid 69%-72%	HClO ₄	J.T.Baker
Zinc, granular	Zn	Merck
Ethanol	C ₂ H ₅ OH	Merck
Diethyl Ether	$C_2H_5OC_2H_5$	Merck
Trifluoroacetic acid	CF ₃ COOH	RDH
Mercury(II) chloride	HgCl ₂	Merck
Silver(I) <i>p</i> -toluenesulfonate 98%	C ₇ H ₇ AgO ₃ S	Alfa
Pyrocatechol	$C_5H_6O_2$	Fluka
4-Nitrocatechol 97%	C ₆ H ₅ NO ₄	Aldrich
(+)-catechin hydrate minimum 98%	$C_{15}H_{14}O_{6}$	Aldrich
Hydrochloric acid	HC1	聯工
Sodium perchlorate	NaClO ₄	Aldrich
Iodomethane	CH ₃ I	Merck

二、去氧處理

1. 隔氧處理系統

由於 Ru(II)/Ru(III)及 catechols 都對空氣十分敏感,所有溶 液的配製與反應過程,均需維持在飽和氫氣或氮氣下操作,以 防止滲入空氣的干擾,我們所使用的隔氧系統如圖一所示,鋼 瓶中的氫氣,先經過含過量鋅汞齊的 Cr(II)溶液的氣體洗滌 瓶,以除去氫氣鋼瓶中少量的空氣,再經裝有二次去離子水的 氣體洗滌瓶,以防止含鋅汞齊的溶液直接與空氣接觸而容易被 氧化,同時平衡反應瓶內水溶液的含量,氦氣系統(N₂-line) 與氫氣系統(Ar-line)的組合相同,僅以氯化亞釩取代鉻(II)化合 物。

處理過程乃以針筒及不銹鋼針連結反應物溶液,如圖二所 示,先將溶劑置於血清瓶內,瓶口以血清塞塞住,再將兩根(一 長一短)注射鋼針插入,長針沒入溶劑中,為氫氣(或氮氣) 入口,短針則遠離液面,為氫氣(或氮氣)出口,通入氫氣至 少五分鐘,以除去溶劑中的溶氧,然後加入錯合物。

三、隔氧系統之溶液配製

1. 鋅汞齊(zinc/mercury amalgam)之製備

將適量的鋅粒,以6M 鹽酸(HCI)清洗數分鐘以去除表面 氧化物,再以二次去離子水反覆清洗鋅粒,使表面的鹽酸殘留 物完全去除;加入飽和氯化汞溶液(於0.1 M 硫酸溶液中)汞 化,即得閃亮的鋅汞齊,再以二次去離子水清洗鋅汞齊的表 面,以kimwipe 拭紙拭乾,所得的鋅汞齊必須立即使用以免被 空氣氧化。

2. 亞鉻溶液(chromous solution)的製備

將40g 三氯化鉻 CrCl₃·6H₂O 溶於 500 mL 的1M 過氯酸 中,加入適量鋅汞齊,再持續通入氫氣直到所有的三價鉻離子 完全還原成藍色二價鉻溶液為止。

Air-Sensitive Treatment (N_2 -line or Ar-line)

- 註: Ar-line: Scrubbing towers containing Cr(II) ion and Zn/Hg amalgam.
 - N_2 -line : Scrubbing towers containing VCl_2 solution and Zn/Hg amalgam.

圖二、注射器轉移錯合物溶液裝置

1. [Ru(NH₃)₅Cl]Cl₂之合成

秤取5g的Ru(NH₃)₆Cl₃加入6MHCl 110ml,温度控制在 110℃,迴流4小時,待回溫後過濾,得到鵝黃色固體,依序 用乙醇、乙醚清洗產物,最後真空抽乾。

再結晶:

將[Ru(NH₃)₅Cl]Cl₂以最少量的 60 ℃ 0.1 M HCl 溶解,直至溶 液呈淡黃色澄清液體,靜置至室溫,再冰箱中冷卻 24 小時, 得到橘色固體,過濾後收集固體,並且用乙醇、乙醚依序清洗 數次,最後真空抽乾。

2. N-methylpyrazinium iodide 之合成

秤取 3.5 克 pyrazine (0.0437 mole) 和 5.68 克(約 2.5 ml) CH₃I (~0.04 mole)混合溶解後加入少量的 CHCl₃ 室溫下進行反應, 此時溶液成橘色,反應 2 - 3 天後即有黃色固體沉澱, 過濾後 收集固體,並用乙醚快速清洗,最後真空抽乾。

3. N-methylpyrazinium p-Toluenesulfonate 合成

秤取 2 克 pyrazinium iodide 以最少量的二度水溶解,另取等 莫耳 Silver(I) *p*-toluenesulfonate,以最少量的二度水溶解後, 將溶解後的 Silver(I) *p*-toluenesulfonate 逐滴加入 pyrazinium iodide 溶液中,以磁石攪拌混合,最後溶液呈現透明無色時,過濾取濾液,並以旋轉濃縮機抽乾(~5 ml),再轉至真空抽乾直到白色固體析出,最後送進手套箱乾燥一天。

4. [Ru(NH₃)₅(pzCH₃)](ClO₄)₄之合成

(pzCH₃=*N*-methylpyrazinium)

秤取 0.079 克 Ag₂O 溶於 5 ml 二度水中,逐滴加入三氟醋酸
(trifluoroacetic acid)直到 Ag₂O 完全溶解,再加入 0.1 克
[Ru(NH₃)₅Cl]Cl₂隨即有白色固體沉澱,在 60 ℃的水浴中加熱
使反應完全,移除 AgCl 沉澱,將濾液加入數顆新鮮的鋅汞齊,
通氫氟還原 10~15 分鐘後,再加入 0.3 克 N-methylpyrazinium *p*-toluenesulfonate(此時溶液變紫色)反應 90 分鐘。過濾取濾
液,再加入 2 ml 飽和的 NaClO₄溶液,冰浴且持續的通氫氣,
直到產物析出。

將溶液過濾,可得到紫色固體,固體用甲醇、乙醚清洗,最 後真空抽乾。即可得到二價的[Ru(NH₃)₅(pzCH₃)](ClO₄)₃產物。 配製 0.5 N Ce(IV)溶於 6 M 的過氯酸溶液,逐滴滴入二價的 [Ru(NH₃)₅(pzCH₃)](ClO₄)₃ 化合物中,直到固體全部轉變成黃 色,過濾,並用 6 M 過氯酸甲醇清洗,得到黃色固體,最後真 空抽乾。 五、分析儀器及方法

1. 微量秤重测量

三位天平 OHAUS TS 400D

四位天平 PRECISA 125A

五位天平 METTLERAE-42C

2. 吸收光譜分析測量

以Hitachi U-2000或HP 8453 UV/VIS 光譜儀測量錯合物之 紫外-可見光區(UV-VIS)吸收光譜,樣品槽(cell)使用 1.0 公分 的石英材質樣品槽。消光係數 ε_{max} 可從錯合物吸收波峰的吸收 依 Beer's law(A= ε bc)求得。

3. 二次去離子水系統(distilled water system)

自來水經過三個活性碳濾心處理顆粒狀雜質,直接進入 Barnstead 純水過濾系統,純化後得二次去離子水,本實驗室的 合成、緩衝溶液的配製,以及所有反應需要水溶液的均採用此 二次去離子水。

4. 動力學測量

反應動力學按照反應速率快慢,分別以HI-TECH SF-61

Dx2 Double mixing Stopped-Flow Spectrophotometer 或 Hewlett Packard HP 8453 UV-Vis Spectrophotometer 測量,並用 FIRSTEK 恆溫槽控制反應溫度。反應在偽一級(pseudo first order)條件下進 行,並以還原劑為過量,藉觀測 Ru(II)的形成獲得反應的變化隨 時間改變成單指數曲線,且 ln $|A_i - A_t|$ 對時間變化呈線性關 係,如圖三。 k_{obs} 可利用線性最小平方差(linear least-square fit) 分析 ln $|A_i - A_t|$ 對 t(時間)之關係圖,從斜率求得。

5. 電化學測量

錯合物之還原電位是以 Princeton Applied Research (PAR) Model 273A Potentiostat/Galvanostat 測量,所得結果由與儀器連 接之個人電腦 PC 486 DX 利用 Princeton Applied Research Model 270/250 Research Electrochemistry software ver.4.0 記錄存檔。圖四 為實驗所使用之環路伏安電池裝置,以飽和甘汞電極(Saturated calomel electrode, SCE)作為參考電極(reference electrode),銷絲 (Platinum wire)作為輔助電極(auxiliary electrode),用白金電極做工 作電極。

(a)

(b) $[H^+]=0.01M (HClO_4) , \mu=1.0M(LiClO_4) , T=25^{\circ}C$ $[Ru(NH_3)_5(pzCH_3)]^{4+} \cong 5 \times 10^{-5}M$ [catechin] $\cong 2.0 \times 10^{-3}M$

圖三、[Ru(NH₃)₅(pzCH₃)]⁴⁺還原反應圖

(a) A_t vs 時間 (b) ln | A_t-A_i | vs 時間 (working electrode),電化電池一端接氮氣系統在每次測試前反應 溶液必先通以氮氣,以清除電極表面附著物,並重新將溶液混合 均匀。

6. 元素分析

所有化合物均送往中興大學貴重儀器中心,以 Heraeus CHN-O Rapid 元素分析儀,偵測樣品之N、C、H 元素的含量百分比。

(a) Working Electrode(b) Saturated Calomel Electrode

(c) Counter Electrode

(d) N₂-line

圖四、環路伏安儀電池裝置圖

第三章 結果

一、光譜鑑定

(a) 還原劑

本實驗選用 L-ascorbic acid、pyrocatechol、4-nitrocatechol、 (+)-catechin 等三種 catechols(hydroquinones)作為還原劑。UV-vis 光譜圖如圖五,吸收光譜資料列於表一。多酚類結構吸收位置主 要座落於紫外光區,屬於 $\pi \rightarrow \pi^*$ 電子躍遷,相對於 pyrocatechol,4-nitrocatechol 光譜約紅位移 70nm,主要乃因 nitro group 為強拉電子基,使芳香環上 π^* 能階穩定化,造成 $\pi \rightarrow \pi^*$ transition energy 降低,且吸收強度增加(即 auxochrome effect [25])。(+)-catechin 吸收則包含二個 chromophores : resorcinol (A-ring)及 catechol (B-ring)。

pyrocatechol

4-nitrocatechol

(+)-catechin

Compound	λ_{\max} (nm)	$10^{-3} \varepsilon_{max} (M^{-1} cm^{-1})$
Phenol ^a	270	1.45
pyrocatechol	275	2.38
4-nitrocatechol	346	7.21
(+)-catechin	280	3.67
quinones	380	
$[Ru(NH_3)_5(pzCH_3)]^{3+}$	540	16.0

表一、	UV-vis	光譜	a
-----	--------	----	---

a. ref [25]

b. 0.1M [H⁺](HClO₄) , μ =1.0M(LiClO₄) , T=25°C

(b) [Ru(NH₃)₅(pzCH₃)]^{3+/4+}錯合物

[Ru(NH₃)₅(pzCH₃)]⁴⁺於可見光區無明顯吸收,但當金屬中心被 還原成 Ru(II)後,在 λ_{max} =540nm 出現一強的吸收峰, ε_{max} = 1.60×10⁴ M⁻¹cm⁻¹ 與文獻報導值相似[30],吸收屬於 $d\pi \rightarrow \pi_L$ * 躍遷,Ru(NH₃)₅^{2+/3+}為低自旋 d⁶/d⁵ 電子結構,當與 π-acid 配位 形成錯合物時,金屬之 $d\pi$ 與配位 π_L *形成鍵結,稱之為回饋鍵 (π-backbonding),當金屬中心為 Ru(II),由於 $d\pi$ 軌域填滿,電 子會非定域化(delocalize)至配位上,此躍遷通常在可見光區, 電子充分轉移,因此在可見光區有極強的吸收,當 Ru(II)氧化 成 Ru(III)時, $d\pi$ 上有一電子洞,無法產生 MLCT(metal to ligand charge transfer transition, MLCT),吸收跟著消失。 [Ru(NH₃)₅(pzCH₃)]^{3+/4+}還原電位乃利用循環伏安法(Cyclic Voltammetry) 測量,在 $\mu = 1.0$ M HClO₄ 條件下,E_{1/2}=0.89 V vs NHE,與文獻值相符[26],循環伏安圖呈現一組氧化還原波, Δ Ep = 79 mV,顯示錯合物 Ru(III)/Ru(II)為單電子可逆反應,如圖六 為錯合物循環伏安圖。

圖六、[Ru(NH₃)₅(pzCH₃)]^{3+/4+}錯合物電位圖^a a. μ = 1.0 M LiClO₄

三、計量化學

維他命 C 已被證實屬於雙電子的還原劑[28],為了確認 hydroquinone 是否也屬兩電子還原,我們以 pyrocatechol、 4-nitrocatechol 及(+)-catechin 分別與 $[Ru(NH_3)_5(pzCH_3)]^{3+}$ 錯合物反 應,在 $[H^+]=0.1 M$, $\mu=1.0 M LiClO_4 T=25 °C條件下發現在$ $[cat] / [Ru(III)]的比例為 0.5 及以上時, <math>\varepsilon$ 值均維持不變,表示此三種 還原劑皆為雙電子還原劑,圖七為 pyrocatechol 之還原計量圖。

圖七、pyrocatechol 還原[Ru(NH₃)₅(pzCH₃)]³⁺的

化學計量關係^a

a. [Ru(III)] = 1×10^{-4} M, [H⁺] = 0.1 M, $\mu = 1.0$ M LiClO₄ T = 25 °C

四、動力學

本實驗選擇 [Ru(NH₃)₅(pzCH₃)]⁴⁺為氧化劑,除 Ru(II)/Ru(III)取 代穩定在,反應活性強外,主要乃動力學實驗中所形成 [Ru(NH₃)₅(pzCH₃)]³⁺錯合物具有很強的光譜吸收,且遠離 ascorbic acid, hydroquinone 及其氧化產物的吸收位置,如圖八所示,容易觀 測反應之進行。反應依式(1)進行:

$$2[\operatorname{Ru}(\operatorname{NH}_3)_5(\operatorname{pzCH}_3)]^{4+} + \operatorname{H}_2 X \xrightarrow{k} 2[\operatorname{Ru}(\operatorname{NH}_3)_5(\operatorname{pzCH}_3)]^{3+} + X + 2\operatorname{H}^+$$
$$\operatorname{H}_2 X \quad (X = \operatorname{A or} Q)$$
(1)

$$-d[Ru(III)] / dt = 2k_{obs}[Ru(III)]$$
(2)

$$k_{obs} = k[H_2X] \tag{3}$$

式(2)中之 2 為統計參數(statistical factor),乃為考慮兩電子氧化 反應,所有動力學探討均維持在 μ =1.0 M HClO₄/LiClO₄,T=25 °C, 且以還原劑為過量([H₂Q] ≥ 10[Ru(III)])以確定反應屬偽一級。 維他命 C 已被證實速率決定步驟為單電子還原為維他命 C 自由基, 為了確定 hydroquinone 還原反應之速率決定步驟是否亦為單電子還 原成 semiquinone 自由基,我們分別以 hydroquinone 及 Ru(III)錯合物 為限量試劑(limiting reagent),結果發現 ln(A_∞-A_t) vs. time (s)作圖皆成 良好線性關係,如圖九所示,印證速率決定步驟確為單電子還原過程。

圖八.反應之吸收光譜圖^a

- (a) free 4-nitrocatechol
- (b) 4-nitroquinone
- (c) $[Ru(NH_3)_5(pzCH_3)]^{3+}$
- (a. [H⁺] = 0.1 M ; μ = 1.0M HClO₄ / LiCO₄ T = 25°C) concertration ~1× 10⁻⁴

圖九. Pyrocatechol - [Ru(NH₃)₅(pzCH₃)]⁴⁺反應物之

In(A_{∞} - A_t)對時間作圖 (a) [Ru(III)] = 5×10⁻⁵ M, [H₂Q] = 5×10⁻⁴ M (b) [Ru(III)] = 5×10⁻⁵ M, [H₂Q] = 5×10⁻⁶ M ([H⁺] = 0.05 M HClO₄, μ = 1.0 M HClO₄ / LiClO₄, T = 25°C) 由於ascorbic acid及hydroquinone均對空氣敏感,因此所有溶液均須 通以氫氣,以除去空氣,且所有反應均須在絕氧條件下進行。

1. L-Ascorbic acid

動力學探討中以L-ascorbic acid 過量以維持反應為 pseudo-first-order。在 $[H^+] = 0.01 - 1.0 \text{ M HClO}_4, \mu = 1.0 \text{ M HClO}_4/$ LiClO₄, T = 25°C的條件下所得 k_{obs} 列於表二及表三。 k_{obs} 與L-ascorbic acid 濃度成良好線性關係如圖十所示。以線性最小平方差(linear least-square fit)方式分析 k_{obs} vs. $[H_2A]$ 作圖,從斜率求得不同酸性條件 下之k值,結果列於表四。

k值隨著[H⁺]濃度增加而遞減,但呈非線性關係,若以k對1/[H⁺]作 圖,則呈線性關係,且 [H⁺]=0.01~0.09 M 範圍,此直線通過原點, 如圖十一及十二所示。根據動力學結果,反應速率式應為

$$k = \frac{a[\mathrm{H}^+] + b}{[\mathrm{H}^+]} \qquad [\mathrm{H}^+] = 0.1 \sim 1.0 \text{ M}$$
(4)

$$k = \frac{c}{[\mathrm{H}^+]}$$
 [H⁺] = 0.01 ~ 0.09 M (5)

當 $[H^+] = 0.1 \sim 1.0 \text{ M}$ 時,根據式(4)依非線性最小平方差分析 k vs. $[H^+]$,得 a = (4.9 ± 0.3) × 10² 、 b = (3.01 ± 0.01) × 10³ 。 當 $[H^+] = 0.01 \sim 0.09 \text{ M}$ 時,從 k vs. 1/ $[H^+]$ 圖中之斜率求得 c = (3.21 ± 0.01) × 10³ 。 表二、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對維他命

[H ₂ A], M	$k_{\rm obs},{ m s}^{-1}$	[H ⁺], M	[H ₂ A], M	$k_{\rm obs},{\rm s}^{-1}$
1.00×10 ⁻⁴	6.47×10	0.06	4.00×10 ⁻⁴	4.25×10
2.00×10^{-4}	1.27×10^{2}		6.00×10^{-4}	6.70×10
3.00×10 ⁻⁴	1.90×10^{2}		8.00×10^{-4}	8.92×10
4.00×10 ⁻⁴	2.60×10 ²		1.00×10 ⁻³	1.11×10
1.00×10 ⁻⁴	3 10×10	0.07	4.00×10 ⁻⁴	3 65×10
1.00×10^{-4}	5.10×10	0.07	4.00×10^{-4}	5.05×10
2.00×10^{-4}	0.24×10		0.00×10^{-4}	3.32×10
3.00×10^{-4}	9.60×10		8.00×10^{-3}	7.55×10
4.00×10	1.27×10		1.00×10	9.13×10
4.00×10 ⁻⁴	8.79×10	0.08	4.00×10 ⁻⁴	3.03×10
6.00×10^{-4}	1.36×10^{2}		6.00×10^{-4}	4.79×10
8.00×10^{-4}	1.77×10^{2}		8.00×10^{-4}	6.40×10
1.00×10 ⁻³	2.14×10 ²		1.00×10 ⁻³	8.05×10
4.00×10 ⁻⁴	6.17×10	0.09	4.00×10 ⁻⁴	2.91×10
6.00×10^{-4}	9.51×10		6.00×10^{-4}	4.30×10
8.00×10^{-4}	1.28×10^{2}		8.00×10^{-4}	5.62×10
1.00×10 ⁻³	1.59×10 ²		1.00×10 ⁻³	7.25×10
4.00×10 ⁻⁴	5 11×10			
4.00×10^{-4}	7.11×10			
0.00×10^{-4}	1.05×10^2			
0.00×10	1.05×10			
	$[H_{2}A], M$ 1.00×10^{-4} 2.00×10^{-4} 3.00×10^{-4} 4.00×10^{-4} 1.00×10^{-4} 2.00×10^{-4} 3.00×10^{-4} 4.00×10^{-4} 4.00×10^{-4} 8.00×10^{-4} 1.00×10^{-4} 6.00×10^{-4} 8.00×10^{-4} 1.00×10^{-3} 4.00×10^{-4} 8.00×10^{-4} 1.00×10^{-3} 4.00×10^{-4} 8.00×10^{-4}	[H2A], M k_{obs} , s ⁻¹ 1.00×10^{-4} 6.47×10 2.00×10^{-4} 1.27×10^{2} 3.00×10^{-4} 1.90×10^{2} 4.00×10^{-4} 2.60×10^{2} 1.00×10^{-4} 3.10×10 2.00×10^{-4} 6.24×10 3.00×10^{-4} 9.60×10 4.00×10^{-4} 1.27×10^{2} 4.00×10^{-4} 8.79×10 6.00×10^{-4} 1.36×10^{2} 8.00×10^{-4} 1.77×10^{2} 1.00×10^{-3} 2.14×10^{2} 4.00×10^{-4} 5.17×10 8.00×10^{-4} 1.28×10^{2} 1.00×10^{-3} 1.59×10^{2} 4.00×10^{-4} 5.11×10 8.00×10^{-4} 1.05×10^{2}	[H2A], M k_{obs} , s ⁻¹ [H ⁺], M 1.00×10^4 6.47×10 0.06 2.00×10^4 1.27×10^2 3.00×10^4 1.90×10^2 4.00×10^4 2.60×10^2 1.00×10^4 6.24×10 3.00×10^4 9.60×10 4.00×10^4 1.27×10^2 4.00×10^4 1.27×10^2 4.00×10^4 1.77×10^2 1.00×10^4 0.08 6.00×10^4 1.77×10^2 1.00×10^4 0.17×10^2 4.00×10^4 5.11×10 8.00×10^4 1.59×10^2 4.00×10^4 5.11×10 8.00×10^4 1.05×10^2	[H2A], M k_{obs} , s ⁻¹ [H ⁺], M[H2A], M 1.00×10^{-4} 6.47×10 0.06 4.00×10^{-4} 2.00×10^{-4} 1.27×10^2 6.00×10^{-4} 3.00×10^{-4} 1.90×10^2 8.00×10^{-4} 4.00×10^{-4} 2.60×10^2 1.00×10^{-4} 2.00×10^{-4} 2.60×10^2 1.00×10^{-4} 2.00×10^{-4} 6.24×10 6.00×10^{-4} 3.00×10^{-4} 9.60×10 8.00×10^{-4} 4.00×10^{-4} 1.27×10^2 1.00×10^{-3} 4.00×10^{-4} 8.79×10 0.08 4.00×10^{-4} 6.00×10^{-4} 1.36×10^2 8.00×10^{-4} 8.00×10^{-4} 1.77×10^2 8.00×10^{-4} 1.00×10^{-3} 2.14×10^2 1.00×10^{-3} 4.00×10^{-4} 6.17×10 0.09 4.00×10^{-4} 6.00×10^{-4} 1.28×10^2 8.00×10^{-4} 1.00×10^{-3} 1.59×10^2 1.00×10^{-3}

C 還原反應之 k_{obs}^{a}

a. [Ru(NH₃)₅(pzCH₃)]⁴⁺ ≅ 1~5×10⁻⁵ M , μ=1.0 M HClO₄/LiClO₄ , T=25℃ (實驗 重複三次以上) 表三、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對維他命 C

[H ⁺], M	[H ₂ A], M	$k_{\rm obs},{\rm s}^{-1}$	[H ⁺], M	[H ₂ A], M	$k_{\rm obs},{ m s}^{-1}$
0.1	5.00×10 ⁻⁴	2.86×10	0.6	5.00×10 ⁻⁴	5.31
	1.00×10 ⁻³	6.00×10		1.00×10 ⁻³	1.09×10
	1.50×10 ⁻³	9.18×10		1.50×10 ⁻³	1.65×10
	2.00×10 ⁻³	1.21×10^{2}		2.00×10 ⁻³	2.22×10
0.2	5.00×10 ⁻⁴	1.54×10	0.7	5.00×10 ⁻⁴	4.54
	1.00×10 ⁻³	3.03×10		1.00×10 ⁻³	9.31
	1.50×10 ⁻³	4.67×10		1.50×10 ⁻³	1.42×10
	2.00×10 ⁻³	6.38×10		2.00×10 ⁻³	1.91×10
0.3	5.00×10 ⁻⁴	1.03×10	0.8	5.00×10 ⁻⁴	4.05
	1.00×10 ⁻³	2.08×10		1.00×10 ⁻³	8.44
	1.50×10 ⁻³	3.15×10		1.50×10 ⁻³	1.30×10
	2.00×10 ⁻³	4.30×10		2.00×10 ⁻³	1.71×10
0.4	5.00×10 ⁻⁴	8.06	0.9	5.00×10 ⁻⁴	3.68
	1.00×10 ⁻³	1.59×10		1.00×10 ⁻³	7.56
	1.50×10 ⁻³	2.39×10		1.50×10 ⁻³	1.15×10
	2.00×10 ⁻³	3.26×10		2.00×10 ⁻³	1.53×10
0.5	5.00×10 ⁻⁴	6.40	1.0	5.00×10 ⁻⁴	3.41
	1.00×10 ⁻³	1.29×10		1.00×10 ⁻³	6.96
	1.50×10 ⁻³	1.95×10		1.50×10 ⁻³	1.04×10
	2.00×10 ⁻³	2.62×10		2.00×10-3	1.40×10

還原反應之 k_{obs}^{a} (續上表)

 a. [Ru(NH₃)₅(pzCH₃)]⁴⁺ ≅ 5×10⁻⁵ M, μ=1.0 M HClO₄/LiClO₄, T=25°C(實驗重複 三次以上)

圖十、 $[Ru(NH_3)_5(pzCH_3)]^{3+}$ 之 k_{obs} 與維他命 C 濃度線性

關係圖

(a)
$$[H^+] = 0.01 \sim 0.10 \text{ M}$$
 (b) $[H^+] = 0.20 \sim 1.0 \text{ M}$

[H ⁺], M	$k, M^{-1}s^{-1}$
0.01	(3.21±0.06)×10 ⁵
0.02	$(1.59\pm0.02)\times10^5$
0.03	$(1.09\pm0.02)\times10^5$
0.04	$(7.95\pm0.08)\times10^4$
0.05	$(6.55\pm0.09)\times10^4$
0.06	$(5.50\pm0.08) \times 10^4$
0.07	$(4.58\pm0.08)\times10^4$
0.08	$(4.00\pm0.07)\times10^4$
0.09	$(3.57\pm0.06)\times10^4$
0.10	$(3.03\pm0.04)\times10^4$
0.20	$(1.55\pm0.03)\times10^4$
0.30	$(1.06\pm0.02)\times10^4$
0.40	$(8.05\pm0.01)\times10^3$
0.50	$(6.50\pm0.05)\times10^3$
0.60	$(5.50\pm0.06) \times 10^3$
0.70	$(4.74\pm0.06) \times 10^3$
0.80	$(4.28\pm0.06) \times 10^3$
0.90	$(3.82\pm0.04)\times10^{3}$
1.00	$(3.49\pm0.02)\times10^{3}$

速率常數 k^a

a. $\mu = 1.0 \text{ M HClO}_4 / \text{LiClO}_4 \text{ , } \text{T} = 25^{\circ}\text{C}$

圖十一、 $[Ru(NH_3)_5(pzCH_3)]^{3+}$ 錯合物對維他命 C 還原之 k

與[H⁺]關係圖

(**a**)
$$k$$
 vs [H⁺] (**b**) k vs $\frac{1}{[H^+]}$
[H⁺] = 0.01 - 0.10 M (μ = 1.0 M HClO₄/LiClO₄, T = 25°C)

圖十二、 $[Ru(NH_3)_5(pzCH_3)]^{3+}$ 錯合物對維他命 C 還原之 k

與[H⁺]關係圖

(**a**)
$$k$$
 vs [H⁺] (**b**) k vs $\frac{1}{[H^+]}$
[H⁺] = 0.10 - 1.0 M (μ = 1.0 M HClO₄ / LiClO₄ , T = 25 °C)

2. pyrocatechol

以 pyrocatechol 為過量,在[H⁺] = 0.02~1.0 M, μ = 1.0 M HClO₄ / LiClO₄, T = 25 °C條件下所得 k_{obs} 列於表五、表六, k_{obs} 與 pyrocatechol 濃度呈線性關係,如圖十三及圖十四所示,以線性最小平方差 (linear-least-square fit)方法分析各 k_{obs} vs. k[H₂Q]所得數據,從斜率求 得 k 值,結果列於表七,從表中可得知當[H⁺] = 0.02~0.3 M 時, k 隨 著[H⁺]濃度增加而遞減,但呈非線性關係,如圖十五(a)所示。但當以 k 對 $\frac{1}{[H^+]}$ 作圖時兩者呈線性關係,如圖十五(b),因此,反應速率式應 與式(4)相同

$$k = \frac{a[\mathrm{H}^+] + b}{[\mathrm{H}^+]} \tag{6}$$

以非線性最小平方差(non-linear least square fit)根據式(6)分析 k vs. [H⁺]數據 可得 a =(5.88±0.04)×10² M⁻¹s⁻¹ 與 b = (7.8±0.2)s⁻¹ 值。表六顯 示當[H⁺] ≧ 0.40 M, k 值幾乎沒有變化。

表五、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對

[H ⁺], M	[H ₂ Q], M	$k_{\rm obs},{\rm s}^{-1}$	$[\mathbf{H}^{+}], \mathbf{M}$	$[H_2Q], M$	$k_{\rm obs},{ m s}^{-1}$
0.02	1.25×10^{-3}	2.48	0.10	1.25×10^{-3}	1.69
	2.50×10 ⁻³	5.13		2.50×10 ⁻³	3.40
	3.75×10 ⁻³	7.41		3.75×10 ⁻³	5.18
	5.00×10 ⁻³	9.77		5.00×10 ⁻³	6.54
0.03	1.25×10^{-3}	2.11	0.20	1.25×10^{-3}	1.60
	2.50×10 ⁻³	4.13		2.50×10 ⁻³	3.32
	3.75×10 ⁻³	6.37		3.75×10 ⁻³	4.65
	5.00×10 ⁻³	8.46		5.00×10 ⁻³	6.33
0.05	1.25×10^{-3}	1.90	0.30	1.25×10 ⁻³	1.60
	2.50×10 ⁻³	3.64		2.50×10 ⁻³	3.30
	3.75×10 ⁻³	5.46		3.75×10 ⁻³	4.46
	5.00×10 ⁻³	7.47		5.00×10 ⁻³	6.17

pyrocatechol 還原反應之 kobs a

a. [Ru(NH₃)₅(pzCH₃)]⁴⁺≅5×10⁻⁵ M, μ = 1.0 M HClO₄ / LiClO₄, T = 25℃(實驗重複 三次以上)

表六、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對

[H ⁺], M	[H ₂ Q], M	$k_{\rm obs},{ m s}^{-1}$	$[\mathbf{H}^{+}], \mathbf{M}$	[H ₂ Q], M	$k_{\rm obs},{ m s}^{-1}$
0.40	1.25×10^{-3}	1.63	0.80	1.25×10^{-3}	1.53
	2.50×10 ⁻³	3.27		2.50×10 ⁻³	2.81
	3.75×10 ⁻³	4.55		3.75×10 ⁻³	4.75
	5.00×10 ⁻³	5.74		5.00×10 ⁻³	5.87
0.50	1.25×10^{-3}	1.51	0.90	1.25×10^{-3}	1.60
	2.50×10 ⁻³	3.14		2.50×10 ⁻³	2.97
	3.75×10 ⁻³	4.66		3.75×10 ⁻³	4.33
	5.00×10 ⁻³	5.79		5.00×10 ⁻³	5.99
0.60	1.25×10^{-3}	1.61	1.00	1.25×10^{-3}	1.59
	2.50×10 ⁻³	3.03		2.50×10 ⁻³	3.02
	3.75×10 ⁻³	4.56		3.75×10 ⁻³	4.26
	5.00×10 ⁻³	5.94		5.00×10 ⁻³	5.90
0.70	1.25×10^{-3}	1.65			
	2.50×10 ⁻³	2.91			
	3.75×10 ⁻³	4.35			
	5.00×10 ⁻³	5.89			

pyrocatechol 還原反應之 kobs^a(續上表)

a. [Ru(NH₃)₅(pzCH₃)]⁴⁺≅5×10⁻⁵ M, μ = 1.0 M HClO₄ / LiClO₄, T = 25℃(實驗重複 三次以上)

性關係圖^a

a. $[H^+] = 0.02 - 0.3 \text{ M}$ $\mu = 1.0 \text{ M} \text{ HClO}_4 / \text{LiClO}_4$, $T = 25^{\circ}\text{C}$)

圖十四、[Ru(NH₃)₅(pzCH₃)]³⁺之 k_{obs}與 pyrocatechol 濃度線

性關係圖^a

a. $[H^+] = 0.40 - 1.00 \text{ M}$, $\mu = 1.0 \text{ M} \text{ HClO}_4/\text{LiClO}_4$, $T = 25 ^{\circ}\text{C}$)

表七、不同酸性下[Ru(NH₃)₅(pzCH₃)]³⁺對 pyrocatechol 之

還原速率常數 k^{a}

$[\mathbf{H}^{+}], \mathbf{M}$	$k, M^{-1}s^{-1}$
0.02	$(9.85\pm0.02)\times10^2$
0.03	$(8.40\pm0.01)\times10^2$
0.05	$(7.40\pm0.01)\times10^2$
0.10	$(6.70\pm0.02)\times10^2$
0.20	$(6.30\pm0.02)\times10^2$
0.30	$(6.15\pm0.03)\times10^2$
0.40	$(5.95\pm0.03)\times10^2$
0.50	$(6.00\pm0.03)\times10^2$
0.60	$(6.00\pm0.01)\times10^2$
0.70	$(5.85\pm0.02)\times10^2$
0.80	$(6.00\pm0.03)\times10^2$
0.90	$(5.90\pm0.01)\times10^2$
1.00	$(5.85\pm0.02)\times10^2$

a. $\mu = 1.0 \text{ M HClO}_4 / \text{LiClO}_4$, T=25 °C

圖十五、[Ru(NH₃)₅(pzCH₃)]³⁺錯合物對 pyrocatechol 還原之

k 與[H⁺]關係圖

3. 4-nitrocatechol

動力學探討中,以4-nitrocatechol 為過量,在[H⁺] = 0.01 ~ 0.1 M HClO₄, μ = 1.0 M HClO₄ / LiClO₄, T = 25 °C 條件下,所得之觀測反 應速率常數 k_{obs} 列於表八與表九。 k_{obs} vs. [4-nitrocatechol]濃度呈線性 關係,如圖十六及圖十七,以線性最小平方差(linear least-square fit) 分析 k_{obs} vs. [4-nitrocatechol],從斜率求得k值,列於表十。從表中可 得知k隨著[H⁺]濃度增加而遞減但呈非線性關係,如圖十八(a)及圖十 九(a)所示。但當以k對 $\frac{1}{[H^+]}$ 作圖時兩者呈線性關係,且通過原點如圖 十八(b)與圖十九(b),因此反應速率式應與式(5)相同,從k vs. $\frac{1}{[H^+]}$ 圖 中之斜率求得 $c = (2.08 \pm 0.01) s^{-1}$ ([H⁺] = 0.01 ~ 0.1 M)及(2.06 ± 0.04) s^{-1} ([H⁺] = 0.2 ~ 1.0 M)。 表八、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對

$[\mathbf{H}^{+}], \mathbf{M}$	[cat-NO ₂], M	$k_{\rm obs},{ m s}^{-1}$	$[\mathbf{H}^{+}], \mathbf{M}$	[cat-NO ₂], M	$k_{\rm obs},{\rm s}^{-1}$
0.01	5.00×10 ⁻⁴	2.27×10 ⁻¹	0.06	5.00×10 ⁻⁴	3.69×10 ⁻²
	1.00×10^{-3}	4.78×10 ⁻¹		1.00×10 ⁻³	6.63×10 ⁻²
	1.50×10 ⁻³	6.11×10 ⁻¹		1.50×10^{-3}	9.47×10 ⁻²
	2.00×10 ⁻³	8.08×10 ⁻¹		2.00×10 ⁻³	1.25×10 ⁻¹
0.02	5.00×10^{-4}	1.01×10 ⁻¹	0.07	5.00×10^{-4}	3.10×10 ⁻²
	1.00×10^{-3}	1.97×10 ⁻¹		1.00×10^{-3}	5.51×10 ⁻²
	1.50×10 ⁻³	3.05×10 ⁻¹		1.50×10 ⁻³	8.33×10 ⁻²
	2.00×10 ⁻³	4.33×10 ⁻¹		2.00×10 ⁻³	1.16×10 ⁻¹
0.03	5.00×10^{-4}	7.38×10 ⁻²	0.08	5.00×10^{-4}	2.50×10^{-2}
	1.00×10^{-3}	1.50×10 ⁻¹		1.00×10^{-3}	5.12×10 ⁻²
	1.50×10 ⁻³	2.09×10 ⁻¹		1.50×10 ⁻³	7.60×10 ⁻²
	2.00×10 ⁻³	2.81×10 ⁻¹		2.00×10 ⁻³	1.05×10 ⁻¹
0.04	5.00×10^{-4}	6.07×10^{-2}	0.09	5.00×10^{-4}	2.25×10^{-2}
	1.00×10^{-3}	1.15×10^{-1}		1.00×10^{-3}	4.44×10^{-2}
	1.50×10 ⁻³	1.64×10 ⁻¹		1.50×10 ⁻³	6.72×10 ⁻²
	2.00×10 ⁻³	2.01×10 ⁻¹		2.00×10 ⁻³	8.94×10 ⁻²
0.05	5.00×10 ⁻⁴	4.00×10 ⁻²	0.10	1.25×10^{-3}	4.81×10 ⁻²
	1.00×10^{-3}	7.95×10 ⁻²		2.50×10 ⁻³	1.02×10^{-1}
	1.50×10^{-3}	1.21×10 ⁻¹		3.75×10 ⁻³	1.53×10 ⁻¹
	2.00×10 ⁻³	1.68×10 ⁻¹		5.00×10 ⁻³	2.06×10 ⁻¹

4-nitrocatechol 還原反應之 k_{obs}^{a}

 a. [Ru(NH₃)₅(pzCH₃)]⁴⁺ ≅ 5×10⁻⁵ M, μ = 1.0 M HClO₄ / LiClO₄, T = 25 °C(實驗重 複三次以上) 表九、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對

$[\mathbf{H}^{+}], \mathbf{M}$	[cat-NO ₂], M	$k_{\rm obs},{\rm s}^{-1}$	$[\mathbf{H}^{+}], \mathbf{M}$	[cat-NO ₂], M	$k_{\rm obs},{\rm s}^{-1}$
0.20	1.25×10 ⁻³	2.46×10 ⁻²	0.70	5.00×10 ⁻³	3.00×10 ⁻²
	2.50×10 ⁻³	5.30×10 ⁻²		1.00×10^{-2}	5.79×10 ⁻²
	3.75×10 ⁻³	7.83×10 ⁻²		1.50×10^{-2}	8.57×10 ⁻²
	5.00×10 ⁻³	1.02×10 ⁻²		2.00×10^{-2}	1.12×10 ⁻¹
0.30	1.25×10 ⁻³	1.67×10 ⁻²	0.80	5.00×10 ⁻³	3.03×10 ⁻²
	2.50×10 ⁻³	3.35×10 ⁻²		1.00×10 ⁻²	5.87×10 ⁻²
	3.75×10 ⁻³	4.75×10 ⁻²		1.50×10 ⁻²	8.57×10 ⁻²
	5.00×10 ⁻³	6.40×10 ⁻²		2.00×10 ⁻²	1.15×10 ⁻¹
0.40	1.25×10 ⁻³	1.37×10 ⁻²	0.90	5.00×10 ⁻³	2.21×10 ⁻²
	2.50×10 ⁻³	2.83×10 ⁻²		1.00×10^{-2}	4.37×10 ⁻²
	3.75×10 ⁻³	3.99×10 ⁻²		1.50×10^{-2}	7.08×10 ⁻²
	5.00×10 ⁻³	5.34×10 ⁻²		2.00×10 ⁻²	8.79×10 ⁻²
0.50	1.25×10 ⁻³	1.15×10 ⁻²	1.00	5.00×10 ⁻³	2.00×10 ⁻²
	2.50×10 ⁻³	2.18×10 ⁻²		1.00×10^{-2}	3.54×10 ⁻²
	3.75×10 ⁻³	2.94×10 ⁻²		1.50×10 ⁻²	5.29×10 ⁻²
	5.00×10 ⁻³	3.57×10 ⁻²		2.00×10 ⁻²	7.97×10 ⁻²
0.60	5.00×10 ⁻³	3.48×10 ⁻²			
	1.00×10 ⁻²	6.95×10 ⁻²			
	1.50×10 ⁻²	1.02×10 ⁻¹			
	2.00×10 ⁻²	1.30×10 ⁻¹			

4-nitrocatechol 還原反應之 k_{obs}^{a} (續上表)

 a. [Ru(NH₃)₅(pzCH₃)]⁴⁺ ≅ 5×10⁻⁵ M, μ = 1.0 M HClO₄ / LiClO₄, T = 25°C(實驗重 複三次以上)

圖十六、[Ru(NH₃)₅(pzCH₃)]³⁺之 k_{obs} 與4-nitrocatechol 濃度

線性關係圖

圖十七、[Ru(NH₃)₅(pzCH₃)]³⁺之 k_{obs} 與4-nitrocatechol 濃度

線性關係圖

表十、不同酸性下[Ru(NH₃)₅(pzCH₃)]³⁺對 4-nitrocatechol

之還原速率常數 k^a

$[\mathbf{H}^{+}], \mathbf{M}$	$k, \mathrm{M}^{-1}\mathrm{s}^{-1}$
0.01	$(2.07\pm0.15)\times10^2$
0.02	$(1.05\pm0.05) \times 10^2$
0.03	(7.1±0.02)×10
0.04	(5.3±0.04)×10
0.05	(4.12±0.01)×10
0.06	(3.17±0.17)×10
0.07	(2.85±0.09)×10
0.08	(2.59±0.05)×10
0.09	(2.24±0.01)×10
0.10	(2.05±0.03)×10
0.20	(1.05±0.02)×10
0.30	(6.45±0.01)
0.40	(5.6±0.10)
0.50	(3.8±0.40)
0.60	(3.3±0.10)
0.70	(2.8±0.10)
0.80	(2.9±0.10)
0.90	(2.3±0.10)
1.00	(1.9±0.10)

a. $\mu = 1.0$ M HClO₄ / LiClO₄ , T = 25 °C

之 k 與[H⁺]關係圖

(a)
$$k$$
 vs $[H^+]$ $fimiliar B[H^+] = 0.01 \sim 0.1 \text{ M}$ $\mu = 1.0 \text{ M} \text{ HClO}_4 / \text{LiClO}_4, T = 25^{\circ}\text{C}$
(b) k vs $\frac{1}{[H^+]}$ $fimiliar B[H^+] = 0.01 \sim 0.1 \text{ M}$ $\mu = 1.0 \text{ M} \text{ HClO}_4 / \text{LiClO}_4, T = 25^{\circ}\text{C}$

圖十九、[Ru(NH₃)₅(pzCH₃)]³⁺錯合物對 4-nitrocatechol 還原

之 k 與[H⁺]關係圖

(a) k vs [H⁺] 作圖[H⁺] = 0.2 ~1.0 M μ = 1.0 M HClO₄ / LiClO₄, T = 25°C (b) k vs $\frac{1}{[H^+]}$ 作圖[H⁺] = 0.2 ~ 1.0 M μ = 1.0 M HClO₄ / LiClO₄, T = 25°C

4. (+)-catechin

以(+)-catechin 作為過量,在[H⁺] = 0.01 ~ 1.0 M HClO₄, μ = 1.0 M HClO₄/LiClO₄, T = 25 °C 的條件下所得的 k_{obs} 列於表十一及表十二。 從 k vs. [catechin]作圖中之斜率 k 值,結果列於表十三。

從表十三中可得知在[H⁺] = 0.01~0.3 M 時 k 隨著[H⁺]濃度增加而 遞減但呈非線性關係,如圖二十二(a)所示。但當以 k 對 $\frac{1}{[H^+]}$ 作圖時兩 者呈線性關係,如圖二十二(b) 。因此,在此[H⁺]濃度範圍內,反應 速率式與 pyrocatechol 及 4-nitrocatechol 相同,根據式(4)以非線性最 小平方差分析 k vs. [H⁺],當[H⁺] = 0.01~0.3 M 時,得 a = (7.58±0.07) × 10^2 、b = (6.31±0.03)× 10^2 ,當[H⁺] = 0.1~1.0 M 時,從表十三中同 時發現當[H⁺] ≧ 0.40 M, k 值幾乎沒有變化。

表十一、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對

[H ⁺], M	[catechin], M	$k_{\rm obs},{ m s}^{-1}$	[H ⁺], M	[catechin], M	$k_{\rm obs},{\rm s}^{-1}$
0.01	5.00×10 ⁻⁴	1.28	0.1	5.00×10^{-4}	0.637
	1.00×10^{-3}	2.74		1.00×10^{-3}	1.40
	1.50×10^{-3}	4.12		1.50×10^{-3}	2.12
	2.00×10 ⁻³	5.69		2.00×10 ⁻³	2.81
0.02	5.00×10 ⁻⁴	0.973	0.2	5.00×10 ⁻⁴	0.598
	1.00×10^{-3}	2.04		1.00×10^{-3}	1.32
	1.50×10^{-3}	3.03		1.50×10^{-3}	2.08
	2.00×10 ⁻³	4.32		2.00×10 ⁻³	2.89
0.03	5.00×10 ⁻⁴	0.828	0.3	5.00×10 ⁻⁴	0.552
	1.00×10^{-3}	1.78		1.00×10^{-3}	1.27
	1.50×10^{-3}	2.87		1.50×10 ⁻³	1.96
	2.00×10 ⁻³	3.76		2.00×10 ⁻³	2.70
0.05	5.00×10 ⁻⁴	0.689			
	1.00×10 ⁻³	1.53			
	1.50×10 ⁻³	2.43			
	2.00×10 ⁻³	3.48			

(+)-catechin 還原反應之 k_{obs}^{a}

a. [Ru(NH₃)₅(pzCH₃)]⁴⁺ ≅ 5×10⁻⁵ M · μ = 1.0 M HClO₄ / LiClO₄ , T = 25°C(實驗重複 三次以上)

表十二、酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺錯合物對

[H ⁺], M	[catechin], M	$k_{\rm obs},{ m s}^{-1}$	[H ⁺], M	[catechin], M	$k_{\rm obs},{\rm s}^{-1}$
0.40	5.00×10 ⁻⁴	0.59	0.80	5.00×10 ⁻⁴	0.60
	1.00×10 ⁻³	1.28		1.00×10 ⁻³	1.31
	1.50×10 ⁻³	2.04		1.50×10 ⁻³	2.43
	2.00×10 ⁻³	2.57		2.00×10 ⁻³	3.45
0.50	5.00×10 ⁻⁴	0.58	0.90	5.00×10 ⁻⁴	0.60
	1.00×10^{-3}	1.25		1.00×10^{-3}	1.20
	1.50×10^{-3}	2.06		1.50×10^{-3}	1.91
	2.00×10 ⁻³	2.72		2.00×10 ⁻³	2.58
0.60	5.00×10 ⁻⁴	0.57	1.00	5.00×10 ⁻⁴	0.57
	1.00×10^{-3}	1.36		1.00×10 ⁻³	1.20
	1.50×10^{-3}	2.18		1.50×10^{-3}	1.95
	2.00×10 ⁻³	3.16		2.00×10 ⁻³	2.68
0.70	5.00×10 ⁻⁴	0.57			
	1.00×10 ⁻³	1.36			
	1.50×10 ⁻³	2.17			
	2.00×10 ⁻³	3.35			
		5			0- (

(+)-catechin 還原反應之 k_{obs} ^a(續上表)

a. [Ru(NH₃)₅(pzCH₃)]⁴⁺ ≅ 5×10⁻⁵ M, μ = 1.0 M HClO₄ / LiClO₄, T = 25℃(實驗重複 三次以上)

性關係圖

圖二十一、[Ru(NH₃)₅(pzCH₃)]³⁺之 k_{obs} 與(+)-catechin 濃度線

性關係圖

表十三、不同酸性下[Ru(NH₃)₅(pzCH₃)]³⁺對(+)-catechin 還

原速率常數 k^a

0.01 $(1.39\pm0.03)\times10^3$ 0.02 $(1.01\pm0.02)\times10^3$ 0.03 $(8.80\pm0.04)\times10^2$ 0.05 $(7.90\pm0.04)\times10^2$ 0.10 $(7.00\pm0.01)\times10^2$ 0.20 $(6.75\pm0.04)\times10^2$ 0.30 $(6.55\pm0.03)\times10^2$ 0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.06)\times10^2$ 0.60 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$	$[\mathbf{H}^{+}], \mathbf{M}$	$k, M^{-1}s^{-1}$
0.02 $(1.01\pm0.02)\times10^3$ 0.03 $(8.80\pm0.04)\times10^2$ 0.05 $(7.90\pm0.04)\times10^2$ 0.10 $(7.00\pm0.01)\times10^2$ 0.20 $(6.75\pm0.04)\times10^2$ 0.30 $(6.55\pm0.03)\times10^2$ 0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$	0.01	$(1.39\pm0.03)\times10^{3}$
0.03 $(8.80\pm0.04)\times10^2$ 0.05 $(7.90\pm0.04)\times10^2$ 0.10 $(7.00\pm0.01)\times10^2$ 0.20 $(6.75\pm0.04)\times10^2$ 0.30 $(6.55\pm0.03)\times10^2$ 0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.35\pm0.03)\times10^2$	0.02	$(1.01\pm0.02)\times10^3$
0.05 $(7.90\pm0.04)\times10^2$ 0.10 $(7.00\pm0.01)\times10^2$ 0.20 $(6.75\pm0.04)\times10^2$ 0.30 $(6.55\pm0.03)\times10^2$ 0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$	0.03	$(8.80\pm0.04)\times10^2$
0.10 $(7.00\pm0.01)\times10^2$ 0.20 $(6.75\pm0.04)\times10^2$ 0.30 $(6.55\pm0.03)\times10^2$ 0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$	0.05	$(7.90\pm0.04)\times10^{2}$
0.20 $(6.75\pm0.04)\times10^2$ 0.30 $(6.55\pm0.03)\times10^2$ 0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$ 0.90 $(6.35\pm0.02)\times10^2$	0.10	$(7.00\pm0.01)\times10^2$
0.30 $(6.55\pm0.03)\times10^2$ 0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$ 0.80 $(6.35\pm0.02)\times10^2$	0.20	$(6.75\pm0.04)\times10^2$
0.40 $(6.50\pm0.02)\times10^2$ 0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$ 0.90 $(6.35\pm0.02)\times10^2$	0.30	$(6.55\pm0.03)\times10^2$
0.50 $(6.60\pm0.03)\times10^2$ 0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$ 0.60 $(6.35\pm0.02)\times10^2$	0.40	$(6.50\pm0.02)\times10^2$
0.60 $(6.60\pm0.06)\times10^2$ 0.70 $(6.50\pm0.02)\times10^2$ 0.80 $(6.45\pm0.03)\times10^2$ 0.90 $(6.35\pm0.02)\times10^2$	0.50	$(6.60\pm0.03)\times10^2$
0.70 (6.50±0.02)×10 ² 0.80 (6.45±0.03)×10 ² (6.35±0.02)×10 ²	0.60	$(6.60\pm0.06)\times10^2$
0.80 $(6.45\pm0.03)\times10^2$ (6.35±0.02)×10 ²	0.70	$(6.50\pm0.02)\times10^2$
$(6.35+0.02)\times10^2$	0.80	$(6.45\pm0.03)\times10^2$
0.90	0.90	$(6.35\pm0.02)\times10^2$
1.00 $(6.50\pm0.03)\times10^2$	1.00	$(6.50\pm0.03)\times10^2$

a. $\mu = 1.0 \text{ M HClO}_4 / \text{LiClO}_4$, T=25°C

圖二十二、[Ru(NH₃)₅(pzCH₃)]³⁺錯合物對(+)-catechin 還原之

k 與[H⁺]關係圖

(a)
$$k$$
 vs [H⁺] $f B [H^+] = 0.01 \sim 0.3 \text{ M}$ $\mu = 1.0 \text{ M HClO}_4/\text{LiClO}_4, T = 25^{\circ}\text{C}$
(b) k vs $\frac{1}{[\text{H}^+]} f B [\text{H}^+] = 0.01 \sim 0.3 \text{ M}$ $\mu = 1.0 \text{ M HClO}_4/\text{LiClO}_4, T = 25^{\circ}\text{C}$

第四章 討論

一、反應機構探討

由於[Ru(NH₃)₅L]³⁺為取代反應惰性(substitution inert)之錯合物, 也沒有額外可供鍵結的位置,因此與 catechol 的反應屬於外圈電子轉 移反應,根據所得動力學結果,我們推測反應機構為: Mechanism

$$H_2 X \stackrel{Ka_1}{\longrightarrow} H^+ + H X^- \qquad (X = A \not \equiv Q) \qquad (7)$$

$$HX^{-} \stackrel{Ka_{2}}{-} H^{+} + X^{2-}$$

$$\tag{8}$$

$$\operatorname{Ru}(\operatorname{NH}_3)\operatorname{pzCH}_3^{4+} + \operatorname{H}_2 X \xrightarrow{k_0} \operatorname{Ru}(\operatorname{NH}_3)\operatorname{pzCH}_3^{3+} + \operatorname{H}_2 X^{+}$$
(9)

$$Ru(NH_3)pzCH_3^{4+} + HX^{-} \xrightarrow{k_1} Ru(NH_3)pzCH_3^{3+} + HX.$$
(10)

$$\operatorname{Ru}(\operatorname{NH}_3)\operatorname{pzCH}_3^{4+} + X^{2-} \xrightarrow{k_2} \operatorname{Ru}(\operatorname{NH}_3)\operatorname{pzCH}_3^{3+} + X^{-}$$
(11)

$$\operatorname{Ru}(\operatorname{NH}_{3})\operatorname{pzCH}_{3}^{4+} + \operatorname{H}_{2}X^{+} \xrightarrow{fast} \operatorname{Ru}(\operatorname{NH}_{3})\operatorname{pzCH}_{3}^{3+} + 2\operatorname{H}^{+} + X$$
(12)

$$Ru(NH_3)pzCH_3^{4+} + HX \cdot \xrightarrow{fast} Ru(NH_3)pzCH_3^{3+} + H^+ + X$$
(13)

$$Ru(NH_3)pzCH_3^{4+} + X \xrightarrow{-} Ru(NH_3)pzCH_3^{3+} + X$$
(14)

根據此反應機構,k值應為

$$k = \frac{k_0 [\mathrm{H}^+]^2 + k_1 K a_1 [\mathrm{H}^+] + k_2 K a_1 K a_2}{[\mathrm{H}^+]^2 + K a_1 [\mathrm{H}^+] + K a_1 K a_2}$$
(15)

ascorbic acid 及 hydroquinone 的 pK_{a1}、pK_{a2}及其他熱力學參數列於表 十四。

		H_2Q			
Parameters	H_2A	pyrocatechol	4-nitrocatechol	(+)-catechin	
pK_{a1}	3.95 ^a	9.23 ^e	6.69 ^c	$8.79^{h,j}$	
pK_{a2}	11.24 ^a	13.05 ^e	10.85 ^c	11.18 ^h	
$E_0\left(\mathrm{V} ight)^{\mathrm{k}}$	0.96 ^b	1.12 ^d	1.46 ^c	1.17 ^j	
$E_1(\mathbf{V})^{\mathbf{l}}$	0.70 ^a	0.52^{j}	0.94 ^c	0.59 ⁱ	
$E_2(V)^m$	0.015 ^{a,f}	0.043 ^f		0.079 ^g	

表十四、H2A及H2Q之相關熱力學參數

a. ref 27, b. ref 28, c. ref 29, d. ref 30, e. ref 31, f. ref 32, g. ref 33, h. ref 34, i. 4'-OH, l, 3'-OH

(k) $H_2X^{+} + e$ H_2X E_0 (l) $HX^{+} + e$ HX^{-} E_1 (m) $X^{-} + e$ X^{2-} E_2 $E_0 = E_2 + 0.059 (pK_{a1} + pK_{a2} - pK_{r1} - pK_{r2})$ $E_1 = E_2 + 0.059 (pK_{a2} - pK_{r2})$ Ref (32) and (33) E_2 於 pH = 13.5 下實際測得 1. ascorbic acid

從表十四L-ascorbic acid之pK_a值,得知 K_{a1} 與 K_{a2} 分別為 1.12×10^{-4} 及 5.75×10^{-12} ,此時在[H⁺] = 0.01 ~ 1.0 M範圍, [H⁺]² » K_{a1} [H⁺]» K_{a1} K_{a2} ,因此,式(15)可被簡化為

$$k = \frac{k_0 [\mathrm{H}^+]^2 + k_1 K a_1 [\mathrm{H}^+] + k_2 K a_1 K a_2}{[\mathrm{H}^+]^2}$$
(16)

由於k vs. 1/[H⁺] 呈線性關係,顯示(k_0 [H⁺]² + k_1K_{a1} [H⁺]) » $k_2K_{a1}K_{a2}$,式(16) 可再進一步簡化為:

$$k = \frac{k_0 [\mathrm{H}^+] + k_1 K a_1}{[\mathrm{H}^+]}$$
(17)

$$k = \frac{a[\mathrm{H}^+] + b}{[\mathrm{H}^+]}$$
(18)

比較式(4)及(17),得知 $a = k_0$, $b = k_1 K_{a1}$,當[H⁺] = 0.1~1.0 M 時,從 所得 $a \cdot b$ 值,可求得 $k_0 \not a k_1$,結果列於表十五。當[H⁺] = 0.01~0.09 M 時,由於 k vs. 1/[H⁺]圖通過原點,因此在此條件下 k_0 [H⁺]可忽略, 而 $c = b = k_1 K_{a1}$,從 c 值求得 k_1 值,亦列於表十五。

2. Pyrocatechol

Pyrocatechol 之 K_{a1} 與 K_{a2} 分別為 5.89×10^{-10} 及 8.91×10^{-14} , 當[H⁺] = $0.02 \sim 0.3$ M, $[H^+]^2 \gg K_{a1}[H^+] \gg K_{a1}K_{a2}$, 因此式(16)同維他命 C 一樣可 簡化為式(17), 從 a、b 值可求得 k_0 及 k_1 , 結果列於表十五。 當[H⁺] ≥ 0.4 M 時,以所得之 $k_0 \gtrsim k_1$ 值,我們發現 k_0 [H⁺] » k_1K_{a1} ,因此k可進一步簡化為 $k \sim k_0$,取此範圍k之平均值,得 k_0 =(5.9±0.01) × 10² M⁻¹s⁻¹,與根據式(4)分析所得之 k_0 值一致。

3. 4-Nitrocatechol

4-Nitrocatechol之 K_{a1} 與 K_{a2} 分別為2.04 × 10⁻⁷及1.42 × 10⁻¹¹,遠大於 其他catechols之 K_{a} 值,此乃由於NO₂為強拉電子基,降低-OH上氧之 電子密度,而使酸性增加,儘管如此在[H⁺] = 0.01 ~ 1.0 M條件下,[H⁺]² » K_{a1} [H⁺] » $K_{a1}K_{a2}$ 仍然適用,因此,動力學行為與ascorbic acid及 pyrocatechol相同,但由於k vs. 1/[H⁺]線性作圖通過原點,因此 k_{0} [H⁺] 可忽略,k值為

$$k = \frac{k_1 K a_1}{[\mathrm{H}^+]} \tag{19}$$

與ascorbic acid在[H⁺] = 0.01 ~ 0.09 M之情況相同,從c值求得k₁值,列 於表十五。 4. (+)-catechin

由於(+)-catechin 動力學行為及結果與 pyrocatechol 極為相似,於 本實驗條件下([H⁺] = 0.01 ~ 0.3 M), [H⁺]² » K_{a1} [H⁺]且[H⁺]² » $K_{a1}K_{a2}$, 因此式(16)最終被簡化成式(17),而在此範圍內當,從 a、b 值可求得 $k_0 \gtrsim k_1$ 值,結果列於表十五。以此 $k_0 \gtrsim k_1$ 值,當[H⁺] ≥ 0.4 M 時, k_0 [H⁺] » k_1K_{a1} ,因此 $k \sim k_0$ 取此範圍 $k \ge$ 平均值得 $k_0 = (6.4 \pm 0.17) \times 10^2$ M⁻¹s⁻¹,與式(18)所得結果一致。

Reductant	$k_0, M^{-1}s^{-1}$	K ^f	$k_0^{\text{ corr g}}$	$k_1, M^{-1}s^{-1}$	K ^f	$k_1^{\text{ corr g}}$
Ascorbic acid	$(4.9\pm0.3) \times 10^{2b}$	0.065	1.9×10^{3}	$(2.69 {\pm}~ 0.01) \times 10^{7~\text{b}}$	1.66×10^{3}	6.8×10^{5}
				$(2.87 \pm 0.01) \times 10^{7 \text{ c}}$		
Pyrocatechol	$(5.88 {\pm}~ 0.04) \times 10^{2\text{b}}$	1.26×10^{-4}	5.4×10^{4}	$(1.32{\pm}0.04)\times10^{10\text{b}}$	1.87×10^{6}	9.3×10^{6}
4-nitrocatechol				$(1.02{\pm}0.01)\times10^{7d}$	0.14	2.7×10^{7}
				$(1.01{\pm}0.01)\times10^{7\text{e}}$		
(+)-catechin	$(6.31 \pm 0.03) \times 10^{2 \text{ b}}$	1.8×10^{-5}	1.5×10^{5}	$(4.68 {\pm}~ 0.04) \times 10^{9}{}^{\rm b}$	1.22×10^{5}	1.3×10^{7}
a. $\mu = 1 \text{ M HCIO}_4 / \text{LiCIO}_4$, T=25°C b. 根據式(4) c. 根據式(5) d. 式(5), [H ⁺] = 0.01 - 0.1M e. 式(5), [H ⁺] = 0.20 - 1.0M f. 平衡常數, K = 10 ^{ΔE/0.059}						

表十五、[Ru(NH₃)₅(pzCH₃)]³⁺錯合物之還原反應速率常數^a

二、反應活性比較 (Compaison of Reactivities)

從表十五可看出,當還原劑為雙質子酸時,還原反應速率常數 k_0 並無太大差異,而 k_1 則有明顯的不同,相差可高達3次冪,然而此結果並無完全反應還原劑之反應活性差異,為要確實了解還原劑的活性,特別是 ascorbic acid 及 hydroquinones 之還原活性差異,反應速率常數必須修正非活化純因素,亦即反應能障及反應物電荷效應的影響,為此反應速率常數需除以 Q_{IP} ,離子對形成常數,及 \sqrt{K} 。

K為式(9)及(10)之平衡常數[36-37],K可由反應物之還原電位求得,結果列於表十五,藉由式(20)~(22)求得

$$\mathbf{Q}_{\mathrm{IP}} = \frac{4\pi N a^3}{3000} \exp\left(\frac{-w_{ij}}{RT}\right)$$
(20)

$$w_{ij} = \frac{z_i z_j e^2}{D_s a_{ij} \left(1 + \beta a_{ij} \mu^{\frac{1}{2}}\right)}$$
(21)

$$\beta = \left(\frac{8\pi Ne^2}{1000D_s kT}\right)^{1/2} \tag{22}$$

其中 z_i , z_j 為反應物的電荷, D 為水的介電常數, a_{ij} 為反應物間之最 短距離(closes approach distance),通常為反應物的半徑和, μ 為離子 強度,k為 Boltzmann 常數。

由於 Q_{IP} 主要影響因素為電荷效應[36],而在本系統中,電荷效 應皆相同(k₀:+4,0;k₁:+4,-1),因此 Q_{IP} 的影響可以忽略,亦 即 k^{corr} 可簡化為 $k^{\text{corr}} = \frac{k}{\sqrt{K}}$,修正後之 k^{corr} 亦列於表十五。

從表中我們看出,對 hydroquinones (catechols)而言,不管是 H₂A 或 HA⁻型態,反應活性均極相似,相差不超過三倍,但相對於 ascorbic acid, hydroquinones 之反應活性至少大了一次冪,顯示 hydroquinones 為遠較 ascorbic acid 有效之抗氧化劑。

三、Marcus Theory

對外圈電子轉移反應,根據 Marcus 理論[38-39],氧化還原反應式(23)

$$Ox_1 + Red_2 \longrightarrow Red_1 + Ox_2$$
 (23)

外圈電子轉移反應速率常數為

$$k_{12} = \sqrt{k_{11}k_{22}K_{12}f_{12}}W_{12} \tag{24}$$

$$\ln f_{12} = \frac{\left[\ln K_{12} + (w_{12} - w_{21})/RT\right]^2}{4\left[\ln(k_{11}k_{22})/10^{22} + (w_{11} + w_{22})/RT\right]}$$
(25)
$$W_{12} = exp\left[-(w_{12} + w_{21} - w_{11} - w_{22})/2RT\right]$$
(26)

k₁₁、k₂₂為氧化劑及還原劑之自身電子轉移反應速率常數,根據式
(24),若 log k₁₂與 log K₁₂應成線性關係,斜率為 0.50,本系統中 log k₁
與 log K 成線性關係,如圖二十三,斜率為 0.44,符合 Marcus 理論,

圖二十三. 還原劑之 $\log k_1$ 對 $\log K_{12}$ 作圖

根據式(24), W₁₂ (電荷效應)及 K₁₂(平衡能障)影響之前已考慮 過, f_{12} 在本系統中(0.76 ~ 0.91)並無大差異,而氧化劑皆為 Ru(NH₃)pzCH₃⁴⁺, k_{11} 皆相同,再修正非活化因素,及 Ru(III)之活性後, k_{12}^{corr} (catechol) / k_{12}^{corr} (ascorbic acid) $\cong \sqrt{\frac{k_{22}(catechol)}{k_{22}(ascorbic acid)}}} \cong 10$,

因此 catechol 之 kex 應較 ascorbic acid 大 2 次冪以上。

第五章 結論

- 由反應機構的探討,維他命C的型態與 hydroquionones 和極為相 似,在酸性條件下, [Ru(NH₃)₅(pzCH₃)]⁴⁺對所有還原劑進行反 應,所得到的反應行為相同。
- 2. 經由修正平衡能障($k^{corr} = k / \sqrt{K_{12}}$)後, catechol 衍生物的 reactivity 較 L-ascorbic acid 大了一次冪以上。
- 3. 計算結果得知 catechol 的自身氧化還原速率 k₂₂與 L-ascorbic acid 相差兩次冪。
- 以 log k₁對 log K₁₂作圖,結果呈良好線性,斜率為0.44,符合 Marcus Theory 斜率 0.5 要求,証實[Ru(NH₃)₅(pzCH₃)]⁴⁺確為外圈電子轉移 機構。
- 5. 由實驗結果得知 catechol 的抗氧化力比維他命 C 好。

參考文獻

- [1] B. Halliwell, J.M. Guttenridge, Methods Enzymol. 186 (1987), 1-85.
- [2] J. V. Formica and W. Regelsont, Review, Fd Chem. Toxic. Vol. 33, No. 12, (1995), 1061-1080,
- [3] M. Tamba, A. Torreggiani, Radiation Physics and Chemistry 71, (2004) 21–25.
- [4] J. B. Harborne, C. A. Williams, Advances in Favonoid research since 1992, Phytochemistry Review 55 (2000) 481-504.
- [5] C. A. Rice-Evans, N. J. Miller, and G. Paganga, Free Radical Biology & Medicine, Vol. 20, (1996) No. 7, pp. 933-956,
- [6] C. C. Olivé, P. Hapiot, J. Pinson and C. Rolando., J. Am. Chem. Soc. 124, (2002), 14027-14038.
- [7] I. Erlund., Nutrition Research 24 (2004) 851–874.
- [8] H. Taube, Surv. Prog. Chem., (1973), 6, 1
- [9] P.C. Hollman, M.B. Katan., Biomed. Pharmacother. 51, 305-310.
- [10] J.B. Harborne, Phytochemistry, 4, 107-120.
- [11] F. Shahidi, P. Wanasundara, C. Hong., American Chemical Society, Washington DC, pp. 214-222.
- [12] C. A Williams, J. B. Harborne., London7 Chapman & Hall; (1994)pp. 337- 85.
- [13]P. Janeiro, A. M. Oliveira Brett., Analytia Chimica Acta 518 (2004) 109-115.
- [14]N.P. Slabbert, Tetrahedron 33 (1977), 821.

- [15] J. F. Diehl, 1995. Safety of Irradiated Foods. Marcel Dekker Inc., New York
- [16] C.A. Rice-Evans, N.J. Miller, G. Paganga, Biol.Med. 20 (1996) 933-956.
- [17] Y. Masataka, K. Murakami, Anal. Biochem. 257 (1998) 40–44.
- [18] W. Deng, X. Fang, J.Wu, Radiat. Phys. Chem. 50 (1997) 271–276.
- [19] J.E. Brown, H. Khodr, R.C. Hider, C.A. Rice-Evans, Biochem. J. 330 (1998) 1173–1178
- [20] M. Thompson, C.R. Williams, G.E. Elliot, Anal. Chim. Acta 85 (1976) 375–381.
- [21] J. B. Harborne, C. A. Williams, Phytochemistry 55, (2000) 481-504.
- [22] L.G. Korkina, I. B. Afanas'ev., 1997. Antioxidants in Disease Mechanisms and Therapy, Vol. 38. Academic Press, New York.
- [23] A. Pannola, C. Rice-evans, B. Halliwell, S. Singh, Biochem.Biophys. Res. Commun. 232, (1997) 164-168.
- [24] S.V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, M. G. Simic,J. Am. Chem. Soc. 116 (1994) 4846.
- [25] D. A. Skoog, F. J. Holler, T. A. Nieman., Principles of Instrumental Analysis
- [26] H. E. Toma and J. M. Malin., Inorg Chem, 12, 1039 (1973).
- [27] D. H. Macartney and N. Sutin., Inorg Chim Acta, 74 (1983)221-228.
- [28] L. M. Lin, M. H. Lien and A. Yeh., Int. J. Chem. Kin. 37 (2005) 126 -

- [29] J. W. Herbert and D. H. Macartney., J. Chem. Soc. Dalton Trans.(1986) 1931.
- [30] J. M. Hoddenbagh and D. H. Macartney., J. Chem. Soc. Dalton Trans. 615 (1990)
- [31] C. A. Tyson and A. E. Martell., J. Am. Chem. Soc. (1968) 3379.
- [32] S. Steenken and P. Neta., J. Phys. Chem., 83, (1979) 1134-1137.
- [33] S. Steenken and P. Neta., J. Phys. Chem., 86, (1982) 3661-3667.
- [34] N. P. Slabbert., Tetrahedron. 33, (1977) 821-824.
- [35] M. J. Akhtar and A. Haim, Inorg. Chem. 27, (1988) 1608-1610.
- [36] M. H. Chen, S. Lee, S. Liu, and A.Yeh, Inorg. Chem., 35, (1996) 2627
- [37] A. Haim, Adr. Chem. Ser.253, (1997) 239.
- [38] R. A. Marcus, Ann. Rev. Phys. Chem., 15, (1964) 155.
- [39] R. A. Marcus and N. Sutin, Biochim. Biophy. Acta., 811, (1985) 265.