第一部分、萘醌衍生物應用於氧化還原開關之研究

Part I、 Rational design of naphthoquinone-based derivatives as

壹、緒論

根據廣義氧化還原理論,衍生出溶液中部份有機酸鹼的電極電勢,利用這些電勢,定量地比較酸鹼的氧化性和還原性的強弱;定量 地判斷反應的方向和計算反應的平衡常數,使化學反應得到進一步系 統化。一般化合物的氧化態與還原態具有不同的顏色時,我們便可透 過電壓的控制,而獲得物體顏色的改變。一個理想的氧化還原開關應 具備下列條件:(1)良好的固有記憶效應,當元件變成開路(ON)時, 顏色能保持、(2)良好的顏色對比度、(3)低開關電壓、(4)低耗電 量、(5)快速反應時間、(6)耐久性好¹。

一個螢光氧化還原開關的設計之典型的方法是集合一個氧化還 原活化的子單位 [控制單位(control unit)],它能夠存在於兩個不同且 較穩定的氧化態或還原態 [例如:雙穩態系統 (bistable system)];以 及一個螢光的發光團 [活化單位 (active unit)]。根據文獻報導,我們 知道 naphthoquinone 與 dihydroxynaphthalene 之間容易發生氧化還 原反應的特性²,過去也有數個例子,例如 2003 年,Bittner³等人以 quinone 及 stilbene 合成一個新型態的施體-受體系統,即有一效率高 的螢光團連結至另一個活化的氧化還原的抑制物,設計架構如圖一。

圖一、N-hydronaphthoquinone-stilbene systems設計原理

Quinone 是很好的電子受體,會使螢光消光^{4,5,6},在電流的資料 當中,與電子的轉移機制一致^{7,8},而且抑制的效率藉由氧化還原的電 位,形成一符合 quinone-hydroquinone 的系統。Stilbene 激發態造成內 部的螢光放射,分子內電子轉移不是藉由碰撞產生,而是經由 stilbene 被激發至鄰近的 quinone 受體。如此一來,發現 stilbene 被還原連接 到 quinone 上,形成一符合 stilbene-linked hydroquinones,便可以減少 或是移去這個抑制的效應。Chloro-naphthoquinone 化合物螢光完全被 抑制,當 quinonic 部份被還原成 hydroquinonic 部分即重現強烈的螢 光,如圖二所表示的。

圖二、N-hydroquinonyl aminostilbene之還原現象

2005年,Bittner⁹等人進一步合成以 2-chloro-1,4-naphthoquinone 為主體的新有機分子系統作為一氧化還原開關,在結構上含有一螢光 基團 5-dimethylaminonaphthalene 連非共軛的 piperazine。在室溫下以 化合物 1 形式存在時,螢光會被完全抑制。當加入還原劑硼氫化鈉 後,將其還原成 hydroquinone 使強烈螢光出現,如圖三:

圖三、以2-chloro-1,4-naphthoquinone 為主體的氧化還原開關

2004 年, Zhu¹⁰ 等人合成出具有 tetrathiafulvalene (TTF) 和 anthracene 之主體的氧化還原開關,如圖四所示。其氧化還原開關之 工作機制以圖五表示:(1)光激發後造成的電子轉移反應(photoinduced electron transfer (PET)),使得從 TTF 的單體成為 A 單體的激發態, 這些 D-A 化合物在氧化前呈現出微弱的螢光;(2)在氧化之後,TTF 的單體之電子施體的能力減弱,如此 PET 反應將被制止,導致螢光 增強;(3)將 TTF 的陽離子還原成中性的 TTF 單體會導致螢光減弱。 TTF 和 TTF 的陽離子這原成中性的 TTF 單體會導致螢光減弱。 TTF 和 TTF 的陽離子自由基之間的轉換是可逆的,所以此類的氧化 還原開關的作用是可逆的。

圖四、TTF 和 anthracene 之主體的氧化還原開關

圖五、TTF 形式電子施體的氧化還原開關

化合物 3 藉由化學的氧化反應能夠增強螢光,更重要地,化合物 3 的螢光強度可藉由連續的電化學氧化和還原反應可逆地被控制。

2006年,Hummelen¹¹等人合成具有 anthraquinone 為中心和末端 為 thioacetyl 群的分子金屬絲,形成可逆的電化學開闢,經由兩個電 子的氧化和還原反應,從交錯的共軛變為線性的共軛。這項特性運用 在分子的電子裝置上,以 anthraquinone 為基礎的金屬絲,能夠用來 當作控制氧化還原的開關。長遠的目標是利用此分子應用在電子裝置,藉由導電性為一可逆的氧化還原開關,如圖六所示。

圖六、具有 anthraquinone 為中心和末端為 thioacetyl 群的分子金屬絲 之氧化還原開關

由上述四個例子得知大部分氧化還原開關皆由 naphthoquinone、 anthraquinone 和 tetrathiafulvalene 為主體,藉由共軛的間隔,使兩種 單體能夠被連接,形成氧化還原開關化合物。故我們利用 naphthoquinone 與 dihydroxynaphthalene 之間容易發生氧化還原反 應的特性,設計合成以 naphthoquinone 為基本架構的潛在性之氧化 還原開關,希望增加其螢光的強度及顏色的變化。

貳、研究動機

我們藉由 naphthoquinone 與 dihydroxynaphthalene 之間容易發 生氧化還原反應的特性,設計合成以 naphthoquinone 為基本架構的 潛在性之氧化還原開關,如圖七所示。

圖七、潛在性氧化還原開關之示意圖12

另外我們希望增加還原前後螢光的強度及顏色的變化,故我們設計化合物11e,如圖八所示。萘醌會抑制螢光,故我們在苯環對位位置設計N,N-二甲基胺取代基為螢光發射基團,是並予增加UV λ_{max}的吸收波長,使改變其顏色變化。

圖八、設計包含萘醌及胺基苯的氧化還原開關系統

参、結果與討論

我們設計合成潛在性的氧化還原開關之化合物 11d,其合成方法如圖九所示。

圖九、化合物 11d 之合成途徑

首先將購得 2-acetyl-1,3-indanedione 溶入二氯甲烷中,在冰浴下 m入溶於乙醚的重氮甲烷(diazomethane)(由 N-甲基-N-亞硝基對 甲苯磺醯胺 (diazald) 產生), 慢慢地回到室溫, 反應約1小時, 濃縮 抽乾,利用管柱色層分離得到化合物5¹⁵。再將純化過的化合物5溶於 氰甲烷中並加入乾燥過的碳酸鉀攪拌,再加入過量甲基碘,於室溫下 反應4天,便可得到化合物6。化合物6在室溫下加入乾燥過四氫呋喃 (THF) 並通入氮氣攪拌約15分鐘,始滴入溴化甲鎂(methylmagnesium) bromide solution),待反應結束後加入飽和氯化氨水溶液中止反應,通 過管柱色層分離即可得到產物7。接下來將化合物7溶於氰甲烷和水 (1:1) 中,在室溫下加入 cerium(IV) ammonium nitrate (CAN) 攪拌, 反應約15分鐘後即可得到化合物8。最後,把化合物8溶於氰甲烷中加 入 1-phenacylpyridinium bromide (13), 通N₂氣體約15分鐘, 在50 ℃ 下慢慢滴入三乙基胺,反應約1-2小時後回到室溫,反應約1天,就可 以得到混合物9d和10d,只要將混合物溶於苯中,加催化量的 p-toluenesulfonic acid monohydrate (p-TsOH · H2O) 加熱迴流,反應約 5-10分鐘,即可得到化合物11d¹⁶。

預期所設計的化合物 11a-e 可以成為潛在之氧化還原開關,如圖 十所示。

圖十、化合物 11a-e 的氧化還原反應示意圖

利用循環伏安法偵測化合物 11a-e 是否有氧化還原性質,所得的 循環伏安圖譜(cyclic votammograms, CV)顯示於圖十一至圖十五。 測得的化合物 11a-e 發現都有二對明顯的氧化還原吸收峰,其還原電 位分別為 11a-0.74V、-1.34V;11b-0.71V、-1.34V;11c-0.65V、-1.19V; 11d-0.69V、-1.31V;11e-0.76V、-1.34V,我們由 CV 圖(表一)得知 在 C-1 及 C-3 位置取代基若改為苯基,則氧化還原性質明顯且電位朝 向 正 電 位 偏 移 ; 而 化 合 物 11e 將 C-3 位 置 取 代 基 改 為 N,N-dimethylaminobenzene,會較取代基為苯基不易被氧化還原。

圖十一、化合物 11a 在氰甲烷以 tetrabutylammonium hexafluorophosphate 作為電解質;掃描速率為 100 mV/s 之 CV 圖譜

圖十二、化合物 11b 之 CV 圖譜

圖十三、化合物 11c 之 CV 圖譜

圖十四、化合物 11d 之 CV 圖譜

圖十五、化合物 11e 之 CV 圖譜

化合物	$E^{0+1}(V)$	$E^{0/2}(V)$
11 a	-0.74	-1.34
11b	-0.71	-1.34
11c	-0.65	-1.19
11d	-0.69	-1.31
11e	-0.76	-1.34

表一、11a-e的還原電位對照表

根據文獻報導,我們利用甲醇當溶液與硼氫化鈉為電子提供者 來表現還原反應,預期希望將化合物 11a-d 還原成化合物 14a-d,而 化合物 14a-d 仍會再氧化成化合物 11a-d。在實驗過程中也正如我們 所預期,化合物溶於甲醇並加入硼氫化鈉,在均勻搖晃數秒後起始物 在溶劑下迅速由紅色變為黃色如圖十六所示。

圖十六、化合物 11a-d 與 14a-d 之間氧化還原的顏色變化

將化合物 11e 一樣以甲醇當溶劑,加入硼氫化鈉,在溶劑下迅速 由藍色變為橘紅色如圖十七(左)所示。我們將化合物 11e 及化合物 14e 在 UV 長波下照射可知化合物 11e 沒有螢光,因萘醌會抑制螢光, 而化合物 14e 有紅色的螢光,是因為 naphthoquinone 還原至 dihyroxynapthalene 使產生共軛,且C-3 有 N, N-二甲基氨為螢光發色 基團所致,如圖十七(右)。

圖十七、化合物 11e 與 14e 之間氧化還原的顏色變化(左)及螢光變 化(右)

由 UV 吸收光譜證明, 化合物 11a 在甲醇中有或無硼氫化鈉下有 不同的結構產生。在無氫硼化鈉參與反應時, λ_{max} = 485 nm, 顏色 為紅色;在硼氫化鈉參與反應後,波長 485 nm 吸收位置有明顯消失 而出現另一吸收鋒,其波長 389 nm,顏色為黃色,證明結構確實產 生變化。其他化合物 11a-e 也都有氧化還原變化如圖十八至二十二所 示。,其吸收波長分別表示於表二。

圖十八、化合物 11a 還原前後時的 UV 吸收光譜圖

圖十九、化合物 11b 還原前後時的 UV 吸收光譜圖

圖二十、化合物 11c 還原前後時的 UV 吸收光譜圖

圖二十一、化合物 11d 還原前後時的 UV 吸收光譜圖

圖二十二、化合物 11e 還原前後時的 UV 吸收光譜圖

表二、化合物 11a-e 及 14a-e 氧化還原時的 UV 吸收波長及 ε 值

Cpd	λ_{max} (nm)	log ɛ	Cpd	λ _{max} (nm)	log ɛ
11a	280, 485	4.07, 3.48	14a	389	3.90
11b	274, 475	3.32, 3.45	14b	252, 378	3.87, 3.83
11c	309, 495	3.67, 3.29	14c	405	3.63
11d	311, 502	4.01, 3.62	14d	247, 413	3.87, 3.96
11e	350, 592	3.19, 3.04	14e	255, 311, 467	3.01, 2.83, 3.30

由 UV 吸收光譜得知,化合物 11a-e 結構確實改變,且顏色由 紅色變為黃色及藍色變為橘紅色,證實了化合物 11a-e 有氧化還原開 關性質。另外我們測試化合物 14e 的螢光吸收及量子產率(Φ_f),如 圖二十三所示。螢光量子產率定義為螢光物質吸光後所發射的螢光光 子數與所吸收的光子之比值。我們測得化合物 14e 在甲醇下螢光放射 光譜的激發波長為 478 nm,放射波長為 594 nm,其量子產率為 0.07, 證實了化合物 14e 確實有紅色的螢光放射。

Wavelength

圖二十三、化合物 14e 的螢光光譜

肆、結論

在應用於氧化還原開關方面,我們利用 naphthoquinone 設計合成 以六步合成具有潛在性氧化還原開關性質的化合物 10d,總產率為 50%。實驗證明,在氧化態時化合物 10d 為紅色,以氫硼化鈉還原後, 化 合 物 10d 轉 變 為 黃 色 , 再 經 由 氧 化 劑 2,3-Dichloro-5,6-dicyano-1,4benzoquinone (DDQ)氧化後,其顏色變回 紅色,透過 UV 吸收光譜證明化合物 10d 具有氧化還原性質重複 性,並且利用 CV 測得 10d 氧化電位與還原電位,更加確定了化合物 10d 具有可逆氧化還原性質。

伍、實驗部份

- 一、儀器設備及試藥來源
- 1. 熔點測定使用 MEL-TEMPⅡ熔點測定儀,溫度未經校正。
- 2. 紅外線光譜使用 1725XFT-IR (Fourier Transform Infrared) 紅外線 光譜儀。純液體樣品塗抹於溴化鉀 (KBr) 鹽片測定,固體樣品使 用溴化鉀混合打片測定,光譜單位為波數 (cm⁻¹),僅列出特定吸 收峰。
- 低解析質譜 (Low resolution mass spectroscopy) 及高解析質譜 (High resolution mass, HRMS) 委託國科會北部貴重儀器中心代 測,使用 JOEL JMS-SX/SX 102A 質譜儀。
- X 光單晶繞射,委託國科會中部貴重儀器中心代測,使用 Bruder AXS SMART-1000 單晶繞射儀在化學分子的三維結構鑑定其鍵長 及鍵角的結構分析。
- 氢核磁共振光譜使用 Varian Unity 300 (300 MHz solars system),碳 核磁共振光譜使用 Varian Unity 300 (75 MHz solars system)。測試 樣品用氘氯仿 (CDCl₃)、甲醇(methanol-d₆) 為溶劑,以四甲基矽 烷 (tetramethylsilane) 為內部基準 (internal standard)。化學位移以 ppm 為單位,J代表偶合常數 (coupling constant),單位為 Hz。分 裂形式 (splitting pattern) 定義如下: s 表單峰 (singlet);d 表雙 重峰 (doublet); t 表三重峰 (triplet); m 表多重峰 (multiplet)。
- 6. 色層管柱分離 (Column chromatography) 使用德國默克藥廠 (E. Merck) Silica gel 60 (230-400 mesh) 型矽膠。
- 7. 薄層色層分離 (Thin layer chromatography) 使用德國默克藥廠
 Silica gel 60 F₂₅₄型薄層色層分離片。利用紫外光燈 (UV light) 直
 接觀察或以 5 %磷鉬酸 (phosphomolybdic acid) 之乙醇溶液均匀

噴灑在薄層色層分離片上後,加熱使之顯色。

- 減壓濃縮使用 BÜCHI R114 迴旋蒸發儀和 SIBATA WJ-20 循環水流 抽氣機,室溫下真空度約為 25 mmHg。
- 9. 有機合成所使用的一般試藥均購自日本東京化成工業株式會社 (TCI)、美國 Fisher、英國 Lancaster、美國 Aldrich 及 Janssen 藥廠。 反應、萃取及沖提用的溶劑如三乙基胺、甲醇、乙醇、正己烷、 乙酸乙酯、二氯甲烷均為層析級,購自美國 Tedia 藥廠。試劑及 溶劑除經特別註明外,均購入後直接使用。
- 10.吸收度測定使用美國安捷倫公司 HP 8453 型紫外光譜儀,且使用 1 cm 徑長的石英 cell,再以所要測的溶劑進行背景校正。

11.螢光放射光譜測量及螢光量子產率的計算

螢 光 放 射 光 譜 是 由 HITACHI F-4500 fluorescence spectrophotometer 所測定,且使用 1 cm 徑長的石英 cell; 化合物 14e 的螢光量子產率標準物是選用 Coumarin 6 ($\Phi_f = 0.82, \lambda_{max} = 458$ nm in EtOH),螢光量子產率是由比較化合物 14e 跟 Coumarin 6 在相同吸收度,相同的激發波長的螢光曲線下的積分,所有的螢 光量子產率都校正過溶劑折射率,計算公式如下所示。

$$\Phi_{f} = \frac{\frac{F_{a}}{A_{a}} \times n_{solvent-1}^{2}}{\frac{F_{s}}{A_{s}} \times n_{solvent-2}^{2}} \times \Phi_{fs}$$

F:螢光光譜的積分
 A:吸收光譜的吸收度
 n:溶劑的折射率
 Φ_f:螢光量子產率
 solvent-1:待測物的溶劑
 a:待測物
 solvent-2:標準物的溶劑
 s:標準物

12. 循環伏安分析是利用 PAR Model 273A 電化學分析儀器來完成,所使用的三極反應槽是由參考電極(Ag/AgCl於飽和 KCl溶液中)與以白金為工作電極、輔助電極所組成。以 0.1M 的TBAPF₆(tetrabutylammonium hexafluorophosphate)作為電解質的電解槽中分別測量化合物 11a-e 之循環伏安圖譜。掃描電位範圍控制在-1.85~0.0 V之間,掃描速率控制為 100 mV/sec,所有結果都以二茂鐵(ferrocene)為背景參考,循環伏安分析儀器裝置顯示於圖二十四。

圖二十四、循環伏安圖譜測量裝置圖

2-Acetyl-4-methoxy-1-naphthol (5)¹³

OH O 取 2-Acdetyl-1,3-indanedione (100 mg, 0.53 mmol) 溶 於 10 mL 二氯甲烷中,在冰浴中慢慢加入重氮甲烷 (Diazomethane),將反應回於室溫中,反應約 1 小時後濃縮抽乾,利 用管桂色層分離 (2% EtOAc/hexanes) 得淡黃色固體,產率 40%; R_f= 0.42 (10% EtOAc/hexanes); mp 116-117 (lit.,¹³ mp 115-116); ¹H NMR (CDCl₃, 300 MHz) δ 13.75 (s, 1H, OH), 8.45 (d, J = 8.3 Hz, 1H, ArH), 8.19 (d, J = 8.3 Hz, 1H, ArH), 7.69-7.55 (m, 2H, ArH), 6.80 (s, 1H, ArH), 3.97 (s, 3H, OCH₃), 2.67 (s, 3H, CH₃).

2-Acetyl-1,4-dimethoxynaphthalene (6)¹³

OCH₃ 將化合物 5 (1 g, 4.62 mmol) 溶於氰甲烷 100 mL 中,加入乾燥過的碳酸鉀 (1.6 g, 11.56 mmol) 攪拌,
再加入過量的甲基碘 (約 2 mL),室溫下反應 4 天,待反應結束後抽 掉溶劑,加水及二氯甲烷萃取,調 pH 值至中性,有機層以無水硫酸 鎂乾燥、濃縮後,利用管柱色層分離 (4% EtOAc/hexanes) 得黃色液 體,產率約 90%; R_f = 0.28 (10% EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 8.26-8.21 (m, 1H, ArH), 8.18-8.12 (m, 1H, ArH), 7.60-7.55 (m, 2H, ArH), 7.08 (s, 1H, ArH), 3.99 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 2.80 (s, 3H, CH₃).

3-(1-Hydroxy-1,1-dimethyl)-1,4-naphthoquinone (8)¹³

 OH ド化合物 7 (100 mg, 0.463mmol) 溶於氰甲烷和水 (1:1) 中, 在室溫下攪拌加入 Cerium(IV) ammonium nitrate (CAN) (710 mg, 1.29 mmol), 待反應結束後抽掉溶劑, 加水及
 乙醚萃取, 調 pH 值至中性, 有機層以無水硫酸鎂乾燥、濃縮後, 利 用管柱色層分離 (8% EtOAc/hexanes) 得淡黃色固體,產率約 72%; R_f = 0.40 (15% EtOAc/hexanes); mp 84-85 ;¹H NMR (CDCl₃, 300 MHz) δ 8.13-8.05 (m, 2H, ArH), 7.80-7.73 (m, 2H, ArH), 6.97 (s, 1H, CH), 3.37 (s, 1H, OH), 1.61 (s, 6H, CH₃).

1,1-Dimethyl-3-phenyl-1*H*-naphtho[2,3-*c*]-pyrane-5,10-dione (11d)

滴入三乙基胺 (46.8mg, 0.46 mmol),反應約 1-2 小時後回到室溫, 反應約 1 天,待反應結束後抽掉溶劑,加水及二氯甲烷萃取,用 0.2 N 鹽酸水溶液調 pH 值至約 2.0,有機層以無水硫酸鎂乾燥、濃縮。再 將所得到的產物溶於苯 (10 mL)中,然後加催化量的 *p*-TsOH·H₂O 加 熱迴流,反應約 5-10 分鐘,待反應結束後抽掉溶劑,加水及二氯甲 烷萃取,有機層以無水硫酸鎂乾燥、濃縮後,利用管柱色層分離 (2% EtOAc/hexanes) 得紅色固 體,產率約 95%; $R_f = 0.58$ (15% EtOAc/hexanes); Mp 105-107 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.09-8.03 (m, 2H), 7.83-7.80 (m, 2H), 7.72-7.67 (m, 2H), 7.44-7.42 (m, 3H), 6.71 (s, 1H), 1.84 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz) δ 183.1, 181.8, 159.2, 137.4, 134.0, 133.5, 133.4, 132.7, 131.3, 130.6, 128.5, 126.0, 92.3, 80.1, 26.4. HRMS (EI) *m/z* calcd for C₂₁H₁₆O₃ 316.1099, found 316.1093 (M⁺). IR v (KBr) 2925, 1665 (C=O), 1642 (C=O), 1538,

1389, 1305, 709 cm⁻¹

陸、參考文獻

- 1. Westermeier, C.; Gallmeier, H. C.; Komma, M.; Daub, J. *Chem. Commun.*, **1999**, *23*, 2427-2428.
- 2. Marchand, A. P.; Reddy, G. M. Synthesis 1991, 3, 198-200.
- Sutovsky, Y.; Likhtenshtein, G. I.; Bittner, S. *Tetrahedron* 2003, 59, 2939-2945.
- 4. Waldeck, D. H. Chem. Rev. 1991, 91, 415-436.
- Saltiel, J.; Waller, A. S.; Sears, D. F. J. J. Am. Chem. Soc. 1993, 115, 2453-2465.
- Papper, V.; Likhtenshtein, G. I.; Medvedeva, N.; Khoudyakov, D. V. J. Photochem. Photobiol. A 1999, 122, 79-85.
- Ghosh, H. N.; Pal, H.; Palit, D. K.; Mukherjee, T.; Mittal, J. P. J. Photochem. Photobiol. A 1993, 73, 17-22.
- Higashida, S.; Tsue, H.; Suguira, K.; Kaheda, T.; Sakata, Y.; Tanaka,
 Y.; Taniguchi, S.; Okada, T. *Bull. Chem. Soc. Jpn.* **1996**, *69*, 1329-1335.
- Bittner, S.; Illos, R. A.; Harlev, E. *Tetrahedron Lett.* 2005, 46, 8427-8430.
- 10. Zhu, D.; Zhang, D.; Zhang, G.; Guo, X. Org. Lett. 2004, 6, 1209-1212.
- Van Dijk, E. H.; Myles, D. J. T.; Van der Veen, M. H.; Hummelen, J. C. Org. Lett. 2006, 8, 2333-2336.
- 12. 化合物11a-c由本實驗室謝天嵐同學所合成;化合物11e為林詩倫
 同學所合成。

- 謝天嵐,中華民國九十五年,東海大學應用化學研究所碩士論 文。
- 14. 陳佑昇,中華民國九十五年,東海大學應用化學研究所碩士論 文。
- 15. (a) A. A. Akhrem, F. A. Lakhvich, N. A. Fil'chenkov, *Russ. J.Org. Chem.* 1979, *15*, 2333-2337; (b) Y. S. Chen, P. Y. Kuo, T. L.Shie, D. Y. Yang, *Tetrahedron* 2006, *62*, 9410-9416.
- T. Nguyen Van, B. Kesteleyn, N. De Kimpe, *Tetrahedron* 2001,57, 4213–4219.

第二部份、應用多組成反應(MCRs)合成氧氮四環化合物及其應用於螢光氧化還原開關

Part II. MCRs synthesis of oxazatetracycles as potential fluorescence redox switches

壹、 緒論

有機化學至今的發展包含各種的合成方法、技巧與策略,但是對 於有機化合物而言在眾多的合成條件大多以一個步驟接著一個步驟 的全合成進行建構,在分離與純化個過程不免面臨產物的流失,造成 目標產物減少,因此理想合成的期望條件如圖一¹,能具備簡單、安 全、高產率、高轉化率與反應時間短等因素是一個優秀的的合成方法。

圖一、理想合成所具備之條件

而多組成反應(multi-component reactions, MCRs)作為一個良好的 合成策略包含簡單的反應程序、良好的產率、高的轉化率以及在單一 的反應槽完成反應等這些優點近似於理想合成之特性。MCRs 一般的 定義為「產物是由三個以上的起始物反應所組成,而產物包含著起始 物的部份結構」, 典型的 MCRs 以三種起始物組成反應, 在反應的過 程中可能產生更多的反應物參與反應, 而其中的反應物會以先後不同 之順序參與反應, 之後進行分子內重排、質子轉移、環化或是縮合等 反應, 這類型的反應歸因於反應物的組成與其可能產生的作用。此外 MCRs 在 one pot 的特性不同於一般反應在每一個合成步驟需要分離 與純化, MCRs 有縮短時間與節省經濟的優點。

MCRs 反應的形態一般有三個種類(圖二)²,第一種 I 型態在每 一步驟都是可逆過程,起始物、反應物與產物都處在一個動態平衡的 狀態,所以起始物不會完全反應成產物,平衡反應中的副產物與最終 產物參雜一起造成純化的困難。第二種 II 型態是反應過程可能包括 可逆過程但在最終產物的步驟為不可逆,因此反應方向會趨向產物, 可以得到較多的產物,最後一種型態為 III 型態在每一個合成步驟皆 為不可逆,反應物有好的選擇性與專一性以及反應有良好的產率與高 純度的產物,以上為一般 MCRs 反應的三種形式

MCR type	General reaction scheme
I	$A+B \rightleftharpoons C \rightleftharpoons O \rightleftharpoons P$
11	$A+B \rightleftharpoons C \rightleftharpoons D \dots O \rightarrow P$
III	$A \rightarrow B + C \rightarrow D \rightarrow \dots O \rightarrow P$

圖二、MCR 的反應形式

MCRs在合成上已有許多的發表,2004年Sonoda³發表以硫、一氧 化碳和epoxides合成1,3-oxathiolan-2-ones(圖三)以及2004年Quirion以 MCRs合成 α , α -difluoro- β -aminoacids⁴(圖四)上述兩個合成示範以 MCRs的方式縮短合成途徑與提高產率,因此本實驗室也積極開發以 MCRs快速合成目標產物。

圖三、以MCRs合成1,3-oxathiolan-2-ones

在 2004 年 Sames⁵ 發表以香豆素為主體之螢光探針化合物 4,設 計原理如圖五所示,其中 EDG 代表推電子基;EWG 代表拉電子基, 化合物 4 的氧化態以"push-pull" fluorophore 存在,含有推電子基與拉 電子基,還原後拉電子基的酮基成推電子的醇基型成"push-push" fluorophore 時會產生螢光。

圖五、螢光探針化合物 4 之設計原理

而 2006 年 Ohwada⁶ 所開發的香豆素衍生物可作為環境感應器的 化合物 5,化合物 5 會特別針對質子溶液的環境中產生螢光放射(圖 六),在非質子性溶液正已烷的螢光量子產率(Φ_F)小於 0.0003,在質 子性溶液甲醇的螢光量子產率為 0.21。

nonfluorescence in aprotic solvent(ex. *n*-Hexane) strongly fluorescence in protic solvent(ex. MeOH)

圖六、螢光化合物5之合成流程與螢光性質

貳、研究動機

本實驗室先前以 naphthoquinone⁷為主體之應用於螢光氧化還原 開關,為古典氧化還原開關,原理是 naphthoquinone 與 dihydroxynaphthalene⁸⁻¹⁰之間容易發生氧化還原反應的特性,根據報 導 naphthoquinone 為一個螢光的消光團,螢光的開與關是經由消光作 用。本實驗室亦有開發以香豆素為主體之螢光氧化還原開關,為一種 新型態之氧化還原開關(圖七)¹¹,其主要螢光發光團為7-二甲基氨-4-羥基香豆素,當4號位置上的羥基被氧化成酮基時,其螢光會消失為 主要螢光失去發光的機制,在這兩種不同形態為主體的氧化還原開關 中,根據報導都是具有氧化還原開關可逆的性質與效果,但其缺點在 於無法在氧化態或還原態雙態中都處於穩定狀態。

圖七、化合物6還原前後結構變化

而前兩種形態合成步驟較長且總產率較低,所以這次我們以一種新的 反應方法,多組成反應(MCRs)來提高我們合成的效率與總產率, 進而我們這次設計以不同消光原理的螢光氧化還原開關,其目的在於 改進氧化態與還原態之雙態穩定,而設計以氧氮三環化合物作為潛在 螢光氧化還原開關,當氧化時為閉環的形式,反之還原時為開環且為 離子對形式(圖八)。在過去的研究與發表得知香豆素可以做為一個好 的螢光發光團,在合成氧氮三環化合物作為螢光分子開闢,香豆素將 扮演著螢光發光團的作用,當在鹼性條件下,4號位置上羥基的氫被 鹼抓走形成氧帶負電,經由內部電荷轉移 ICT(intramolecular charge transfer),使得螢光強度下降如圖九說明。圖十說明三環化合物有三 個組成物:

close form strongly fluorescent

open form weakly fluorescent

圖八、以香豆素為主體設計三環化合物為潛在氧化還原開關化合物

圖九、螢光發光團與消光機制

圖十、合成三環化合物之組成

參、結果與討論

我們以 MCR 設計與合成氧氮三環化合物主體的螢光氧化還原開 關,氧氮三環化合物主要具備三類組成物:異奎寧碘鹽、丙酮與香豆 素,合成流程以圖十一做說明,將異奎寧碘鹽與香豆素以丙酮當溶劑 溶解後加入少許三乙基胺做為鹼性催化,加熱迴流八小時即可得到氧 氮三環化合物。首先在鹼性條件下丙酮先進行烯醇化(enolization), 產生 enolate 再與 2-甲基異奎寧碘鹽進行 aza-Diels-Alder [4+2]¹²環 化反應,之後與香豆素進行脫水反應即得氧氮三環化合物。合成的反 應途徑以圖十二說明。而此反應屬於圖二中 Type III 的 MCRs。

圖十一、氧氮三環化合物之合成流程

圖十二、合成氧氮三環化合物之反應機構

表一說明氧氮三環系列化合物的三個組成、產物和產率;組成一: 2-甲基異奎寧碘鹽、2-乙基異奎寧碘鹽、1,2-二甲基異奎寧碘鹽、2,3-二甲基異奎寧碘鹽,組成二都以丙酮去組合,組成三: 4-羥基香豆 素、7-二甲基胺-4-羥基香豆素與5,5-二甲基-1-羥基-3-環己酮。 表一、化合物10a~10j之組合合成

化合物	組成一	組成二	組成三	結構	產率
10a	L D D D D D D D D D D D D D D D D D D D	Ŷ	N CH	or o	93%
10b	L N O	Ļ	OH C C C C C	O O O	82%
10c	C S S S S S S S S S S S S S S S S S S S	°,	OH	O NO	65%
10d	C ↓ ↓ ♥ ♥	°,	N C O O	CHN O CHN	90%
10e	C N G	°,	OH C C C C C	OF OF OF	81%
10f	C N O	o	OH CH	CH NO	62%
10g		o	N OH	of of of h	90%
10h	L N N O	°,	OH CCC_OCO	OF OF OF	83%
10i	L N O	<u>Å</u>	OH CH	CH NO	64%
10j	N N N N N N N N N N N N N N N N N N N	Ļ	N OH	of of the	91%

此系列化合物其中以 10a、10b, 10d、10e, 10g、10h和 10j 可以得 到較好的產率,特別在於 10a、10d、10g和 10j 都略高於 10b、10e 和 10h 主要差異在於 4-羥基香豆素和 7-二甲基胺-4-羥基香豆素(6)的 反應性,具有推電子基的化合物(6)反應性優於 4-羥基香豆素、5-二甲 基-1-羥基-3-環己酮,其中化合物 10e 經由 X-ray 晶體繞射證實結構(圖 十三)。

圖十三、化合物 10e 之 X-ray 晶體繞射結構圖

我們預期所設計的化合物 10a、10d、10g 和 10j 可以成為潛在之螢光 氧化還原開關,如圖十四所示。我們利用 X-ray 晶體繞射來證實其氧 化態與還原態之確定結構,其結構為圖十五和十六,所以我們利用單 晶結構來推想其氧化之反應機構,首先三級胺陽離子被氧化劑氧化成 immonium,香豆素4號位置上帶負電的氧離子攻打到 immoniumn 碳 上形成合環化合物 11j 如圖十七所示。

圖十四、化合物 10a 的氧化還原反應示意圖

圖十五、化合物 10j 之 X-ray 晶體繞射結構圖

圖十六、化合物 11j 之 X-ray 晶體繞射結構圖

圖十七、化合物 11j 之氧化反應機構

為了證明我們所合成出的化合物是具有氧化還原開關,以及是否具有 可逆的性質,所以利用循環伏安法偵測化合物 10a、10d、10g 和 10j 是否具有氧化還原性質,所得的循環伏安圖譜(cyclic votammograms, CV)顯示於圖十八至二十。

圖十八、化合物 10a 在氰甲烷以 tetrabutylammonium hexafluorophosphate 作為電解質; 掃描速率為 120 mV/s 之 CV 圖譜

圖十九、化合物 10d 在氰甲烷以 tetrabutylammonium hexafluorophosphate 作為電解質; 掃描速率為 120 mV/s 之 CV 圖譜

圖二十、化合物 10j 在氰甲烷以 tetrabutylammonium hexafluorophosphate 作為電解質; 掃描速率為 120 mV/s 之 CV 圖譜

表二說明化合物 10a、10d、10g 和 10j 之氧化電位(E_{pa})與還原電位 (E_{pc})其中 10a、10d 與 10j 氧化還原電位差(△E_p)大約都在 0.08,表 示這三個化合物的氧化與還原能力都差不多,然而 10d 或合物卻測不 到,其主要原因在於3號位置上有一個甲基,立體障礙可能影響到氧 化或還原的性質。

	8 1		
Compound	E _{pa}	E _{pc}	Ep
10a	1.083	1.164	0.081
10d	1.042	1.128	0.086
10g	-	-	-
10j	1.035	1.123	0.088

表二、化合物 10a、10d、10g 和 10j 之氧化還原電位表

化合物 10a 加入氫硼化鈉後可以得到化合物 11a 之螢光變化(圖二十

-)

圖二十一、 化合物 10a 與 11a 之氧化還原前後的螢光變化 4.5×10⁻⁴M

將化合物 10a 與 11a 利用 UV-Vis 吸收光譜來監測其吸收峰如圖二十 二,當為還原態時(10a)最大吸收峰波長為 347 nm,當化合物為還原 態時(11a)最大吸收峰為 338 nm,從 UV-Vis 吸收光譜上得知我們將 選用蔥(anthracene)為我們測定螢光量子產率的標準物,激發波長 為 338 nm。

圖二十二、10a與11a之UV-Vis吸收光譜

以螢光儀來測定 10a 氧化(close form)與 11a 還原(open form)之螢光光 譜圖圖二十三。圖二十四來說明 10a 與 11a 在不同溶劑下量子產率的 差別。表三說明氧化態化合物(10a)在不同溶劑下的螢光量子產率, 而在合環的狀態下不受溶劑的影響,量子產率大概都在 0.75 左右。 表四來說明還原態化合物(11a)在不同溶劑下量子產率的差別,其中較 特別在於甲醇與正己烷,在甲醇中因為質子性溶劑,所以在開環氧原 子帶負電與甲醇的質子有氫鍵的作用,使得螢光強度較其他溶劑來得 強,量子產率為 0.099,但在正己烷為較低極性溶劑,使得消光機制

圖二十三、化合物 10a、11a 之螢光光譜圖

表三、化合物	10a 在不	同溶劑	下	的量	子產	.率
--------	--------	-----	---	----	----	----

solvent	_{em} (nm)	_{ex} (nm)	Stoke's shift (cm ⁻¹)	f
MeOH	415.8	350.0	4521	0.77
MeCN	400.6	345.6	3973	0.75
CH ₂ Cl ₂	393.2	346.6	3419	0.75
Toluene	384.4	339.4	3449	0.73
Hexane	371.8	332.2	3206	0.73

表四、化合物 11a 在不同溶劑下的量子產率

solvent	_{em} (nm)	_{ex} (nm)	Stoke's shift (cm ⁻¹)	f
MeOH	407	337	5139	0.099
MeCN	405	336	5071	0.025
CH ₂ Cl ₂	398	340	4274	0.030
Toluene	391	339	3940	0.014
Hexane	376	338	3011	0.004

close form strongly fluorescent

11a open form weakly fluorescent

圖二十四、化合物 10a、11a 在不同溶劑中螢光量子產率圖。

肆、結論

我們成功的以 MCR 的方法合成出化合物 10a~10j,其中 10a、 10b, 10d、10e, 10g、10h 和 10j 可以得到較好的產率, 特別在於 10a、10d 和 10g 都略高於 10b、10e 和 10h 主要差異在於 4-羥基香豆 素和 7-二甲基胺-4-羥基香豆素(6)的反應性,具有推電子基的化合物 (6)反應性優於 4-羥基香豆素、5-二甲基-1-羥基-3-環己酮, 化合物 10a、10d、10g 和 10j, 都具有螢光發光團 7-二甲基胺-4-羥基香豆素, 為主要螢光發光團,在氧化態時(close form),具有強螢光性質,反之 在還原態(open form),其螢光強度大大的下降,化合物 10j 利用氫硼 化鈉來還原成化合物 11j,由 X-ray 得知當還原後變為離子對,4號位 置氧原子帶負電,有多餘的電子會經由內部電荷轉移機制(ICT),使 化合物的螢光消弱,開環化合物 11j 亦可藉由氧化劑(如 DDQ、H2O2 或 KMnO4)來使開環化合物,回復到閉環化合物 10j,故可以用來作 為螢光分子開闢,這些化合物的優點在於合成容易、純化簡單、高產 率,還原態與氧化態都處於非常穩定的狀態,還原後不受空氣中的氧 氣的影響而氧化。

伍、實驗部份

一、化合物的合成

化合物 10a~10j 之合成

將購買的異奎寧(isoquinoline、1-methylisoquinoline、 3-methylisoquinoline(1 mol))先和甲基碘、乙基碘作用進行甲基化和乙基化,形成碘鹽,再將組成一、異奎寧碘鹽與組成三、(4-羥基香豆素、7-二甲基胺-4-羥基香豆素或5-二甲基-1-羥基-3-環已酮(1 mol)) 以丙酮作為溶劑,加入催化量之三乙基胺,加熱回流八小時,以二氯 甲烷和正己烷作再結晶即可得產物10a~10j。

2-Aza-13,14-benzo-6,7-(*p-N*,*N*-dimethylaminobenzo)-2,11-di methyl-4,8-dioxa-9-oxotetracyclo[9.3.1.0^{3,12}.0^{5,10}]pentadecan-5(10)-ene (10a)

300 MHz) δ 7.64 (d, *J* = 9.0 Hz, 1H), 7.29-7.19 (m, 4H), 6.59 (dd, *J* = 9.0, 2.1 Hz, 1H), 6.45 (d, *J* = 2.1 Hz, 1H), 4.53 (d, *J* = 3.0 Hz, 1H), 3.63 (d, *J* = 3.9 Hz, 1H), 3.01 (s, 6H), 2.95 (d, *J* = 3.0 Hz, 1H), 2.48 (s, 3H), 2.44 (m, 1H) 1.47 (d, *J* = 12.6 Hz, 1H), 1.35 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 161.9, 157.0, 154.7, 152.6, 139.7, 135.0, 127.1, 127.0, 127.0,
123.5, 123.0, 108.3, 105.4, 104.9, 97.2, 93.2, 56.8, 45.7, 44.0, 42.6, 40.0,
26.9, 24.9.

2-Aza-6,7,13,14-dibenzo-2,11-dimethyl-4,8-dioxa-9-oxotetrac yclo[9.3.1.0^{3,12}.0^{5,10}]pentadecan-5(10)-ene (10b)

ý () 白色固體,產率 82%。 $R_f = 0.55$ (15% EtOAc/hexanes); mp 184-186°C; ¹H NMR (CDCl₃, 300 MHz) δ 7.85 (dd, J = 6.6, 1.5 Hz, 1H), 7.48-7.54 (m, 1H), 7.31-7.19 (m, 6H), 4.61 (d, J = 3.0 Hz, 1H), 3.63 (d, J = 3.6 Hz, 1H), 2.98 (d, J = 3.0 Hz, 1H), 2.46 (s, 3H), 2.45 (m, 1H), 1.51 (dd, J = 12.9, 1.2 Hz, 1H), 1.37 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 161.0, 156.0, 152.7, 140.0, 134.5, 131.1, 127.22, 127.21, 127.0, 123.4, 123.1, 122.9, 116.1, 115.9, 110.0, 93.6, 56.5, 45.5, 43.9, 42.5, 27.3, 24.5.

2-Aza-13,14-benzo-2,7,7,11-tetramethyl-4-oxa-9-oxotetracycl o[9.3.1.0^{3,12}.0^{5,10}]pentadecan-5(10)-ene (10c)

自色固體,產率 65%。 $R_f = 0.51$ (15%) EtOAc/hexanes); mp 137-138°C; ¹H NMR (CDCl₃,

300 MHz) δ 7.28-7.24 (m, 3H), 7.23-7.14 (m, 1H), 4.29 (d, J = 3.0 Hz,

1H), 3.55 (dd, *J* =4.8, 1.5 Hz, 1H), 2.78 (d, *J* = 3.0 Hz, 1H), 2.39-2.38 (m, 4H), 2.28-2.19 (m, 4H), 1.35 (dd, *J* =13.2, 1.5 Hz, 1H), 1.19 (s, 3H), 1.11 (s, 3H) 1.08 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 196.5, 164.7, 139.8, 135.1, 126.825, 126.824, 123.0, 119.4, 92.8, 56.9, 51.6, 45.9, 43.6, 42.7, 42.627, 42.625, 31.0, 29.7, 26.6, 26.2, 25.3.

2-Aza-13,14-benzo-6,7-(*p-N*,*N*-dimethylaminobenzo)-1,2,11-t rimethyl-4,8-dioxa-9-oxotetracyclo[9.3.1.0^{3,12}.0^{5,10}]pentadeca n-5(10)-ene (10d)

2-Aza-6,7,13,14-dibenzo-1,2,11-trimethyl-4,8-dioxa-9-oxotetr acyclo[9.3.1.0^{3,12}.0^{5,10}]pentadecan-5(10)-ene (10e)

白色固體,產率 81%。 $R_f = 0.58$ (15%) EtOAc/hexanes); mp 184-186°C; ¹H NMR (CDCl₃,

300 MHz) δ 7.85 (dd, J = 8.1, 1.8 Hz, 1H), 7.48-7.45

(m, 1H), 7.33-7.21 (m, 6H), 4.63 (d, J = 3.0 Hz, 1H), 3.0 (d, J = 3.0 Hz, 1H), 2.34 (s, 3H), 2.24 (d, J = 13.2 Hz, 1H), 1.51 (s, 3H), 1.44 (d, J = 13.2 Hz, 1H), 1.35 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 161.1, 156.2, 152.7, 141.6, 135.0, 131.2, 127.2, 127.1, 126.9, 123.4, 123.0, 121.1, 116.3, 116.0, 110.3, 94.7, 54.4, 52.1, 45.6, 38.8, 29.2, 24.6, 19.2.

2-Aza-13,14-benzo-1,2,7,7,11-pentamethyl-4-oxa-9-oxotetrac yclo[9.3.1.0^{3,12}.0^{5,10}]pentadecan-5(10)-ene (10f)

 $\stackrel{\circ}{\downarrow} \stackrel{\circ}{\downarrow} \stackrel{\circ}{\downarrow} \stackrel{\circ}{}$ 色 固 體 , 產 率 62%。 $R_f = 0.58$ (25% EtOAc/hexanes); mp 135-136°C; ¹H NMR (CDCl₃, 300 MHz) δ 7.28-7.21 (m, 3H), 7.18-7.15 (m, 1H), 4.3 (d, J = 3.0 Hz, 1H), 2.8 (d, J = 3.0 Hz, 1H), 2.39 (d, J = 17.4 Hz, 1H), 2.28-2.22 (m, 6H), 2.02 (d, J = 12.9 Hz, 1H), 1.45 (s, 3H), 1.30 (d, J = 12.9 Hz, 1H), 1.18 (s, 3H), 1.11 (s, 3H) 1.07 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 196.5, 164.9, 141.5, 135.4, 126.6, 127.0, 120.9, 119.6, 93.8, 54.3, 51.9, 51.5, 45.9, 42.4, 38.8, 31.0, 29.6, 28.1, 26.6, 25.2, 19.1.

2-Aza-13,14-benzo-6,7-(*p-N*,*N*-dimethylaminobenzo)-2,3,11-t rimethyl-4,8-dioxa-9-oxotetracyclo[9.3.1.0^{3,12}.0^{5,10}]pentadeca n-5(10)-ene (10g)

2-Aza-6,7,13,14-dibenzo-2,3,11-dimethyl-4,8-dioxa-9-oxotetr acyclo[9.3.1.0^{3,12}.0^{5,10}]pentadecan-5(10)-ene (10h)

↓ 白色固體,產率 83%。 R_f = 0.55 (15%)

EtOAc/hexanes) ; mp 190-191 °C ; ¹H NMR (CDCl₃, 300 MHz) δ 7.84 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.48-7.43 (m, 1H), 7.29-7.16 (m, 6H), 3.57 (d, *J* = 3.9 Hz, 1H), 2.80 (s, 1H), 2.40 (dd, *J* = 12.9, 4.8 Hz, 1H), 2.39 (s, 3H), 1.41 (dd, *J* = 12.9, 1.2 Hz, 1H), 1.37 (s, 3H), 1.14 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 161.2, 155.9, 152.6, 139.7, 135.6, 130.9, 127.4, 127.0, 123.2, 122.8, 122.6, 116.2, 115.8, 109.5, 94.6, 57.8, 52.3, 44.0, 36.2, 29.5, 28.9, 24.8, 22.1.

2-Aza-13,14-benzo-2,3,7,7,11-pentamethyl-4-oxa-9-oxotetrac yclo[9.3.1.0^{3,12}.0^{5,10}]pentadecan-5(10)-ene (10i)

自色固體,產率 64‰ $R_f = 0.50 (15\% EtOAc/hexanes);$ mp 142-143 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.23-7.17 (m, 3H), 7.13-7.11 (m, 1H), 3.48 (d, J = 3.9 Hz, 1H), 2.60 (s, 1H), 2.32 (s, 3H), 2.29-2.25 (m, 3H), 2.20 (dd, J = 12.9, 4.8 Hz, 1H), 1.27 (dd, J =12.9, 4.8 Hz, 1H), 1.19 (s, 3H), 1.08-1.05 (m, 7H), 0.96 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 160.1, 139.9, 136.0, 127.2, 126.5, 126.4, 122.3, 118.8, 93.0, 58.1, 52.7, 52.6, 42.6, 43.6, 36.1, 31.2, 31.0, 29.4, 27.8, 26.8, 25.5, 22.2.

2-Aza-13,14-benzo-6,7-(*p-N*,*N*-dimethylaminobenzo)-2-ethyl-11-methyl-4,8-dioxa-9-oxotetracyclo[9.3.1.0^{3,12}.0^{5,10}]pentadec an-5(10)-ene (10j)

$$f_{N}$$
 白色固體,產率 91%. $R_{f} = 0.52$ (25%)
EtOAc/hexanes); mp 201-202°C; ¹H NMR (CDCl₃)

300 MHz) δ 7.60 (d, J = 8.7 Hz, 1H), 7.29-7.28 (m, 3H), 7.19-7.16 (m, 1H), 6.60 (dd, J = 8.7, 2.4 Hz, 1H), 6.49 (d, J = 2.4 Hz, 1H), 4.67 (d, J = 3 Hz, 1H), 3.74 (d, J = 3.6 Hz, 1H), 3.04 (s, 6H), 2.99 (d, J = 2.7 Hz, 1H), 2.73 (dq, J = 12.4, 7.5 Hz, 1H), 2.50 (dq, J = 12.4, 7.5 Hz, 1H), 2.44 (m, 1H), 1.45 (dd, J = 12.9, 1.2 Hz, 1H), 1.35 (s, 3H), 1.10 (t, J = 7.5 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 162.1, 157.2, 154.8, 152.6, 140.7, 135.1, 127.1, 126.95, 126.93, 123.5, 122.6, 108.5, 105.6, 105.2, 97.4, 91.7, 55.6, 49.9, 45.9, 44.2, 40.1, 27.6, 25.0, 13.9.

典型的氫硼化鈉還原反應

將化合物 10a (155 mg, 0.4 mmol)或 10j (160 mg, 0.4 mmol) 溶於 25mL 甲醇,加入硼氢化鈉(0.12 mmol),室溫下反應 30 分鐘,待反應 結束後,抽乾甲醇,以食鹽水和二氯甲烷進行萃取,有機層以無水硫 酸鎂除水,再以二氯甲烷與正己烷作再結晶,即可得到我們要的化合 物 11a 或 11j。

Compound 11a

300 MHz) δ 16.6 (s, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.40-7.30 (m, 4H), 6.60 (dd, J = 8.7, 2.4 Hz, 1H), 6.45 (d, J = 2.4 Hz, 1H), 4.14 (d, J = 3.9Hz, 1H), 3.73-3.63 (m, 3H), 3.01 (s, 6H), 2.46 (s, 3H), 1.87 (d, J = 9.6 Hz, 1H), 1.36 (s, 3H), 1.06 (d, J = 13.5 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 171.1, 164.7, 154.0, 152.3, 141.3, 133.6, 128.8, 126.8, 125.6, 124.8, 119.5, 107.9, 99.9, 97.2, 59.9, 55.6, 43.0, 40.9, 40.7, 39.1, 35.3, 29.4.

Compound 11j

自色固體,產率 92%. $R_f = 0.51$ (100% EtOAc/hexanes); mp 229-231 °C; ¹H NMR (CDCl₃,

300 MHz) δ 16.6 (s, 1H), 7.78 (d, J = 9.0 Hz, 1H),

7.39-7.25 (m, 4H), 6.60 (dd, J = 9.0, 2.4 Hz, 1H), 6.46 (d, J = 2.4 Hz, 1H), 4.27 (d, J = 3.9 Hz, 1H), 3.78 (dd, J = 14.1, 4.8 Hz, 1H), 3.72 -3.71(m, 1H), 3.62 (dd, J = 10.2, 3.0 Hz, 1H), 3.01 (s, 6H), 2.85 (m, 1H), 2.54 (m, 1H), 1.93 (d, J = 9.6 Hz, 1H), 1.37 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H), 1.08 (dd, J = 14.1, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 171.4, 164.8, 1554.1, 152.4, 141.5, 134.0, 128.7, 126.8, 125.6, 124.9, 124.5, 110.8, 107.9, 99.7, 97.3, 58.1, 53.8, 49.3, 42.9, 40.2, 39.2, 35.8, 29.4, 10.8. 陸、參考文獻

- 1. Wender, P. A.; Handy, S. T.; Wright, D. L.; Chem. Ind 1997, 765, 767-769.
- 2. Domling, A.; Ugi, I.; Angew. Chem. Int. Ed 2000, 39, 3168-3210.
- Nishiyama, Y.; Katahira, C.; Sonoda, N. *Tetrahedron Lett.* 2004, 45, 8539-8540.
- 4. Gouge, V.; Jubault, P.; Quirion, J.-C. *Tetrahedron Lett.* 2004, 45, 773-776.
- 5. Yee, D. J.; Balsanek, V.; Sames, D. J. Am. Chem. Soc. 2004, 126, 2282-2283.
- Uchiyama, S.; Takehira, K.; Yoshihara, T.; Tobita, S.; Ohwada, T. Org. Lett. 2006, 8, 5869-5872.
- Shie, T. Lan.; Lin, C. H.; Lin, S. L. and Yang, D. Y. Eur. J. Org. Chem. 2007, 29, 4831-4836.
- 8. Waldeck, D. H. Chem. Rev. 1991, 91, 415-436.
- Saltiel, J.; Waller, A. S.; Sears, D. F. Jr. J. Am. Chem. Soc. 1993, 115, 2453-2465.
- Papper, V.; Likhtenshtein, G. I.; Medvedeva, N.; Khoudyakov, D. V. J. Photochem. Photobiol. A 1999, 122, 79-85.
- 11. 黄志能,中華民國九十六年,東海大學應用化學研究所碩士論文。
- 12. Buonora, P.; Olsen, J. C.; Oh, T. Tetrahedron Lett. 2001, 57, 6099-6138.

Table 1. Crystal data and structure refinement for	ch060m.		
Identification code	ch060m		
Empirical formula	formula C23 H21 N O3		
Formula weight	359.41		
Temperature	297(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.2085(9) Å	α= 77.0530(10)°.	
	b = 9.6607(10) Å	β= 80.455(2)°.	
	c = 11.2222(13) Å	$\gamma = 71.635(2)^{\circ}$.	
Volume	918.49(17) Å ³		
Z	2		
Density (calculated)	1.300 Mg/m ³		
Absorption coefficient	0.086 mm ⁻¹		
F(000)	380		
Crystal size	0.47 x 0.33 x 0.30 mm ³		
Theta range for data collection	1.87 to 26.02°.		
Index ranges	-9<=h<=11, -11<=k<=11, -13<=l<=12		
Reflections collected	5252		
Independent reflections	3569 [R(int) = 0.0210]		
Completeness to theta = 26.02°	98.7 %		
Absorption correction	Empirical		
Max. and min. transmission	0.9747 and 0.9607		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3569 / 0 / 244		
Goodness-of-fit on F ²	1.045		
Final R indices [I>2sigma(I)]	R1 = 0.0494, wR2 = 0.1328		
R indices (all data)	R1 = 0.0696, $wR2 = 0.1484$		
Largest diff. peak and hole	0.220 and -0.260 e.Å ⁻³		

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$)

	Х	у	Z	U(eq)
O(1)	3967(1)	3654(1)	448(1)	48(1)
O(2)	1117(2)	1195(2)	318(1)	61(1)
O(3)	-423(2)	1966(2)	1894(2)	75(1)
Ν	4201(2)	3564(2)	2543(1)	45(1)
C(1)	2959(2)	2902(2)	455(1)	41(1)
C(2)	3414(2)	1930(2)	-434(2)	44(1)
C(3)	4741(2)	1779(2)	-1258(2)	52(1)
C(4)	5055(2)	867(2)	-2101(2)	62(1)
C(5)	4045(3)	68(2)	-2129(2)	66(1)
C(6)	2737(2)	178(2)	-1327(2)	63(1)
C(7)	2429(2)	1112(2)	-483(2)	50(1)
C(8)	701(2)	2084(2)	1194(2)	53(1)
C(9)	1618(2)	3055(2)	1203(2)	42(1)
C(10)	1114(2)	4139(2)	2091(1)	43(1)
C(11)	1658(2)	3337(2)	3376(2)	48(1)
C(12)	3010(2)	3798(2)	3630(2)	46(1)
C(13)	2406(2)	5441(2)	3654(2)	47(1)
C(14)	2348(2)	6154(2)	4610(2)	58(1)
C(15)	1664(2)	7673(3)	4484(2)	67(1)
C(16)	1070(2)	8478(2)	3414(2)	66(1)
C(17)	1146(2)	7784(2)	2439(2)	58(1)
C(18)	1803(2)	6271(2)	2561(2)	45(1)
C(19)	1974(2)	5335(2)	1611(1)	43(1)
C(20)	3667(2)	4516(2)	1421(2)	44(1)
C(21)	-621(2)	4927(2)	2169(2)	56(1)
C(22)	3646(2)	2837(2)	4809(2)	65(1)
C(23)	5729(2)	3606(3)	2705(2)	65(1)

for ch060m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.3448(18)
1.4580(18)
1.373(2)
1.377(2)
1.211(2)
1.440(2)
1.462(2)
1.505(2)
1.360(2)
1.444(2)
1.391(2)
1.395(2)
1.370(2)
0.9300
1.390(3)
0.9300
1.369(3)
0.9300
1.387(3)
0.9300
1.449(2)
1.522(2)
1.535(2)
1.552(2)
1.557(2)
1.534(2)
0.9700
0.9700
1.512(3)
1.524(2)
1.385(2)
1.400(2)
1.388(3)
0.9300
1.371(3)
0.9300

Table 3. Bond lengths [Å] and angles [°] for ch060m.

C(16)-C(17)	1.387(3)
C(16)-H(16A)	0.9300
C(17)-C(18)	1.379(3)
C(17)-H(17A)	0.9300
C(18)-C(19)	1.505(2)
C(19)-C(20)	1.514(2)
C(19)-H(19A)	0.9800
C(20)-H(20A)	0.9800
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
С(23)-Н(23С)	0.9600
C(1)-O(1)-C(20)	116.20(12)
C(7)-O(2)-C(8)	122.49(13)
C(20)-N-C(23)	111.24(14)
C(20)-N-C(12)	112.35(13)
C(23)-N-C(12)	115.70(14)
O(1)-C(1)-C(9)	123.81(15)
O(1)-C(1)-C(2)	113.68(14)
C(9)-C(1)-C(2)	122.49(14)
C(7)-C(2)-C(3)	118.00(17)
C(7)-C(2)-C(1)	117.14(16)
C(3)-C(2)-C(1)	124.85(15)
C(4)-C(3)-C(2)	120.90(17)
C(4)-C(3)-H(3A)	119.5
C(2)-C(3)-H(3A)	119.5
C(3)-C(4)-C(5)	119.7(2)
C(3)-C(4)-H(4A)	120.2
C(5)-C(4)-H(4A)	120.2
C(6)-C(5)-C(4)	121.04(19)
C(6)-C(5)-H(5A)	119.5
C(4)-C(5)-H(5A)	119.5

C(5)-C(6)-C(7)	118.67(18)
C(5)-C(6)-H(6A)	120.7
C(7)-C(6)-H(6A)	120.7
O(2)-C(7)-C(6)	117.60(16)
O(2)-C(7)-C(2)	120.70(16)
C(6)-C(7)-C(2)	121.70(18)
O(3)-C(8)-O(2)	115.31(16)
O(3)-C(8)-C(9)	126.19(18)
O(2)-C(8)-C(9)	118.50(15)
C(1)-C(9)-C(8)	118.16(16)
C(1)-C(9)-C(10)	122.04(14)
C(8)-C(9)-C(10)	119.70(14)
C(9)-C(10)-C(21)	112.86(13)
C(9)-C(10)-C(19)	107.28(12)
C(21)-C(10)-C(19)	108.10(14)
C(9)-C(10)-C(11)	109.96(13)
C(21)-C(10)-C(11)	112.09(14)
C(19)-C(10)-C(11)	106.19(12)
C(12)-C(11)-C(10)	111.39(13)
С(12)-С(11)-Н(11А)	109.3
С(10)-С(11)-Н(11А)	109.3
С(12)-С(11)-Н(11В)	109.3
С(10)-С(11)-Н(11В)	109.3
H(11A)-C(11)-H(11B)	108.0
N-C(12)-C(13)	108.78(13)
N-C(12)-C(22)	110.82(15)
C(13)-C(12)-C(22)	114.68(15)
N-C(12)-C(11)	106.25(13)
C(13)-C(12)-C(11)	106.30(14)
C(22)-C(12)-C(11)	109.59(15)
C(14)-C(13)-C(18)	119.43(18)
C(14)-C(13)-C(12)	128.08(17)
C(18)-C(13)-C(12)	112.46(15)
C(13)-C(14)-C(15)	119.71(19)
C(13)-C(14)-H(14A)	120.1
C(15)-C(14)-H(14A)	120.1
C(16)-C(15)-C(14)	120.55(19)
C(16)-C(15)-H(15A)	119.7

C(14)-C(15)-H(15A)	119.7
C(15)-C(16)-C(17)	120.4(2)
C(15)-C(16)-H(16A)	119.8
С(17)-С(16)-Н(16А)	119.8
C(18)-C(17)-C(16)	119.53(19)
С(18)-С(17)-Н(17А)	120.2
С(16)-С(17)-Н(17А)	120.2
C(17)-C(18)-C(13)	120.38(16)
C(17)-C(18)-C(19)	126.84(16)
C(13)-C(18)-C(19)	112.78(15)
C(18)-C(19)-C(20)	106.77(12)
C(18)-C(19)-C(10)	110.94(13)
C(20)-C(19)-C(10)	106.80(13)
C(18)-C(19)-H(19A)	110.7
C(20)-C(19)-H(19A)	110.7
С(10)-С(19)-Н(19А)	110.7
N-C(20)-O(1)	110.18(13)
N-C(20)-C(19)	110.94(13)
O(1)-C(20)-C(19)	110.86(12)
N-C(20)-H(20A)	108.3
O(1)-C(20)-H(20A)	108.3
C(19)-C(20)-H(20A)	108.3
C(10)-C(21)-H(21A)	109.5
C(10)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
С(10)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(12)-C(22)-H(22A)	109.5
C(12)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(12)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
N-C(23)-H(23A)	109.5
N-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
N-C(23)-H(23C)	109.5

H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	47(1)	66(1)	42(1)	-18(1)	6(1)	-33(1)
O(2)	55(1)	66(1)	76(1)	-19(1)	-7(1)	-33(1)
O(3)	54(1)	83(1)	96(1)	-19(1)	11(1)	-42(1)
N	35(1)	60(1)	45(1)	-12(1)	-6(1)	-17(1)
C(1)	42(1)	46(1)	37(1)	-1(1)	-9(1)	-20(1)
C(2)	46(1)	45(1)	42(1)	-2(1)	-12(1)	-15(1)
C(3)	54(1)	55(1)	49(1)	-10(1)	-6(1)	-18(1)
C(4)	68(1)	65(1)	54(1)	-19(1)	-4(1)	-15(1)
C(5)	77(2)	60(1)	67(1)	-24(1)	-16(1)	-13(1)
C(6)	68(1)	56(1)	76(1)	-17(1)	-23(1)	-22(1)
C(7)	49(1)	49(1)	55(1)	-5(1)	-17(1)	-17(1)
C(8)	44(1)	58(1)	59(1)	-4(1)	-9(1)	-22(1)
C(9)	38(1)	50(1)	41(1)	-1(1)	-9(1)	-18(1)
C(10)	35(1)	56(1)	38(1)	-2(1)	-5(1)	-19(1)
C(11)	46(1)	61(1)	38(1)	1(1)	-4(1)	-22(1)
C(12)	42(1)	60(1)	37(1)	-7(1)	-7(1)	-17(1)
C(13)	39(1)	65(1)	39(1)	-12(1)	-1(1)	-18(1)
C(14)	53(1)	79(1)	47(1)	-21(1)	-1(1)	-23(1)
C(15)	65(1)	84(2)	63(1)	-34(1)	4(1)	-26(1)
C(16)	64(1)	61(1)	76(2)	-25(1)	2(1)	-18(1)
C(17)	56(1)	57(1)	59(1)	-9(1)	-5(1)	-17(1)
C(18)	40(1)	57(1)	42(1)	-10(1)	-1(1)	-18(1)
C(19)	44(1)	51(1)	34(1)	-1(1)	-7(1)	-18(1)
C(20)	45(1)	57(1)	40(1)	-14(1)	1(1)	-27(1)
C(21)	40(1)	72(1)	56(1)	-10(1)	-5(1)	-16(1)
C(22)	67(1)	77(1)	48(1)	-1(1)	-20(1)	-16(1)
C(23)	40(1)	87(1)	74(1)	-23(1)	-11(1)	-20(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for ch060m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	У	Z	U(eq)
H(3A)	5423	2304	-1235	62
H(4A)	5938	782	-2652	74
H(5A)	4262	-551	-2702	80
H(6A)	2069	-363	-1347	76
H(11A)	810	3575	4007	58
H(11B)	1970	2272	3413	58
H(14A)	2766	5617	5333	69
H(15A)	1609	8150	5132	81
H(16A)	613	9496	3340	80
H(17A)	757	8334	1709	69
H(19A)	1607	5956	840	51
H(20A)	4242	5250	1173	53
H(21A)	-909	5404	1361	84
H(21B)	-863	5656	2685	84
H(21C)	-1175	4212	2511	84
H(22A)	4489	3129	4968	97
H(22B)	3997	1815	4721	97
H(22C)	2852	2961	5482	97
H(23A)	6403	3446	1967	97
H(23B)	6129	2843	3378	97
H(23C)	5657	4557	2876	97

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{-3}$) for ch060m.

Table 1. Crystal data and structure refinement f	for ch085m.		
Identification code	ch085m		
Empirical formula	C25 H26 N2 O3		
Formula weight	402.48		
Temperature	297(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.0795(9) Å	α= 65.448(2)°.	
	b = 11.1502(11) Å	β= 88.094(2)°.	
	c = 11.7893(11) Å	$\gamma = 78.917(2)^{\circ}$.	
Volume	1063.91(18) Å ³		
Ζ	2		
Density (calculated)	1.256 Mg/m ³		
Absorption coefficient	0.083 mm ⁻¹		
F(000)	428		
Crystal size	0.68 x 0.65 x 0.60 mm ³		
Theta range for data collection	2.05 to 25.97°.		
Index ranges	-7<=h<=11, -13<=k<=13, -11<=l<=14		
Reflections collected	5936		
Independent reflections	4074 [R(int) = 0.0153]		
Completeness to theta = 25.97°	97.7 %		
Absorption correction	Empirical		
Max. and min. transmission	0.9520 and 0.9458		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4074 / 0 / 295		
Goodness-of-fit on F ²	1.228		
Final R indices [I>2sigma(I)]	R1 = 0.0573, $wR2 = 0.1993$		
R indices (all data)	R1 = 0.0628, $wR2 = 0.2105$		
Largest diff. peak and hole	0.242 and -0.307 e.Å ⁻³		

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$)

	Х	У	Z	U(eq)
O(1)	2521(1)	5687(1)	6477(1)	49(1)
O(2)	5098(1)	2470(1)	9320(1)	43(1)
O(3)	439(1)	5352(1)	7455(1)	68(1)
N(1)	6904(2)	7117(2)	4457(1)	64(1)
N(2)	4149(1)	2668(1)	11153(1)	47(1)
C(1)	4063(2)	5449(2)	6448(1)	40(1)
C(2)	4685(2)	6359(1)	5462(1)	44(1)
C(3)	6249(2)	6213(2)	5414(1)	44(1)
C(4)	7146(2)	5111(2)	6401(1)	46(1)
C(5)	6495(2)	4225(1)	7365(1)	43(1)
C(6)	4930(2)	4364(1)	7424(1)	38(1)
C(7)	4166(2)	3500(1)	8424(1)	38(1)
C(8)	2632(2)	3721(2)	8461(1)	42(1)
C(9)	1775(2)	4926(2)	7483(1)	48(1)
C(10)	1827(2)	2844(2)	9561(1)	47(1)
C(11)	1504(2)	3511(2)	10498(2)	56(1)
C(12)	2617(2)	2749(2)	11626(1)	52(1)
C(13)	2259(2)	1358(2)	12293(1)	50(1)
C(14)	1813(2)	754(2)	13496(2)	68(1)
C(15)	1502(2)	-534(2)	13921(2)	73(1)
C(16)	1636(2)	-1195(2)	13156(2)	67(1)
C(17)	2075(2)	-589(2)	11948(2)	56(1)
C(18)	2390(2)	687(1)	11518(1)	46(1)
C(19)	2935(2)	1480(1)	10263(1)	42(1)
C(20)	4412(2)	1818(1)	10497(1)	39(1)
C(21)	5996(3)	8296(2)	3516(2)	72(1)
C(22)	8515(2)	6957(3)	4409(2)	69(1)
C(23)	392(2)	2562(2)	9157(2)	73(1)
C(24)	5345(2)	2395(2)	12078(2)	69(1)
C(25)	6803(3)	2678(4)	11504(3)	111(1)

for ch085m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.3758(17)
O(1)-C(9)	1.3840(18)
O(2)-C(7)	1.3518(16)
O(2)-C(20)	1.4555(15)
O(3)-C(9)	1.2106(19)
N(1)-C(3)	1.3718(19)
N(1)-C(21)	1.439(3)
N(1)-C(22)	1.441(2)
N(2)-C(20)	1.4366(17)
N(2)-C(24)	1.462(2)
N(2)-C(12)	1.482(2)
C(1)-C(2)	1.377(2)
C(1)-C(6)	1.394(2)
C(2)-C(3)	1.400(2)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.420(2)
C(4)-C(5)	1.366(2)
C(4)-H(4A)	0.9300
C(5)-C(6)	1.402(2)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.435(2)
C(7)-C(8)	1.370(2)
C(8)-C(9)	1.453(2)
C(8)-C(10)	1.5266(19)
C(10)-C(23)	1.532(2)
C(10)-C(19)	1.559(2)
C(10)-C(11)	1.560(2)
C(11)-C(12)	1.527(2)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.514(2)
C(12)-H(12A)	0.9800
C(13)-C(14)	1.379(2)
C(13)-C(18)	1.392(2)
C(14)-C(15)	1.394(3)
C(14)-H(14A)	0.9300

Table 3. Bond lengths [Å] and angles [°] for ch085m.

C(15)-C(16)	1.372(3)
C(15)-H(15A)	0.9300
C(16)-C(17)	1.382(2)
C(16)-H(16A)	0.9300
C(17)-C(18)	1.382(2)
C(17)-H(17A)	0.9300
C(18)-C(19)	1.4995(19)
C(19)-C(20)	1.5241(19)
C(19)-H(19A)	0.9800
C(20)-H(20A)	0.9800
C(21)-H(21A)	0.90(2)
C(21)-H(21B)	0.93(3)
C(21)-H(21C)	0.91(3)
C(22)-H(22A)	0.98(3)
C(22)-H(22B)	0.97(3)
C(22)-H(22C)	0.89(3)
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(24)-C(25)	1.495(3)
C(24)-H(24A)	0.9700
C(24)-H(24B)	0.9700
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
С(25)-Н(25С)	0.9600
C(1)-O(1)-C(9)	122.37(11)
C(7)-O(2)-C(20)	114.93(10)
C(3)-N(1)-C(21)	120.59(15)
C(3)-N(1)-C(22)	121.09(15)
C(21)-N(1)-C(22)	118.21(16)
C(20)-N(2)-C(24)	114.16(13)
C(20)-N(2)-C(12)	112.09(11)
C(24)-N(2)-C(12)	114.23(12)
O(1)-C(1)-C(2)	117.15(12)
O(1)-C(1)-C(6)	120.09(13)
C(2)-C(1)-C(6)	122.68(13)
C(1)-C(2)-C(3)	119.89(13)

C(1)-C(2)-H(2A)	120.1
C(3)-C(2)-H(2A)	120.1
N(1)-C(3)-C(2)	121.33(14)
N(1)-C(3)-C(4)	120.65(14)
C(2)-C(3)-C(4)	118.00(13)
C(5)-C(4)-C(3)	120.70(13)
C(5)-C(4)-H(4A)	119.6
C(3)-C(4)-H(4A)	119.6
C(4)-C(5)-C(6)	121.73(13)
C(4)-C(5)-H(5A)	119.1
C(6)-C(5)-H(5A)	119.1
C(1)-C(6)-C(5)	117.00(13)
C(1)-C(6)-C(7)	118.10(13)
C(5)-C(6)-C(7)	124.88(13)
O(2)-C(7)-C(8)	123.72(13)
O(2)-C(7)-C(6)	113.89(12)
C(8)-C(7)-C(6)	122.39(13)
C(7)-C(8)-C(9)	117.74(13)
C(7)-C(8)-C(10)	122.20(13)
C(9)-C(8)-C(10)	119.66(12)
O(3)-C(9)-O(1)	115.21(13)
O(3)-C(9)-C(8)	126.10(14)
O(1)-C(9)-C(8)	118.69(12)
C(8)-C(10)-C(23)	112.88(13)
C(8)-C(10)-C(19)	107.56(11)
C(23)-C(10)-C(19)	108.68(14)
C(8)-C(10)-C(11)	109.15(12)
C(23)-C(10)-C(11)	111.64(14)
C(19)-C(10)-C(11)	106.66(12)
C(12)-C(11)-C(10)	109.04(12)
С(12)-С(11)-Н(11А)	109.9
С(10)-С(11)-Н(11А)	109.9
C(12)-C(11)-H(11B)	109.9
C(10)-C(11)-H(11B)	109.9
H(11A)-C(11)-H(11B)	108.3
N(2)-C(12)-C(13)	110.53(12)
N(2)-C(12)-C(11)	107.64(12)
C(13)-C(12)-C(11)	106.72(14)

N(2)-C(12)-H(12A)	110.6
C(13)-C(12)-H(12A)	110.6
С(11)-С(12)-Н(12А)	110.6
C(14)-C(13)-C(18)	120.15(15)
C(14)-C(13)-C(12)	128.33(15)
C(18)-C(13)-C(12)	111.49(13)
C(13)-C(14)-C(15)	119.07(18)
C(13)-C(14)-H(14A)	120.5
C(15)-C(14)-H(14A)	120.5
C(16)-C(15)-C(14)	120.64(17)
C(16)-C(15)-H(15A)	119.7
C(14)-C(15)-H(15A)	119.7
C(15)-C(16)-C(17)	120.39(17)
C(15)-C(16)-H(16A)	119.8
С(17)-С(16)-Н(16А)	119.8
C(18)-C(17)-C(16)	119.44(17)
C(18)-C(17)-H(17A)	120.3
C(16)-C(17)-H(17A)	120.3
C(17)-C(18)-C(13)	120.30(14)
C(17)-C(18)-C(19)	127.08(14)
C(13)-C(18)-C(19)	112.59(12)
C(18)-C(19)-C(20)	106.80(11)
C(18)-C(19)-C(10)	111.11(11)
C(20)-C(19)-C(10)	106.79(11)
C(18)-C(19)-H(19A)	110.7
C(20)-C(19)-H(19A)	110.7
C(10)-C(19)-H(19A)	110.7
N(2)-C(20)-O(2)	110.66(11)
N(2)-C(20)-C(19)	109.72(11)
O(2)-C(20)-C(19)	110.30(11)
N(2)-C(20)-H(20A)	108.7
O(2)-C(20)-H(20A)	108.7
C(19)-C(20)-H(20A)	108.7
N(1)-C(21)-H(21A)	109.0(14)
N(1)-C(21)-H(21B)	108(2)
H(21A)-C(21)-H(21B)	112(2)
N(1)-C(21)-H(21C)	110.7(19)
H(21A)-C(21)-H(21C)	110(2)

H(21B)-C(21)-H(21C)	107(2)
N(1)-C(22)-H(22A)	106.5(16)
N(1)-C(22)-H(22B)	110.6(13)
H(22A)-C(22)-H(22B)	106(2)
N(1)-C(22)-H(22C)	109(2)
H(22A)-C(22)-H(22C)	113(3)
H(22B)-C(22)-H(22C)	112(3)
C(10)-C(23)-H(23A)	109.5
C(10)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(10)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
N(2)-C(24)-C(25)	112.71(16)
N(2)-C(24)-H(24A)	109.0
C(25)-C(24)-H(24A)	109.0
N(2)-C(24)-H(24B)	109.0
C(25)-C(24)-H(24B)	109.0
H(24A)-C(24)-H(24B)	107.8
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	36(1)	54(1)	46(1)	-11(1)	-4(1)	-4(1)
O(2)	34(1)	43(1)	43(1)	-11(1)	1(1)	-2(1)
O(3)	34(1)	79(1)	65(1)	-11(1)	-4(1)	1(1)
N(1)	53(1)	61(1)	59(1)	-5(1)	7(1)	-17(1)
N(2)	53(1)	42(1)	50(1)	-23(1)	2(1)	-13(1)
C(1)	36(1)	44(1)	42(1)	-20(1)	-4(1)	-6(1)
C(2)	45(1)	44(1)	40(1)	-15(1)	-4(1)	-5(1)
C(3)	46(1)	45(1)	44(1)	-18(1)	3(1)	-13(1)
C(4)	35(1)	48(1)	52(1)	-18(1)	2(1)	-9(1)
C(5)	36(1)	41(1)	48(1)	-14(1)	-3(1)	-4(1)
C(6)	35(1)	39(1)	41(1)	-18(1)	0(1)	-7(1)
C(7)	35(1)	39(1)	40(1)	-17(1)	-3(1)	-5(1)
C(8)	34(1)	48(1)	43(1)	-17(1)	-1(1)	-7(1)
C(9)	36(1)	55(1)	49(1)	-18(1)	-1(1)	-7(1)
C(10)	34(1)	52(1)	50(1)	-17(1)	2(1)	-8(1)
C(11)	52(1)	46(1)	61(1)	-18(1)	13(1)	2(1)
C(12)	66(1)	44(1)	51(1)	-27(1)	12(1)	-7(1)
C(13)	50(1)	47(1)	50(1)	-19(1)	10(1)	-6(1)
C(14)	73(1)	66(1)	59(1)	-24(1)	20(1)	-7(1)
C(15)	64(1)	70(1)	63(1)	-7(1)	22(1)	-12(1)
C(16)	53(1)	53(1)	82(1)	-13(1)	16(1)	-17(1)
C(17)	50(1)	49(1)	69(1)	-23(1)	7(1)	-16(1)
C(18)	39(1)	42(1)	53(1)	-18(1)	5(1)	-8(1)
C(19)	42(1)	42(1)	47(1)	-23(1)	5(1)	-10(1)
C(20)	38(1)	35(1)	41(1)	-15(1)	2(1)	-5(1)
C(21)	77(1)	55(1)	64(1)	-5(1)	12(1)	-13(1)
C(22)	59(1)	81(1)	61(1)	-18(1)	12(1)	-28(1)
C(23)	45(1)	88(1)	71(1)	-15(1)	-1(1)	-27(1)
C(24)	83(1)	72(1)	65(1)	-34(1)	-10(1)	-26(1)
C(25)	77(2)	163(3)	123(2)	-74(2)	-9(1)	-54(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for ch085m.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	у	Z	U(eq)
H(2A)	4067	7070	4829	53
H(4A)	8188	4992	6391	55
H(5A)	7106	3510	8000	52
H(11A)	1608	4444	10094	67
H(11B)	484	3485	10765	67
H(12A)	2516	3211	12181	62
H(14A)	1721	1200	14017	81
H(15A)	1200	-950	14731	88
H(16A)	1430	-2056	13452	81
H(17A)	2157	-1035	11428	67
H(19A)	3083	956	9761	50
H(20A)	5098	981	11015	47
H(21A)	5530(30)	8830(20)	3870(20)	71(6)
H(21B)	5330(40)	8020(30)	3140(30)	114(10)
H(21C)	6570(30)	8750(30)	2910(30)	105(8)
H(22A)	8880(30)	6110(30)	4330(20)	95(8)
H(22B)	8960(30)	6830(20)	5190(20)	88(7)
H(22C)	8740(40)	7660(40)	3770(30)	137(12)
H(23A)	-299	3395	8722	109
H(23B)	-61	1999	9880	109
H(23C)	637	2114	8614	109
H(24A)	5489	1459	12669	83
H(24B)	5039	2943	12536	83
H(25A)	7548	2486	12147	167
H(25B)	6673	3608	10929	167

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{-3}$) for ch085m.

Table I. Crystal data and structure refinement fo	r ch086m.	
Identification code	ch086m	
Empirical formula	C25 H28 N2 O3	
Formula weight	404.49	
Temperature	297(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 13.0902(8) Å	α= 90°.
	b = 16.4023(10) Å	β= 90°.
	c = 19.4869(12) Å	$\gamma = 90^{\circ}$.
Volume	4184.0(4) Å ³	
Z	8	
Density (calculated)	1.284 Mg/m ³	
Absorption coefficient	0.084 mm ⁻¹	
F(000)	1728	
Crystal size	0.55 x 0.48 x 0.30 mm ³	
Theta range for data collection	2.09 to 26.03°.	
Index ranges	-13<=h<=16, -20<=k<=17, -23	<=l<=24
Reflections collected	22394	
Independent reflections	4120 [R(int) = 0.0374]	
Completeness to theta = 26.03°	100.0 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9751 and 0.9550	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4120 / 0 / 275	
Goodness-of-fit on F ²	1.318	
Final R indices [I>2sigma(I)]	R1 = 0.0474, wR2 = 0.1445	
R indices (all data)	R1 = 0.0703, wR2 = 0.1561	
Largest diff. peak and hole	0.356 and -0.309 e.Å-3	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$)

	х	у	Z	U(eq)
O(1)	5699(1)	8982(1)	2587(1)	51(1)
O(2)	5591(1)	8235(1)	4590(1)	44(1)
O(3)	6713(1)	7277(1)	4407(1)	62(1)
N(1)	2872(2)	10050(1)	5104(1)	55(1)
N(2)	6447(1)	7883(1)	1784(1)	41(1)
C(1)	5766(2)	8764(1)	3224(1)	39(1)
C(2)	5021(2)	9122(1)	3697(1)	39(1)
C(3)	4335(2)	9736(1)	3511(1)	44(1)
C(4)	3634(2)	10047(1)	3968(1)	46(1)
C(5)	3576(2)	9749(1)	4649(1)	41(1)
C(6)	4258(2)	9134(1)	4836(1)	42(1)
C(7)	4963(2)	8847(1)	4367(1)	38(1)
C(8)	6309(2)	7879(1)	4156(1)	43(1)
C(9)	6488(2)	8217(1)	3490(1)	40(1)
C(10)	7397(2)	7861(1)	3085(1)	42(1)
C(11)	7785(2)	8443(1)	2500(1)	46(1)
C(12)	7591(2)	8058(1)	1801(1)	42(1)
C(13)	8179(2)	7272(1)	1753(1)	41(1)
C(14)	8932(2)	7084(1)	1284(1)	47(1)
C(15)	9482(2)	6366(1)	1354(1)	52(1)
C(16)	9259(2)	5834(1)	1880(1)	54(1)
C(17)	8492(2)	6010(1)	2347(1)	49(1)
C(18)	7959(2)	6733(1)	2291(1)	42(1)
C(19)	7093(2)	7038(1)	2734(1)	42(1)
C(20)	6194(2)	7176(1)	2244(1)	43(1)
C(21)	2149(2)	10667(2)	4903(1)	66(1)
C(22)	2748(2)	9685(1)	5775(1)	58(1)
C(23)	8335(2)	7717(2)	3548(1)	56(1)
C(24)	6031(2)	7809(1)	1076(1)	52(1)
C(25)	5858(2)	8635(2)	755(1)	74(1)

for ch086m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.294(2)
1.369(2)
1.393(2)
1.222(2)
1.370(2)
1.438(3)
1.447(3)
1.488(3)
1.504(2)
1.526(3)
1.06(3)
1.403(3)
1.464(3)
1.383(3)
1.397(3)
1.377(3)
0.9300
1.418(3)
0.9300
1.396(3)
1.382(3)
0.9300
1.429(3)
1.544(3)
1.543(3)
1.565(3)
1.571(3)
1.523(3)
0.9700
0.9700
1.505(3)
0.9800
1.379(3)
1.401(3)
1.386(3)
0.9300

Table 3. Bond lengths [Å] and angles [°] for ch086m.

C(15)-C(16)	1.379(3)
C(15)-H(15A)	0.9300
C(16)-C(17)	1.386(3)
C(16)-H(16A)	0.9300
C(17)-C(18)	1.380(3)
C(17)-H(17A)	0.9300
C(18)-C(19)	1.511(3)
C(19)-C(20)	1.532(3)
C(19)-H(19A)	0.9800
C(20)-H(20A)	0.9700
C(20)-H(20B)	0.9700
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(24)-C(25)	1.509(3)
C(24)-H(24A)	0.9700
C(24)-H(24B)	0.9700
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
C(7)-O(2)-C(8)	121.26(15)
C(5)-N(1)-C(21)	121.36(18)
C(5)-N(1)-C(22)	120.64(18)
C(21)-N(1)-C(22)	117.56(18)
C(24)-N(2)-C(20)	114.21(16)
C(24)-N(2)-C(12)	113.25(16)
C(20)-N(2)-C(12)	110.34(15)
C(24)-N(2)-H(2A)	108.6(15)
C(20)-N(2)-H(2A)	102.9(15)
C(12)-N(2)-H(2A)	106.7(16)
O(1)-C(1)-C(9)	125.24(18)
O(1)-C(1)-C(2)	116.57(17)
---------------------	------------
C(9)-C(1)-C(2)	118.18(16)
C(7)-C(2)-C(3)	116.41(18)
C(7)-C(2)-C(1)	119.96(17)
C(3)-C(2)-C(1)	123.63(17)
C(4)-C(3)-C(2)	121.86(18)
C(4)-C(3)-H(3A)	119.1
C(2)-C(3)-H(3A)	119.1
C(3)-C(4)-C(5)	120.93(19)
C(3)-C(4)-H(4A)	119.5
C(5)-C(4)-H(4A)	119.5
N(1)-C(5)-C(6)	121.54(18)
N(1)-C(5)-C(4)	121.14(18)
C(6)-C(5)-C(4)	117.32(18)
C(7)-C(6)-C(5)	120.08(18)
C(7)-C(6)-H(6A)	120.0
C(5)-C(6)-H(6A)	120.0
O(2)-C(7)-C(6)	116.10(16)
O(2)-C(7)-C(2)	120.46(17)
C(6)-C(7)-C(2)	123.38(18)
O(3)-C(8)-O(2)	112.77(17)
O(3)-C(8)-C(9)	127.29(19)
O(2)-C(8)-C(9)	119.94(17)
C(1)-C(9)-C(8)	118.26(18)
C(1)-C(9)-C(10)	124.87(16)
C(8)-C(9)-C(10)	116.38(17)
C(9)-C(10)-C(23)	111.81(16)
C(9)-C(10)-C(19)	110.69(16)
C(23)-C(10)-C(19)	109.04(17)
C(9)-C(10)-C(11)	113.04(16)
C(23)-C(10)-C(11)	105.11(17)
C(19)-C(10)-C(11)	106.87(15)
C(12)-C(11)-C(10)	110.05(16)
C(12)-C(11)-H(11A)	109.7
С(10)-С(11)-Н(11А)	109.7
С(12)-С(11)-Н(11В)	109.7
С(10)-С(11)-Н(11В)	109.7
H(11A)-C(11)-H(11B)	108.2

C(13)-C(12)-C(11)	108.98(17)
C(13)-C(12)-N(2)	109.87(16)
C(11)-C(12)-N(2)	105.19(16)
С(13)-С(12)-Н(12А)	110.9
С(11)-С(12)-Н(12А)	110.9
N(2)-C(12)-H(12A)	110.9
C(14)-C(13)-C(18)	120.09(19)
C(14)-C(13)-C(12)	126.75(18)
C(18)-C(13)-C(12)	112.93(17)
C(13)-C(14)-C(15)	119.7(2)
C(13)-C(14)-H(14A)	120.2
C(15)-C(14)-H(14A)	120.2
C(16)-C(15)-C(14)	120.1(2)
C(16)-C(15)-H(15A)	119.9
C(14)-C(15)-H(15A)	119.9
C(17)-C(16)-C(15)	120.7(2)
С(17)-С(16)-Н(16А)	119.7
C(15)-C(16)-H(16A)	119.7
C(16)-C(17)-C(18)	119.5(2)
С(16)-С(17)-Н(17А)	120.3
C(18)-C(17)-H(17A)	120.3
C(17)-C(18)-C(13)	119.93(19)
C(17)-C(18)-C(19)	128.15(18)
C(13)-C(18)-C(19)	111.88(18)
C(18)-C(19)-C(20)	105.60(16)
C(18)-C(19)-C(10)	110.13(16)
C(20)-C(19)-C(10)	109.87(16)
C(18)-C(19)-H(19A)	110.4
C(20)-C(19)-H(19A)	110.4
C(10)-C(19)-H(19A)	110.4
N(2)-C(20)-C(19)	108.52(16)
N(2)-C(20)-H(20A)	110.0
C(19)-C(20)-H(20A)	110.0
N(2)-C(20)-H(20B)	110.0
C(19)-C(20)-H(20B)	110.0
H(20A)-C(20)-H(20B)	108.4
N(1)-C(21)-H(21A)	109.5
N(1)-C(21)-H(21B)	109.5

H(21A)-C(21)-H(21B)	109.5
N(1)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
N(1)-C(22)-H(22A)	109.5
N(1)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
N(1)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(10)-C(23)-H(23A)	109.5
C(10)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(10)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
N(2)-C(24)-C(25)	111.42(19)
N(2)-C(24)-H(24A)	109.3
C(25)-C(24)-H(24A)	109.3
N(2)-C(24)-H(24B)	109.3
C(25)-C(24)-H(24B)	109.3
H(24A)-C(24)-H(24B)	108.0
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	68(1)	49(1)	36(1)	7(1)	6(1)	12(1)
O(2)	50(1)	47(1)	36(1)	4(1)	0(1)	10(1)
O(3)	74(1)	63(1)	50(1)	17(1)	7(1)	28(1)
N(1)	61(1)	57(1)	49(1)	0(1)	5(1)	16(1)
N(2)	43(1)	43(1)	36(1)	3(1)	4(1)	-1(1)
C(1)	47(1)	35(1)	36(1)	1(1)	0(1)	-5(1)
C(2)	44(1)	36(1)	37(1)	1(1)	-2(1)	-3(1)
C(3)	55(1)	38(1)	38(1)	4(1)	-3(1)	2(1)
C(4)	52(1)	40(1)	47(1)	3(1)	-4(1)	7(1)
C(5)	43(1)	39(1)	41(1)	-5(1)	-2(1)	-1(1)
C(6)	50(1)	42(1)	34(1)	0(1)	-1(1)	-1(1)
C(7)	42(1)	34(1)	38(1)	0(1)	-5(1)	0(1)
C(8)	45(1)	45(1)	39(1)	0(1)	-1(1)	2(1)
C(9)	44(1)	39(1)	37(1)	-1(1)	-1(1)	-2(1)
C(10)	42(1)	44(1)	41(1)	-1(1)	1(1)	-1(1)
C(11)	46(1)	43(1)	50(1)	-2(1)	7(1)	-8(1)
C(12)	44(1)	40(1)	43(1)	5(1)	7(1)	-4(1)
C(13)	43(1)	40(1)	40(1)	-2(1)	2(1)	-6(1)
C(14)	47(1)	49(1)	44(1)	-1(1)	5(1)	-8(1)
C(15)	48(1)	58(1)	50(1)	-12(1)	5(1)	1(1)
C(16)	58(2)	49(1)	56(1)	-9(1)	-7(1)	11(1)
C(17)	59(1)	44(1)	45(1)	2(1)	0(1)	3(1)
C(18)	48(1)	40(1)	40(1)	-1(1)	0(1)	-4(1)
C(19)	48(1)	40(1)	38(1)	4(1)	4(1)	-4(1)
C(20)	46(1)	41(1)	42(1)	2(1)	4(1)	-7(1)
C(21)	68(2)	66(2)	64(2)	-7(1)	1(1)	27(1)
C(22)	67(2)	55(1)	52(1)	-2(1)	14(1)	7(1)
C(23)	46(1)	71(2)	52(1)	-7(1)	-5(1)	6(1)
C(24)	52(1)	66(2)	38(1)	-3(1)	1(1)	5(1)
C(25)	88(2)	84(2)	50(1)	16(1)	-3(1)	18(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for ch086m.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	x	у	Z	U(eq)
	4252	0041	2000	52
H(3A)	4353	9941	3000	55
H(4A)	3192	10459	3827	50
H(6A)	4238	8916	5276	51
H(11A)	7432	8962	2529	56
H(11B)	8511	8543	2557	56
H(12A)	7786	8431	1430	50
H(14A)	9070	7437	922	56
H(15A)	10001	6244	1045	62
H(16A)	9627	5351	1922	65
H(17A)	8337	5643	2697	59
H(19A)	6914	6630	3082	50
H(20A)	6076	6690	1972	51
H(20B)	5579	7292	2504	51
H(21A)	2313	10859	4451	99
H(21B)	2181	11114	5221	99
H(21C)	1473	10441	4904	99
H(22A)	3272	9284	5845	87
H(22B)	2090	9429	5803	87
H(22C)	2799	10100	6121	87
H(23A)	8152	7358	3917	85
H(23B)	8563	8228	3733	85
H(23C)	8874	7476	3284	85
H(24A)	5390	7512	1090	62
H(24B)	6506	7500	795	62
H(25A)	5590	8567	300	111
H(25B)	6494	8925	733	111
H(25C)	5380	8938	1028	111
H(2A)	6080(20)	8381(18)	2030(14)	88(9)

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{-3}$) for ch086m.