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摘要 
在模糊理論中，模糊計算及其應用為眾多學者所探討，其中α截集法(α-cuts)是經常被

利用來進行模糊運算的一種方式，然而根據 Zadeh的延伸法則(Extension principle)所定
義之運算三角形基準 (t-norm)，並未被深入探討於運算中且兩種類型之模糊計算於複雜

系統中邊界擴張及合理性並未被探討。因此，本研究將著重於下列方向，探討模糊計算

t-norm並擴展模糊計算應用性、模糊計算導入系統動態實際模型及解決模糊系統中模糊
量不可控制累積問題。 
首先提出延伸法則所定義出之模糊計算除法，在 t-norm 準則下加法、減法、乘法於
近年此類型模糊計算已經應用在許多領域中，本研究證明推導 t-norm 準則下之模糊計
算除法，此計算除法包含 Yager’s t-norm準則及 the weakest t-norm準則，這些方法將會
擴展模糊計算之應用性。 
  其次本研究將模糊計算導入系統動態學實際模型，傳統系統動態學已經廣泛的被應用
於許多領域上，於傳統系統動態可以觀察出某些變數屬於模糊因子，因此有些系統動態

之變數或參數可以擴展成模糊變數，此模糊計算之系統動態評估可以提供決策者在不確

定環境下系統行為之資訊，於本研究將以 α截集、Yager’s t-norm及 the weakest t-norm
等模糊計算方式導入系統動態傳染病模式，觀察不同模糊計算對於系統動態模式之變

化，模糊計算以 the weakest t-norm準則下可獲得模式變數最小模糊間距，而 α截集獲得
模式變數最大模糊間距，而 Yager’s t-norm 可控制參數介於兩者計算之間，但於系統動

態模式中可發現，變數模糊量隨著時間累積變成不可控制，因此最後本研究提出累積系

統在每個時間區間結束時可以將其變數解模糊，這解模糊值代表系統可能預期值，再將

此解模糊值模糊化帶入下一個時間點，此方法可以避免模糊量隨著時間累積而造成無法

控制的情形，同時本研究以顧客-生產者-勞工模式為實例觀察結合模糊計算之系統動態

模式及利用解模糊技巧控制模糊量累積且測試最大(α 截集)及最小間距(the weakest 
t-norm)計算準則，並測試觀察三角模糊數不同大小之模糊間距以及非對稱之三角模糊數

於系統模式，可得到模糊計算之系統動態皆可得到穩定之結果，並可依據決策環境下不

確定性之程度選擇模糊計算方式及不同之三角模糊數。 
   
關鍵字：模糊計算、α截集法、Yager’s t-norm準則、the weakest t-norm準則、系統動態 
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ABSTRACT 

In fuzzy theory the fuzzy arithmetic has been widely studied. Among them, α-cut 
arithmetic is a popular method in fuzzy arithmetic. However, based on the Zadeh’s extension 
principle, the t-norm operators have not widely been investigated. Moreover, in fuzzy system 
the problem, which the fuzzy accumulations become uncontrollable, has not been investigated. 
Therefore, this research thoroughly investigates the division of fuzzy arithmetic and system 
dynamics with fuzzy arithmetic, and solving uncontrollable accumulations in fuzzy system.  

First of all this research provides division of fuzzy arithmetic based on extension principle. 
In recent years, the operations of fuzzy arithmetic have been developed and applied to many 
fields in addition, subtraction, and multiplication based on α-cut or t-norm. This research 
shows the division of fuzzy arithmetic based on Yager’s t-norm and the weakest t-norm. 
These operations of division will extend application of fuzzy arithmetic. 

In the second place this research applies fuzzy arithmetic to system dynamics analysis. 
Traditional crisp system dynamics can be observed that some variables/parameters may 
belong to the uncertain factors. It is necessary to extend the system dynamics to treating the 
vague variables/parameters too. The evaluation of fuzzy system dynamics may provide the 
decision maker information regarding the system’s behavior uncertainties. In this research the 
epidemics model is examined with the fuzzy system dynamics in three types of fuzzy 
arithmetic, α-cut fuzzy arithmetic, Tp Yager’s t-norm, and Tω weakest t-norm operator. In this 
model we can observe that the α-cut fuzzy arithmetic variables get larger fuzzy spreads in 
epidemics model, and the weakest t-norm operator variables get smaller fuzzy spreads in 
epidemics model. Based on the Yager’s t-norm operator variable of model can get 
intermediate fuzzy spreads with tuning parameter p. However, we can find that accumulations 
become uncontrollable with dynamic time in this model. Finally, this research uses 
defuzzification method to solve uncontrollable accumulations in fuzzy system. The fuzzy 
variables of the system at the end of each interval can be defuzzified to obtain the 
representative value similar to the expected values or interval-end defuzzification is 
performed. The representative values of the variables may be supplied to the next time 
interval with fuzzy inputs again. The purpose of defuzzification is obvious that it avoids the 
fuzziness from continually accumulating in the model and by time possibly becoming very 
uncontrollable. Moreover, in this research, the customer-producer-employment model is also 
examined with the fuzzy system dynamics in two types of fuzzy arithmetic, α-cut fuzzy 
arithmetic and the Tω weakest t-norm operator, and this model uses defuzzification method to 
control fuzzy accumulations. Symmetrical and non-symmetrical triangular-fuzzy-number, 
varied amount of fuzzy inputs’ fuzziness, and length of the system time delay are examined 
with useful results provided. 

Keywords: Fuzzy Arithmetic, α-Cut Arithmetic, Yager’s t-Norm, the Weakest t-Norm, 
System Dynamics 
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Chapter 1 

INTRODUCTION 

 

This chapter introduces the research background, motivation and purposes. Additionally, 

the organization of this dissertation is presented. 

1.1 Research Background and Motivation 

The concept of fuzzy sets introduced by Zadeh (1965) has led to the definition of fuzzy 

logic, fuzzy numbers, and the various implementations. Numerous studies on the field of 

fuzzy sets has been done during the past three decades. Many new theoretical, algorithmic, 

and computational contributions of fuzzy theory have been used to solve various problems in 

management science and engineering. Fuzzy theory has very widespread applications in 

control, approximate reasoning, design, and planning problems (Mizumoto and Tanaka, 1979; 

Zimmermann, 2001). Due to the fact that solving problems with fuzzy sets involves several 

fuzzy variables/parameters, it is necessary to have fuzzy arithmetic operations. As a result, 

the fuzzy arithmetic operations are crucial.  

Previously, based on Zadeh’s extension principle, fuzzy arithmetic has been investigated 

either in approximate or exact manners (see Wood et al., 1992; Chang, 2005 for reviews), 

including Zadeh’s original sup-min operations (see Dubois and Prade, 1981; Giachetti and 

Young, 1997(a), (b) for reviews), other t-norm operations (see Hong, 2001 (a), (b) for a 

review, Kosheleva et al., 1997; Wagenknecht et al., 2001), the Tω weakest t-norm (Hong and 

Do, 1997; Kolesárová, 1995; Mesiar, 1997), and other operations based on the inverse of 

membership functions (e.g., see Liou and Wang, 1992), among others. Particularly, Zadeh’s 

original sup-min operations can be performed equivalently with the α-cuts of the fuzzy 

parameters and interval arithmetic (e.g., see Mizumoto and Tanaka, 1976) and thus is termed 
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as the “α-cut (fuzzy) arithmetic”.  

However, based on Zadeh’s extension principle, fuzzy arithmetic is developed mainly on 

additional and multiplication. Moreover, for extending application, this research develops 

system dynamics with fuzzy arithmetic. System dynamics, introduced by Forrester (1961), 

indicates that some systems may be modeled by level and rate variables. In effect, in system 

dynamics, variables and/or parameters may belong to uncertain factors. Thus, a system 

dynamics for treating the uncertain factors is also needed. Except for the probability theory, 

Zadeh’s fuzzy set theory (Zadeh, 1965) has been considered useful for treating the 

uncertainties. It deals with complex systems where the interactions of variables appear too 

complex to be specified precisely. Therefore, in this research, the applications of fuzzy 

arithmetic are proposed for the system dynamics.    

1.2 Research Purposes 

According to the background and motivation, our research focuses on the fuzzy arithmetic 

problems, including fuzzy arithmetic operations, and system dynamics with fuzzy arithmetic. 

Furthermore, this research addresses the issues as follows. 

1. The division of fuzzy arithmetic: the fuzzy arithmetic has been developed and applied to 

many fields in addition and multiplication based on t-norm. This research, based on 

Yager’s t-norm and the weakest t-norm, shows the division of fuzzy arithmetic, which 

extends the application of fuzzy arithmetic. 

2. System dynamics analysis based on the application of fuzzy arithmetic: This research 

presents a system dynamics analysis based on the application of fuzzy arithmetic. 

Traditional crisp system dynamics can be observed that some variables/parameters may 

belong to the uncertain factors. It is necessary to extend the system dynamics to treat the 

vague variables/parameters as well. The evaluation of fuzzy system dynamics may provide 

the decision maker information regarding the system’s behavior uncertainties. In this 
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paper, the customer-producer-employment model is examined with the fuzzy system 

dynamics in two types of fuzzy arithmetic, the α-cut fuzzy arithmetic and the Tω weakest 

t-norm operator. 

3. Solving uncontrollable accumulations in fuzzy system: The fuzzy variable of the system at 

the end of each interval can be defuzzified to obtain the representative value similar to the 

expected values or interval-end defuzzification. The representative values of the variables 

may be supplied to the next interval with fuzzy inputs and parameters again. The purpose 

of defuzzification is to avoid the fuzziness from continually accumulating in the model 

and by time becoming very uncontrollable.  

1.3 Organization of the Dissertation 

The structure of this dissertation is showed in Figure 1.1. In Chapter 1, the research 

background, motivation and purposes are presented. Chapter 2 introduces the concepts of 

fuzzy sets, fuzzy number, α–cuts fuzzy arithmetic operations, the weakest t-norm operations, 

and Yager’s t-norm operations. Furthermore, this research reviews the literatures of fuzzy 

arithmetic and system dynamics. Chapter 3 discusses fuzzy arithmetic (weakest t-norm 

operations, Yager’s t-norm and the fuzziness accumulation controlling method) from several 

observations. Chapter 4 presents the system dynamic with fuzzy arithmetic. Moreover, 

numerical experiments perform comparison analysis from these algorithms are provided. In 

Chapter 5 the customer-producer-employment model is examined and analyzed. Finally, 

conclusions and future researches are in Chapter 6. 
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Figure 1.1 The research process and organization of the dissertation.
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Chapter 2 

LITERATURES REVIEW 

 

This chapter contains with four sections. In Section 2.1, the fuzzy sets and fuzzy numbers 

are reviewed. Section 2.2 reviews fuzzy arithmetic operations (α-cut, the weakest t-norm, and 

Yager’s t-norm). In addition, Section 2.3 reviews system dynamics and related problems. 

2.1 Fuzzy Sets and Fuzzy Numbers 

The theory of fuzzy sets was first introduced by Zadeh in 1965. A fuzzy set is defined by a 

membership function. The membership function maps elements (crisp inputs) in the universe 

of discourse to degrees of membership within a certain interval, which normally is [0, 1]. 

Then, the degree of membership specifies the extent to which a given element belongs to a 

set. Thus, for a fuzzy set A, it can be defined as follows.  

Definition 2.1 (Fuzzy set). Let U be the universe of discourse, A is a fuzzy subset in U if for 

all x ∈ U, there is a number µA(x) ∈ [0, 1] assigned to represent the membership of x to A, 

and µA(x) is called the membership function of A. It can be expressed by  

A = {(x, µA(x))| x∈U, µA(x) ∈ [0, 1]}                                      (2.1) 

µA(x) is called the membership function or grade of membership (or degree of compatibility 

or truth) of x in A that maps the universal set U to the membership space E, which is a crisp 

set [0,1]. When E contains only two points 0 and 1, A is non-fuzzy and µA(x) is identical to a 

characteristic function of a non-fuzzy set. If the value lies within the interval [0,1], the 

element has a certain degree of membership (it belongs partially to the fuzzy set). 

A fuzzy number is a fuzzy subset on R of numerical numbers, which possesses two 

properties of convexity and normality (Zadeh, 1965; Kaufman and Gupta, 1991). Special 

cases of fuzzy numbers include crisp real number and intervals of real numbers. The 
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important definitions of fuzzy number and then the fuzzy arithmetic may be introduced as 

follows. 

Definition 2.2 (The convexity of fuzzy set). A fuzzy subset A of the universe of discourse U is 

convex, if  

µA[λx1+(1−λ)x2] ≥ Min[µA(x1), µA(x2)], x1, x2 ∈U, λ∈[0, 1].                   (2.2) 

Alternatively, a fuzzy subset is convex if all α-level sets (see Section 3.3) are convex.  

Definition 2.3 (The normality of fuzzy set). A fuzzy subset in the universe of discourse U is 

called a normal fuzzy set, if  

Sup  ( )A
x

xµ =1.                                                           (2.3) 

A nonempty fuzzy subset A can always be normalized by ( ) ( )sup  A A
x

x xµ µ .  

Definition 2.4 (Fuzzy number). A fuzzy number is a fuzzy subset in the universe of discourse 

R that is both convex and normal.  

Therefore, A fuzzy number (FN, a fuzzy set) can be represented in the L-R type 

representation (Dubois and Prade, 1980) as Ai = -( , , )L M U
i i i L Rx x x , where [ ,L U

i ix x ] defines the 

support (as Supp(Ai)), L
ix  and U

ix  the lower and upper bounds, M
ix  mode, and L and R 

the left and right reference (or shape) functions of Ai, respectively. A membership function of 

a FN Ai defines the belongingness of elements xi ∈ Xi to Ai ∈ Xi, denoted as ( )
iA ixµ , and is 

defined by L and R with ( ) ( ) 0
i

L L
A i ix L xµ = = , ( ) ( ) 0

i

R R
A i ix R xµ = = , 

( ) ( ) ( ) 1
i

M M M
A i i ix L x R xµ = = = , and ( )

iA ixµ  ∈ [0, 1]. Meanwhile, the α-cut of a FN Ai can 

be denoted as iAα  = [ , ]L R
i ix xα α  and L

ix α  and R
ix α  respectively denote the left and right 

endpoints of iAα . iAα  is defined as an ordinary subset { | ( ) ,
ii A ix xµ α≥   [0, 1]}.α ∈ For 
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example, a triangular fuzzy number (TFN) may be denoted specially as ( , , )L M U
i i i Tx x x  with 

L(xi) = ( ) /( )L M L
i i i ix x x x− −  for L M

i i ix x x≤ ≤ , R(xi) = ( ) /( )U U M
i i i ix x x x− −  for 

M U
i i ix x x≤ ≤ , L(xi) = R(xi) = 0 otherwise,  1( ) ( )L M L L

i i i ix L x x xα α α−= = − +  and 

1( ) ( )R U U M
i i i ix R x x xα α α−= = − − , where L−1(α) and R−1(α) are respectively denoting the 

inverses of L and R and α ∈ (0, 1]. 

2.2 Fuzzy Arithmetic Operations 

The fuzzy arithmetic, following the Zadeh’s extension principle (Zadeh, 1965) in the fuzzy 

set theory, was first investigated by Dubois and Prade (1980), Nahmias (1978), and 

Mizumoto and Tanaka (1976), amongst others. Among them, based on the Zadeh’s extension 

principle, fuzzy arithmetic has been investigated in the approximate and exact manners (see 

Chang (2005), Chang and Chang (2005), and Chang and Hung (2006) for reviews). They 

include Zadeh’s original sup-min operator (see Dubois and Prade (1987) and Giachetti and 

Young (1997a, b) for reviews), other t-norm operators (see Hong (2001a, b) for a review, 

Wagenknecht et al. (2001), the Tω weakest t-norm operator (Hong and Do, 1997; Kolesárová, 

1995; Mesiar, 1997)), and others based on the inverse of the membership functions (see Ma et 

al. (1999)). Among these operators, the α-cut fuzzy arithmetic are used most often and the Tω 

weakest t-norm operator examined here.   

For fuzzy sets or fuzzy numbers on the real line ℜ, the following definitions and the fuzzy 

arithmetic may be introduced. 

Fuzzy numbers⎯Let iA  be a fuzzy set or a fuzzy number (FN) on ℜ and can be written as 

(a1, a2, a3), where a2 thus denotes the mode and a1 and a3 denote the left and right bounds, 

respectively, of iA , with the membership function ( )A x�  defining the grade of membership 

of element x ∈ ℜ to A� : 
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1

1 2 1 1 2

3 3 2 2 3

3

0, ,
(( ) /( )), ,

( )
(( ) /( )), ,

0, ,

x a
L x a a a a x a

A x
R a x a a a x a

x a

<⎧
⎪ − − ≤ ≤⎪= ⎨ − − ≤ ≤⎪
⎪ >⎩

�                                     (2.4) 

where L and R respectively denote the left and right shape functions of ( )A x� . In particular, 

the fuzzy numbers with triangular membership functions or called triangular fuzzy numbers 

(TFNs) can be shown as Figure 2.1 and 

1

1 2 1 1 2

3 3 2 2 3

3

0, ,
( ) /( ), ,

( )
( ) /( ), ,
0, .

x a
x a a a a x a

A x
a x a a a x a

x a

<⎧
⎪ − − ≤ ≤⎪= ⎨ − − ≤ ≤⎪
⎪ >⎩

�             (2.5) 

 

 

 

 

Figure 2.1 Triangular fuzzy number (a1, a2, a3). 

For an interval of confidence or α-cut at level α ∈ (0, 1), an ordinary subset Aα of A�  can 

be defined: 

{ }( ) ,A x A xα α= ≥�                                                        (2.6) 

or given for a TFN 

( ) ( )
1 2 1 2 1 3 3 2[ , ] [ ( ), ( )],A a a a a a a a aα α

α α α= = + − − −                                (2.7) 

where ( )
1a α  and ( )

2a α  respectively denote the lower and upper bounds of Aα. 

1) The α-cut (fuzzy) arithmetic⎯In the fuzzy arithmetic approaches, Zadeh’s sup-min 

operator can be stated as  

i i i i( )( ) sup min( ( ), ( )),x yA B z A x B y= DD                                         (2.8) 

a3 a1 a2 

( )A x�  

x 0 

1 
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where  denotes any arithmetic operation. Eq. (2.8) shows that it can be performed in the 

equivalent manner by using the α-cuts of fuzzy numbers and the interval arithmetic (e.g., see 

Mizumoto and Tanaka (1976)). The resulting fuzzy arithmetic can be called the α-cut (fuzzy) 

arithmetic. Subsequently, the development of the α-cut arithmetic has been investigated by a 

number of researchers and can be seen with reviews in Chang and Hung (2006), Chang et al. 

(2006), and Chang and Hung (2006). 

With the α-cut arithmetic, the addition/subtraction, multiplication/division, and others may 

be performed at each α on the intervals of confidence by the interval arithmetic (e.g., also see 

Kaufmann and Gupta (1988)). The following introduces the necessitated fuzzy arithmetic for 

our application. 

Addition⎯Following the interval operation let A�  and B�  be two FNs and Bα = 

( ) ( )
1 2[ , ]b bα α , α ∈ (0, 1]. ,A B∀ ∈ℜ� � , we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 1 2 2[ , ] [ , ] [ , ]A B a a b b a b a bα α α α α α α α

α α+ = + = + + , ∀α ∈ (0, 1].      (2.9) 

Subtraction⎯It can be defined as: ∀ ,A B� �  and α ∈ (0, 1], 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 2 1[ , ] [ , ] [ , ].A B a a b b a b a bα α α α α α α α

α α− = − = − −                       (2.10) 

Multiplication⎯It can be defined as: ∀ ,A B� �  and α ∈ (0, 1], 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 1 1 2 2 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 1 2 2

[ , ] [ , ] [min( , , , ),

max( , , , )].

A B a a b b a b a b a b a b

a b a b a b a b

α α α α α α α α α α α α
α α

α α α α α α α α

× = × =
         (2.11) 

Division⎯It can be defined as: ∀ ,A B� �  and α ∈ (0, 1], 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 1 1 2 2 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 1 2 2 1 1

[ , ] [ , ] [min( / , / , / , / ),

max( / , / , / , / )].  , 0, (0,1].

A B a a b b a b a b a b a b

a b a b a b a b for b b

α α α α α α α α α α α α
α α

α α α α α α α α α α α

÷ = ÷ =

> ∈
     (2.12) 

Thus, by Eqs. (2.9)-(2.12), the α-cut arithmetic if repeatedly performed in an equation, will 

accumulate the fuzziness of all fuzzy numbers involved. This property will be examined in 

the later Chapter 4 for the effect on the system dynamics as well when performed for each 



 19

time interval.  

2) The Tω (weakest t-norm fuzzy) arithmetic⎯The Zadeh’s extension principle, (2.8), if it is 

generalized by using a general norm T to replace the original ‘min’, can be written as 

i i i i( )( ) sup ( ( ), ( )),x yA B z T A x B y= DD ,                   (2.13) 

where the binary T norm on interval [0, 1] is said to be a triangular norm (or simply called 

t-norm) iff it is associative, commutative, and monotonous in [0, 1] and T(x, 1) = x for every x 

∈ [0, 1]. Moreover, each t-norm can be shown that satisfies the following equation. 

2 2 2 2 2 2 2 2( , ) ( , ) ( , ) min( , )MT a b T a b T a b a bω ≤ ≤ = ,                (2.14) 

where  

2 2

2 2 2 2

, 1,
( , ) , 1,

0, ,

a if b
T a b b if a

otherwise
ω

=⎧
⎪= =⎨
⎪
⎩

                  (2.15) 

which is the weakest t-norm. The importance of the t-norms, e.g., min(a2, b2), a2⋅b2, max(0, 

a2 + b2 − 1), Tω(a2, b2), has been shown in Ling (1965), Hong (2001a), Garmendia et al. 

(2003), and Whalen (2003) and also references therein. It is well known that the fuzzy 

addition/subtraction by TM and Tω preserves the original shape of the fuzzy numbers. In the 

multiplication/division, the TM may not preserve the shape of the original FNs. However, for 

given shapes, the Tω preserves the original FN shape in the multiplication/division (Heshmaty 

and Kandel, 1985). The Tω weakest t-norm based on its concept also results in taking only the 

largest fuzziness resultant and encountered in the operation. For these reasons, the Tω 

arithmetic is also considered in this research  

3) The Tp (Yager’s t-norm) arithmetic─ In many articles and textbooks related to the fuzzy set 

theory and its applications, the classical form of the extension principle is used with the 

minimum norm Tmin (see Zimmermann (1991)). Alternatively, some authors used the 

parameterized Yager’s t-norm Tp which has the form as following: 
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j j

i

1 1

1/

1

( ( ),..., ( ))

max 0;1 (1 ( ) ) .

n

i

p nA A

pn
p

iA
i

T x x

x

µ µ

µ
=

⎧ ⎫⎛ ⎞⎪ ⎪= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
∑

                                         (2.16) 

This form of the extension principle allows the derivation of closed forms for the extended 

arithmetic operations of addition and multiplication only for special forms of fuzzy sets. For 

that reason the convexity of fuzzy sets and the term “fuzzy interval” are introduced in 

Definition 2.2. 

  Using Yager’s t-norm Tp in the extension principle Keresztfalvi proves “fast computation 

formulas” for the extended addition and multiplication of two triangular fuzzy numbers, 

which are generalized to the usage of two trapezoid fuzzy intervals in Rommelfanger (1994). 

Fullér and Keresztfalvi(1992) compared the addition of Yager’s t-norm with t-norm, and 

Hong (1995) provided an easier method to prove the addition of t-norm. Hauke (1999) 

developed Yager’s t-norm for aggregation of fuzzy interval and used Yager’s t-norm 

operations to information model.  

2.3 System Dynamics 

System dynamics, introduced by Forrester (1961), indicates that some systems may be 

modeled by level and rate variables. Forrester stated the system dynamics as “the study of 

information feedback characteristics of the industrial activities to show how the organization 

structure, amplification (in policies), and time delay intervals influence an enterprise.” The 

study was to respond to the recognition that management sciences do not providing insight or 

understanding into the strategic problems of complex systems. Forrester espoused and settled 

instead for influence diagrams or called signed directed graphs of relationships between 

variables, but in effect that the influence diagrams could be drawn at several levels of details 

in more aggregated forms and became the causal loop diagrams. With the graphical 

simplification of the influence diagrams, formal techniques could be developed for 
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formulations (Forrester, 1968; Forrester, 1969; Forrester, 1971; Forrester, 1973; Forrester, 

1975; Alfeld and Graham, 1976; Lyneis, 1980; Coylea, 1997). Figure 2.2 shows an example 

of a causal loop diagram that depicts the deviation enhancing behavior (Reid and Koljonen, 

1999). The causal loop diagram depicts the generic manufacturing environment. In particular, 

pressure for the efficient use of resources requires that materials are released ahead of 

schedule which, in turn, increases management difficulties. Increasing management 

difficulties lead to a reduction of the time that management has available to deal with other 

issues such as effective inventory control and production planning. The latter then forces 

planning changes at a higher rate, which, in turn, increases managerial difficulties. A vicious 

circle of increasing management difficulties ensues. 
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Time available 
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Figure 2.2 A causal loop diagram depicts the generic manufacturing environment. 

 

System dynamics uses systems thinking as a conceptual tool for gaining insight into the 

structures that create the dynamic behavior often found in complex systems. System 

Dynamics is a model-and simulation-based method to study complex, dynamic systems in 

general. System dynamics proceeds on the assumption that a system can be represented as a 

collection of the following elements (Forrester, 1968): 
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(1) Things external to the system being modeled, such as sources for inputs to the system and 

sinks for outputs of the system.  

(2) Levels, which represent things being accumulated within or used up by the system.  

(3) Flows, which indicate where the items being accumulated come from and where those 

things being used up go.  

(4) Auxiliaries, which are the fundamental variables within the system.  

(5) Constants, which can be considered variables which remain constant during the course of 

a simulation.  

(6) Links, which indicated how the basic elements of a system are interconnected. 

With these basic elements, system dynamics can be used to explicate complex, dynamic 

systems such as those that exist in many instructional design and production settings. Using 

simulation techniques known as “management flight simulators,” system dynamics can 

recreate the factors, features, and constraints of complex systems. These simulators have 

direct applications for the instructional design community in two contexts:  

(1) As research tools —to study why people, facing complex, dynamic design, development, 

and production problems, act counterproductively due to their misperceptions of the structure 

underlying the manifest features of the problem. 

(2) As training simulators — to improve the way people understand and create strategies to 

cope with complex design problems. 

Essentially, the aim is to employ system dynamics to improve understanding of 

relationships between the structure and the behavior (dynamics) of problem-related systems 

comprised of many interacting instructional design variables. Given the assumption that the 

instructional design environment shares key features of complex systems, the research 

believe there are four kinds of structural problems that are particularly challenging (Sterman, 

1989; Spector, 1995).  
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First, there is the origin of the dynamic behavior itself – the relationship between levels 

and flows. The level of a system determines its state at any point in time and the rates of the 

flows, accumulated by the levels, constitute the dynamics of the system. Although simple in 

principle, people often find it difficult to distinguish between real levels and flows and to 

identify the behavioral consequences of flows acting on levels. 

Second, in real systems, not only do flow-rates effect levels, but through the causal 

relationships that constitute the structure of the system, levels feed back to influence flow 

rates. Real dynamic systems are consequently characterized by circular causality. Their 

structures contain feedback loops that transmit the dynamic behavior of one attribute to the 

next until the circle is closed and the signal, in a modified form, is fed back to its origin. Such 

loops have a tendency to counteract or reinforce each other in the stabilization or 

destabilization of the system. In the management of feedback systems, peoples’ actions are 

typically being amplified or counteracted, depending on which feedback structures are 

dominating the system at a particular time. 

Third, there are delays or lags in real systems. Delays distribute the effects of changes in 

variables throughout a system over time and often cause information to reach its destination 

in an untimely fashion. Delays and lags tend to cause people to discover and give priority to 

short-run gains and to ignore and postpone actions against future losses. Delayed reactions 

typically cause people to over and undershoot in their correcting (compensating) actions, and 

thus create systems exhibiting oscillatory behavior. 

Finally, there is non-linearity, which implies that system attributes influence each other in a 

non-proportional way, and that they interact so that their partial effects cannot easily be 

distinguished. Such interactions may cause shifts in the structural dominance of a system over 

time. That is, substructures that have dominated a system’s behavior for some time may, 

suddenly, or gradually, lose their significance, while other substructures gain influence. This 
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typically causes a dramatic modification of the system’s dynamic behavior. Notice that this 

happens endogenously, as a result of the behavior of the system itself, and that no structural 

change need take place, only a shift in relative dominance between substructures (Spector, 

1995). 

In essence, as shown in Figure 2.3, a system’s pattern of behavior primarily results from 

the interaction of three core factors (Reid and Koljonen, 1999):  

(1) The structure of the system, which is often expressed in the form of causal loop 

diagrams and/or stock-and-flow diagrams.  

(2) The frequency and duration of time delays in feedback loops.  

(3) The extent to which information flows and work are amplified through the system’s 

feedback structure. The behavior of a system can often be described through 

interrelationships resulting from this set of three core factors. 

 

 

Figure 2.3 Dynamic interactions with a system. 
 
  The system dynamics has been developed and applied to a wide range of problems such as 

the analysis of public policies (Homer and Clair, 1991), biological and medical modeling 

(Hansen and Bie, 1987), dynamic decision-making (Sterman, 1989), supply chain 
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management (Akkermans et al., 1999), amongst others. A survey of the applications (Scholl, 

1995) showed that the business policies have been the most active area in the system 

dynamics’ application. Also, Kim and Kim (1997) applied a system dynamics to a 

mixed-strategy game between the police and driver. Richmonda (1997) applied the system 

dynamics to a design and alignment of strategies and business process with stated objectives. 

Maier (1998) discussed the new product diffusion models in the innovation management with 

a system dynamics perspective. Lyneis (2000) applied a system dynamics to the market 

forecasting and structural analysis. Grizzle and Pettijohn (2002) proposes a model for 

evaluating budget reforms which combines insights from budgeting, policy implementation, 

and system dynamics literatures. Stave (2002) applied a system dynamics to improving the 

public participation in environmental decisions. Disney and Towill (2003) applied system 

dynamics to simulate vendor managed inventory (VMI) supply chain model. Lai et al. (2003) 

applied a system dynamics to the just-in-time logistics concerning the total system 

perspective with an integrated framework of JIT and Kanban model and used the system 

dynamics tool as the modeling and simulation tool. Mingers (2003) provides a 

characterization of system dynamics using M–B framework. The M–B framework provides a 

basis for relating methodology and method to problem content and problem-solving activity 

with the purpose of alerting analysts to the appropriateness of different methodologies in 

different contexts. This analysis suggests that approximately half of the ‘cells’ reflecting 

stages in the problem-solving process are moderately or well addressed by system dynamics, 

leaving others less well addressed or not addressed at all. This suggests significant areas 

where system dynamics could be complemented by another methodology. Gui et al. (2005) 

applied system dynamics to analyze the area logistics system and establishes a system 

dynamics model for the area logistics system based on the characteristics of the area logistics 

system and system dynamics. Sehlke and Jacobson (2005) applied system dynamics to 
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integrate surface water and ground water data for simulating the interactions between these 

sources within a given basin. In addition, this research also found that system dynamics 

modeling is useful for integrating complex hydrologic data with other information to produce 

a decision support system. Mabin et al. (2006) used the theory of constraints thinking 

processes to complement system dynamics’ causal loop diagrams in developing fundamental 

solutions. 

From observing previous researches, these characteristics of complex systems tend to mask 

relationships between cause and effect, and thus obscure current problems, while hiding the 

means of solving them. Successful solutions are often counterintuitive and hard to identify. In 

addition, there are often uncertainties associated with systems, and humans tend to state their 

perceptions, policy preferences, and attitudes vaguely. Hence, in system dynamics in reality, 

variables and/or parameters may belong to uncertain factors. A system dynamics for treating 

the uncertain factors is also necessitated. Fuzzy set and logic introduced by Zadeh (1965) 

represents another tool useful for treating the uncertainties in addition to the probability 

theory. Fuzzy set theory has been viewed particularly useful for dealing with complex 

systems where the interactions of variables can be too complex to be specified precisely. 

Levary (1990) has applied the fuzzy logic to a system dynamics. This research considered 

that in lack of the empirical verification of the variable relationships, some levels, delays and 

relations in the system dynamics might be treated as fuzzy variables. In his work, linguistic 

values and fuzzy if-then rules were adopted to state the conditions of the variables. Almost all 

the following researches have followed this idea in the fuzzy sets and applied the fuzzy logic 

to the system dynamics (Polat and Bozdag, 2002; Karavezyris et al., 2002). 
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Chapter 3 

THE FUZZY ARITHMETIC OPERATIONS AND FUZZINESS 

ACCUMULATION CONTROLLING METHOD 

 

This chapter contains four sections. Section 3.1 describes the weakest t-norm operations 

and shows the division of weakest t-norm. Section 3.2 describes the Yager’s t-norm 

operations and also shows the division of Yager’s t-norm. Finally, Section 3.3 presents the 

fuzziness accumulation controlling method.  

3.1 The Weakest t-norm Operations 

In the Zadeh’s extension principle (Zadeh, 1965), if generalized by using a general norm T 

that replaces the original ‘min’, four basic arithmetic operations of t–norm can be written as  

(1) Addition :  

( )( ) sup ( ( ), ( )).
x y z

A B z T A x B y
+ =

+ =� �� �                                              (3.1) 

(2) Subtraction:  

( )( ) sup ( ( ), ( )).
x y z

A B z T A x B y
− =

− =� �� �                                              (3.2) 

(3) Multiplication:  

( )( ) sup ( ( ), ( )).
x y z

A B z T A x B y
× =

× =� �� �                                              (3.3) 

(4) Division :  

( )( ) sup ( ( ), ( )).
x y z

A B z T A x B y
=

=� �� �                                               (3.4) 

where the binary T norm on the interval [0, 1] is said to be a triangular norm (or called 

t-norm) iff it is associative, commutative, and monotonous in [0, 1] and T(x, 1) = x for every x 

∈ [0, 1]. Moreover, each t-norm may be shown that satisfies the following inequalities. 
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2 2 2 2 2 2 2 2( , ) ( , ) ( , ) min( , )MT a b T a b T a b a bω ≤ ≤ = ,                                 (3.5) 

where  

2 2

2 2 2 2

, 1,
( , ) , 1,

0, ,

a if b
T a b b if a

otherwise
ω

=⎧
⎪= =⎨
⎪
⎩

                                               (3.6) 

Tω is the weakest t-norm. The importance of t-norms, e.g., min(a2, b2), a2⋅b2, max(0, a2 + b2 

− 1), Tω(a2, b2), has been shown in (Ling 1965, Hong 2001(a), Garmendia et al. 2003, and 

Whalen 2003), and also the references therein. It is well known that the addition/subtraction 

of fuzzy numbers by TM and Tω preserves the original shape of the fuzzy numbers. With the 

TM in the multiplication/division the shapes of the original FNs may not be preserved. 

However, for given shapes, in the multiplication the Tω preserves the original FNs’ shape 

(Hong, 2001b). Based on the concept the Tω weakest t-norm results in taking only the largest 

fuzziness encountered among the fuzzy numbers.  

 

Theorem 3.1. (Kolesárová 1995, Mesiar 1997) 

(a) Let T be an arbitrary t-norm weaker than or equal to the Lukasiewicz t-norm TL, T(x, y) ≤ 

TL(x,y)=max(0, x+y−1), x,y ∈[0, 1]. Then the addition ⊕ based on T coincides on linear fuzzy 

intervals with the addition Tω
⊕  based on the weakest t-norm TW, i.e.  

1 2 3 1 2 3 2 2 2 1 2 1 2 2

2 2 3 2 3 2

( ,  ,  ) ( ,  ,  ) = ( max( ,  ),  ,  
max  ( ,  )).

Ta a a b b b a b a a b b a b
a b a a b b

⊕ + − − − +
+ + − −

                (3.7) 

(b) Let T be a continuous Archimedean t-norm with strictly convex additive generator f. Then 

the addition ⊕ based on T preserves the linearity of fuzzy intervals if and only if the t-norm T 

is a member of Yager’s family of nilpotent t-norm (Yager, 1980) ith parameter p∈(1, ∞), 

T= Y
pT and f(x)=(1-x)p. Then 

1 2 3 T 1 2 3 1 2 2 1
q 1/q 1/

2 1 1 2 1 2 3 2 3 2

 ( , ,  ) ( , , )=( (( ) +

( ) )  , ,  (( )  ( ) ) )

q

q q q

a a a b b b a a a a

b b a a a a a a b b

⊕ + − −

− + + + − + −
                          (3.8) 

where (1/p+1/q)=1, i.e. q=p/(p-1).  

It is also natural to preserving the shape of fuzzy numbers during subtraction, 

multiplication. 
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According to (Kolesárová 1995, Mesiar 1997, Hong and Do 1997), the addition, 

subtraction and multiplication can be defined as follow:  

Let T = Tω be the weakest t-norm, and let A�  = (a1, a2, a3), B�  = (b1, b2, b3) be two fuzzy 

numbers.  

(1) Addition of Tω: (see Kolesárová 1995, Mesiar 1997) 

i i
1 2 3 1 2 3 2 2 2

1 2 1 2 2 2 2 3 2 3 2

 ( ,  ,  ) ( ,  ,  ) ( max(
,  ),  ,  max( ,  )).

A B a a a b b b a b a
a b b a b a b a a b b
+ = + = + −

− − + + + − −
                            (3.9) 

(2) Subtraction of Tω: (see Kolesárová 1995, Mesiar 1997) 

i i
1 2 3 1 2 3

2 2 2 1 3 2 2 2 2 2 2 1 3 2

( ,  ,  ) ( ,  ,  )
( max( ,  ),  ,  max( ,  )).  

A B a a a b b b
a b a a b b a b a b b b a a
− = −

= − − − − − − + − −
           (3.10) 

(3) Multiplication of Tω: (see Hong and Do 1997) 

Case I: For a2 > 0, b2 > 0,  

i i
2 2 2 1 2 3 2 2 2 2

2 2 3 2 2 3 2 2

=( max(( ) ,  ( ) )),  ,  
max(( ) ,  ( ) ))).     

A B a b a a b a a a a b
a b a a b b b a
× − − −
+ − −

                             (3.11) 

Case II: For a2 < 0, b2 < 0,  

i i
2 2 3 2 2 3 2 2

2 2 2 2 2 1 2 2 1 2

( max(( ) ,  ( ) ),  
,  max(( ) ,  ( ) ))).  

A B a b a a b b b a
a b a b a a b b b a
× = − − −

+ − −
                                 (3.12) 

Case III: For a2 = 0, b2 > 0,  

i i
2 1 2 3 2 2( ( - ) ,  0,  ( ) ). A B a a b a a b× = − −                                         (3.13) 

Case IV: For a2 = 0, b2 < 0,  

i i
3 2 2 2 1 2(( ) ,  0, ( ) ).A B a a b a a b× = − − −                                          (3.14) 

Case V: For a2 = 0, b2 = 0,  

i iA B× =  (0, 0, 0).                                                       (3.15) 

Case VI: For a2 < 0, b2 > 0 and L = R,  
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i i
2 2 2 1 2 3 2 2 2 2

2 2 3 2 2 2 1 2

( max(( ) , ( ) ),  ,  
max(( ) ,  ( ) )). 

A B a b a a b b b a a b
a b a a b b b a
× = − − − −

+ − − −
                            (3.16) 

(4) Division of Tω:  

Recent year the operations of weakest t-norm have been developed and applied to many 

fields in addition, subtraction, and multiplication. Therefore, the research extends the division 

of Tω-based as follows:  

Case I: Let a2 > 0, b2 > 0 and b1 > 0, then for 2 2/z a b≤ , 2 2/z b a≤ , and 2 21z a b≤ , 

i i i i

{ }
/

2 2

2 2 2 2

2 1 2 3

2 2 2 2

2 1 2 2 2 3

2 2 2 1 2

( / )( ) sup ( ( ), ( ))

max ( ), ( / )

1/ /max ,
1/ 1/

/ /max ,
( ) / (1/ 1/ )

( / ) / max(( ) /

x y z
A B z T A x B y

A z b B a z

a z b b z aL R
a a b b

a b z a b zL R
a a b a b b

L a b z a a b

ω
=

=

= ×

⎧ ⎫⎛ ⎞⎛ ⎞− × −⎪ ⎪= ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= − −{ }2 2 3, (1/ 1/ ))a b b−

 

for 2 2 2 1 2 2 2 3/ max(( ) / , (1/ 1/ ))z a b a a b a b b≥ − − − ; it is 0 otherwise. Similarly, for 2 2/z a b> , 

z/b2 > a2 and 2 21z a b> , we can get the result as follows: 

i i i i

{ }
/

2 2

2 2 2 2

3 2 1 2

2 2 2 2

3 2 2 2 1 2

2 2 3 2 2

( / )( ) sup ( ( ), ( ))

max ( ), ( / )

/ 1/max ,
1/ 1/

/ /max ,
( ) / (1/ 1/ )

( / ) / max(( ) /

x y z
A B z T A x B y

A z b B a z

z b a z a bR L
a a b b

z a b z a bR L
a a b a b b

R z a b a a b

ω
=

=

= ×

⎧ ⎫⎛ ⎞ ⎛ ⎞× − −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

= − −{ }2 1 2, (1/ 1/ ))a b b−

 

for 2 2 3 2 2 2 1 2/ max(( ) / , (1/ 1/ ))z a b a a b a b b< + − − ; it is 0 otherwise. 

Therefore, we can obtained that  

i i
2 2 2 1 2 2 2 3

2 2 2 2 3 2 2 2 1 2

( / max(( ) / , (1/ 1/ )),
/ , / max(( ) / , (1/ 1/ ))).

A B a b a a b a b b
a b a b a a b a b b

= − − −
+ − −

                              (3.17) 

In a similar manner, the other cases can be derived. 

Case II: For a2 < 0, b2 < 0 and b3 < 0, 
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2 2 2 3 2 2 2 1

2 2 2 2 1 2 2 2 3 2

/ ( / max(( ) / , (1/ 1/ )),
/ ,  / max(( ) / , (1/ 1/ )))

A B a b a a b a b b
a b a b a a b a b b

= − − −

+ − −

� �
                           (3.18) 

Case III: For a2 = 0, b2 > 0 and b1 > 0, 

2 1 2 3 2 2/ ( ( ) / ,0, ( ) / )A B a a b a a b= − − −� �                                        (3.19) 

Case IV: For a2 = 0, b2 < 0 and b3 < 0, 

2 3 2 1 2 2/ ( ( ) / ,0, ( ) / )A B a a b a a b= − − −� �                                  (3.20) 

Case V: For a2 > 0, b2 < 0 and b3 < 0, 

2 2 2 3 2 2 2 3

2 2 2 2 1 2 2 2 1 2

/ ( / max(( ) / , (1/ 1/ )),
/ , / max(( ) / , (1/ 1/ )))

A B a b a a b a b b
a b a b a a b a b b

= − − −

+ − −

� �
                             (3.21) 

Case VI: For a2 < 0, b2 > 0 and b1 > 0, 

2 2 2 1 2 2 2 1

2 2 2 2 3 2 2 2 3 2

/ ( / max(( ) / , (1/ 1/ ))
, / , / max(( ) / , (1/ 1/ ))).
A B a b a a b a b b
a b a b a a b a b b

= − − −
+ − −

� �
                          (3.22) 

3.2 The Yager’s t-norm Operations 

The parameterized Yager’s t-norms Tp which has the form 

j j j
1

1/

1
1

( ( ), , ( )) max 0;  1 (1 ( )) .µ µ µ
=

⎧ ⎫⎛ ⎞⎪ ⎪= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
∑…

n i

pn
p

p n iA A A
i

T x x x  

 This form of the extension principle allows the derivation of closed forms for the 

extended arithmetic operations of addition, subtraction, multiplication only for special forms 

of fuzzy sets.  

 Using Yager’s t-norms in the extension principle Keresztfalvi proves “fast computation 

formulas” for the extended addition and multiplication of two triangular (Keresztfalvi, 1993). 

    We can get the exact formula as following: 

(1) Addition of Yager’s t-norms:  

1 2 3 1 2 3 2 2 2
1/ 1/

1 2 1 2 2 2 2 3 2 3 2

 ( ,  ,  ) ( ,  ,  ) ( ((

) ( ) ) ,  ,  (( ) ( ) ) ).q q q q q q

A B a a a b b b a b a

a b b a b a b a a b b

+ = + = + −

− + − + + + − + −
               (3.23) 

where 1/p+1/q=1 for the extended addition. The extreme cases for the parameter p in Yager’s 

t-norms yield the same result as the classical min-operator and the so-called bounded 
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difference (Rommelfanger, 1994). The bounded difference considers the minimum bounded. 

Hence, this research uses the weakest t-norm to regard as the bounded difference and 

approaches the min-operator by the bounded difference.  

 q=1 resp. p→∞ (min-operator) 

i i
1 2 3 1 2 3 2 2 2

1 2 1 2 2 2 2 3 2 3 2

 ( ,  ,  ) ( ,  ,  ) ( ((
) ( )),  ,  (( ) ( ))).

A B a a a b b b a b a
a b b a b a b a a b b
+ = + = + −

− + − + + + − + −
                       (3.24) 

 p=1 resp. q→∞ (bounded difference) 

i i
1 2 3 1 2 3 2 2 2

1 2 1 2 2 2 2 3 2 3 2

 ( ,  ,  ) ( ,  ,  ) ( max(
,  ),  ,  max( ,  )).

A B a a a b b b a b a
a b b a b a b a a b b
+ = + = + −

− − + + + − −
                           (3.25) 

(2) Subtraction of Yager’s t-norms:  

i i
1 2 3 1 2 3

1/ 1/
2 2 2 1 3 2 2 2 2 2 2 1 3 2

( ,  ,  ) ( ,  ,  )

( (( ) ( ) ) ,  ,  (( ) ( ) ) ).  q q q q q q

A B a a a b b b

a b a a b b a b a b b b a a

− = −

= − − − + − − − + − + −
    (3.26) 

where 1/p+1/q=1 for the extended subtraction. As addition manner, the extreme cases of 

subtraction can be derived. 

 q=1 resp. p→∞ (min-operator) 

i i
1 2 3 1 2 3

2 2 2 1 3 2 2 2 2 2 2 1 3 2

( ,  ,  ) ( ,  ,  )
( (( ) ( )),  ,  (( ) ( ))).  

A B a a a b b b
a b a a b b a b a b b b a a
− = −

= − − − + − − − + − + −
           (3.27) 

 p=1 resp. q→∞ (bounded difference) 

i i
1 2 3 1 2 3

2 2 2 1 3 2 2 2 2 2 2 1 3 2

( ,  ,  ) ( ,  ,  )
( max( ,  ),  ,  max( ,  )).  

A B a a a b b b
a b a a b b a b a b b b a a
− = −

= − − − − − − + − −
           (3.28) 

(3) Multiplication of Yager’s t-norms: 

  Tradition multiplication of Yager’s t-norms holds for small bounded differences compared 

mode values (Dubois and Prade, 1980). However, different case can not express exactly in 

tradition multiplication of Yager’s t-norms, and the weakest t-norm is the minimum bounded 

which has been proven by (Ling 1965; Hong 2001; Garmendia 2003). This research uses the 

weakest t-norm to consider the bounded difference in extreme cases. From the bounded, 
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difference the research can exactly derive min-operator of multiplication with different cases 

as follows. 

Case I: For a2 > 0, b2 > 0, 

i i 1/
2 2 2 1 2 3 2 2 2 2

1/
2 2 3 2 2 3 2 2

=( ((( ) ) (( ) ) )) ,  ,  

((( ) ) +(( ) )) ) ).     

q q q

q q q

A B a b a a b a a a a b

a b a a b b b a

× − − + −

+ − −
                         (3.29) 

where 1/p+1/q=1 for the multiplication. As previous manner, the extreme cases of 

multiplication can be derived in this case I. 

 q=1 resp. p→∞ (min-operator) 

i i
2 2 2 1 2 3 2 2 2 2 2 2 3 2 2 3 2 2=( (( ) ( ) ),  ,  (( ) +( ) )).A B a b a a b a a a a b a b a a b b b a× − − + − + − −        (3.30) 

 p=1 resp. q→∞ (bounded difference) 

i i
2 2 2 1 2 3 2 2 2 2 2 2

3 2 2 3 2 2

=( max(( ) ,  ( ) )),  ,  
max(( ) ,  ( ) ))). 

A B a b a a b a a a a b a b
a a b b b a

× − − −

+ − −
                          (3.31) 

Case II: For a2 < 0, b2 < 0,  

i i 1/
2 2 3 2 2 3 2 2

1/
2 2 2 2 2 1 2 2 1 2

( ((( ) ) (( ) ) ) ,  

,  ((( ) ) (( ) )) ) ).

q q q

q q q

A B a b a a b b b a

a b a b a a b b b a

× = − − + −

+ − + −
                              (3.32) 

where 1/p+1/q=1 for the multiplication. As previous manner, the extreme cases of 

multiplication can be derived in this case II. 

 q=1 resp. p→∞ (min-operator) 

i i
2 2 3 2 2 3 2 2 2 2 2 2 2 1 2 2 1 2( (( ) ( ) ),  ,  (( ) ( ) )).A B a b a a b b b a a b a b a a b b b a× = − − + − + − + −        (3.33) 

 p=1 resp. q→∞ (bounded difference) 

i i
2 2 3 2 2 3 2 2 2 2

2 2 2 1 2 2 1 2

( max(( ) ,  ( ) ),  ,  
max(( ) ,  ( ) ))).  

A B a b a a b b b a a b
a b a a b b b a
× = − − −
+ − −

                             (3.34) 

Case III: For a2 = 0, b2 > 0, due to a2 = 0, the multiplication of Yager’s t-norms is always the 

same with different cases and extreme cases as follows. 

i i
2 1 2 3 2 2( ( ) ,  0,  ( ) ). A B a a b a a b× = − − −                                        (3.35) 



 34

Case IV: For a2 = 0, b2 < 0, due to a2 = 0, the multiplication of Yager’s t-norms is always the 

same with different cases and extreme cases as follows. 

i i
3 2 2 2 1 2(( ) ,  0, ( ) ).A B a a b a a b× = − − −                                          (3.36) 

Case V: For a2 = 0, b2 = 0, due to a2 = 0 and b2 = 0, the multiplication of Yager’s t-norms is 

always the same with different cases and extreme cases as follows. 

i iA B× = (0, 0, 0).                                                        (3.37) 

Case VI: For a2 < 0, b2 > 0 and L = R,  

i i 1/
2 2 2 1 2 3 2 2 2 2

1/
2 2 3 2 2 2 1 2

( ((( ) ) ( ( ) ) ) ,  ,  

((( ) ) +( ( ) ) ) ). 

q q q

q q q

A B a b a a b b b a a b

a b a a b b b a

× = − − + − −

+ − − −
                        (3.38) 

where 1/p+1/q=1 for the multiplication. As previous manner, the extreme cases of 

multiplication can be derived in this case VI. 

 q=1 resp. p→∞ (min-operator) 

i i
2 2 2 1 2 3 2 2 2 2 2 2 3 2 2 2 1 2( (( ) ( ) ),  ,  (( ) ( ) )). A B a b a a b b b a a b a b a a b b b a× = − − − − + − − −      (3.39) 

 p=1 resp. q→∞ (bounded difference) 

i i
2 2 2 1 2 3 2 2 2 2

2 2 3 2 2 2 1 2

( max(( ) , ( ) ),  ,
 max(( ) ,  ( ) )).
A B a b a a b b b a a b
a b a a b b b a
× = − − − −

+ − − −
                             (3.40) 

(4) Division of Yager’s t-norms: 

The division of Yager’s t-norms is similar as multiplication and can be showed as follows:  

Case I: Let a2 > 0, b2 > 0 and b1 > 0,  

Theorem 3.2. If the division is extended by Yager’s t-norm TP (p≥1) then the division of two 

positive triangular fuzzy numbers (a1, a2, a3)/(b1, b2, b3) can be calculated by the following 

approximation formula: 

i i 1/
2 2 2 1 2 2 2 3 2 2

1/
2 2 3 2 2 2 1 2

( / ((( ) / ) ( (1/ 1/ )) ) ,  / ,  

/ ((( ) / ) ( (1/ 1/ )) ) ).

q q q

q q q

A B a b a a b a b b a b

a b a a b a b b

− − + −

+ − + −

�
                   (3.41) 

with 1/p+1/q=1, provided that the spreads of A and B are small compared with their mean 
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values, i.e. ((a2−a1), (a3−a2)«a2 and ((b2−b1), (b3−b2)«b2. 

Proof: A general form of Nguyen’s formula on  

2 1 2 2 2 3

3 2 2 2 1 2
2 2

(1 ,1 ) 1 2 1 2 3

3 2 1 2

([ (( ) / )(1 ) (1/ 1/ )(1 ),
(( ) / (1 ) (1/ 1/ )(1 )]

[ / ] /
[( )(1 )(1/ 1/ )(1 ),
( )(1 )(1/ 1/ )(1 ))])

p

a a b a b b
a a b a b b

A B a b
a a b b

a a b b

λ
ξ η λ

ξ η
ξ η

ξ η
ξ η

− − ≤ −

− − − − − −
− − + − − +

= +
− − − −
− − − −

∪          (3.42) 

  Based on assumption ((a2−a1), (a3−a2)«a2 and ((b2−b1), (b3−b2)«b2, we can neglect 

the last serial of Eq. (3.42). Hence, we can get the following equation: 

2 1 2 2 2 3
2 2

(1 ,1 ) 1 3 2 2 2 1 2

2 2 2 1 2 2 2 3

3 2 2 2 1 2

[ (( ) / )(1 ) (1/ 1/ )(1 ),
[ / ] /

(( ) / (1 ) (1/ 1/ )(1 )]

/ (1 ) [ (( ) / , (1/ 1/ )) ,

(( ) / , (1/ 1/ )) ]

p

q

q

a a b a b b
A B a b

a a b a b b

a b a a b a b b

a a b a b b

λ
ξ η λ

ξ η
ξ η

λ

− − ≤ −

− − − − − −
+

− − + − −

= + − ⋅ − − −

− −

� ∪
          (3.43) 

  This is a λ-level set of TFNs. That is 

i i
2 2 2 1 2 2 2 3 2 2

2 2 3 2 2 2 1 2

1/
2 2 2 1 2 2 2 3 2 2

1/
2 2 3 2 2 2 1 2

( / (( ) / ), (1/ 1/ ) ,  / ,  

/ (( ) / ), (1/ 1/ )

( / ((( ) / ) ( (1/ 1/ )) ) ,  / ,  

/ ((( ) / ) ( (1/ 1/ )) ) )

q

q q q

q q q

A B a b a a b a b b a b

a b a a b a b b

a b a a b a b b a b

a b a a b a b b

− − −

+ − −

− − + −

+ − + −

�

�
                       (3.44) 

  Hence the general formula can be proved, and extreme cases can be shown as following: 

 q=1 resp. p→∞ (min-operator) 

i i
2 2 2 1 2 2 2 3 2 2

2 2 3 2 2 2 1 2

( / (( ) / (1/ 1/ )),  / ,  
/ (( ) / (1/ 1/ ))).

A B a b a a b a b b a b
a b a a b a b b

= − − + −

+ − + −
                         (3.45) 

 p=1 resp. q→∞ (bounded difference) 

i i
2 2 2 1 2 2 2 3 2 2

2 2 3 2 2 2 1 2

( / max(( ) / , (1/ 1/ )),  / ,  
/ max(( ) / , (1/ 1/ ))).

A B a b a a b a b b a b
a b a a b a b b

= − − −

+ − −
                       (3.46) 

In a similar manner, the other cases can be derived. 

Case II: For a2 < 0, b2 < 0 and b3 < 0, 
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1/
2 2 2 3 2 2 2 1

1/
2 2 2 2 1 2 2 2 3 2

/ ( / ((( ) / ) ( (1/ 1/ )) ) ,

/ ,  / ((( ) / ) ( (1/ 1/ )) ) ).

q q q

q q q

A B a b a a b a b b

a b a b a a b a b b

= − − + −

+ − + −

� �
                       (3.47) 

 q=1 resp. p→∞ (min-operator) 

2 2 2 3 2 2 2 1

2 2 2 2 1 2 2 2 3 2

/ ( / (( ) / (1/ 1/ )),
/ ,  / (( ) / (1/ 1/ ))).

A B a b a a b a b b
a b a b a a b a b b

= − − + −

+ − + −

� �
                                (3.48) 

 p=1 resp. q→∞ (bounded difference) 

2 2 2 3 2 2 2 1

2 2 2 2 1 2 2 2 3 2

/ ( / max(( ) / , (1/ 1/ )),
/ ,  / max(( ) / , (1/ 1/ )))

A B a b a a b a b b
a b a b a a b a b b

= − − −

+ − −

� �
                           (3.49) 

Case III: For a2 = 0, b2 > 0 and b1 > 0, due to a2 = 0, the division of Yager’s t-norms is always 

the same with different cases and extreme cases as follows. 

2 1 2 3 2 2/ ( ( ) / ,0, ( ) / )A B a a b a a b= − − −� �                                         (3.50) 

Case IV: For a2 = 0, b2 < 0 and b3 < 0, due to a2 = 0, the division of Yager’s t-norms is always 

the same with different cases and extreme cases as follows. 

2 3 2 1 2 2/ ( ( ) / ,0, ( ) / )A B a a b a a b= − − −� �                                  (3.51) 

Case V: For a2 > 0, b2 < 0 and b3 < 0, 

1/
2 2 2 3 2 2 2 3

1/
2 2 2 2 1 2 2 2 1 2

/ ( / ((( ) / ) ( (1/ 1/ )) ) ,

/ , / ((( ) / ) ( (1/ 1/ )) ) ).

q q q

q q q

A B a b a a b a b b

a b a b a a b a b b

= − − + −

+ − + −

� �
                         (3.52) 

 q=1 resp. p→∞ (min-operator) 

2 2 2 3 2 2 2 3

2 2 2 2 1 2 2 2 1 2

/ ( / (( ) / (1/ 1/ )),
/ , / (( ) / (1/ 1/ ))).

A B a b a a b a b b
a b a b a a b a b b

= − − + −

+ − + −

� �
                               (3.53) 

 p=1 resp. q→∞ (bounded difference) 

2 2 2 3 2 2 2 3

2 2 2 2 1 2 2 2 1 2

/ ( / max(( ) / , (1/ 1/ )),
/ , / max(( ) / , (1/ 1/ )))

A B a b a a b a b b
a b a b a a b a b b

= − − −

+ − −

� �
                           (3.54) 

Case VI: For a2 < 0, b2 > 0 and b1 > 0, 
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1/
2 2 2 1 2 2 2 1

1/
2 2 2 2 3 2 2 2 3 2

/ ( / ((( ) / ) ( (1/ 1/ )) )

, / , / ((( ) / ) ( (1/ 1/ )) ) ).

q q q

q q q

A B a b a a b a b b

a b a b a a b a b b

= − − + −

+ − + −

� �
                       (3.55) 

 q=1 resp. p→∞ (min-operator) 

2 2 2 1 2 2 2 1

2 2 2 2 3 2 2 2 3 2

/ ( / (( ) / (1/ 1/ ))
, / , / (( ) / (1/ 1/ ))).
A B a b a a b a b b
a b a b a a b a b b

= − − + −
+ − + −

� �
                               (3.56) 

 p=1 resp. q→∞ (bounded difference) 

2 2 2 1 2 2 2 1

2 2 2 2 3 2 2 2 3 2

/ ( / max(( ) / , (1/ 1/ ))
, / , / max(( ) / , (1/ 1/ ))).
A B a b a a b a b b
a b a b a a b a b b

= − − −
+ − −

� �
                           (3.57) 

For example, let A = (2, 4, 7), B = (5, 8, 13) be two triangular fuzzy numbers. Table 3.1 can 

obtain the results of α-cut, Tω, and Tp operations, and the illustration also shows in Figure 3.1. 

In Figure 3.1 we can observe that the Tω or Tp with p=1 obtains smaller fuzzy spread in the 

addition, subtraction, multiplication and division. The α-cut arithmetic has larger fuzzy 

spread than others except the addition and subtraction which is equal to Tp with q=1.  

Table 3.1 The results of α-cut, Tω, and Tp operations. 
 α-cut arithmetic Tp with q=1 Tω or Tp with p=1 
Addition (7, 12, 20) (7, 12, 20) (9, 12, 17) 
Subtraction (-11, -4, 2) (-11, -4, 2) (-9, -4, -1) 
Multiplication (10, 32, 91) (4, 32, 76) (16, 32, 56) 
Division (0.154, 0.5, 1.4) (0.058, 0.5, 1.175) (0.25 0.5 0.875) 
 

 

A B−  A B+

Tω (Tp with p=1) α-cut arithmetic Tp with q=1 Possible region of Tp
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Figure 3.1 Fuzzy numbers operation. 

3.3 The Fuzziness Accumulation Controlling Method  

From principle of system dynamics we can observe that system dynamics mainly 

accumulates value with dynamic time by level variables. The level of a system determines its 

state at any point in time and the rates of the flows, accumulated by the levels, constitute the 

dynamics of the system. The accumulated phenomenon may become uncontrollable with 

dynamic time in fuzzy spread. However, previous research has not mentioned any related 

solution of problem. Hence, this research uses an interval-end defuzzification method to 

control fuzziness accumulation. The fuzziness except fuzzy inputs and fuzzy parameters of 

the system at the end of each interval can be defuzzified to obtain the representative value 

similar to the expected values or interval-end defuzzification is performed. The representative 

values of the variables may be supplied to the next interval with fuzzy inputs and parameters 

again (see Figure 3.2).  

A defuzzification of fuzzy numbers can be defined as a mapping from a fuzzy number to a 

best representative crisp value. It is similar to the concept of mean values of random variables. 

The following three criteria should be considered in choosing a defuzzification scheme 

(Kaufman and Gupta, 1991): 

(1) Plausibility—the crisp point should represent fuzzy number from an intuitive point of 

view; for example, it may lie approximately in the middle of the support of fuzzy number 

/A B  A B×
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or has a high degree of membership in a fuzzy number.  

(2) Computational simplicity—this criterion is particularly important for fuzzy operator in 

real time. 

(3)Continuity—a small change in a fuzzy number should not result in a large change in 

crisp point. 

 The defuzzification may be utilized with such techniques as, e.g., the center of area 

(COA) or COA(x) or others (e.g., those and the ranking indices, e.g., see Leekwijck and Kerre 

(1999)). The COA can be defined as 

( )
( )

( )

A x xdx
COA x

A x dx
ℜ

ℜ

= ∫
∫

�

� .                  (3.58) 

The center of area defuzzifier is the most commonly used defuzzifier in fuzzy systems. It 

is computationally simple and intuitively plausible. Hence, this research adopts center of area 

defuzzifier to control fuzziness accumulation. 

 

COA(x)

( )
( )

( )

A x xdx
COA x

A x dx
ℜ

ℜ

= ∫
∫
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�
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= ∫
∫

�

�

A� A�
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Time interval at interval end
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 Figure 3.2 An illustrative example of the interval-end defuzzification method. 

 

 Moreover, the interval-end defuzzification method must assume the fuzziness in intervals 

independent of each other or interval independence of fuzziness (IIF). The purpose of this IIF 
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is obvious that it avoids the fuzziness continually to accumulate in the model and that by time 

may become very uncontrollable. The rationale of this measure is obviously that because the 

operations of a system can be done and checked period by period, at the end of each interval, 

crisp values may be obtained. The fuzziness of a system in interactions of variables may be 

influenced by fuzzy inputs and/or fuzzy parameters in the interval instead of that being 

carried over by time and causing uncontrollable accumulations. At each interval, the results 

can still be examined with the fuzziness to consider the fuzziness involved in the interval of a 

system. 
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Chapter 4 

SYSTEM DYNAMICS WITH FUZZY ARITHMETIC 

 

This chapter discusses system dynamics with fuzzy arithmetic and shows an example. 

Section 4.1 depicts the idea of system dynamics with fuzzy arithmetic. Section 4.2 examines a 

simple example “epidemics mode”.  

4.1 The Concept of System Dynamics with Fuzzy Arithmetic 

In system dynamics, the level and rate equations can be representing the node activities or 

events in a system represented in the causal loop diagram. The dynamics of the system is 

characterized by the level equations reflecting the change and interactions of the variables 

over time intervals and also affected by other variables/parameters of the system. Figure 4.1 

depicts the fundamental relationship between a level and a rate equation. When the linear 

independent type relationship between the input and output rates of an interval is assumed, a 

typical level equation can be defined by 

t = 0 t = 1 t = 2 t = 3 t = 4
Time interval

Output rate 2
Level 3Input rate 3

Input rate 1

Input rate 2

Input rate 4

Output rate 3
Output rate 4Output rate 1

Level 4

Level 2

Level 0

Level 1

t = 0 t = 1 t = 2 t = 3 t = 4
Time interval

Output rate 2
Level 3Input rate 3

Input rate 1

Input rate 2

Input rate 4

Output rate 3
Output rate 4Output rate 1

Level 4

Level 2

Level 0

Level 1

 
Figure 4.1 The fundamental relationship between level and rate variables. 
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where Lt+1(x) denotes the level of variable x at time t+1, Lt(x) at time t, 1( )tRI x+ ′  and 
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1( )tRO x+ ′  are constant linear independent input and output rates of x′ , respectively, to and 

from x from time t to t+1, DT is the time interval, and ( , )R x t′  is the general rate function 

and can be given by 

( )( , ) ( ), ( )tR x t f L x C x′ = ,                  (4.2) 

which denotes the rate equation of x′  and combines the level of the variable x at time t and a 

system constant C(x). From (4.1) and (4.2) a level at time t is influenced by itself at the 

previous interval and rate variable(s) at the same interval. It can be complex since the relation 

may exist with more level and/or rate variables interacting frequently and affected by other 

parameters or variables even in the linear independent type system. 

Thus, with the interactive level and rate variables of a system, the overall effects of inputs 

resulting in the system behavior or interaction of variables in a long run are the important 

characteristic of system dynamics. With the fuzzy variable and fuzzy arithmetic, a fuzzy 

system dynamics shown in as Figure 4.1 shows the fundamental illustration. The application 

of the fuzzy arithmetic may result in a system dynamics even more complex in the linear 

independent type of relationships, since the interaction of the variables inhere and fuzzy 

arithmetic has to be performed in the interactive variables. Yet, the fuzzy system dynamics 

can provide more information regarding the system behavior’s uncertainties of a system 

because of the following reason. The overall effects on the model behavior can be that due to 

the variable interactions, all variables or behaviors of the system can be rendered fuzzy and 

affected by the fuzzy inputs and/or parameters of the system. These results may be provided 

to the decision-makers for realizing the system’s fuzziness (uncertainty or risk). This 

approach is very different from that has been adopted the fuzzy logic. In the fuzzy system 

dynamics, the variables and/or parameters as in Eqs. (4.1) and (4.2) may be characterized by 

the fuzzy variables and/or parameters as k1( )tL x+ , i( )tL x , j( )tRI x′ , k( )tRO x′ , i( , )R x t′ , i( )C x  

and the corresponding fuzzy arithmetic could apply. 
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Figure 4.2 An illustrative example of the fuzzy rate and level relationship. 

 

In the following sections, the epidemics people will be examined in detail for this purpose. 

The fuzzy system dynamics can be examined in the fuzzy-arithmetic system operational 

equations. 

Moreover, for the definition of nonnegativity of a fuzzy value (number), the following 

definition Noneg( A� ) may be utilized. 

i i( ) { | 0 ( ) 0}Noneg A x A x and A x= ∈ ∀ ≥ >� .                  (4.3) 

4.2 An Example: Epidemics Model  

This research examines epidemics people model of system dynamics with fuzzy arithmetic. 

Epidemics people model is a typical second older model with S-shaped growth (The 

epidemics model is explained in more detail in (Duhon and Glick, 1994). The S-shaped 

growth has representative of the significance of the system dynamic in real world. The initial 

system state grows quickly. When system arrives one turning point, the system state will grow 

slowly. Finally, the system state arrives objective (steady state). Many cases can be described 

by the system state of S-shaped growth (for instance, gossip spreads, life cycle… etc.).  

  In Figure 4.3 an overview of the model structure is depicted. The source of sick people is 
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catching illness from healthy people, and recovery people leave group of sick people to group 

of healthy people. The relation circulates between healthy and sick people continuously. 

However, the epidemics people model has some uncertain factors and vague information. 

Generally, the number of the epidemic people is not known clearly because some sick people 

may hide or leave while the epidemics were spread. Therefore, this research uses fuzzy 

numbers to substitute for crisp values of healthy and sick peoples, and the others variables use 

crisp values. We use the Tω-based addition, subtract, multiplication and division for fuzzy 

numbers to epidemics people model.  Due to this model, the following notations can be used. 

Variables  
L_HP: Healthy people (Men/Month), level variable 
RRP: Recovery People (Men/Month), rate variable 
RCI: Catching illness people (Men/Month), rate variable 
L_SP: Sick people (Men/Month), level variable 
Auxiliary variables 
PS: Probability of contact with sick people  
Parameters  
DT: Time interval or system delay 
t: t-th time interval, signifying its end or for the 

entire interval 
PI: Chance of population interactions (10 is used) 
DI: Duration of illness,(month) (0.5 is used) 
PCI: Probability of Catching Illness (0.5 is used) 

 

DI

RRP
PCI

L_HP L_SP
RCI

PI PS

DI

RRP
PCI

L_HP L_SP
RCI

PI PS

 
Figure 4.3 An overview of the epidemics people model. 

 

The following steps depict the operational equations of the model. 
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Step 1. Define the initial inputs k 0_ tL HP =  and k 0_ tL SP = . A fuzzy variable will be also written 

as, e.g., k 0tRRP = =( 1, 0trrp = , 2, 0trrp = , 3, 0trrp = ). 

Step 2.Define j tPS , k tRCI and k tRRP  according to the basic operation, 

j k
k k

1

1 1

_
_ _

t
t

t t

L HPPS
L SP L HP

−

− −

=
+

                                                 (4.4) 

k k j j k
1_t ttRCI L HP PS PI PCI−= × × ×                                            (4.5) 

k k
j

1_ t
t

L SPRRP
DI

−=                                                          (4.6) 

Step 3. Define k_ tL SP  and its operational equation according to the basic operations as 

k k k k
1

1

_ _ ( )
t

ttt t
t

L SP L SP RCI RRP dt−
−

= + −∫                                         (4.7) 

Step 4. Define k_ tL HP  and its operational equation according to the basic operations as 

k k k k
1

1

_ _ ( )
t

t tt t
t

L HP L HP RRP RCI dt−
−

= + −∫                                        (4.8) 

This research has be coded the above model in MATLAB 6.5. With the model in the fuzzy 

arithmetic operational equations, Table 4.1 shows the input (including the parameters) and 

initial values for the two cases, crisp and symmetrical triangular fuzzy numbers. Although for 

the fuzzy case most of the data are crisp, as L_HP and L_SP are fuzzy and affect the entire 

model, we shall see that the entire model or all variables will be rendered fuzzy as well. In the 

following, we discuss the results obtained from the crisp, Yager’s t-norm, and Tω weakest 

t-norm fuzzy arithmetic. 

Table 4.1 Fuzzy input data in epidemics people model. 

Variables(t=0) L_HP L_SP PI* DI* PCI* 
Crisp 100 1 10 0.5 0.5 
Fuzzy numbers (90, 100, 110) (0, 1, 2) (10, 10, 10) (0.5, 0.5, 0.5) (0.5, 0.5, 0.5)
* represents that the variable is constant value 
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 The interval DT in the system dynamics represents the system time delay in the operational 

equations and also controls the frequency of the system variable updates. From Figure 4.4 to 

4.6 and Table 4.2, we can obtains various results with DT increasing in crisp arithmetic, α-cut 

arithmetic, Tp with q=1 and Tω (Tp with p=1). In Figure 4.4 (a) the L_HP and L_SP 

respectively stabilize from at 40 and 60 after three months with DT=0.3. This indicates that 

the number of sick people gradually increases to 60 from the first to the third months, and the 

number of healthy people gradually decreases to 40 from the first to the third months. In 

Figure 4.4 (b), the bounds of L_HP and L_SP can not stabilize due to the accumulating 

phenomenon of fuzziness of the α-cut arithmetic. In Figure 4.4 (c), the result of Tp with q=1 is 

similar α-cut arithmetic. The fuzzy arithmetic also has accumulating phenomenon of 

fuzziness by time. In Figure 4.4 (d) the left and right bounds of L_HP respectively stabilize at 

30 and 50 after three months with DT=0.3. This indicates that the number of healthy people 

ranges between 30 and 50 when the model arrives a stable state. On the other hand, the left 

and right bounds of L_SP respectively stabilize at 50 and 70 after three months with DT=0.3. 

We can observe that the fuzzy intervals of L_SP are the same with L_HP after the model 

stabilizes, and the fuzzy intervals of L_SP are smaller than L_HP three months ago. This 

means that the fuzzy intervals of L_SP would growth gradually. The fuzzy result can 

effectively observe fuzzy growth trend of L_SP.    

  In Figure 4.5 (a) the L_HP and L_SP respectively stabilize at 40 and 60 after four months 

with DT=0.5. However, the two curve are not monotonic functions with DT=0.5 because the 

numbers of observation decrease with DT=0.5. Hence, the model may increase time for 

arriving stable states. In Figure 4.5 (b)-(c) we can observe that the fuzzy accumulation can not 

be controlled. Moreover we can find that the α-cut arithmetic has larger fuzzy accumulations 

and Tω  (Tp with p=1) has smaller accumulations. 
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(a) Crisp (b) α-cut arithmetic 

(c) Tp with q=1 (d) Tω (Tp with p=1) 

Figure 4.4 The simulate results of various arithmetic with DT=0.3. 

 

(a) Crisp (b) α-cut arithmetic 

Health People (crisp or mode) Sick people (crisp or mode) 

Health People (fuzzy bounds) Sick people (fuzzy bounds) 
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(c) Tp with q=1 (d) Tω (Tp with p=1) 

Figure4.5 The simulate results of various arithmetic with DT=0.5. 

 

(a) Crisp (b) α-cut arithmetic 

(c) Tp with q=1 (d) Tω (Tp with p=1) 

Figure4.6 The simulate results of various arithmetic with DT=1.0. 

 

In Figure 4.6 (a) since the DT is too large, the model can not arrive at stable states. It means 

that the trend of the model can not be easily controlled when the numbers of observation are 
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few. In Figure 4.6 (b)-(c), fuzzy arithmetic also can not arrive at the stable states, and the 

fuzzy accumulations can not be controlled. 

Although with DT=0.5, 1.0 the fuzzy arithmetic is not suitable for epidemics people model, 

with DT=0.3 the fuzzy arithmetic can be evidenced to result in the correct and suitable result 

in Figure 4.4(d). The fuzzy arithmetic can get more information than crisp arithmetic, and 

these observational results will help decision-makers to make correct policy for dealing or 

controlling epidemic. 

 

Table 4.2 Results and comparison of the crisp, α-cut, Tω arithmetic and Yager’s t-norm with 
the symmetrical TFN input for the model. 

 t=1 t=2 t=3 t=4 t=5 
DT=0.3 89.24 55 40.49 40.4 40.4 

DT=0.5 94.96 70.51 38.06 39.79 40.25 Crisp 

DT=1.0 97.05 85.97 52.07 23.806 87.22 

DT=0.3 (-729.4, 89.24, 1571) (-18814.8, 55, 
19028.3) 

(-246413.3, 40.49, 
246614.8) 

(-3200056.6, 40.4, 
3200258.7) 

(-41532075.1, 40.4, 
41532277.1) 

DT=0.5 (54.2, 94.96, 127) (-1041, 70.51, 
1289.2) 

(-12988.73, 38.06, 
13277.24) 

(-139422.17, 39.79, 
139739.71) 

(-1475135.5, 40.25, 
1475432) 

α-cut 
arithmetic 

DT=1.0 (77.8, 97.05, 114) (-40.1, 85.97, 173.4) (-697.55, 52.06, 
1544.35) (-8761.46, 23.81, 7869.01) (-47756.2, 87.22, 

48769) 

DT=0.3 (-38.2, 89.24, 253.8) (-4004.9, 55, 4070.9) (-120472.40, 40.49, 
119764.46) 

(-3581201.8, 40.4, 
3575397.9) 

(-106621360.2, 40.4, 
106580604.2) 

DT=0.5 (62.1, 94.96, 128.5) (-494.6, 70.51, 596.9) (-11176.2, 38.06, 
10617.2) 

(-220036.29, 39.79, 
221083.7) 

(-4466716.6, 40.25, 
4465767.1) Tp with q=1 

DT=1.0 (79.12, 97.05, 115.1) (-0.5, 85.97, 175.8) (-630.2, 52.06, 540.9) (-5120.63, 23.81, 4143.95) (-35826.3 , 87.22, 
38231.1) 

DT=0.3 (79.24, 89.24, 99.24) (45, 55, 65) (30.49, 40.49, 50.49) (30.4, 40.4, 50.4) (30.4, 40.4, 50.4) 

DT=0.5 (85, 94.96, 105) (40, 70.51, 101) (-32, 38.06, 108.2) (-157.55, 39.79, 200.06) (-322.1, 40.25, 486.4)

L_HP 

Tω or Tp 
with p=1 

DT=1.0 (87.1, 97.05, 107.1) (62.2, 85.97, 109.8) (-49.2, 52.07, 153.3) (-237.1, 23.806, 284.71) (-909.8, 87.22, 1084.3)

DT=0.3 11.76 46 60.51 60.6 60.6 

DT=0.5 6.04 30.49 62.94 61.21 60.75 Crisp 

DT=1.0 3.95 15.03 48.94 77.19 13.78 

DT=0.3 (-1461, 11.76, 821.4) (-18918, 46, 18907) (-246504.77, 60.51, 
246505.27) 

(-3200148.7, 60.6, 
3200148.6) 

(-41532167.1, 60.6, 
41532167.1) 

DT=0.5 (-16.95, 6.04, 37.85) (-1179.2, 30.49, 
1133) 

(-13167, 62.943, 
13081) 

(-139629.7, 61.21, 
139514.2) 

(-1475322, 60.75, 
1475227.5) 

α-cut 
arithmetic 

DT=1.0 (-4, 3.95, 14.22) (-63.35, 15.03, 132.1) (-1434.35, 48.94, 
789.55) (-7759, 77.19, 8853.5) (-48659, 13.78, 

47848.2) 

DT=0.3 (-106.7, 11.8, 167.3) (-4004.9, 46, 4052.8) (-120443.4, 60.51, 
119775.5) 

(-3581172.6, 60.6, 
3575409.1) 

(-106621331, 60.6, 
106580615.4) 

DT=0.5 (-17.88, 6.04 , 30.5) (-525.6, 30.49, 547.9) (-11142.3, 62.94, 
10633.1) 

(-220005.9, 61.21, 
221096.2) 

(-4466687, 60.75, 
4465778.6) Tp with q=1 

DT=1.0 (-4.98, 3.95, 13.00) (-62.4, 15.03, 95.8) (-624.4, 48.94, 528.8) (-5058.24, 77.19, 4188.34) (-35890.7, 13.78, 
38148.6) 

DT=0.3 (7.32, 11.76, 16.2) (38.8, 46, 53.2) (51.6, 60.5, 69.4) (51.6, 60.6, 69.6) (51.6, 60.6, 69.6) 

DT=0.5 (0, 6.04, 12.07) (0, 30.49, 60.98) (-7.2, 62.9, 133) (-136.12, 61.21, 221.48) (-301.6, 60.7, 506.9) 

L_SP 

Tω or Tp 
with p=1 

DT=1.0 (-1, 3.95, 8.9) (-8.76, 15.03, 38.81) (-52.3, 48.9, 150.2) (-183.71, 77.19, 338.1) (-983.3, 13.8, 1010.8) 
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Chapter 5 

THE CUSTOMER-PRODUCER-EMPLOYMENT MODEL 

 

The customer, producer, employment model was originally considered by Forrester (1961) 

and later also by other researchers in the crisp manner. This model is especially important as 

it observes the employment-level variation of a company resulting from the interactions of 

purchase orders of customers, inventory level, production, and employment practice of this 

company. The model utilizes the usual practice that the customer orders are first filled by the 

inventory, followed by that manufacturing may be ordered to make insufficient orders’ 

quantities, and inventory thus must be maintained above a minimum level. Due to the practice, 

the company must manufacture for both insufficient customer orders’ quantity and inventory. 

Therefore, the men power for both manufacturing must be estimated. This model provides the 

variations predicted and to be observed in the inventory, production, and employment level of 

this company. In industries, production quantities and required men power are the important 

issues. Due to this model, the following notations may be used.  

Variables  
L_OrtF: Customer orders’ quantity to fill (units), level variable 
R_OrR: Order quantity receiving rate (units/week), rate variable (system input) 
R_OrFI: Customer orders’ quantity filled by inventory (units/week), rate variable 
R_OrRM: Rate of orders’ quantity requisitioning manufacturing (units/week), rate variable
L_OrB: Customer order backlog (units), level variable 
R_OrM: Orders’ manufactured quantity (units/week), rate variable 
L_IRB: Inventory replenishment backlog (units), level variable 
R_RIRB: Reduction of inventory replenishment backlog (units/week), rate variable 
L_AI: Expected inventory level (units), level variable 
R_MI: Manufacturing rate for inventory (units/week), rate variable 
R_SI: Shipment from inventory (units/week), rate variable  
Auxiliary variables 

DWOrRM: Desired labor (men) for the R_OrRM  
TMP: Total man power (men) 
WOrM: Labor for orders’ manufactured quantity (men), i.e., min{DWOrRM, TMP} can 

be assigned  
WI: Labor for inventory replenishment manufacturing (men) 
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WC: Labor change rate (men) 
Parameters  
DT: Time interval or system delay (initially a week is used) 
t: t-th time interval, signifying its end or the entire interval 
WPC: Labor productivity (units/man-week) 
MIL: Minimum inventory level 
 

 L_OrtF L_OrB 

R_OrR R_OrRM

R_OrFI 

L_IRB 

R_SI

R_RIRB WI 

R_MI 
L_AI 

DWOrR TMP

WOrM 
WPC 

WC

MIL 

R_OrM

 

Figure 5.1 An overview of system structure. 
 

In Figure 5.1, an overview of the system’s structure is depicted. In the following, we will 

discuss the basic operations (in Figure 5.1) and followed by that of the fuzzy arithmetic 

denoted equations for the model. Since the linear independent relationship is assumed, the 

rate variables are assumed constant but fuzzy during an interval of time.  

5.1 Basic Operations 

In this model, the situation is triggered by the customer order-receiving rate R_OrRt in each 

period. In Figure 5.1 (the overview of the model structure), as mentioned earlier the system 

fills the customer orders first by the inventory. If there is an insufficient inventory to 

completely fill the customer orders, then requests for manufacturing the insufficient orders’ 

quantities R_OrRMt happen. Therefore, R_OrRMt occurs in this model (see Figure 5.1) due to 
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the customer orders’ quantity to fill, L_OrtFt−1, from the last period plus the order-receiving 

rate, R_OrRt, at the current period and the inventory replenishment backlog, L_IRBt-1, from 

the last period (i.e., the total quantity to fill) and minus the inventory L_AIt−1 from the last 

period. If this calculated R_OrRMt is negative, it signifies that the inventory is sufficient and 

R_OrRMt is reset to zero. Conversely, if it is positive, it then goes to or increase the customer 

order backlog L_OrBt. If L_OrBt cannot be accomplished at the period, the system will 

increase the men power in the next period. 

Therefore, since the customer orders are first filled by the inventory, if the calculated 

R_OrRMt is positive, it means that the inventory is insufficient for the orders. In this case, the 

customer orders’ quantity filled by the inventory, R_OrFIt, can be estimated as follows. It is 

the quantity that needs to be filled by inventory and manufacturing together (i.e., the 

order-receiving rate R_OrRt at the current period plus the orders’ quantity to fill L_OrtFt-1 

from the last period) minus the rate of orders’ quantity requisitioning manufacturing, 

R_OrRMt, at the current period (Figure 5.1). On the other hand, if the calculated R_OrRMt 

before taking the nonnegativity is negative, it means that the inventory is sufficient at the 

current period. Therefore, in this case, the R_OrFIt is simply the order-receiving rate R_OrRt 

plus the orders’ quantity to fill L_OrtFt-1 and the inventory replenishment backlog L_IRBt-1 

from the last period. Thus, also R_OrFI is the quantity that will be shipped form the inventory 

and determines the shipment from the inventory R_SI. 

The variable, customer orders’ quantity to fill L_OrtF, is determined by the rate variables, 

R_OrR, R_OrFI, and R_OrRM, as in Figure4. The level, customer order backlog L_OrB, is 

determined by the rate variables, orders’ manufactured quantity R_OrM and rate of orders’ 

quantity requisitioning manufacturing R_OrRM, when an inventory is insufficient. Moreover, 

the rate variable, orders’ manufactured quantity R_OrM, is estimated from the labor for 
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orders’ manufactured quantity WOrM and WOrM equals min{DWOrRM, TMP}, which can 

be assigned. And DWOrRM, i.e., the desired labor for R_OrRM, occurs due to the current 

R_OrRM plus the L_OrB from the last period. The level, inventory replenishment backlog 

L_IRB, can be estimated from the rates, R_OrFI and reduction of inventory replenishment 

backlog R_RIRB. L_IRB should be kept as close to zero as possible, which means that the 

inventory is maintained sufficiently. The R_RIRB is determined by the customer orders’ 

quantity filled by inventory R_OrFIt at the current period plus the inventory replenishment 

backlog L_IRBt-1 and L_OrBt−1 from the last period (see Figure 5.1). This also means that the 

customer order backlog L_OrBt−1 from the last period will also be accomplished by the 

inventory manufactured at the current period first.  

Moreover, the rate variable R_MI is estimated from the WI and WPC, and the WI is 

estimated from the TMP minus WOrM, which signifies that the manufacturing for fulfilling 

the R_OrRM has been given a higher priority over the manufacturing for replenishing the 

inventories.  

The L_AI is determined from its previous level and the current R_MI and R_SI. In addition, 

the customer order backlog L_OrBt plus the inventory replenishment backlog L_IRB (i.e., the 

total backlog) stands for the quantity needed to be manufactured above the production 

capacity with the current TMP and is influenced by the TMP and WPC. Additional hiring (i.e., 

a positive WC) may occur. In this case, in addition to this WC, unfilled desired labor for the 

current R_OrRM should be added too (i.e., DWOrRM − TMP). Conversely, if the L_AI is 

more than the minimum inventory level MIL required, layoff may occur (or a negative WC). 

However, in order to avoid the total men power from becoming too small in a period, the 

TMP may be constrained. This can be done, e.g., by constraining the TMP to be above some 

lower limit or the initial TMP. 
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For these variables, except the L_OrtF and WC, the nonnegativity requirements naturally 

hold. For the WC the negative meaning is obvious. For L_OrtF, the negative means that the 

excessive capacities including inventory and manufacturing occur. It also means that the order 

fulfillment is being completely met by inventory, and the manufacturing is performed for the 

inventory but not for the orders. The purpose of the negative L_OrtF is avoiding assigning 

any labor for the R_OrRM when the inventory is enough and balances the model in 

controlling the total men power by avoiding unnecessary increases.  

In the next section, the systematical consecutive steps of the system can be formulated for 

the process of the model and fuzzy-arithmetic denoted equations can be introduced. 

5.2 Fuzzification and Defuzzification of the System Dynamics Model  

In the following, we will use the fuzzy variables to estimate the rate and level variables. In 

this case, it is complex due to that the fuzzy interactive equations have to be carried out. In the 

following, especially the level variable k_L OrB  will be shown in more details by the 

equation expanded from the α-cut arithmetic and the Tω weakest t-norm operator. The 

detailed fuzzy arithmetic of the other variables can be performed in a similar manner. The 

following depicts the steps and the operational equations of the above model described in 

Section 4.1.   

 

Step 1. Define the initial k 0_ tL OrB = , k 0_ tL IRB = , and k 0_ tL AI = . A fuzzy variable will also be 

written as, e.g., k_ tR OrR  = 1,( _ tr orr , 2,_ tr orr , 3,_ )tr orr .  

Step 2. Define k 0_ tL OrtF =  and its operational equation according to the above basic 

operations as 

k k k k k
1

1

_ _ ( _ ( _ _ ))
t

t t t t t
t

L OrtF L OrtF R OrR R OrFI R OrRM dt−
−

= + − +∫ ,              (5.1) 
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where k_ tR OrRM  and k_ tR OrFI  can be estimated as follows.  

(1) For k_ tR OrRM  according to the basic operations,  

k k k k k
-1 -1 -1_ _ __ ( _ )t t t

t t
L OrtF L IRB L AIR OrRM Noneg R OrR

DT
+ −

= + ,              (5.2) 

where Neneg() signifies taking the nonnegative elements of the results in order to satisfy the 

nonnegative requirement. 

(2) For the k_ tR OrFI , if k k k k
-1 -1 -1( _ _ _ _ ) 0t t t tMod R OrR DT L OrtF L IRB L AI× + + − ≤ , then 

k k k k
-1 1_  __ ( _ )t t

t t
L OrtF L IRBR OrFI Noneg R OrR

DT
−+

= + ;                (5.3) 

otherwise,  

k k k k-1__ ( _ _ )t
t t t

L OrtFR OrFI Noneg R OrR R OrRM
DT

= + − ,             (5.4) 

where Mod() denotes the operation of taking only the mode of the result and thus the highest 

possibility of the premise for the Eqs. (5.3) and (5.4). It has been observed that the mode, i.e., 

the most possible element, is more appropriate than the defuzzification in this step in this 

model for the following reasons: 

(a) In this step, the purpose is to judge whether inventories at the current period are sufficient 

or not and it results in two different operations to be selected. If a defuzzification method 

is used in the premise, misjudgments may result. In this case, either Eq. (5.3) or (5.4) may 

be taken alone and continually due to the fuzziness before defuzzification. k_ tR OrFI  may 

be found continually to increase or decrease and cause the system instability even in the 

mode of the variable. If however the mode (most possible element) comparison is used, a 

decisive discretion decision can be made. The incorrectness as above can be prevented 

and Eqs. (5.3) and (5.4) may alternate. Even the system fuzziness can reach the steady 

state naturally.  
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(b) In addition, the k_ tR OrFI  is to be obtained as the right-hand-side of Eq. (5.3) or (5.4) but 

not the premise. 

Step 3. Determine the requisition rate manufactured. 

(1) Define the k tDWOrRM  according to the basic operations. 

k k k
k

1_ _( )t t
t

t

R OrRM DT L OrBDWOrRM Noneg
WPC DT

−× +
=

×
.          (5.5) 

(2) Define k tWOrM  by the basic operations. As mentioned earlier, since WOrM = 

min{DWOrRM, TMP}, 

k k k
k k k

k
1

1

1

,  ( ) ( ),
min( , )

, .

tt t
tt t

t

DWOrRM if COA DWOrRM COA TMP
WOrM DWOrRM TMP

TMP otherwise

−
−

−

⎧ ≤⎪= = ⎨
⎪⎩

    (5.6) 

Since k tWOrM  is equal to either ktDWOrRM or k tTMP , the defuzzification method is used 

here to rank the ktDWOrRM and k 1tTMP − . This operation is different from that for the premise 

of Eqs. (5.3) and (5.4).  

(3) Finally, calculate the k_ tR OrM  by the equation 

k k k_ t ttR OrM WPC WOrM= × .               (5.7) 

Step 4. Determine the order backlog. Get k_ tR OrRM  (Eq. (5.2)). Calculate the k_ tL OrB  by 

the equation according to the basic operations, 

k k k k
1

1

_ ( _ ( _ _ ) )
t

t t t t
t

L OrB Noneg L OrB R OrRM R OrM dt−
−

= + −∫                (5.8) 

The following illustrates k_ tL OrB  by using the α-cut fuzzy arithmetic for the 

demonstration. Using the α-cuts, k_L OrB  can be written as before taking the nonnegative 

requirement, 

( ) ( )
, 1, 2,_ _ , _t t tL OrB l orb l orbα α

α′ ′ ′⎡ ⎤= ⎣ ⎦ , (0,1],α∀ ∈           (5.9) 
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where ( )
1,_ tl orb α′  and ( )

2,_ tl orb α′  can be determined by the α-cut arithmetic as 

( ) ( ) ( ) ( )
1, 1, 1 1, 2,_ _ ( _ _ ) ,t t t tl orb l orb r orrm r orm DTα α α α

−′ = + − × (5.10a)

( ) ( ) ( ) ( )
2, 2, 1 2, 1,_ _ ( _ _ )t t t tl orb l orb r orrm r orm DTα α α α

−′ = + − × .              (5.10b) 

On the other hand, if the Tω arithmetic is used, 

k ( 2, 1 2, 2, 2, 1 1, 1

2, 1, 3, 2,

2, 1 2, 2,

2, 1 2, 2, 3,

_ _ ( _ _ ) max{ _ _ ,

( _ _ ) , ( _ _ ) },

_ ( _ _ ) ,

_ ( _ _ ) max{ _

t t t t tt

t t t t

t t t

t t t t

L OrB l orb r orrm r orm DT l orb l orb

r orrm r orrm DT r orm r orm DT

l orb r orrm r orm DT

l orb r orrm r orm DT l orb

− − −

−

−

′ = + − × − −

− × − ×

+ − ×

+ − × +

)
1 2, 1

3, 2, 2, 1,

_ ,

( _ _ ) , ( _ _ ) } .
t

t t t t

l orb

r orrm r orrm DT r orm r orm DT
− −−

− × − ×

    (5.11) 

Step 5. Determine the inventory replenishment backlog. 

(1) Determine the k_ tR RIRB  as k k k
1 1 ( _ + _ ) / _ tt tL OrB L IRB DT R OrFI− − + . 

(2) Define the k _ tL IRB  by the equation 

k k k k
1

1

 _ ( _ ( _ _ ) )
t

t t t t
t

L IRB Noneg L IRB R OrFI R RIRB dt−
−

= + −∫ .               (5.12) 

 Step 6. Determine the inventory level. 

(1) Determine the j tWI  as 

j k k1tt tWI TMP WOrM−= − .                     (5.13) 

(2) Determine the k_ tR MI  as 

k j k_  t ttR MI WI WPC= × .                  (5.14) 

(3) k_ tR SI  = k_ tR OrFI .  

(4) Define k_ tL AI  by the following equation.  

k k k k
1

1

_ ( _ ( _ _ ) )
t

t t t t
t

L AI Noneg L AI R MI R SI dt−
−

= + −∫ .              (5.15) 
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Step 7. Determine the labor change rate. If k_ tL AI  is more than kMIL  (that is, a similar 

operation to that of the premise for Eqs. (5.3) and (5.4) applies here too), kWC  can be 

estimated as 

k k k
k

_ t
t

t

MIL L AIWC
WPC DT

−
=

×
,                  (5.16) 

which signifies a decrease in the men power of the factory in the next period; otherwise, again 

by the basic operations, 

k k k
k

_ _t t
t

t

L OrB L IRBWC
WPC DT

+
=

×
,              (5.17) 

which signifies an increase in the men power of the factory in the next period. 

Step 8. The total manpower k tTMP , customer order backlog k 1_ tL OrB + , and un-replenished 

inventory will be adjusted in the next interval with the labor change rate k tWC . If k_ tL AI  is 

more than kMIL , 

k k k1t t tTMP TMP WC−= + .                  (5.18) 

Otherwise,  

k k k k k k k1 1( )t t tt t t tTMP TMP WC DWOrRM TMP WC DWOrRM− −= + + − = + .            (5.19) 

Moreover, in order to avoid the k tTMP  being planned too low in an interval k tTMP  may be 

constrained. In this case, the initial k 0tTMP =  will be used as the lower limit. With the α-cut 

arithmetic, the TMPα,t =  ( ) ( )
1, 2,,t ttmp tmpα α⎡ ⎤⎣ ⎦  ∀α ∈ (0, 1] can be constrained by   

( ) ( ) ( )
, , , 0( )

, ( )
, 0

, ,
, ,

j t j t j t
j t

j t

tmp if tmp tmp
tmp

tmp otherwise

α α α
α

α
=

=

⎧ ≥⎪= ⎨
⎪⎩

 for j = 1, 2.          (5.20) 

With the Tω fuzzy arithmetic, the k tTMP  = (tmp1,t, tmp2,t, tmp3,t) may be constrained by 

, , , 0
,

, 0

, ,
, ,

k t k t k t
k t

k t

tmp if tmp tmp
tmp

tmp otherwise
=

=

≥⎧
= ⎨
⎩

 for k = 1, 2, 3.           (5.21) 
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In addition, the following measure or assumption can be used in the model. That is, the 

fuzziness in intervals independent of each other or interval independence of fuzziness (IIF) 

may be used. In this IIF, the fuzziness except fuzzy inputs and fuzzy parameters of the system 

at the end of each interval can be defuzzified to obtain the representative value similar to the 

expected values or interval-end defuzzification is performed. The representative values of the 

variables may be supplied to the next interval with fuzzy inputs (k_ tR OrR  in this model) and 

parameters again.  

In the next section, we shall show numerically the effects of the interactive (fuzzy) 

variables of the above model resulting from the system’s fuzzy arithmetic operational 

equations.  

5.3 Numerical Analysis 

This research has coded the above model in MATLAB 6.5 and included the defuzzification 

of fuzzy numbers. With the model in the fuzzy arithmetic operational equations, Table 5.1 

shows the input (including the parameters) and initial values for the two cases, crisp and 

symmetrical TFNs. Although for the fuzzy case most of the data are crisp, as WPC and 

R_OrR are fuzzy and affect the entire model, we shall see that the entire model or all variables 

will be rendered fuzzy as well. In the following, we shall discuss the results obtained from the 

crisp, the α-cut and Tω weakest t-norm fuzzy arithmetic.  

As shown in Figures 5.2-5.7, the results of k_L OrB , k_L AI , kWOrM , kTMP , jWI  and 

k_R OrM  with the symmetrical-TFN input are plotted, as they are the important variables of 

this model. These results and that of the other variables are provided in Table 5.2 too, where 

for the space limitation only those of the 15 intervals are listed. For these variables, the left 

bound, mode, and right bound are shown in these figures with the time intervals. In addition, 

the crisp arithmetic values are provided in both parts ((a) and (b)) of each figure for 
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comparisons. 

 

Table 5.1 Initial and input data (the crisp and symmetrical TFN cases). 
 WPC (constant) L_OrtF (t = 0) L_OrB (t = 0) L_IRB (t = 0) L_AI (t = 0) 
Crisp 2.5 1000 1200 2800 4000 
Symmetrical (2, 2.5, 3) (1000, 1000, 1000) (1200, 1200, 1200) (2800, 2800, 2800) (4000, 4000, 4000) 
 R_OrR (constant) MIL (constant) TMP (t = 0)   
Crisp 1000 4000 375   

Symmetrical (900, 1000, 1100) (4000, 4000, 4000) (375, 375, 375)   

 

In Figure 5.2 and Table 5.2, the customer order backlog k_L OrB  is affected by itself at the 

previous period and the k_R OrM  and k_R OrRM  at the current period interactively. It first 

shows a fuzzily decreasing phenomenon, then increases, and finally stabilizes with the α-cut 

arithmetic and fuzzily reduces and finally stabilizes with the Tω arithmetic. The modes by the 

Tω arithmetic are the same as the results of the crisp arithmetic. The fuzziness also reduces 

and finally stabilizes at the crisp zero with the Tω arithmetic, due to the nonnegativity 

requirement and that when fuzziness occurs in the negative it is truncated. With the α-cut 

arithmetic, the modes of k_L OrB  show a higher value than that of the crisp arithmetic, due to 

the nonnegativity requirement and that the α-cut arithmetic accumulates fuzziness of all fuzzy 

numbers involved in an operation. Still the α-cut arithmetic finds the fuzzy stable-state results 

(from t = 5, Figure 5.2 and Table 5.2). The left bound of k_L OrB  from t = 2 is the same as 

the crisp arithmetic results. With the fuzzy arithmetic, k_L OrB  may be seen fuzzily 

stabilizing. But still there is the uncertainty or fuzziness involved by these results. By these 

results, we also found that the α-cut arithmetic due to the accumulating phenomenon of 

involved fuzziness has a wider or fuzzier result than that by the Tω arithmetic.  

In Figure 5.3 and Table 5.2, the level of inventory k_L AI  is affected by itself at the 

previous period and the k_R MI  and k_R SI  interactively. In addition, as there is a minimum 
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inventory to maintain, it is also affected by other variables, kWC , _L OrB  and kWPC . Thus, 

we observe that with the Tω arithmetic, the k_L AI  reaches the cyclically steady pattern 

(Figure 5.3 (b)). The fuzziness also gradually reduces and stabilizes from t = 5 with the cyclic 

steady pattern, due to that the Tω arithmetic takes only the largest fuzziness encountered in the 

operations. With the α-cut arithmetic (Figure 5.3 and Table 5.2), the stable pattern appears to 

be very different from that of the crisp arithmetic and the Tω arithmetic. The fuzziness also 

stabilizes from t = 6. But a much wider fuzziness result also results with the α-cut arithmetic. 

In the case, the k_L AI  may be viewed cyclic stabilized with the Tω arithmetic and stabilized 

with the α-cut arithmetic fuzzily. Still there is an uncertainty or fuzziness and it may mean 

that excessive or below-MIL inventories may exist. 

 

 

  

(a) α-cut and crisp arithmetic 

      

(b) Tω and crisp arithmetic 

Figure 5.2 Customer order backlog k_L OrB  over the time intervals. 
 

Moreover, in Figure 5.4 and Table 5.2, the labor for orders’ manufactured quantity kWOrM  

is interactively affected by kTMP  and kDWOrRM  and exhibits a stable condition with the 

Tω arithmetic (Figure 5.4 (b)) with the zero stable mode and left bound due to the 

nonnegativity requirement, which are the same as the crisp arithmetic results. With the α-cut 

arithmetic, the mode and left and right bounds are stabilized at a much higher range between 

Left bound Right boundMode Crisp arithmetic result 
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524 and 1668 from t = 8 (Figure 5.4 (a) and Table 5.2) and much fuzzier. In this case, with the 

Tω arithmetic, the k_L OrB  is fuzzily zero at t = 2 but kWOrM  is nonzero fuzzily at the same 

period (Table 5.2). This is because at the end of t = 1 there exists a fuzzily nonzero k_L OrB  

and that requires kWOrM  to produce in t = 2 still fuzzily. 

 

(a) α-cut and crisp arithmetic (b) Tω and crisp arithmetic 

Figure 5.3 Expected inventory level k_L AI  over the time intervals. 
 

(a) α-cut and crisp arithmetic 

 

(b) Tω and crisp arithmetic 

Figure 5.4 Labor for orders’ manufactured quantity kWOrM  over the time intervals. 
 

In Figure 5.5 and Table 5.2, the total men power kTMP  is affected by the requirements of 

jWI  and kWOrM  and other variables interactively from the previous period. As seen, with 

the Tω arithmetic, the kTMP  reaches the stable and also cyclic mixed pattern (Figure 5.5 (b)). 

The Tω arithmetic obtains the increases in kTMP  at t = 10, 11, 29, and 34. This is because the 
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inventories at these periods could be below MIL and more manpower is required. A similar 

situation also shows with the crisp arithmetic. With the α-cut arithmetic, a straight fuzzy 

stable condition is reached (Figure 5.5 (a) and Table 5.2). The kTMP  increases fuzzily 

quickly at t = 1 (Figure 5.5 (a) and Table 5.2) to fulfill the customer orders, then gradually 

adjusts, and reaches the stable condition in the mode, left and right bounds. 

 

(a) α-cut and crisp arithmetic 

 

(b) Tω and crisp arithmetic 

Figure 5.5 Total men power kTMP  over the time intervals. 
 

In Figure 5.6 and Table 5.2, the labor for inventory replenishment manufacturing jWI  is 

affected by kTMP  and kWOrM  interactively. It is used to adjust the manufacturing for 

fulfilling the MIL. As seen, jWI  has a similar pattern to that of kTMP  with the two types of 

fuzzy arithmetic but lags one period behind the kTMP . In Figure 5.7 and Table 5.2, the 

orders’ manufactured quantity k_R OrM  is affected directly by the kWOrM . The variation is 

very similar to that of kWOrM  in the two types of fuzzy arithmetic (Figure 5.4 and Table 5.2) 

and the fuzziness is also bigger than that of kWOrM . Also, we observe that k_R OrM  fuzzily 

increases from t = 1 to 2 and becomes stabilized at fuzzy zero from t = 5 with the Tω 

arithmetic. This is because the k_L OrB  will be generally fulfilled at these periods. With the 

α-cut arithmetic, due to the accumulating phenomenon of the involved fuzziness and the 
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nonnegativity requirement of the other variables, the stabilization has been obtained at a 

higher level. 

 

(a) α-cut and crisp arithmetic  (b) Tω and crisp arithmetic 

Figure 5.6 Labor for inventory replenishment manufacturing jWI  over the time intervals. 
 

(a) α-cut and crisp arithmetic (b) Tω and crisp arithmetic 

Figure 5.7 Orders’ manufactured quantity k_R OrM  over the time intervals. 
 

Moreover, from Table 5.2 the left bound of k_R OrFI  reaches zero from t = 2 and even 

some right bounds are zero (at t = 3-5) with the α-cut arithmetic. This means that the 

inventory at these intervals might be depleted (or is depleted at t = 3-5) and order fulfillment 

might be turned over to the production still fuzzily. With the Tω arithmetic, a more stable 

planning is reached and only at t = 7, 13 the left bound of k_R OrFI  is zero. Both the left 

bound and mode of the k_R OrRM  reach zero with the Tω arithmetic from t = 2, which means 
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that there will be generally no k_L OrB  at these intervals but still fuzzily. With the α-cut 

arithmetic, there is only the left bound of k_R OrRM  reaching zero at t = 2, 4, 5. Moreover, 

due to the mutual influence relationships of the variables k_R OrM , kDWOrRM , k_R OrRM  

and k_L OrB , k_R OrM  and kDWOrRM  have behaved similarly to k_R OrRM , again since 

there is generally no k_L OrB . As mentioned earlier, in order to fulfill the customer orders, 

kTMP  may increase fuzzily and quickly and adjust gradually. Consequently, the k_L OrB  and 

kWC  may reduce fuzzily and quickly and adjust gradually, in which the left bound of k_L OrB  

reaches the zeros from t = 2 with both types of fuzzy arithmetic, and kWC  reaches the fuzzy 

negative from t = 3 with the α-cut arithmetic and from t = 7 with the Tω arithmetic. Moreover, 

from the inventory, k_L AI  is first used to suffice the customer orders. When k_L AI  is 

sufficient, the kTMP  simply manufactures for inventory and may be decreased. From t = 7 

(Figure 5.5 (b) and Table 5.2), we observe that kTMP  is cyclically stabilized with the Tω 

arithmetic. This is because starting from t = 6 (Figure 5.3 (b) and Table 2) k_L AI  could be 

possibly sufficient and above MIL and thus the manpower is only adjusting for maintaining 

the MIL. The kTMP  is straight stabilized with the α-cut arithmetic. From Table 5.2, the 

manufacturing rate for inventory k_R MI  is affected by the jWI  and thus the pattern is 

similar to that of jWI . The k_L OrtF  reaches the fuzzy zero or fuzzy negative from t = 1 with 

both fuzzy arithmetic. This means that the inventory and manufacturing capacity may be 

planned generally sufficient together in this example. Nevertheless, we notice that the 

system’s fuzziness exists in the interaction of these variables, caused by the fuzzy input and 

parameter. Fuzzy outcomes planned result. The crisp system dynamics analysis certainly 

cannot provide this information.  
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Table 5.2 Results and comparison of the crisp, α-cut, and Tω arithmetic with the symmetrical 
TFN input for the model. 

Variable Method For t = 1, …, 5, then t = 6, …, 10, and t = 11, …, 15 
1062.5 0 0 0 0 

0 0 0 0 0 Crisp 
0 0 0 0 0 

(775, 1062.5, 1350) (0, 598.6, 1338.9) (0, 234.59, 1485.1) (0, 1228.9, 1520) (0, 1442.7, 1848.2) 
(0, 1588.4, 2173.8) (0, 1561, 2249.8) (0, 1548.7, 2273.5) (0, 1552.7, 2278.4) (0, 1556, 2281.8) α-cut 

arithmetic  
(0, 1552.3, 2280.4) (0, 1555.2, 2282.5) (0, 1552.7, 2280.7) (0, 1555.2, 2282.4) (0, 1552.7, 2280.8) 
(875, 1062.5, 1250) (0, 0, 212.5) (0, 0, 14.1) (0, 0, 0.87419) (0, 0, 0) 

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

L_OrB 

Tω 
arithmetic 

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
2800 3800 3862.5 3168.6 3474.7 

4474.7 5693.9 6325.3 5956.6 4894.1 Crisp 
4137.8 4381.4 5318.9 5950.3 5581.6 

(2800, 2800, 2800) (0, 1062.5, 1062.5) (2542.1, 4247.3, 5718) (4126, 6818.6, 8182.3) (2726.2, 5336.2, 6403.5)
(2616.7, 5528, 6765.4) (2720.2, 5823.5, 7150.6) (2777.5, 5907.4, 7269.7) (2821.4, 5976.8, 7352.8) (2823.4, 5990.6, 7368.8)α-cut 

arithmetic 
(2830.3, 5994, 7373.8) (2825.3, 5992.6, 7372) (2831.4, 5996.1, 7376.3) (2825.8, 5993.3, 7372.8) (2831.2, 5996, 7376.2)

(0, 2800, 2900) (2526.6, 2933.3, 3339.9) (2690, 2954.8, 3219.5) (2087.6, 2357.9, 2628.2) (2265.6, 2666.9, 3068.2)
(3313.06, 3662, 4010.94) (4360, 4547.5, 4735) (4995.1, 5182.6, 5370.1) (4682.1, 4869.6, 5057.1) (3671.6, 3859.1, 4046.6)

L_AI 

Tω 
arithmetic 

(3752, 4152.5, 4552.9) (4943.73, 5328.9, 5714) (6140.1, 6353.1, 6566.1) (6811.8, 6999.3, 7186.8) (6498.8, 6686.3, 6873.8)
375 425 0 0 0 
0 0 0 0 0 Crisp 
0 0 0 0 0 

(375, 375, 375) (1280.6, 1280.6, 1280.6) (1050.5, 1394.5, 1793.1) (191.1, 720.89, 951.11) (305.44, 943.62, 1229.5)
(385.38, 1137.8, 1472.3) (488.75, 1250.9, 1613.6) (524.75, 1289.2, 1661.5) (525.65, 1291.9, 1664.8) (525.85, 1293.4, 1666.8)α-cut 

arithmetic 
(528.1, 1294.7, 1668.3) (527.22, 1294.8, 1668.4) (528.02, 1294.7, 1668.4) (527.28, 1294.8, 1668.5) (528.04, 1294.7, 1668.4)

(375, 375, 375) (354.167, 425, 531.25) (23.4999, 28.2, 68.2) 1.457, 1.7484, 41.7484) (0, 0, 40) 
(0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) 

WOrM 

Tω 
arithmetic 

(0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) 
0 800 547.45 522.45 800 

677.55 487.65 375 375 375 Crisp 
375 375 375 375 375 

(0, 0, 0) (0, 0, 0) (948.16, 1440.6, 1690.7) (1776.3, 2498.1, 2536.4) (904.97, 1768, 1829.1)
(802.58, 1772.4, 1889.5) (840.63, 1827.8, 1965.5) (863.08, 1854.9, 1999.8) (887.07, 1881.1, 2026.2) (889.67, 1885.4, 2030.6)α-cut 

arithmetic 
(891.3, 1885.9, 2031.5) (890.26, 1886, 2031.5) (892.02, 1886.8, 2032.4) (890.46, 1886.2, 2031.7) (891.95, 1886.7, 2032.3)

(0, 0, 0) (742.497, 813.33, 919.58) (524.7699, 529.47, 
569.47) 

(540.2586, 540.55, 
580.55) 

(802.6, 802.6, 842.6) 

(697.87, 697.87, 737.87) (375, 375, 415) (375, 375, 415) (375, 375, 415) (375, 375, 415) 

WI 

Tω 
arithmetic 

(800.85, 800.85, 840.85) (770.35, 770.35, 810.35) (426.02, 426.02, 466.02) (375, 375, 415) (375, 375, 415) 
1225 547.45 522.45 800 677.55 

487.65 375 375 375 375 Crisp 
375 375 375 375 375 

(891.67, 1225, 1725) (375, 3279.4, 4569.4) (1139.7, 2830, 4212.7) (375, 2583.1, 3445.5) (375, 2754.2, 3695.5) 
(375, 2934.4, 4053.4) (375, 2979.7, 4219) (375, 3008.2, 4272.6) (375, 3014, 4280.4) (375, 3018.2, 4285.7) α-cut 

arithmetic 
(375, 3016.5, 4284.7) (375, 3018.9, 4287.3) (375, 3016.8, 4285.1) (375, 3018.9, 4287.3) (375, 3016.9, 4285.2) 

(1145, 1225, 1345) (475.027, 545.7, 652.11) (445.034, 528.4, 653.45) (651.09, 780.96, 975.76) (565.84, 679, 848.76) 
(375, 375, 375) (375, 375, 375) (375, 375, 375) (375, 375, 375) (649.34, 779.2, 974.01)

TMP 

Tω 
arithmetic 

(671.188, 739.8, 900.01) (375, 375, 529.07) (375, 375, 375) (375, 375, 375) (375, 375, 375) 
0 2000 1368.6 1306.1 2000 

1693.9 1219.1 937.5 937.5 937.5 Crisp 
937.5 937.5 937.5 937.5 937.5 

(0, 0, 0) (0, 0, 0) (1896.3, 3601.5, 5072.1) (3552.7, 6245.3, 7609.1) (1809.9, 4419.9, 5487.2)
(1605.2, 4431, 5668.5) (1681.3, 4569.4, 5896.5) (1726.2, 4637.2, 5999.5) (1774.1, 4702.8, 6078.7) (1779.3, 4713.6, 6091.8)α-cut 

arithmetic 
(1782.6, 4714.7, 6094.5) (1780.5, 4715.1, 6094.5) (1784, 4716.9, 6097.1) (1780.9, 4715.5, 6095) (1783.9, 4716.8, 6097)

(0, 0, 0) (2033.3, 406.67, 406.67) (1323.7, 264.73, 264.73) (1351.4, 270.27, 270.27) (2006.5, 401.3, 401.3) 
(1744.7, 348.94, 348.94) (937.5, 187.5, 187.5) (937.5, 187.5, 187.5) (937.5, 187.5, 187.5) (937.5, 187.5, 187.5) 

R_MI 

Tω 
arithmetic 

(2002.1, 400.43, 400.43) (1925.9, 385.17, 385.17) (1065.1, 213.01, 213.01) (937.5, 187.5, 187.5) (937.5, 187.5, 187.5) 
937.5 1062.5 0 0 0 

0 0 0 0 0 Crisp 
0 0 0 0 0 

(750, 937.5, 1125) (2561.1, 3201.4, 3841.7) (2101, 3486.1, 5379.2) (382.19, 1802.2, 2853.3) (610.87, 2359.1, 3688.6)
(770.77, 2844.6, 4416.9) (977.5, 3127.3, 4840.9) (1049.5, 3223, 4984.5) (1051.3, 3229.6, 4994.5) (1051.7, 3233.5, 5000.3)α-cut 

arithmetic 
(1056.2, 3236.6, 5004.9) (1054.4, 3236.9, 5005.3) (1056, 3236.7, 5005.1) (1054.6, 3237, 5005.5) (1056.1, 3236.9, 5005.3)

(750, 937.5, 1125) (850, 1062.5, 1328.12) (56.4, 70.501, 170.5) (3.45, 4.37, 104.37) (0, 0, 100) 
(0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) 

R_OrM 

Tω 
arithmetic 

(0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) 
0 0 -306.12 -1306.1 -2000 

-1693.9 -693.88 0 -306.12 -1306.1 Crisp 
-2000 -1693.9 -693.88 0 -306.12 

(-200, 0, 200) (-3037.5, 1000, 1100) (-2354, -1919.6, -1719) (-2426, -997.79, -897) (-2083.7, -440.94, -341)
(-1988.4, -114.62, 85.37) (-1961, 15.071, 215.07) (-1948.7, 18.95, 218.95) (-1952.7, 26.738, 226.74) (-1956, 32.982, 232.98)

L_OrtF 

α-cut 
arithmetic 

(-1952.3, 31.557, 231.56) (-1955.2, 32.777, 232.78) (-1952.7, 31.885, 231.88) (-1955.2, 32.922, 232.92) (-1955.2, 32.922, 232.92)
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(-100, 0, 100) (-100, 0, 100) (-402, -302.15, -202) (-1350, -1250.5, -1150) (-2048, -1948, -1848) 
(-1797, -1697.5, -1597) (-849, -749.5, -649) (-151.98, -51.982, 48.02) (-402.5, -302.48, -202.5) (-1350, -1250.5, -1150)Tω 

arithmetic 
(-2059, -1959.1, -1859) (-1808, -1708.7, -1608) (-849.5, -749.5, -649.5) (-140.85, -40.855, 59.14) (-391.3, -291.35, -191.3)

1200 1000 1306.1 2000 1693.9 
693.88 0 306.12 1306.1 2000 Crisp 
1693.9 693.88 0 306.12 1306.1 

(1200, 1200, 1200) (0, 1000, 1100) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
(0, 0, 85.376) (0, 15.071, 215.07) (0, 18.95, 218.95) (0, 26.738, 226.74) (0, 32.982, 232.98) α-cut 

arithmetic 
(0, 31.557, 231.56) (0, 32.777, 232.78) (0, 31.885, 231.88) (0, 32.922, 232.92) (0, 31.906, 231.91) 
(1100, 1200, 1300) (900, 1000, 1100) (1202.2, 1302.2, 1402.2) (1848.3, 1948.3, 2048.3) (1597.5, 1697.5, 1797.5)

(649.5, 749.5, 849.5) (0, 51.981, 151.981) (202.48, 302.48, 402.48) (1150.5, 1250.5, 1350.5) (1848, 1948, 2048) 

R_OrFI 

Tω 
arithmetic 

(1608.7, 1708.7, 1808.7) (649.5, 749.5, 849.5) (0, 40.852, 140.852) (191.35, 291.35, 391.35) (1150.5, 1250.5, 1350.5)
800 0 0 0 0 
0 0 0 0 0 Crisp 
0 0 0 0 0 

(700, 800, 900) (0, 2737.5, 2837.5) (2505.7, 2840.3, 2940.3) (0, 1228.9, 1328.9) (0, 1442.7, 1542.7) 
(59.218, 1747.7, 1847.7) (212.2, 1873.2, 1973.2) (304.03, 1952.7, 2052.7) (302.91, 1955.6, 2055.6) (300.55, 1956.5, 2056.5)α-cut 

arithmetic 
(305.07, 1957.4, 2057.4) (304.11, 1959.3, 2059.3) (304.86, 1957.5, 2057.5) (304.06, 1959.2, 2059.2) (304.96, 1957.7, 2057.7)

(700, 800, 900) (0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) 
(0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) 

R_OrRM 

Tω 
arithmetic 

(0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) (0, 0, 100) 
800 425 0 0 0 
0 0 0 0 0 Crisp 
0 0 0 0 0 

(633.33, 800, 1050) (354.17, 1520, 1950) (1050.5, 1394.5, 1793.1) (191.1, 720.89, 951.11) (305.44, 943.62, 1229.5)
(385.38, 1137.8, 1472.3) (488.75, 1250.9, 1613.6) (524.75, 1289.2, 1661.5) (525.65, 1291.9, 1664.8) (525.85, 1293.4, 1666.8)α-cut 

arithmetic 
(528.1, 1294.7, 1668.3) (527.22, 1294.8, 1668.4) (528.02, 1294.7, 1668.4) (527.28, 1294.8, 1668.5) (528.04, 1294.7, 1668.4)

(720, 800, 920) (354.167, 425, 531.25) (23.4999, 28.2, 68.2) (1.457, 1.7484, 41.7484) (0, 0, 40) 
(0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) 

DWOrRM 

Tω 
arithmetic 

(0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) (0, 0, 40) 
0 306.12 1306.1 2000 1693.9 

693.88 0 306.12 1306.1 2000 Crisp 
1693.9 693.88 0 306.12 1306.1 
(0, 0, 0) (0, 3800, 3900) (440.13, 1222.3, 1689.3) (0, 1556.3, 1699) (0, 1683.5, 1951.5) 

(0, 1646.2, 2070.9) (0, 1592.7, 2161.2) (0, 1585.1, 2156.9) (0, 1581.8, 2150.3) (0, 1587.5, 2155.6) α-cut 
arithmetic 

(0, 1582.7, 2151.6) (0, 1586.8, 2155.2) (0, 1582.9, 2151.7) (0, 1586.7, 2155.1) (0, 1583.1, 2151.8) 
(0, 0, 100) (202.15, 302.15, 402.15) (1150.5, 1250.5, 1350.5) (1848, 1948, 2048) (1597.5, 1697.5, 1797.5)

(649.5, 749.5, 849.5) (0, 51.981, 103.962) (202.48, 302.48, 402.48) (1150.5, 1250.5, 1350.5) (1848, 1948, 2081.39) 

L_IRB 

Tω 
arithmetic 

(1608.7, 1708.7, 1808.7) (649.5, 749.5, 849.5) (0, 40.852, 81.704) (191.35, 291.35, 391.35) (1150.5, 1250.5, 1350.5)
4000 693.88 306.12 1306.1 2000 

1693.9 693.88 0 306.12 1306.1 Crisp 
2000 1693.9 693.88 0 306 

(4000, 4000, 4000) (0, 0, 0) (1110.7, 1810.9, 2125.3) (1101, 3089.7, 3136.9) (848.48, 3078.2, 3184.5)
(814.44, 3036.2, 3236.8) (853.9, 3019.2, 3246.7) (862.04, 2990.5, 3224.2) (876.44, 3003.2, 3234.8) (877.34, 3006.9, 3238.4)α-cut 

arithmetic 
(879.92, 3005.5, 3237.6) (877.6, 3005.6, 3237.4) (880.22, 3006, 3238) (877.81, 3005.7, 3237.5) (880.12, 3005.9, 3237.9)

(0, 4000, 4000) (637.074, 697.85, 789) (350.67, 353.81, 380.5) (1250.1, 1250.8, 1343.3) (1948, 1948, 2045.085)
(1697.5, 1697.5, 1794.8) (749.5, 749.5, 829.447) (51.982, 51.982, 57.53) (302.48, 302.48, 334.7) (1250.5, 1250.5, 1383.7)

R_RIRB 

Tω 
arithmetic 

(1959.1, 1959.1, 2056.9) (1708.7, 1708.7, 1797.4) (749.5, 749.5, 819.872) (40.855, 40.855, 45.21) (291.35, 291.35, 322.42)
1200 1000 1306.1 2000 1693.9 

693.88 0 306.12 1306.1 2000 Crisp 
1693.9 693.88 0 306.12 1306.1 

(1200, 1200, 1200) (0, 1000, 1100) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
(0, 0, 85.376) (0, 15.071, 215.07) (0, 18.95, 218.95) (0, 26.738, 226.74) (0, 32.982, 232.98) α-cut 

arithmetic 
(0, 31.557, 231.56) (0, 32.777, 232.78) (0, 31.885, 231.88) (0, 32.922, 232.92) (0, 31.906, 231.91) 
(1100, 1200, 1300) (900, 0, 1100) (1202.2, 1302.2, 1402.2) (1848.3, 1948.3, 2048.3) (1597.5, 1697.5, 1797.5)

(649.5, 749.5, 849.5) (0, 51.981, 151.981) (202.48, 302.48, 402.48) (1150.5, 1250.5, 1350.5) (1848, 1948, 2048) 

R_SI 

Tω 
arithmetic 

(1608.7, 1708.7, 1808.7) (649.5, 749.5, 849.5) (0, 40.852, 140.852) (191.35, 291.35, 391.35) (1150.5, 1250.5, 1350.5)
425 122.45 522.45 800 677.55 

-189.9 -677.5 -930.1 -782.65 -357.65 Crisp 
-55.1 -152.55 -527.55 -780.1 -632.65 

(258.33, 425, 675) (0, 1759.4, 2619.4) (-858.98, -5.1012, 728.9) (-2091.2, -635.88, -41.9) (-1201.7, 42.602, 636.88)
(-1382.7, 24.188, 691.64) (-1575.3, -98.947, 639.8) (-1634.8, -135.9, 611.27) (-1676.4, -158.95, 589.3) (-1684.4, -160.63, 588.3)α-cut 

arithmetic 
(-1686.9, -164.04, 584.7) (-1686, -161.86, 587.36) (-1688.2, -164.62, 584.3) (-1686.4, -162.1, 587.12) (-1688.1, -164.54, 584.4)

(0, 425, 531.25) (80.86, 120.86, 205.86) (416.8, 500.2, 625.25) (649.34, 779.21, 974.01) (565.84, 679.01, 848.76)
(249.833, 299.8, 374.75) (-273.78, -219.02, -144) (-591.3, -473.03, -394.2) (-434.8, -347.83, -272.8) (649.34, 779.21, 974.01)

WC 

Tω 
arithmetic 

(-129.7, -61, 99.1) (-664, -531.56, -377) (-1176, -941.24, -784) (-1499, -1199.7, -999) (-1343, -1074.5, -895) 

 
In the following sections, we shall examine the above model with the varied fuzziness of 

input and varied lengths of the system time interval for the further examinations of the two 
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types of fuzzy arithmetic in the fuzzy system dynamics evaluations.  

5.3.1 Comparisons in Varied Fuzziness and Skewed Membership Functions of Input 

Data 

In this subsection, we further examine the above model of fuzzy system dynamics in varied 

fuzziness and skewed membership functions of the input. For the discussions, the results will 

be discussed after the defuzzification by using Eq. (3.58) to provide the decision-maker the 

representative value. 

1) Varied fuzziness⎯In this test, the symmetrical input data as shown in Table 5.1 (here 

also termed the ‘medium-fuzzy’ case for the distinguishing purpose) are made both fuzzier 

and less fuzzy in the tests. For the fuzzier case, the mode minus the left bound and the right 

bound minus the mode of k_  R OrR  are tripled as k_  R OrR  = (800, 1000, 1200) and kWPC  

as kWPC  = (1, 2.5, 4), as they influence the entire model. For the less fuzzy case, likewise, 

but the fuzziness is cut to a half as k_  R OrR  = (950, 1000, 1050) and kWPC  = (2.25, 2.5, 

2.75). The results with the fuzzy arithmetic are again computed and as shown in Figs. 5.8 and 

5.9 after defuzzification. 

In Figure 5.8, with the α-cut arithmetic, thus we observe that the L_OrB, L_AI, and TMP 

after the defuzzification in all three cases of fuzziness show the gradual stabilization too with 

the additional results. It indicates that the fuzzier the input, the higher the level and 

oscillations of the cyclic pattern of these variables. In addition, due to the space limitation, 

without the data given herein, it can be pointed out that because of the nonnegativity of these 

variables, the membership functions of these variables have been rendered non-symmetrical 

even with the symmetrical input case as Table 5.2. 

In Figure 5.9, with the Tω arithmetic, the results of L_OrB in all three cases of input 

fuzziness still stabilize at the same level. And it is unaffected by the different amounts of 
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input fuzziness. Mathematically, this is due to the nonnegativity requirement and 

non-symmetricity of membership functions resultant even with the symmetrical input case. 

The pattern of the L_AI also remains in the cyclic steady pattern as before in the three cases of 

fuzziness. However, the fuzzier the input, the higher slightly the cyclic level of the variable. 

Of course, this is due to the influence of the different amount of fuzziness included. Also, a 

similar situation occurs in the TMP, except that it has a stable or stable and cyclic mixed 

condition.  

 

 

 
(a) L_OrB (b) L_AI (c) TMP 

Figure 5.8 The comparison of α-cut arithmetic results for fuzzier, medium-fuzzy, and less 
fuzzy input data after defuzzification. 

 

 

(a) L_OrB (b) L_AI (c) TMP 
Figure 5.9 The comparison of Tω arithmetic results for fuzzier, medium-fuzzy, and less fuzzy 

input data after defuzzification. 
   

Similar to the earlier observation, the levels of these variables with the α-cut arithmetic are 

higher than that with the Tω arithmetic, due to the accumulating phenomenon of fuzziness of 

the α-cut arithmetic and the non-symmetricity of the membership functions. Moreover, 

Fuzzier Less fuzzy Medium-fuzzy 

Fuzzier Less fuzzy Medium-fuzzy 
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generally closer results are found with the Tω arithmetic in the three cases of input fuzziness 

examined than that in the α-cut arithmetic. 

2) Skewed fuzziness⎯For the skewed fuzziness, first we use the slant-right membership for 

the above three cases of input fuzziness. For the fuzzier case, k_  R OrR  = (800, 1000, 1100) 

and kWPC  = (1.75, 2.5, 2.625). For the medium-fuzzy case, k_  R OrR  = (850, 1000, 1100) 

and kWPC  = (2.25, 2.5, 2.625). For the less fuzzy case, k_  R OrR  = (875, 1000, 1100) and 

kWPC  = (2.365, 2.5, 2.625). In addition, we also use the slant-left membership function, and 

for the fuzzier case, k_  R OrR  = (900, 1000, 1200) and kWPC  = (2.365, 2.5, 3.25). For the 

medium-fuzzy case, k_  R OrR  = (900, 1000, 1150) and kWPC  = (2.365, 2.5, 2.75), and for 

the less fuzzy case, k_  R OrR  = (900, 1000, 1125) and kWPC  = (2.365, 2.5, 2.625). The 

results by the two types of fuzzy arithmetic are again computed and shown in Figs. 5.10 and 

5.11 after defuzzification. 

In Figure 5.10, with the α-cut arithmetic, three important observations may be made: 

(a) No matter whether the membership functions of the inputs are slant-right or slant-left, the 

levels of the cyclic patterns of the variables are still influenced by the amount of 

fuzziness.  

(b) The levels are generally slightly lower with the slant-left membership-function than that 

with the slant-right membership-function, and more importantly, both are generally lower 

than that in the symmetrical membership-function input (compared with Figure 5.8).  

(c) Moreover, in the case both non-symmetrical cases give closer results in the three cases of 

input fuzziness than that in the symmetrical input case (compared to Figure 5.8).  

The reasons for these happenings of (b) and (c) are because the nonsymmetrical inputs, 

whether they are slant-right or slant-left, in this case may have the chance to decrease the 

fuzziness in the positive side on the real line and/or to increase the fuzziness in the negative 
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side to even more negative. Thus, when the nonnegativity requirements hold, they may give 

lower steady levels and closer results for the three cases of fuzziness. Still this may occur in 

this case only; other results in different cases might be obtained. Another point maybe worthy 

of mention is that in the slant-left membership function input, the fuzziness may influence the 

levels of the TMP reversely and differently from the other two variables’; that is, the lowest 

level of TMP occurs in the fuzzier case, next lowest level in the medium-fuzzy case, and the 

highest level in the less fuzzy case. 

 

 

(a) L_OrB (b) L_AI 
(1) Slant-right membership-function input 

(c) TMP 

(a) L_OrB (b) L_AI 
(2) Slant-left membership-function input 

(c) TMP 

Figure 5.10 The results of α-cut arithmetic with skewed-membership-function and 
varied-fuzziness input data after defuzzification. 

 

In Figure 5.11, in the Tω fuzzy arithmetic, the last two observations (b) and (c) above on the 

α-cut arithmetic are generally not occurring. The only exception is for the first 11 periods of 

L_AI and first six periods of TMP, where the non-symmetrical input data have realized closer 

results in the three cases of input fuzziness (Figure 5.11 (1) and (2), (b) and (c), compared 

with Figure 5.9). This is because the Tω fuzzy arithmetic takes only the largest fuzziness 

Fuzzier Less fuzzy Medium-fuzzy 
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encountered in the operation. Another point, which may be mentioned, is that the 

nonsymmetrical membership function input may change the level size-sequence of the L_AI 

in the three cases of input fuzziness compared with the symmetrical case. A slightly similar 

situation also occurs in the TMP in this case.  

  

  

(a) L_OrB (b) L_AI 
(1) Slant-right membership-function input 

(c) TMP 

(a) L_OrB (b) L_AI 
(2) Slant-left membership-function input 

(c) TMP 

Figure 5.11 The results of Tω fuzzy arithmetic with skewed-membership-function and 
varied-fuzziness input data after defuzzification. 

 
In this case, the Tω arithmetic provides more stable results (or conversely less sensitive 

results) to the amount of fuzziness and non-symmetricity of the input data.  

From these results, tests 1) and 2) along with that of Figs. 5.8-5.11, the consideration of the 

influence of the system fuzziness should be taken in the system dynamics. The crisp analysis 

has lack of this consideration and different results maybe result. 

5.3.2 A Sensitivity Test for the System Time Delay and a Further Comparison with the 

Crisp Model  

The interval DT in the system dynamics represents the system time delay in the operational 

Fuzzier Less fuzzy Medium-fuzzy 
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equations and also controls the frequency of the system variable updates. In this subsection, 

the results of a sensitivity test for the effects of DT (= 0.5, 1, 1.5) with the symmetrical input 

data and the two type of fuzzy arithmetic are provided for the examination (Figs. 5.10-5.11). 

By these results, the fuzzy arithmetic results as their crisp counterpart are sensitive to the 

system time delay DT.  

From Figure 5.12, with the α-cut arithmetic, it shows that different DTs result in different 

stable statuses for all these variables. Among these variables, DT = 1.5 results in cyclic steady 

patterns, while the other DTs result in straight stable conditions for these variables. DT = 1.5 

also results in the highest level of L_OrB and of L_AI but lowest level of TMP. On the other 

hand, the smallest DT results in the lowest level of L_OrB and of L_AI but the highest level of 

TMP. If the lowest TMP is desired, DT = 1.5 may be chosen. However, if a straight stable 

TMP is desired, DT = 1.0 may be elected, in which the levels of L_OrB and L_AI are also 

moderate. However, the costs of the L_OrB, L_AI and TMP may thus play an important role 

in determining the DT. 

Figure 5.13 shows that the Tω arithmetic results are also sensitive to the system time delay 

DT. The DT may only affect the L_OrB in the first five intervals (with DT = 1.5) and affect 

the TMP for the first 12 weeks and for the long run, the DT may have only little influence on 

these variables. For the L_AI, it has been shown that the longer the DT, the less the number of 

cycles and the higher the oscillation and higher the level of the cyclic pattern exhibit. In 

addition, a smaller DT cyclically stabilizes the L_AI quicker at first fewer intervals. In the Tω 

arithmetic and in this case, DT = 0.5 gives a better performance for the system than the others. 

Furthermore, although DT = 0.5 gives the best performance of the system in view of the L_AI, 

the TMP may require a big number at the initial periods and thus this may again influence the 

final decision of the decision-maker.  

  Further Figure 5.14 shows the result of the crisp arithmetic evaluation for the model. In 
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addition to the comparisons already made by Figs. 5.2-5.7, the following comparison may be 

made additionally. 

In Figure 5.12 (the α-cut arithmetic) and Figure 5.13, the significant difference appears in 

both stabilizing patterns and/or levels of these variables. It indicates that the fuzziness or 

uncertainty shall not be omitted in the system dynamics evaluations. Between Figs. 5.13 (the 

Tω arithmetic) and 5.14, although the Tω arithmetic result patterns after defuzzification may 

appear to be somewhat similar to that of the crisp arithmetic evaluation results, still 

differences in stabilizing levels are detected in the L_AI. Apparently due to the influence of 

the fuzziness, at DT = 0.5 and 1.5, yet lower general levels are revealed, while DT = 1.5 also 

translates into the larger oscillation than that with the crisp evaluation. At DT = 1.0, although 

the general level of the L_AI with the Tω arithmetic (after defuzzification) may appear to 

somewhat equal the crisp evaluation, but that from the Tω arithmetic after consideration of the 

fuzziness decreases somewhat from a higher general level (starting from t = 12 approximately 

in Figure 5.13 (b)) and that of the crisp evaluation appears constant. The reason for this 

difference may be that while considering the fuzziness, the R_MI must be conditioned 

positive. Therefore, by the Tω arithmetic the L_AI becomes slant right in this case. Thus, also 

with DT = 1, L_AI starts with a higher (general) level. Also, with the DT = 1, TMP shows a 

pattern (after defuzzification) that is different from the crisp evaluation to a degree (see Figs. 

5.13 and 5.14, (c)).  

These observations again indicate the difference between the consideration of the fuzziness 

(uncertainties) in the system dynamics and the crisp evaluations.  

In addition, a difference is detected between Figure 5.14 with DT = 1 and Figure 5.10. The 

amount of fuzziness influences the system behaviors (level and/or pattern).  
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(a) L_OrB (b) L_AI (c) TMP 

Figure 5.12 The results of α-cut arithmetic on DT = 0.5, 1, 1.5 after defuzzification. 
 

                                                    

 
(a) L_OrB (b) L_AI (c) TMP 

Figure 5.13 The results of Tω fuzzy arithmetic on DT = 0.5, 1, 1.5 after defuzzification. 
 

                   

(a) L_OrB (b) L_AI (c) TMP 

Figure 5.14 The crisp arithmetic results with DT = 0.5, 1, 1.5. 
 

DT = 0.5 DT = 1 DT = 1.5 

DT = 0.5 DT = 1 DT = 1.5 

DT = 0.5 DT = 1 DT = 1.5 
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Chapter 6 

Conclusion and Future Research 

Fuzzy arithmetic has been widely applied to many fields. In this research we extend (the) 

fuzzy operator on fuzzy numbers which include α-cut arithmetic, weakest t-norms and 

Yager’s t-norms. In the meanwhile, this research develops a system dynamics analysis based 

on the applications of fuzzy arithmetic. The system dynamics has been proven an effective 

tool in analyzing complex systems’ dynamics. Thus, this paper has proposed a fuzzy system 

dynamics evaluation based on further the applications of fuzzy arithmetic for the uncertain 

variables/parameters. The proposed fuzzy system dynamics has been successfully applied to a 

customer-producer-employment model with useful results obtained. In addition, this proposed 

fuzzy system has been tested dynamics with the varied fuzziness, symmetry and 

non-symmetry of fuzzy input, and interval of system time delay also with useful results 

obtained. In particular, the following observations can be made.  

(1) Both types of fuzzy arithmetic provided the steady-state analysis of the model for the 

system variables.  

(2) In the α-cut arithmetic, the fuzziness of the variables stabilized but which was also 

estimated fuzzier than that with the Tω fuzzy arithmetic, due to the accumulating 

phenomenon of fuzziness of the α-cut arithmetic. In addition, the fuzzier the input, the 

higher the level and/or oscillation of stable or cyclic steady pattern of the variables. In 

addition, the defuzzified general levels of these variables in the nonsymmetrical input 

cases in this case were generally lower than that of the symmetrical case, due to that the 

nonnegativity was required with these variables and the accumulating phenomenon of 

fuzziness of the α-cut arithmetic. The nonsymmetrical input cases thus also gave closer 

results in the three cases of input fuzziness examined in this model than the symmetrical 

case.  
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(3) The Tω arithmetic provided a smaller fuzziness and defuzzified general levels of variables 

due to the concept of taking only the maximal fuzziness encountered and resultant in the 

operation. In the case, also the Tω arithmetic provided more stable results or conversely 

less sensitive ones to the varying amounts of input fuzziness and the nonsymmetricity 

(membership function) of inputs.  

Therefore, it can be concluded that due to the inclusion of fuzziness (uncertainties), the 

system dynamics (variable interaction) may change the behaviors (variables’) either in the 

stable or cyclic steady pattern or level of these variables. The fuzzy system dynamics may 

provide more information for the system dynamics regarding uncertainties if the system is 

consisting of variable interaction and fuzzy inputs and/or fuzzy parameters.  

Further research may investigate a number of issues remaining. The system fuzziness may 

be carried over time intervals. However, how to effectively control the system fuzziness from 

being uncontrollably accumulating may demand more effort. Particularly, a different type of 

fuzzy arithmetic or controlling mechanism for the fuzziness of the fuzzy arithmetic may be 

demanded. The other types of system dynamics, e.g., the linear dependent, nonlinear 

independent and nonlinear dependent, may need to be investigated. In particular, a linear 

dependent type of system dynamics can be investigated that there could exist a certain type of 

constraints in a system (e.g., the total amount constraint of input and output resources) on rate 

variables to and from a level variable. In this case, all variables may be modeled and 

constrained too due to the interaction of the variables. Thus, with the interaction of the 

variables, a different type of fuzzy system dynamics may be investigated with fuzzy 

constraints in the linear dependent type relationships among or between the rate variables. 

Also, other types of system dynamics or applications may deserve the investigations too, e.g., 

those investigated in Coylea (1997) and applications reviewed in this research. 
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APPENDIX A (The division of weakest t-norm) 

Appendix A shows that the division of L-R fuzzy number. First of all, we must decide the 

left or right fuzzy number as compared bounded based on basic supposed z ≤ a2/b2. Then, we 

can get 2

2 2

axz
b b

= ≤  while the basic supposed is 
2

xz
b

= . Based on initial consider the case of 

a2 and b2, which is positive or negative, we can obtain x ≤ a2 or x ≥ a2. If x ≤ a2, then i LA can be 

obtained. Otherwise, i RA can be obtained. Similarly, we can obtain 2 2

2

a az
y b

= ≤  to decide 

compared bounded of iB . Here this research find that the variable y must consider inverse 

when compared bounded, i.e. 2 2

2 3

1/ /
1/ 1/

b z aR
b b

⎛ ⎞−
⎜ ⎟−⎝ ⎠

in Case I. The results of inverse made that the 

bounded can compare in condition of a2/b2-z. Now, we suppose L=R, then division can be 

derived as follows:  

 

Case I: For a2 > 0, b2 > 0 and b1 > 0, 

1) For 2 2/z a b≤ , 

2

2 2

axz
b b

= ≤ , since x ≤ a2, therefore, i LA  can be obtained,  

2 2

2

a az
y b

= ≤ , since y ≥ b2, therefore, i RB  can be obtained. 

i i i i

{ }

/

2 2 2 2
2 2

2 1 2 3

2 2 2 2

2 1 2 2 2 3

2 2

( / )( ) sup ( ( ), ( ))

1/ /    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

a z b b z aA z b B a z L R
a a b b

a b z a b zL R
a a b a b b

L a b z

=
=

⎧ ⎫⎛ ⎞⎛ ⎞− × −⎪ ⎪= × = ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }2 1 2 2 2 3(( ) / , (1/ 1/ )) .a a b a b b− −

 

For 2 2 2 1 2 2 2 3/ max(( ) / , (1/ 1/ ))z a b a a b a b b≥ − − − ; it is 0 otherwise. 
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2) for 2 2/z a b> , ( i RA  and i LB  can be obtained) 

i i i i

{ }

/

2 2 2 2
2 2

3 2 1 2

2 2 2 2

3 2 2 2 1 2

2 2

( / )( ) sup ( ( ), ( ))

/ 1/    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

z b a z a bA z b B a z R L
a a b b

z a b z a bR L
a a b a b b

R z a b

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞× − −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

= −{ }3 2 2 2 1 2(( ) / , (1/ 1/ ))a a b a b b− −

 

for 2 2 3 2 2 2 1 2/ max(( ) / , (1/ 1/ ))z a b a a b a b b< + − − ; it is 0 otherwise. 

Therefore, due to above 1) and 2), we can obtain that  

i i
2 2 2 1 2 2 2 3

2 2 2 2 3 2 2 2 1 2

( / max(( ) / , (1/ 1/ )),
               / , / max(( ) / , (1/ 1/ ))).
A B a b a a b a b b

a b a b a a b a b b
= − − −

+ − −
                    (A-1) 

Case II: For a2 < 0, b2 < 0 and b3 < 0,  

1) for 2 2/z a b≤ , RA  and i LB  can be obtained.⇒  

i i i i

{ }

/

2 2 2 2
2 2

3 2 1 2

2 2 2 2

2 3 2 2 2 1

2 2

( / )( ) sup ( ( ), ( ))

/ 1/    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

z b a z a bA z b B a z R L
a a b b

a b z a b zR L
a a b a b b

L a b z

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞× − −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

= −{ }2 3 2 2 2 1(( ) / , (1/ 1/ ))a a b a b b− −

 

for 2 2 2 3 2 2 2 1/ max(( )/ , (1/ 1/ ))z a b a a b a b b≥ − − − ; it is 0 otherwise. 

2) for 2 2/z a b> , LA  and RB  can be obtained. 

i i i i

{ }

/

2 2 2 2
2 2

2 1 2 3

2 2 2 2

1 2 2 2 3 2

2 2

( / )( ) sup ( ( ), ( ))

1/ /    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

a z b b z aA z b B a z L R
a a b b

z a b z a bL R
a a b a b b

R z a b

=
=

⎧ ⎫⎛ ⎞⎛ ⎞− × −⎪ ⎪= × = ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }1 2 2 2 3 2(( ) / , (1/ 1/ ))a a b a b b− −
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for 2 2 1 2 2 2 3 2/ max(( ) / , (1/ 1/ ))z a b a a b a b b< + − − ; it is 0 otherwise. 

Therefore, due to above 1) and 2), we can obtain that  

i i
2 2 2 3 2 2 2 1 2 2

2 2 1 2 2 2 3 2

( / max(( ) / , (1/ 1/ )), / ,
               / max(( ) / , (1/ 1/ )))
A B a b a a b a b b a b

a b a a b a b b
= − − −

+ − −
                       (A-2) 

Case III: For a2 = 0, b2 > 0 and b1 > 0 

1) for 2 2/z a b≤ , i LA  and i RB  can be obtained. 

i i i i

{ }

/

2 2 2 2
2 2

2 1 2 3

2 2 2 2

2 1 2 2 2 3

2 2

( / )( ) sup ( ( ), ( ))

1/ /    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) /((

w
x y z

A B z T A x B y

a z b b z aA z b B a z L R
a a b b

a b z a b zL R
a a b a b b

L a b z a

=
=

⎧ ⎫⎛ ⎞⎛ ⎞− × −⎪ ⎪= × = ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }2 1 2) / )a b−

 

for 2 2 2 1 2/ ( ) /z a b a a b≥ − − ; it is 0 otherwise. 

2) for 2 2/z a b> , i RA  and i LB  can be obtained.⇒  

i i i i

{ }

/

2 2 2 2
2 2

3 2 1 2

2 2 2 2

3 2 2 2 1 2

2 2

( / )( ) sup ( ( ), ( ))

/ 1/    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) /((

w
x y z

A B z T A x B y

z b a z a bA z b B a z R L
a a b b

z a b z a bR L
a a b a b b

R z a b a

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞× − −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

= −{ }3 2 2) / )a b−

 

for 2 2 3 2 2/ ( ) /z a b a a b< + − ; it is 0 otherwise. 

Therefore, due to above 1) and 2), we can obtain that  

i i
1 2 3 2( / ,0, / )A B a b a b=                                                  (A-3) 

Case IV: For a2 = 0, b2 < 0 and b3 < 0, 

1) for 2 2/z a b≤ , i RA  and i LB  can be obtained. ⇒  
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i i i i

{ }

/

2 2 2 2
2 2

3 2 1 2

2 2 2 2

2 3 2 2 2 1

2 2

( / )( ) sup ( ( ), ( ))

/ 1/    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) /((

w
x y z

A B z T A x B y

z b a z a bA z b B a z R L
a a b b

a b z a b zR L
a a b a b b

L a b z a

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞× − −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

= −{ }2 3 2) / )a b−

 

for 2 2 2 3 2/ ( ) /z a b a a b≥ − − ; it is 0 otherwise. 

2) for 2 2/z a b> , ⇒ i LA  and i RB  can be obtained. ⇒ 

i i i i

{ }

/

2 2 2 2
2 2

2 1 2 3

2 2 2 2

1 2 2 2 3 2

2 2

( / )( ) sup ( ( ), ( ))

1/ /    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) /((

w
x y z

A B z T A x B y

a z b b z aA z b B a z L R
a a b b

z a b z a bL R
a a b a b b

R z a b a

=
=

⎧ ⎫⎛ ⎞⎛ ⎞− × −⎪ ⎪= × = ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }1 2 2) / )a b−

 

for 2 2 1 2 2/ ( ) /z a b a a b< + − ; it is 0 otherwise. 

Therefore, due to above 1) and 2), we can obtain that  

i i
3 2 1 2( / ,0, / )A B a b a b=                                                  (A-4) 

Case V: For a2 > 0, b2 < 0 and b3 < 0, 

1) for 2 2/z a b≤ , i RA  and i RB  can be obtained.  

i i i i

{ }

/

2 2 2 2
2 2

3 2 2 3

2 2 2 2

2 3 2 2 2 3

2 2

( / )( ) sup ( ( ), ( ))

1/ /    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

z b a b z aA z b B a z R R
a a b b

a b z a b zR R
a a b a b b

L a b z

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞× − −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }2 3 2 2 2 3(( ) / , (1/ 1/ ))a a b a b b− −

 

for 2 2 2 3 2 2 2 3/ max(( ) / , (1/ 1/ ))z a b a a b a b b≥ − − − ; it is 0 otherwise. 
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2) for 2 2/z a b> , ⇒ i LA  and i LB  can be obtained. 

i i i i

{ }

/

2 2 2 2
2 2

2 1 1 2

2 2 2 2

1 2 2 2 1 2

2 2

( / )( ) sup ( ( ), ( ))

1/ /    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

a z b b z aA z b B a z L L
a a b b

z a b z a bL L
a a b a b b

R z a b

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞− × −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }1 2 2 2 1 2(( ) / , (1/ 1/ ))a a b a b b− −

 

for 2 2 1 2 2 2 1 2/ max(( ) / , (1/ 1/ ))z a b a a b a b b< + − − ; it is 0 otherwise. 

Therefore, due to above 1) and 2), we can obtain that  

i i
2 2 2 3 2 2 2 3 2 2

2 2 1 2 2 2 1 2

( / max(( ) / , (1/ 1/ )), / ,
               / max(( ) / , (1/ 1/ )))
A B a b a a b a b b a b

a b a a b a b b
= − − −

+ − −
                      (A-5) 

Case VI: For a2 < 0, b2 > 0 and b1 > 0, 

1) for 2 2/z a b≤ , i LA  and i LB  can be obtained. 

i i i i

{ }

/

2 2 2 2
2 2

2 1 1 2

2 2 2 2

2 1 2 2 2 1

2 2

( / )( ) sup ( ( ), ( ))

/ 1/    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

a z b z a bA z b B a z L L
a a b b

a b z a b zL L
a a b a b b

L a b z

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞− × −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }2 1 2 2 2 1(( ) / , (1/ 1/ ))a a b a b b− −

 

for 2 2 2 1 2 2 2 1/ max(( ) / , (1/ 1/ ))z a b a a b a b b≥ − − − ; it is 0 otherwise. 

2) for 2 2/z a b> , i RA  and i RB  can be obtained. 

i i i i

{ }

/

2 2 2 2
2 2

3 2 2 3

2 2 2 2

3 2 2 2 3 2

2 2

( / )( ) sup ( ( ), ( ))

1/ /    max ( ), ( / ) max ,
1/ 1/

/ /    max ,
( ) / (1/ 1/ )

   ( / ) / max

w
x y z

A B z T A x B y

z b a b z aA z b B a z R R
a a b b

z a b z a bR R
a a b a b b

R z a b

=
=

⎧ ⎫⎛ ⎞ ⎛ ⎞× − −⎪ ⎪= × = ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= −{ }3 2 2 2 3 2(( ) / , (1/ 1/ ))a a b a b b− −
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for 2 2 3 2 2 2 3 2/ max(( ) / , (1/ 1/ ))z a b a a b a b b< + − − ; it is 0 otherwise. 

Therefore, due to above 1) and 2), we can obtain that  

i i
2 2 2 1 2 2 2 1 2 2

2 2 3 2 2 2 3 2

( / max(( ) / , (1/ 1/ )), / ,
                / max(( ) / , (1/ 1/ ))).
A B a b a a b a b b a b

a b a a b a b b
= − − −

+ − −
                       (A-6) 

From different case proof, we see that Tω-based division preserves the shape of 

LR-fuzzy numbers with bounded or unbounded supports. In this research we do not 

discuss that denominator is zero and some special cases. 
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