Abstract

In this thesis, we analyse a time-delay model to study the dynamics of
fishery resource system. Firstly, we propose a criteria for the unique positive
equilibrium point of the system. Secondly, we derive different sufficient con-
ditions for local and global stability of the positive equilibrium point. Finally,

we illustrate our results by some examples.

Keywords: Fishery resources; Delay; Stability; Lyapunov functional; Re-

served zone
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1 Introduction

Fishery resource modeling is concerned with the harvesting of fish. That is, how
do we harvest the fish with the result that the fishery resource does not disappear.
In recent years, many research workers propose and analyse a mathematical model
to study the dynamics of a fishery resource system. In particular, Leung and Wang
[7] presented a mathematical model for commerical fishing to study the phenomena
of non-explosive fishing capital and non-extinctive fishery resources. Kitabatake [5]
developed a dynamic model for fishery resources with predator-prey relationship
based on data for Lake Kasumigaura in Japan. Clark [2] studied the problem of
combined harvesting of two independent fish species governed by the logistic law
of growth. Based on thee work of Clark [2], Chaud-huri [1] proposed a model to
study the combined harvesting of two competing fish species. Mesterton-Gibbons [8]
extended the work of Clark [2] and found criteria for the survival of less produtive
species as a function of the system parameters and initial stocks.

In 2003, B.Dubey, Peeyush Chandra, Prawal Sinha proposed a mathematical
model of a fishery resource system in an aquatic enviroment that consists of reserved
area. [3] showed that if fishery is exploited continuously in the unreserved area, fish
population can be maintained at an appropriate equilibrium level. But is the real
state like this? If we must consider that it has to be the factor that the fish grows up
from the seedling to multiply the ability of future generation through one periodic
time, how is the dynamic behavior of this model? In order to make this model
correspond with the factual factor, so we assume the fishery resource system model
with reserved area in which both species in reserved and unreserved obey the logistic
law of growth with time delay. Because this assumption corresponds to the fact that
the fish species cannot give birth to fishes when the species are infants, fishes have
to mature for a duration of time. The main purpose of this thesis is to analyse the
stability of the unique positive equilibrium of the system. In section 2, we introduce

some useful definitions and theorems. In section 3, we give sufficient conditions for



the unique positive equilibrium point of the system. In section 5, we analyse uniform
persistence of the system. In section 4 and 6, we discuss the local and global stability
by constructing respective differential Lyapunov functionals. Finally, in section 7,

we illustrate our results by some examples.



2 Preliminaries

For ordinary differential equations, we have definitions and theorems of stability
theory and we view the solution of initial value problem as maps in Euclidean space.
In order to establish a similar view for the solution of delay differential equations,
we need some definitions.

We denote C = C([—7,0], R") the Banach space of continuous functions map-
ping the interval [—7, 0] into R™ with the topology of uniform convergence. That is,
for ¢ € C, the norm of ¢ is defined as |¢p| = sup |¢(0)], where | -| is a norm in
R™. We define z; € C as x(0) = z(t +0), 0 066[[_:’7?], 0]. Assume that © is a subset

of Cand f: Q2 — R"is a given function, then we consider the following general

nonlinear autonomous system of delay differential equation

#(t) = flx) (2.1)

Definition 2.1 /6] Let R2 = {x € R*|x; > 0, i« = 1,2}. The notation z > 0
denotes x € IntRi. The system (2.1) is said to be unifromly persistent if there
exists a compact region D C IntR2 such that every positive solution x(t) of the

system (2.1) with the initial conditions eventually enters and remains in the region

D.

Definition 2.2 /6] We say that ¢ € B(0,0) if ¢ € C and |p| < &, where
[¢] = sup [¢(0)].
oe[—.0]

el-m,
(i) The solution x = 0 of the system (2.1) is said to be stable if, for any o € R,
€ > 0, there is a 0 = 0(€,0) such that ¢ € B(0,6) implies x¢(o,¢) € B(0,¢)

for t > o. Otherwise, we say that x = 0 is unstable.

(i) The solution x = 0 of the system (2.1) is said to be asymptotically stable
if it is stable and there is a by = b(o) > 0 such that ¢ € B(0,by) implies
x(o,0)(t) — 0 as t — 0.



(i1i) The solution x = 0 of the system (2.1) is said to be uniformly stable if the

number & in the definition of stable is independent of o.

(iv) The solution x = 0 of the system (2.1) is said to be uniformly asymptotically
stable if it is uniformly stable and there is a by > 0 such that, for every
n > 0, there is a to(n) such that ¢ € B(0,by) implies xi(o,¢) € B(0,n) for
t > o +to(n), for every o € R.

Theorem 2.1 [6] Assume that u(-) and w(-) are nonnegative continuous, u(0) =

w(0) =0, liin u(s) = +o0, and that V : C — R is continuous and satisfies

V(¢) = u(lp(0)])

and

V($) < —w(|p(0)]).

Then the solution x = 0 of the system (2.1) is uniformly stable, and every solutions
is bounded. If in addition, w(s) > 0 for s > 0, then x = 0 is globally asymptotically
stable.

Lemma 2.1 [/ (Barbalat’s Lemma) Let f be a nonnegative function defined

on [0,00) such that f is integrable on [0,00) and uniformly continuous on [0,00).

Then

lim f(t) = 0.

t—o0



3 The Model

3.1 Formulation of the Model

An aquatic ecosystem consisting of reserved and unreserved areas with time

delays is of the form

21(t) = ra(t) [1 - %:ﬁ)] — o1x1(t) + o2x2(t) — gex(t)
oot — (3.1)
To(t) = raa(t) {1 _ %} — oys(t) + o (8)
with the initial conditions
z;(0) =¢;(0) >0 , 0€[-7,0] , ¢, €C([-7,0],R})
(3.2)

T =max{m, 7} , i=1,2

where rq, ro, k1, ko, 01, 09, ¢, and e are all assumed to be positive constants. For
i = 1,2, z;(t) denote the respective biomass densities of the same fish population
inside the unreserved and reserved areas; r; are the respective intrinsic growth rates
of fish subpopulation inside the unreserved and reserved areas; k; are the respective
carrying capacities of fish species in the unreserved and reserved areas. o; denotes
the rate that the fish subpopulation of the unreserved area migrate into reserved
area, oy denotes the rate that the fish subpopulation of the reserved area migrate
into unreserved area. Moreover e is the toatal effort applied for harvesting the fish
population in the unreserved area, and ¢ is the catahability coefficient of fish species
in the unreserved area.

We note that if 05 = 0 and 7 — 07 — ge < 0, then 4(t) < 0. Similarly, if
o1 =0and 7ry—o0y <0, then Z5(t) < 0. Hence, throught above analysis, we assume

that,

rn—or—qe>0 , r9g—09>0 (3.3)



3.2 Existence and Uniqueness of Positive Equilibrium Point

All we want to disscuss is the population of the ecosystem, so we just consider
the first quardnt in the z;-x5 plane.

Clearly, we can check that the system (3.1) has only two nonnegative equilib-
rium points, namely E = (0,0) and E* = (23, 23), where 27 and 23 satisfy

2
*

e (r1 — o1 — qe)z} (34)
1

Ooxy =

2
ToT%

ks

o) = (09 — ro)zy + (3.5)
Subtituting the value of z} from (3.4) into (3.5), we get a cubic equation in x} as

ax’{S + bm{2 +ceri+d=0

where
r2ry
=53
b — _27’17“2(7“1 — 01 — qe)
/{31]{320'%
(3.6)
. r2(ry — o1 —(]6)2 71(ra — 09)
Cc = J—
k’gO‘% ]{?10'2
d= T2_0-2(7"1—0'1—q€)—0'1

02
Remark 3.1 Let z§ and 3 satisfy the equations (3.4) and (3.5) and a, b, ¢ and d,

defined in (3.6), satisfy axt’ + bzt + cat +d = 0. If one of the following holds

d<0 and b>0; (3.7)
d
d<0 and b<0 and C_5<0; (3.8)
and
nn L — o1 — qe (3.9)
Ky

then E* = (xF,x3) is the unique positive equilibrium of the system (5.1).



4 Local Stability

To investigate the local stability of the unique positive equilibrium point
E*, we linearize the system (3.1). Let y1(t) = z1(t) — 27 and ya(t) = x2(t) —
be the perturbed variables. After removing nonlinear terms, we obtain the linear

variational system, by using equilibria conditions,

. 3 rxy
a0 = [n= D -0~ ge| 1) = |25 = ) + o0
1 1
(4.1)
. s 9Ty
ha(t) = |ra(1=22) — oo ma(t) — | =2 | alt — 1) + oun (t)
ko k1
Theorem 4.1 Let E* = (x3,z5) be the unique positive equilibrium point of the
system (3.1) and the delays 7 and T satisfy
a; — AeT1 — agTy > 0 (42)
and
by — by — b37'2 >0 (43)
where
4riay 4droxs
ay = L + 2ge + o1 — 09 — 2y, by = 2% — 01+ 09— 213
k1 )
2r o] o9 2r 3 1]
— — _— b e
a2 i (7“1 o1+ 5 ¢ + o ; 2 o 02
ToT% 2roxs ol 2roas
p— b p— —_——
as k‘2 01, 3 ]{32 (Tz + B o9 + ]{32 >

Then the unique positive equilibrium point E* of the system (3.1) is locally asymp-
totically stable.

Proof : The equation (4.1) can be written as

d [ rixt 1 1 [ or
— |y (t) — =2 / yi(s)ds| = | [ — o1 — ge — ==L ) yi(t) + oaya(t)
dt | ki Jin | i

ki
(4.4)

d [ roxk [* ] [ 2row
— |y2(t) — 272 / yo(8)ds| = || re — 09 — 272 y2(t) + o191 (%)
dt L k:2 t—T1o i L k?

7



Let

Vin(y(t) =
Then

Vi (y(t)) =

<

<

2

0 -55 [ o] 45

rict [t 2r1x%
2 |:y1(t) — 211 / yl(S)dS:| |:(7"]_ — 01 — qe — kll 1) yl(t)
t—11

2rix}
k1

2 (= o= e = 2L ) 200) + 20 (1)

2r1x} 2r1x3 t
o (rl — 01 — ge — kl 1) / y1(t)y1(s)ds
1 t—71

* t
280, [ a)lln()1ds
1 t—11

ES
2ryay

k1

2 (m — 0y —qe — ) Y1 (t) + o2y (t) + o2y5 (1)

rixy 2rixy t
—l—% <r1 — 01 —qge+ ]; 1) lﬁyf(t) —|—/ yf(s)ds}
1 t—71

1

Ln {ﬁyg(ﬂ N / yf(s)ds] (46)



Now, let

*
"ty

2r oy t t 9
Via(y(t)) = ri— o1+ 09 —qe+ yi(u)duds (4.7)
k‘l kl t—m1 Js
then
. 1] 2r
Via(y(t)) = it ry— oy + 09 —qe+ =1 le%(t)
]fl kl
1] 2r oy ¢ 9
— ry—o1+ 0y —qe+ yi(s)ds (4.8)
k1 k1 P
We define
Vi(y(t)) = Vi (y(t)) + Via(y(t)) (4.9)
then
. 2r ] 9
Viy(t)) < |2|m—o1—qe— +0oa | yi (1)
1
2riay o 2riay
P2 (o 2 e 2 ) g
T2y
o (t) + Sloumid(r) (4.10)
1
Similarly, let
roxt [t 2
Valy(0) = |10 - 22 [ pisjas (4.11)
t—To
Then
. roxy [ 2rox;
Var(y(t)) = 2 |yalt) — T Ya(s)ds| || r2 — o2 — 3 Ya(t) + o1y (t)
2 t—7o 2

2roxh
_ ( oy —) V2(6) + 200 (1)

ks

ko ko

2rows 2rows

) / (1))



2ros
< 2(re- 02— 222 ) 30) + 200l (00
2
2roxt 2ro1s ¢
+22(m—®+ Qﬁ/'wwMMQm
kQ ka t—To
2rows t
+——0 |[y1(t)[|y2(s)|ds
2 t—7o
2roach
< 2(re- 02— 22 ) 300) + o) + o0
2
Tl 2rows 9 t 9
+ ro — 02 + oy (t) + Ys(s)ds
k2 k? t—T1o
25 2 ! 2
+2%0 )+ [ uieds
k2 t—To
Now, let
roT’ 2r91s ! by
Vao(y(t)) = =—= | ra+ 01 — o2 + / / Ys (u)duds
k2 kQ t—79 Js
then

. Toxh 2r9x}
() = 22 (re o —u + 22 ) i)

ToT’

2roxh ¢
_<r2+01—02+ 2 2)/ yg(s)ds
kQ k:2 t—T1o

We define

Va(y(t)) = Var(y(t)) + Vaa(y(t))

then

Va(y(t)) < [2 (m — oy — 27::3) + al} y5 (1)

10

(4.12)

(4.13)

(4.14)

(4.15)



*

2roms o1 2roms 9
— _ T t
s (7" 2 5 2 oo 2y2( )

*

T2
o) + 2 2oimg() (1.16)
2

Now we define a Lyapunov functional V' (y(t)) as

Viy(t) = Valy(t) + Va(y(t)) (4.17)

then we have from (4.10) and (4.16) that

Viy(t) = Vi(y(t)) + Va(y(t))
2 *
{{2 (7"1 — 01 —qe — 7’19(:1) + o1 +02]
k1
2r n 09 . 2riay n ToT 2(4)
T —0 —_ — T —=o1| T
i 1 1 5 q oy 1 o 1| T2 ¢ U1

2roa5
+ {2 (7‘2—02— 2 2)+01+U2}

IN

ko
1] 2rows o 2rows 9
— t
+ o Uz] 1 [ iy (2 5 02 o )] 72}92()
4
[ Tl;xl + 2qe + 01 — 09 — 27’1}
1

2r1xy 09 2r1xy ToTh
kll (7‘1—01—1—7—616—1— /{:11 ™ — k:;al T2 y%(t)

rxy 2roxh o 2roxh
1—11021 T — [ ;22 (7”2—1—?1—02—0— ;22)172}35@)
= —G(t) — Gy() (4.18)

11



Clearly, (4.2) and (4.3) implies that (; > 0 and (» > 0. Denote ¢ = min{(y, (>},
then (4.18) leads to

V(t) + C/Tt[yf(s) +y5(s)]ds < V(T) for t>T (4.19)

which in turn implies y?(t)+y3(t) € L1[T, o0). We can see from (4.1) and the bound-
edness of y(t) that y?(¢) + y2(¢) is uniformly continuous. By using lemma 2.1, we
conclude that lim; . [y2(¢)+y2(t)] = 0. Therefore the zero solution of (4.1) is asymp-
totically stable and this completes the proof. [ |

5 Uniform Persistence

The system (3.1) has a unique positive equilibrium point if (3.7) or (3.8)
and (3.9) holds. In the following, we always assume that such a positive equilibrium
exists and denotes it by E*(zf, 25). The following lemmas are elementary which are

concerned with the qualitative nature of solutions of the system (3.1).

Lemma 5.1 All solutions of the system (3.1) with the initial conditions (3.2) are

positive for all t > 0.

Proof : 1t is true because

o0 = e [ 205 ) 02 o]
wa(t) = xz(O)ea;p{/Ot [rQ (1 . %;72)) s —i—ali—;] ds}

and z;(0) > 0(i = 1,2). Therefore, all solutions (x1(t),z2(t)) of the system (3.1)

(5.1)

with the initial conditions (3.2) are positive. ]

Lemma 5.2 Let y(t) be the positive solution of the system

M]

a0 < ryte) 1=

12



with the initial condition

y(0) = ¢i(0) >0 , 0e[-7,0] , ¢€C([-7,0],Ry) (5-3)
then

0<y(t) < ke (5.4)
eventually for all large t.
Proof : Suppose y(t) is not oscillatory about k. That is, there exists a ¢ > 0 such
that either

y(t) <k for t>1¢ (5.5)
or

y(t) >k for t>t¢ (5.6)
If (5.5) holds for ¢ > ¢, it follows

y(t) < k < ke

then y(t) < ke'™ follows. If (5.6) holds for ¢ > ¢, inequality (5.2) implies that for

t >t + 7 and for some constant a > 0

i < o f1- 127

< —ary(t)

It follows that

t t
/ ﬁds < / —ards
t+1 y(S) t+71
= —ar(t—t—7)

Then 0 < y(t) < y(f + 7)e” 7). Thus, tlim y(t) = 0 by Squeeze Theorem,
which contradics (5.6). Therefore case (5.6) fails.

13



Suppose now y(t) is oscillatory about k. Let y(t*) denote any arbitrary local
maximum of y(¢), then it follows from (5.2) that

0= §(t) < ry(t") [1 - %] (5.7)

and this implies
y(t* — 1) <k

By the continuity of y(t), we conclude that there exists a £ € [t* — 7,t*) such
that y(£) = k. It follows that,

/:%ds < /{t* {r(l—@)} ds

A

r(t* — ) <rr (5.8)

IA

which implies that
y(t*) < ke'”

Since y(t*) is an arbitrary local maximum of y(t), we can conclude that there exists

some t > 0 such that y(t) < ke'™ for t > . [ |

Theorem 5.1 Suppose that the system (3.1) satisfies (3.3). Then the system (3.1)
1s uniformly persistent, that is, there exist my, mo, M and T* > 0 such that m; <

x1(t) < M and my < xo9(t) < M for t > T*, where

M = kle”n + k2€T2T2 (59)

ki(r1 — o1 — qe riM
m; = 1( 11.17411 q )exp<{(r1—01—qe)— 21 ]7’1> (5.10)

me = k?(%;;g)exp <[(r2 —0y) — szﬂ 72) (5.11)

14



Proof :

By Lemma 5.1, we know that all solutions of the system (3.1) with the

intial conditions (3.2) are positive, and by (3.1) we have

21 (t) + 25(t)

@) [1 = = 1 - 22

kl kQ
—qexq(t)
< ri(t) {1 — xl(tk: 7-1)} _ qeil(t)
+romo(t) {1 _ xQ(tk; 7'2)} _ qexi(t)
This implies
£1(s) + Z2(s) < 4i(s) + ya(s) (5.13)
where
yi(s) = miy(s) [1 N yl(sk: 7—1)} N qeij)
$— T ey1(s (5.14)
Ya(s) = raya(s) {1 _ vl s )} _4 y4( )

Integrating (5.13) over [0, ¢] and taking x1(0) + 22(0) = y1(0) + y2(0), we have

z1(t) + 22(t) < yi(t) + y2(t) (5.15)
From (5.14), it follows
. yi(s — 1)
i) < () [1- 2=
(5.16)
. ya(s — 1)
ya(s) < raya(s) [1 - k—2}

15



By Lemma 5.2, there exit 77 and 75 such that
yi(t) < ke for t>1Ty (5.17)

and

IN

y2(t) koe™ for t> T, (5.18)
By (5.15), we have
21 (t) + o(t) < k1€ + koe™?™? (5.19)

for t > T = max{Ty,T>}. Hence,

x1(t) < k1™ 4 koe™™ = M

l’g(t) S kle’"m + k26T2T2 =M (520)

for t > T. Now we want to show that z;(t) > m; for all large ¢, i = 1,2. From
(3.1), we have for t > T + 7

. [ r Ta(t
71(t) = x1(t) _(7’1 — 01 —qe) — k—ixl(t —71)+ 02%8}
[ r M
> x1(t) [(r1 — o1 —qe) — ;{; } (5.21)
i 1
Integrating (5.21) over [t — 7, t], where t > T + 27y, we have
ZEl(t> t T‘lM
m(—2Y ) s — o1 —ge) — d
! (xl (t - Tl)) - /t—ﬁ |:(T1 7 qe) kl °
M
= (rl—al—qe— 1 )7’1 (5 22)
ka1
which implies that, for t > T + 27y
riM
x1(t) > x1(t — 1) exp ({(7’1 — 01 —qe) — 2 ] 7'1> (5.23)
1

16



It follows from (5.21) that for ¢ > T + 27

_ i r x
#1(t) = x1(t) |(r1 — o1 —qe) — k—lxl(t —7)+ agx—Q]
L 1 1

> o) |- 01— e) — (e )
> x1(1) {(7’1 — 01— qe) — %GXP ([TZV[ —(r1—o1— qe)] 71>931(t)}

(5.24)

It follows that

k — 01 — M
liminf z¢(¢) > i — o — g¢) exp <{(T1 — 01 —qe) — o ] 7'1>

t—o00 T kl

my (5.25)

and My > 0 by (3.3). So, for large ¢, z1(t) > my/1.1 = my > 0. Similarly, From
(3.1), we have, for t > T* + 7

_ [ r xq(t
Ze(t) = wa() |(r2= o) - k—ZxQ(t —7y) + 0y x;gtﬂ
[ roM
> zy(t) | (ry — o) — 2 } (5.26)
i 2
Integrating (5.26) over [t — 7o, t|, where ¢ > T + 275, we have
t ! M
In (@—()) > / {(TQ — o) — 2 ] ds
Ta(t — 72) t—r k2
M
= (’]“2 — 09 — 2 ) T2 (527)
ks
which implies that, for t > T + 27
roM
xo(t) > xo(t — 7o) €xp <{(r2 — 09) — 2 ] TQ) (5.28)
2

17



It follows from (5.26) that, for ¢ > T + 27y

Ba(t) = wa(t) _(@ —0y) — Pyt — ) + al"”—]

> lt) |(r2 - 02) — Paat = )
> ) { (= o) = e (|2 - (2 o) m )t}
(5.20)
It ollows that
) > =2 (o2 )
— (5.30)

and my > 0 by (3.3). So, for large t, x2(t) > ma/1.1 = mg > 0. Let
D = {(z1(t), z2(t))[m1 < 21 (t) < M,my < (t) < M},

Then D is a bounded compact region in R% that positive distance from coordinate
hyperplancds. Hence we obtain that there exists a T > 0 such that if ¢ > T*, then
every positive solution of system (3.1) with the initial conditions (3.2) eventually

enters and remains in the region D, that is, system (3.1) is uniformly persistent.

18



6 Global Asymptotical Stability

In this section, we derive sufficient conditions which guarantee that the
positive equilibrium point £* of the system (3.1) is globally asymptotically stable.

Our method in the proof is to construct a suitable Lyapunov functinal.

Theorem 6.1 Let E* be the unique equilibrium point of the system (3.1) and the

delays T and 15 satisfy
1 — Q71 — (3To >0 and ﬁl—ﬂng—ﬁng >0 (61)
where M;(i = 1,2) are defined by (5.9), and

™Iy | 09Xy o1MT] + OaMmoxl
] = + —

k’l M 2m1m2
r?Mzt  3riooMai
Qg =
k‘% lekl
rooy Mz
g = ———
2m2k2
5 = roxy . 01T} o1MmiT] + 02maTs
| = _
kz M 2m1m2
ﬂ . 7’10’2M£IZ‘§
y = —— 2
2m1k‘1
3 raMazy  3reoy M
3 pr—
]{Z% 2m2k’2

then the unique positive equilibrium point E* of the system (3.1) is globally asymp-
totically stable.

Proof : Define

2t) = (21(t), 22(1))

21(t) = 21(1+ 21(1)), 22(t) = w3(1 + 2(1)).

19



From(3.1), we have

dzi(t) ] oary  2(t)  oawy  z(t)
— = (tal) {— " (t—m)+ prak ey s R 1—|—z1(t)} .
6.2
dz(t) ToTh oy z(t) oy zo(t)
e (14 2(1)) {— " (t — 1) + 5 1100 1—1—22(75)}
Let
Vi(z) = {z1(t) —In[l + 21(0)]} + {2(t) — In[1 + 2(2)]} (6.3)
then we have from (6.2) that
. . 21 (t)Zl (t) Z9 (t)ZQ (t)
ilz) = 1+ 2(2) * 1+ 2,(2)
= — kllzl(t>21(t—7'1)+ (1+221( ))Zl<t)22<t)
—mfj—%zm) - 0l - )
) 0~ ) 4O o0

By Theorem 5.1, there exist a 7% > 0 such that m; < xf[1 + 2(¢)] < M, and
my < x5[1 + 22(t)] < My for ¢t > T*. Then (6.4) implies that

/ < -2 t)zo(t
Vi) < =" (a0 - [ >+%1+a a0
_0293; 2 _T2$§
o177 o177 o

a(t)za(t) - B
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For t > T* + 7 = T, we have from (6.5) that
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9272 22(s)ds +/ 9272 zg(s)ds}
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d d
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From (6.6) and (6.8), we have, for t > T
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2 *
roMasm

Mr*
109 ToT1 2 22 (t _ 7_2)

lekl 22( ) Qk%

7"20'1M.’L'>{7'2 9 T201M$>{7'2 9

t t 6.9
ST z(t) + ST 2 (t) (6.9)
Let
2M * t 2M * t
Vy(z) = MTin / 2(s)ds 4 2T / 22(s)ds (6.10)
le t—71 2k2 t—T72
then
dV3(z) rEMxiT riMaim
aldUASL7/N S it B _ L 20
dt ok 10T g Al
2 * 2 *
rsMaxsTe rsMaxsTe
2—1{:322 (t) — 2—1{:322 (t - 7'2) (611)
Now define a Lyapunov functional V' (z;) as
V(Zt> = ‘/1<Zt> + ‘/Q(Zt) + ‘/3(Zt> (612)
Then we have from (6.9) and (6.11) that for ¢ > T
V(z) = Vi(z) + Va(z) + Va(z)
< _ [ry2} N o2y o1} + o9maT} | B _T%M;c}‘ rioo M} ALz
| Fy M 2myimo | | 2k myky
[ [ e N 1Ty ot + oemaery | _T§M2x§ rooy M7 ] H Lz
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{rlxl o7 01m1$>{+02m2$;:| [r%M:c{ 37“102M1:§]

2m1m2 k% 2777/1]{1

2m2 k‘g
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- | g o
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[rng o2 01m1x7+02m2x§} [r%M:E’Q‘ 37‘201fo}

2myme k3 2moks

_ [“UZ—M@} 71} 2(t)

2m1k1

—nzi (1) — Y223 (t) (6.13)

It follows from (6.1) that 1, > 0 and ¢y > 0. Let w(s) = ts? where 1) =
min{1, 12}, then w is nonnegative continuous on [0,00),w(0) = 0, and w(s) > 0

for s > 0. It follows from (6.13) that for ¢ > T

V(z) < =01 + 25(0)] = —vl2(t)* = —w(|=(t)]) (6.14)

Now, we want to find a function u such that V(z;) > u(|z(¢)]). It follows from

(6.3),(6.7), and (6.10) that
Vi) = {z(t) =l + 20 (0)]} + {22(t) — In[l + 25(¢)]} (6.15)

By the Taylor Theorem, we have that
22(t)
() —In[l 4+ 2(t)] = ——— 1
alt) =~ nfl + 5(8)] = g (6.16)
where 6,(t) € (0, 2;(t)) or (2(t),0) for i =1,2.

Case 1: If 0 < 6;(t) < z(t) for i = 1,2, then

z (1) 22(t) )
TtaP ~Oxoop 70 (6.17)

By Theorem 5.1, it follows that for ¢ > T™

i1+ 2zi(t)] = z;(t) < M;, for i=1,2 (6.18)
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Then (6.17) implies that

TT 9 2 1) 2
(Ml) 1(t) — [1 (91(t)]2 < 4 (t)
T3 9 o % (t) 2
(MQ) Z9 (t) S [1 + 62(t>]2 < Z2 (t)

It follows from (6.15),(6.16) and (6.19) that for ¢t > T*

V()

Vv

(AV4
N | —
VR
=&
el S
~

[\o}
=N
=

+
N | —
VR
=&
') [ o3
~~_

N

N
S
=

*2 *
> i d L) L
- 2\ M) 2\ M,
= mlz(t)]*

Case 2 : If —1 < 2;(t) < 0;(t) <0 for i = 1,2, then

p 22(t) z (1)
(1) < [+ 6:(2)]2 < [T+ zi(t)]?

By (6.18), (6.21) implies that

2(t) < Z%(ﬂ < ‘T; ? 2(t)
U 00F ~ \m) 7
It follows from (6.15), (6.16) and (6.22) that for ¢t > T*

2(0) 4()
V(Zt) > 2[1 + el(t)]z * 2[1 + 02(t>]2

> -ﬁ@y+§£@)

I ? 2 L[ ’ 2
Z §<M> Zl(t>+§(ﬁ2) ZQ(ZL)
> m[z%(t)—l—zg(t)]
= mlz(t)[?
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Case 3: If 0 < 04(t) < z1(t) and —1 < z9(t) < 62(t) < 0, then it follows from (6.15),
(6.16), (6.19) and (6.22) that for t > T*

(1) % (1)
2L+ 0,17 2[1+65(0)]?

Viz) >

AV
N | —
VR
=la
~

[\o}
=
=

+
N | —
VR
=&
o [ o3
~~

N

[N

=

Vv

m [z (t) + 25 (t)]
= m|z(t)? (6.24)

Case 4 : If —1 < z1(t) < 61(t) < 0 and 0 < 65(t) < 2(t), then it follows from
(6.15),(6.16),(6.19) and (6.22) that for t > T*

ORI (0

Viz) > 2[1+61()]2  2[1 + 05(1)]?

> () a0 (2) 40
> m[24(t) + 25 (t)]
= mlz(t)? (6.25)

Let u(s) = ms?, then u is nonnegative continuous on [0, 00), u(0) = 0,u(s) > 0 for

s> 0, and limg_, u(s) = +00. So, by Case 1 to Case 4, we have
V (z) > u(]z(t)|) for t >T* (6.26)

This shows that the unique equilibrium point E* of the system (3.1) is globally

asymptotically stable. [ |
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7 Example

In this section, we present a simple example to illustrate the procedures of
applying our results consisting of local and global stability.

Example 7.1

Consider the following system:

1 (t— 0.0001)}

1

100
(7.1)

25 (t — 0.0001)
100

To(t) = 10z4(t) {1 - } + 5.2 (t) — bao(t)

Comparing the system (7.1) with the system (3.1), we get = 10, r, = 10, k; =
100, ko =100, 04 =5.2, 0o =5, ¢ =0.01, e =5, 7, = 0.0001, and 75 = 0.0001. So
the system (7.1) has a unique positive equilibrium point E* = (98.63, 100.85).

Since

a1 — agT1 — Q3T = 19.694 > 0

by — by — by = 20.08 > 0,

The unique positive equilibrium point E* of the system (7.1) is local asymptotically
stable by Theorem 4.1. Some local trajectories of the system (7.1) are depicted in
Figure 7.1.

Since

a1 — o — 3Ty = 0.28 > 0

B1 — P — P32 = 1.08 > 0,

Then we conclude that the unique positive equilibrium point E* of the system (7.1)
is global asymptotically stable by Theorem 6.1. Some global trajectories of the
system (7.1) are depicted in Figure 7.2.
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Figure 7.1: The local trajectories of the system (7.1).
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Figure 7.2: The global trajectories of the system (7.1).
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