
���.Tàó.@~X

Æÿ¡Z

Tà3NAND"nB7�ÝLFSR?�

Testing of the NAND Flash Memory with Linear
Feedback Shift Registers.

@ ~ ß�Á � P

¼ 0 > 0�? 0 v } ÿ

� º Ó » Ü è 0 O Ú `

�Z`�

ÍS¡ZÝx�êÝ3"D�ðPé�®`NAND "nB7

�Ý�;��Pý0Ý?��2àaP!õ°õaP/�É�õ

D°®ß°�ëÝBó¼l?NAND "nB7�Ý�;��Pý

0�Í@~Xs"8�g)¨b{�l?'È�;6NAND "n

B7�Ý�;��Pý0Ý?�WÍ�?�Ý���îaP/�

É�õD ?�°fÍ�Ý]°b??Ý�[�

I

Abstract

The main purpose of this thesis is to research the tests of the re-

duced functional faults of the consuming electronic product: NAND

flash memory. The linear congruential method and linear feedback

shift registers (LFSR) are used to product random numbers that

locate the page address for testing the reduced functional faults of

the NAND flash memory. The purpose of this study is to develop a

software testing environment to drive a low cost hardware device in

identifying the page with reduced functional faults for NAND flash

memory. The test result shows that LFSR has better performance

than the others.

II

Contents

���ZZZ`̀̀��� I

Abstract II

Contens III

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 4

2 Memory Models and Faults 5

2.1 NAND Flash Memory 5

2.2 Reduced functional faults 9

3 Random Number Generators 18

3.1 The Properties of Random Number Generators 18

3.2 Linear Congruential Method 21

3.2.1 Rand 0 Test 22

3.2.2 Rand 1 Test 24

3.2.3 Rand 2 Test 25

3.3 Pseudo-random Pattern Generator 27

3.3.1 Linear Feedback Shift Register 27

3.3.2 The Fibonacci Implementation 33

3.3.3 The Galois Implementation 34

III

4 Memory Testing and Results 35

4.1 Memory Testing Plant 35

4.2 Memory Testing Algorithm 37

4.3 Results and Discussion 41

5 Conclusions and Future Study 43

References 44

IV

1 Introduction

The motivation and organization of this thesis is described as

follows.

1.1 Motivation

The current personal computers usually involve of three subsys-

tems: the CPU, input/output devices, and the memory subsystem.

The memory subsystem usually contains two types of memories

(refer to [1]):

1. Cache and main memory, which hold programs and data dur-

ing processing. They have a short access time and a high cost

per bit. Main memory are made up of memory chips, each of

which can hold up to several million bits of data.

2. Secondary memory, such as disk or tape, which has the advan-

tage of a low cost per bit at the expense of a long access time.

It is used for permanent and archival storage of programs and

data.

Consider the fact that memory chips form a momentous part

of the total number of chips in a digital system, memory may be

a prime contributor to the overall failure rate. Therefore effective

1

tests which supply for fault detection and localization are impor-

tant.

Historically the number of bits per (DRAM) chip has quadru-

pled about every 3.1 (or π) years. The exponential increase in the

number of bits per chip has caused the price to decrease exponen-

tially as well. Because of economic reasons the test cost per chip

(which is directly related to the test time) can’t be allowed to in-

crease significantly. At the same time the number of bits per chip is

increasing exponentially and the sensitivity to faults increases and

the faults become more complex. We take NAND flash memory

(refer to [2] for its data sheet) for the example, tests for detecting

faults which are dependent on the neighboring cells are more com-

plex and require a longer execution time than those which don’t.

Researches on flash memory tests have been conducted for many

years [1, 3, 4] and the results show that the occurrence of functional

faults depends on the manufacturing process and many other fac-

tors. In order to understand the relationship between the test pat-

terns and the types of flash memory functional faults, one needs to

setup an testing environment to carry the identification work. Al-

though many test systems for flash memory has been designed, e.g.

Agilent 4082F [5], these systems are too expansive, functionality is

quite complicated and test methods are classified. Some advanced

2

testing equipment, such as Advantest’s T5593 or T5588 [6] each

costs 4.5 million USD.

In this study, we try to build up a software testing environment

with the simple purpose to perform random testing for functional

faults. This software system will drive the hardware devices (shown

in Figures 4.2 and 4.3), which is designed and provided by Dr. Chi-

Chung Ai, to perform the NAND flash memory testing.

3

1.2 Organization

Since we are concerned with testing NAND flash memory faults

via pseduo-random pattern generators in this thesis. A software

testing environment using the C++ program under Windows XP

is developed to carry the memory functional tests. The organization

of this thesis is as following: Basic properties and functional faults

of NAND flash memories are presented in chapter 2. In chapter 3,

we review the methods to generate random numbers and pseduo-

random pattern. In chapter 4, the testing plant is described and

the associated test algorithm and test results are also presented for

illustrative purpose. Conclusion is given in chapter 5.

4

2 Memory Models and Faults

In this chapter, the model of memory and associated memory

functional faults are presented.

2.1 NAND Flash Memory

In this chapter we will discuss the feature of the NAND flash

memory and associated memory faults (refer to [2] for its data

sheet). The feature summaries of the NAND flash memory are

follows:

1. High density

(a) Up to 1Gbit memory array

(b) Up to 32Mbit spare area

(c) Cost effective solutions for mass storage applications

2. NAND Interface

(a) x8 or x16 bus width

(b) Multiplexed address/data

3. Page size

(a) x8 device: (512 + 16 spare) Bytes

(b) x16 device: (256 + 8 spare) Words

5

4. Block size

(a) x8 device: (16K + 512 spare) Bytes

(b) x16 device: (8K + 256 spare) Words

5. Page read and program

(a) Random access: 12 µs (3V)/15 us (1.8V)

(b) Sequential access: 50 ns

(c) Page program time: 200 µs

Note: 1 second = 103 ms = 106 µ s = 109 ns = 1012 ps

The memory array is made up of NAND structures where 16

cells are connected in series. The memory array is organized in

blocks where each block contains 32 pages. The array is split into

two areas, the main area and the spare area. The main area of

the array is used to store data whereas the spare area is typically

used to store Error correction Codes, software flags or Bad Block

identification. In x8 devices the pages are split into a main area

with two half pages of 256 Bytes each and a spare area of 16 Bytes.

In the x16 devices the pages are split into a 256 Word main area

and an 8 Word spare area. Refer to Figure 2.1., Memory Array

Organization.

6

Figure 2.1: Memory Array Organization [2]

The early tests before 1980 were not based on a fault model

(such as the stuck-at, coupling or pattern sensitive fault models);

consequently, their quality, in terms of fault converge, can’t be

proved. Their main reason for existence was that they were sat-

isfactory to the extent that they provided for adequate fault cover-

age for the test time they required. Some of these tests require test

times in the order of O(n) or even O(n2), where n is the number of

bits in the chip. Newer generations of megabit chips would require

test times which are not economically feasible. Table 2.1 lists the

required test time in seconds, assuming a memory cycle time of 100

ns, as a function of the algorithm complexity and the memory size.

7

Table 2.1: Test time as a function of memory size [1]

Algorithm complexity
n

O(n) O(n2)

1k 0.0001 0.105

4k 0.0004 1.7

16k 0.0016 27

64k 0.0066 410

256k 0.0026 1.8 h

1M 0.105 30.6 h

4M 0.42 500 h

8

2.2 Reduced functional faults

A system failure occurs or is present when the service of the

system differs from the specified service, or the service that should

have been offered. In other words: the systems fails to do what

it has to do. A failure is caused by an error. There is an error

in the system (the system is in an erroneous state) when its state

differs from the state in which it should be, in order to deliver the

specified service. An error is caused by a fault. A fault is present in

the system when there is a physical difference between the ‘good’

or ‘correct’ system and the current system.

Most tests for faults in memory chip are based on a reduced

functional model. Figure 2.2 shows a general model of a RAM chip

and Table 2.2 lists some functional faults that can occur in RAM

chip (the list is not complete).

Refresh logic

Memory
cell array

Sense amplifiers

Write driver

Data register

Row
de-
co-
der

Address
latch

Column
decoder

Address Refresh

-

?
?

?

-

¾

¾

6

-

?

6
?

¾

¾

6

-

?

-
-

Data flow
Control flow

?

DataData
out in

Read/write and
chip enable

Figure 2.2: Functional model of a RAM chip [1]

9

Table 2.2: List of functional faults [1]

Functional fault

a Cell stuck

b Driver stuck

c Read/write line stuck

d Chip-select line stuck

e Data line stuck

f Open in data line

g Short between data lines

h Crosstalk between data lines

i Address line stuck

j Open in address line

k Short between address lines

l Open decoder

m Wrong access

n Multiple access

o Cell can be set to 0 but no to 1 (or vice-versa)

p Pattern sensitive interaction between cells

10

Address decoder

Memory cell array

Read/write logic

Address

Data

?

?

?

?

Figure 2.3: Reduced functional model [1]

During chip testing one isn’t interested in locating a fault be-

cause a chip can’t be repaired. One is only interested in detecting

a fault. For this reason the model of Figure 2.2 can be simplified

without loss of information. For functional testing a model is used

that contains only three blocks: the address decoder, the memory

cell array and the read/write logic (Thatte, 1977) and (Nair, 1978);

see Figure 2.3. Using the reduced functional model of Figure 2.3,

the list of faults given in Table 2.2 can be mapped onto the faults

of Table 2.3. These faults can be classified as follows:

1. Faults in which a single cell is involved.

These are the stuck-at and transition faults.

2. Faults in which two cells are involved.

These are the coupling faults.

11

3. Fault involving k cells.

The k cells are allowed to be located anywhere in memory.

Table 2.3: Relationship between functional and reduced functional faults [1]

Reduced Functional fault

functional fault

SAF a Cell stuck

SAF b Driver stuck

SAF c Read/write line stuck

SAF d Chip-select line stuck

SAF e Data line stuck

SAF f Open in data line

CF g Short between data lines

CF h Crosstalk between data lines

AF i Address line stuck

AF j Open in address line

AF k Short between address lines

AF l Open decoder

AF m Wrong access

AF n Multiple access

TF o Cell can be set to 0 but no to 1 (or vice-versa)

NPSF1 p Pattern sensitive interaction between cells

SAF: The stuck-at fault (SAF) can be defined as follows: The logic

value of a stuck-at (SA) cell or line is always 0 (a SA0 fault) or

1 (a SA1 fault); it is always in state 0 or in state 1 and can’t

be changed to the opposite state.
1NPSF will be introduced into the reference [1] and we will not discuss.

12

TF: The transition fault (TF) is a special case of SAF and defined

as follow: A cell which fails to undergo a 0 → 1 transition when

it is written is said to contain an up transition fault; similarly,

a down transition fault is the impossibility of making a 1 → 0

transition.

CF: In the coupling fault (CF), two cells are involved per fault.

These two faults can have the following relationships:

CFin: An 0 → 1 (or 1 → 0) transition in one cell inverts the

contents of a second cell.

CFid: An 0 → 1 (or 1 → 0) transition in one cell forces the

contents of a second cell to a certain value, 0 or 1.

AF: Address decoder faults (AFs) concern faults in the address

decoder.

A march test consists of a finite sequence of march elements

(Suk, 1981). A march element is a finite sequence of operation

applied to every cell in memory before proceeding to the next cell.

Here we use (w0) to denote the action of erase the cell and then

write 0 into the cell. And (w1) denotes the action of writing 1

into the cell. Similarly, (r0) and (r1) denote the read operation

from the cell with expected value 0 and 1, separately. Also ⇑ or ⇓
denotes the cell to be operated with address increasing or decreasing

13

accordingly. And m corresponds to the operation by increasing the

address of the cell first down to the end, and then it decreases the

address of the cell again till the beginning of the memory.

The march test, March A, that detects the above SAF, TF, and

CF can be expressed as:

{m (w0);⇑ (r0, w1);⇓ (r1, w0, r0)}

M0 M1 M2

The scheme of March A test is expressed as follow:

M0 : {March element m (w0)}

for all cells do

A[cell] = 0;

M1 : {March element ⇑ (r0, w1, r1, w0, r0, w1)}

for cell = 0 to n-1

begin

read A[cell]; (Expected value=0)

write 1 to A[cell];

end;

M2 : {March element ⇓ (r1, w0, w1, w0)}

for cell = n-1 to 0

begin

14

read A[cell]; (Expected value=1)

write 0 to A[cell];

read A[cell]; (Expected value=0)

end;

The march test, March B, detects the above faults and can be

expressed as:

{m (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);

M0 M1 M2

⇓ (r1, w0, w1, w0);⇑ (r0, w1, w0)}

M3 M4

The scheme of March B test is expressed as follow:

M0 : {March element m (w0)}

for all cells do

A[cell] = 0;

M1 : {March element ⇑ (r0, w1, r1, w0, r0, w1)}

for cell = 0 to n-1

begin

read A[cell]; (Expected value=0)

write 1 to A[cell];

read A[cell]; (Expected value=1)

15

write 0 to A[cell];

read A[cell]; (Expected value=0)

write 1 to A[cell];

end;

M2 : {March element ⇑ (r1, w0, w1)}

for cell = 0 to n-1

begin

read A[cell]; (Expected value=1)

write 0 to A[cell];

write 1 to A[cell];

end;

M3 : {March element ⇓ (r1, w0, w1, w0)}

for cell = n-1 to 0

begin

read A[cell]; (Expected value=1)

write 0 to A[cell];

write 1 to A[cell];

write 0 to A[cell];

end;

M4 : {March element ⇓ (r0, w1, w0)}

16

for cell = n-1 to 0

begin

read A[cell]; (Expected value=0)

write 1 to A[cell];

write 0 to A[cell];

end;

We defined the simple basic march test, March Basic Test, that

is expressed as:

{m (w0);⇑ (w1, r1, w0, r0)}

17

3 Random Number Generators

In this chapter, we review methods to generate the random

number and psuedo-random pattern.

3.1 The Properties of Random Number Gener-

ators

It is difficult to find “good” random number generators(RNGs).

The experts use the following criteria to measure a random number

generator. See Pierre L’Ecuyer’s Random Number Generation [7]

for a more thorough discussion of quality criteria.

1. Good Theoretical Basis.

The RNG should be based on an algorithm with provably good

statistical properties. But statistical tests are very limited in

scope due to computational limitations. We can’t search all

numbers produced by an RNG with a period of 2131 for sta-

tistical anomalies. It’s similar to cryptography. Just because

no one has cracked our cipher, doesn’t mean we have a good

cipher. Statistical tests can prove that an RNG is bad; they

can’t prove that an RNG is good.

2. Long Period.

The RNG should have a ”long” period. Every RNG based on

18

a finite state eventually repeats the numbers it generates. The

period should be long enough to ensure that the RNG does

not cycle in practice.

3. “Pass” Empirical Statistical Tests.

Most statistical tests compute a p-value which should be uni-

form over [0,1). Poor RNGs will fail many tests with p-values

at or very close to 0 or 1.

4. Efficient.

Many researchers place a strong emphasis on efficiency. Ob-

viously, an RNG which is very cpu-intensive will be impracti-

cal. The emphasis we place on this criterion depends a great

deal on we application for the RNG. If we require generat-

ing many numbers very quickly, then we’ll place a high value

on performance. Likewise if you need to implement the RNG

in hardware and have very limited resources. But, for many

applications, efficiency will be low on the list of priorities.

5. Repeatable.

For simulation, we would like an RNG that is repeatable. In

other words, given the same starting state, it should generate

the same numbers. For cryptographers this is less important;

they need RNGs that are unpredictable.

19

6. Portable.

In order for an RNG to be generally useful, it should be portable.

That means that it should be relatively easy to implement on a

wide range of hardware, operating systems, and programming

environments. RNGs which use only 32-bit integers are more

portable than RNGs that use 64-bit integers.

20

3.2 Linear Congruential Method

System-supplied rand()s are almost always linear congruential

generators, which generate a sequence of integer I1, I2, · · ·, each

between 0 and m− 1 by the recurrence relation (refer [8])

Ij+1 = aIj + c (mod m) (3.1)

Here m is called the modulus, and a and c are positive integers

called the multiplier and the increment respectively. The recurrence

(3.1) will eventually repeat itself, with a period that is obviously

no greater than m. If m, a, and c are properly chosen, then the

period will be of maximal length, i.e., of length m. In this case, all

possible integers between 0 and m− 1 occur at some point, so any

initial “seed” choice of I0 is as good as any other: the sequence just

takes off from that point.

21

3.2.1 Rand 0 Test

There is good evidence, both theoretical and empirical, that the

simple multiplicative congruential algorithm

Ij+1 = aIj (mod m) (3.2)

can be as good as any of the more general linear congruential gener-

ators that have c 6= 0 (3.1) – if the multiplier a and modulus m are

chosen exquisitely carefully. Park and Miller propose a “Minimal

Standard” (refer [8]) generator based on the choices

a = 75 = 16807 m = 231 − 1 = 2147483647 (3.3)

The generator isn’t “perfect”, but only that it is a good minimal

standard against which other generators should be judged.

Schrage’s algorithm is based on an approximate factorization

of m,

m = aq + r, i.e., q = [m/a], r = m (mod m) (3.4)

with square brackets denoting integer part. If r is small, specifically

r < q, and 0 < z < m−1, it can be shown that both a(z mod q)and

r[z/q] lie in the range 0, · · · ,m− 1, and that

az (mod m) =

a(z mod q)− r[z/q] if it is ≥ 0,

a(z mod q)− r[z/q] + m otherwise
(3.5)

22

The application of Schrage’s algorithm to the constants (3.3)

using the values q = 127773 and r = 2836 is called rand 0 test

(refer [8]). The period of rand 0 test is 231 − 2 ≈ 2.1× 109.

23

3.2.2 Rand 1 Test

A characteristic of generators of the rand 0 test is that the value

0 must never be allowed as the initial seed (since it perpetuates

itself) and it never occurs for any nonzero initial seed. The follow

routine, rand1, uses the “Minimal Standard” for its random value,

but it shuffles the output to remove low-order serial correlation.

A random deviate derived from the jth value in the sequence, Ij,

is output not on the jth call, but rather on a randomized later

call, j + 32 on average. the shuffling algorithm is due to Bays

and Durham as described in Knuth, and is illustrated in Figure 3.1

(refer [8]).

24

Figure 3.1: Shuffling procedure used in rand 1 test to break up sequential correlations in the Minimal

Standard generator. Circled numbers indicate the sequence of events: On each call, the random number in iy

is used to choose a random element in the array iv. That element becomes the output random number, and

also is the next iy. Its spot in iv is refilled from the Minimal Standard routine. [8]

3.2.3 Rand 2 Test

The routine of rand 1 test passes those statistical tests that rand

0 test is known to fail. In fact, we don’t know of any statistical test

that rand1 fails to pass, except when the number of calls starts to

become on the order of the period m, say > 108 ≈ m/20.

For situations when even longer random sequences are need,

L’Ecuyer has given a good way of combining two different sequences

with different periods so as to obtain a new sequence whose period

is the least common multiple of the two periods. The basic idea

is simply to add the two sequences, modulo the modulus of either

25

of them. A trick to avoid an intermediate value that overflows the

integer wordsize is to subtract rather than add, and then add back

the constant m − 1 if the result is ≤ 0, so as to wrap around into

the desired interval 0, · · · , m− 1. Combining the two generators

breaks up serial correlations to a considerable extent. We neverthe-

less recommend the additional shuffle that is implemented in the

following routine, rand 2 test.

L’Ecuyer recommends the use of the two generators m1 =

2147483563 (with a1 = 40014, q1 = 53668, r1 = 12211) and

m2 = 2147483399 (with a2 = 40692, q2 = 52774, r2 = 3791).

Both moduli are slightly less than 231. The periods m1 − 1 =

2 × 3 × 7 × 631 × 81031 and m2 − 1 = 2 × 19 × 31 × 1019 × 1789

share only the factor 2, so the period of the combined generator is

≈ 2.3× 1018. For current personal computers, period exhaustion is

a practical impossibility.

26

3.3 Pseudo-random Pattern Generator

3.3.1 Linear Feedback Shift Register

The Pseudo-random pattern generators (PRPGs) are usually

implemented using a linear feedback shift register (LFSR, refer [1]).

A LFSR consists of bits connected as a shift register, and XOR-

gates which allow outputs of certain bits to be fed back to the

input bit of the LFSR.

The number of bits of the LFSR and the way the feedback paths

are implemented, together with the initial seed (the initial contents

of the bits), determine the length of the test sequence before it

repeats. This sequence length (the number of different patterns

that are generated) can be at most 2n (for a LFSR with n bits).

The number of feedback paths, together with the way they

are connected, can be expressed mathematically in a polynomial,

called the characteristic polynomial or generator polynomial, G(x).

For the LFSR of Figure 3.2, which shows the implementation of a

LFSR with three bits labeled x0, x1 and x2, and three feedback

paths (using two XOR gates), the characteristic polynomial is 1 +

x + x2 + x3. This is determined as follows.

The square blocks in Figure 3.2 represent the bits. The input

of a bit is on the left and the output is on the right. The input of

27

the second bit (x1) is connectd to the output of the first bit (x0).

The output of x1 is connected to the input of x2. The input of x0

is a signal that is the result of an XOR operation on the output

signals of x0, x1 and x2. The value shifted into x0, during a next

clock period at time t + 1, is:

[
x0]

t+1 =
[
x0 + x1 + x2]

t
(3.6)

This means that the contents of x0, after clock-pulse t + 1, equals

the modulo-2 sum of the contents of the bits x0, x1 and x2 after

clock-pulse t. Equation (3.6) can be rewritten as:

[
x0]

t+1 =
[
x0]

t
+

[
x1]

t
+

[
x2]

t
(3.7)

From inspecting Figure 3.3, which consists of the LFSR of Figure

3.2 extended with an infinite number of bits, it can be seen that

[
x0]

t
=

[
x1]

t+1 ,
[
x1]

t
=

[
x2]

t+1 , and
[
x2]

t
=

[
x3]

t+1

Equation (3.7) can therefore be written as:

[
x0]

t+1 =
[
x1]

t+1 +
[
x2]

t+1 +
[
x3]

t+1

or

x0 = x1 + x2 + x3 (3.8)

The characteristic polynomial of this LFSR is now defined as:

x0 + x1 + x2 + x3

28

and using the notation x0 = 1 allows the characteristic polynomial

to be written as:

1 + x + x2 + x3 or x3 + x2 + x + 1

If the initial contents (also called the seed) of the bits (the state

of the LFSR of Figure 3.2) is “000”, the next state of the LFSR

(the contents of the bits of the LFSR after the clock-pulse) will also

be “000”. So the sequence length (the number of different patterns

which can be produced) will be 1 (only “000” is being produced).

But when the seed is “100”, the length will be 4, see Table 3.1(a).

- -

¾ ¾

-

m m
6 6

x0 x1 x2

+ +

Figure 3.2: LFSR with characteristic polynomial 1 + x + x2 + x3 [1]

- -

¾ ¾

-

m m
6 6

x0 x1 x2

+ +

- x3 - x4

Figure 3.3: Endless LFSR with characteristic polynomial 1 + x + x2 + x3 [1]

29

Table 3.1: Sequence of patterns generated by LFSRs [1]

(a)LFSR of Figure 3.2 (b)LFSR of Figure 3.3

1 0 0 Initial state

1 1 0

1 1 1

1 0 0 Initial state 0 1 1

1 1 0 1 0 1

0 1 1 0 1 0

0 0 1 0 0 1

1 0 0 Repetition 1 0 0 Repetition
...

...
...

...
...

...

If the feedback paths of Figure 3.2 are connected according to

Figure 3.3 the sequence length will be 7, see Table 3.1(b). This will

be the case for any seed except all 0s. The characteristic polynomial

of this LFSR can be determined to be x3 + x2 + x + 1. A length of

2n − 1 of an n-bit LFSR is called the maximum-length sequence.

The question is how to make a maximum-length LFSR? Wang

[9, 10] show that for an n-bit LFSR to have the maximum-length

2n − 1, the characteristic polynomial should be a primitive poly-

nomial. A primitive polynomial is a polynomial of degree n that

divides xi + 1, for i = 2n − 1, but for no integer smaller than i.

Table 3.2 lists primitive polynomials for degree 1 through 100. For

each degree, a polynomial has been taken with the fewest num-

ber of terms. Only the exponents are shown in the table 3.2,

30

for example the entry (18, 5, 2, 1, 0) represents the polynomial

x18 + x5 + x2 + x1 + 1

31

Table 3.2: List of primitive polynomials [1]

(1, 0) (26, 6, 2, 1, 0) (51, 6, 3, 1, 0) (76, 5, 4, 2, 0)

(2, 1, 0) (27, 5, 2, 1, 0) (52, 3, 0) (77, 6, 5, 2, 0)

(3, 1, 0) (28, 3, 0) (53, 6, 2, 1, 0) (78, 7, 2, 1, 0)

(4, 1, 0) (29, 2, 0) (54, 6, 5, 4, 3, 2, 0) (79, 4, 3, 2, 0)

(5, 2, 0) (30, 6, 4, 1, 0) (55, 6, 2, 1, 0) (80, 7, 5, 3, 2, 1, 0

(6, 1, 0) (31, 3, 0) (56, 7, 4, 2, 0) (81, 4, 0)

(7, 1, 0) (32, 7, 5, 3, 2, 1, 0) (57, 5, 3, 2, 0) (82, 8, 7, 6, 4, 1, 0)

(8, 4, 3, 2, 0) (33, 6, 4, 1, 0) (58, 6, 5, 1, 0) (83, 7, 4, 2, 0)

(9, 4, 0) (34, 7, 6, 5, 2, 1, 0) (59, 6, 5, 4, 3, 1, 0) (84, 8, 7, 5, 3, 1, 0)

(10, 3, 0) (35, 2, 0) (60, 1, 0) (85, 8, 2, 1, 0)

(11, 2, 0) (36, 6, 5, 4, 2, 1, 0) (61, 5, 2, 1, 0) (86, 6, 5, 2, 0)

(12, 6, 4, 1, 0) (37, 5, 4, 3, 2, 1, 0) (62, 6, 5, 3, 0) (87, 7, 5, 1, 0)

(13, 4, 3, 1, 0) (38, 6, 5, 1, 0) (63, 1, 0) (88, 8, 5, 4, 3, 1, 0)

(14, 5, 3, 1, 0) (39, 4, 0) (64, 4, 3, 1, 0) (89, 6, 5, 3, 0)

(15, 1, 0) (40, 5, 4, 3, 0) (65, 4, 3, 1, 0) (90, 5, 3, 2, 0

(16, 5, 3, 2, 0) (41, 3, 0) (66, 8, 6, 5, 3, 2, 0) (91, 7, 6, 5, 3, 2, 0)

(17, 3, 0) (42, 5, 4, 3, 2, 1, 0) (67, 5, 2, 1, 0) (92, 6, 5, 2, 0)

(18, 5, 2, 1, 0) (43, 6, 4, 3, 0) (68, 7, 5, 1, 0) (93, 2, 0)

(19, 5, 2, 1, 0) (44, 6, 5, 2, 0) (69, 6, 5, 2, 0) (94, 6, 5, 1, 0)

(20, 3, 0) (45, 4, 3, 1, 0) (70, 5, 3, 1, 0) (95, 6, 5, 4, 2, 1, 0)

(21, 2, 0) (46, 8, 5, 3, 2, 1, 0) (71, 5, 3, 1, 0) (96, 7, 6, 4, 3, 2, 0)

(22, 1, 0) (47, 5, 0) (73, 6, 4, 3, 2, 1, 0) (97, 6, 0)

(23, 5, 0) (48, 7, 5, 4, 2, 1, 0) (73, 4, 3, 2, 0) (98, 7, 4, 3, 2, 1, 0)

(24, 4, 3, 1, 0) (49, 6, 5, 4, 0) (74, 7, 4, 3, 0) (99, 7, 5, 4, 0)

(25, 3, 0) (50, 4, 3, 2, 0) (75, 6, 3, 1, 0) (100, 8, 7, 2, 0)

32

3.3.2 The Fibonacci Implementation

The Fibonacci implementation is the easiest to implement LF-

SRs in hardware (refer [8]), requiring only a single shift register n

bits long and a few xor gates, the operation denoted in C by “∧”.

For the primitive polynomial 1 + x1 + x2 + x5 + x18, the recurrence

formula is

a0 = a18 ∧ a5 ∧ a2 ∧ a1 (3.9)

The terms that are ∧’d together can be though of as “taps” on

the shift register, ∧’d into the register’s input. More generally, there

is precisely one term for each nonzero coefficient in the primitive

polynomial except the constant (zero bit) term. So the first term

will always be an for a primitive polynomial of degree n, while

the last term might or might not be a1, depending on whether the

primitive polynomial has a term in x1.

Figure 3.4: The Fibonacci Implementation. The contents of selected taps are

combined by exclusive-or (addition modulo 2), and the result is shifted in from

the right. This method is easiest to implement in hardware. [8]

33

3.3.3 The Galois Implementation

The Galois implementation is less suited to direct hardware im-

plementation, but is beautifully suited to C (refer [8]). It modifies

more than one bit among the saved n bits as each new bit is gen-

erated. It generates the maximal length sequence, but not in the

same order as the Fibonacci implementation. The prescription for

the primitive polynomial is:

a0 = a1

a5 = a5 ∧ a0

a2 = a2 ∧ a0

a1 = a1 ∧ a0

(3.10)

In general there will be an exclusive-or for each nonzero term

in the primitive polynomial except 0 and n.

Figure 3.5: The Galois Implementation. Selected bits are modified by exclusive-

or with the leftmost bit, which is then shifted in from the right. This method is

easiest to implement in software. [8]

34

4 Memory Testing and Results

4.1 Memory Testing Plant

The NAND flash memory testing plant consists of the PC (Pen-

tium 4 CPU 3.2 GHz and 3.21 Ghz with 1GB ram), the high driving

capability 96-CH digital I/O card (PCI-7396), and the NAND flash

memory testing card. Figure 4.1 shows the picture of the hardware

of the testing plant. Figure 4.2 shows the PCI-7396 digital I/O

card. The NAND flash memory testing card is shown in Figure 4.3.

Figure 4.1: NAND Flash Testing Plant

35

Figure 4.2: High Driving Capability 96-CH Digital I/O Cards (PCI-7396)

Figure 4.3: NAND Flash Testing Card

36

4.2 Memory Testing Algorithm

Step 1: Set up the testing plant, which is shown in Figure 4.1. We

must supply 3.3V voltage from PC to the NAND flash memory,

NAND flash memory testing card, and the voltmeter. When

we set up the testing plant, we can see the shine of the red

LED light in the NAND flash memory testing card.

Step 2: Execute the testing program, Util7396.exe. Then it will check

the digital I/O card PCI-7396 in PC. If there isn’t PCI-7396

card in PC, it will tells us the error, see Figure 4.4.

Figure 4.4: Executing the testing program.

37

Step 3: Pass the “Check ID” button of the NAND memory testing

program to check the validity. If it shows “7920”, then we can

know that the testing plant is usable, see Figure 4.5. If not,

then we must find the trouble.

Figure 4.5: Check the id of the NAND Flash Memory.

38

Step 4: Pass the chosen button of the memory testing. When the

testing finish, there is the word “Finish” showing in the block

of Socket 1, see Figure 4.6

Figure 4.6: The testing finish.

39

Step 5: When the testings finish, we can open the reports, see Figure

4.7.

Figure 4.7: The testing report.

40

4.3 Results and Discussion

The NAND flash memories manufactured by STMicroelectron-

ics with the part No.NAND01GW3A0AN6 are used in our test.

The size of the memory is 1 Gbit. The sample output of testing

the memory chip device code No.79 and manufacturer code No.20

is shown in Figure 4.7. We use the sequential March B test as

our baseline. Although the sequential March B test for the whole

flash memory has been done but it takes over 133 hours, we only

present the test result for 1024 pages. The number of error pages

and execution time for performing test patterns (w0, w1, r0) and

(w0, w1, r1, w0, r0) with random (Rand0, Rand1, Rand2) and

LFSR(psuedo-random) addressing are listed in Table 4.1.

The result in Table 4.1 shows that LFSR has much better than

Rand0 and Rand1 which is consistent with [1]. We note that there

are some hardware faults which are detected during testing and at

this time the NAND flash memory must be reset in order to access

data for next testing.

41

Table 4.1: The number of error pages and execution time for March B, R0, R1,

R2, and LFSR. Test Page: 0x01FE00 - 0x0201FF.

Test Methods Error Pages Testing Time

March A {m (w0);⇑ (r0,w1);⇓ (r1,w0)} 512 53

March B 512 43 (300)

March Basic (w0, w1, r1, w0, r0) 512 43

Rand 0 312 18

Rand 1 328 19

(w0, w1, r1) Rand 2 320 21

LFSR (Fibonacci) 512 31

Rand 0 325 52

Rand 1 342 49

(w0, w1, r1, w0, r0) Rand 2 345 52

LFSR (Fibonacci) 512 52

42

5 Conclusions and Future Study

In this thesis, a software testing environment using C++ for

NAND flash memory fault detection has be implemented. Vari-

ous random scheme and LFSR (pesudo-random pattern) have be

included in the system. Sequential March B test is adopted as

the based line. March A tests are performed with Rand0, Rand1,

Rand2, and LFSR memory page addressing. The test result shows

that LFSR test has better performance than the others.

Based on present thesis, the following directions are suitable

for future study:

1. Based on March A and March B test, develop more March test

pattern to identify each type of reduced functional faults.

2. Enhance GUI for the software testing environment.

3. For different manufacturing process of flash memory, develop

a most suitable psuedo-random pattern to wholly address the

memory page.

4. Based on the present software code and hardware device, de-

velop a stand alone system which can be used to test the

NAND flash memory without connecting to PC.

43

References

[1] Goor, A.J. van de (1991) Testing Semiconductor Memories:

Theory and Practice, John Wiley & Sons Ltd. Batffins Lane.

Chichester West Sussex PO19 1UD, England.

[2] http://www.st.com/stonline/products/literature/ds/10058/nand512w3a.pdf

[3] Bez, R., Camerlenghi, E., Modelli, A., and Visconti A. (2003)

“Introduction to Flash Memory,” In Proc. of The IEEE, Vol.

91, No. 4, pp. 489-502.

[4] Roth, D.R., Kinnison, J.D., Carkhuff, B.G., Lander, J.R., Bog-

naski, G.S., Chao, K., and Swift, G.M. (2000) “SEU and TID

testing of the Samsung 128 Mbit and the Toshiba 256 Mbit

flash memory,” 2000 IEEE Radiation Effects Data Workshop,

Reno, NV, USA, pp. 96-99, July 24-28.

[5] Agilent 4082F Flash Memory Cell Parametric Test System,

Agilent Technologies, 2007

[6] http://www.advantest.co.jp/products/ate/t5593/en-index.shtml or

http://www.advantest.co.jp/products/ate/t5383/en-index.shtml

[7] L’Ecuyer, Pierre(2004) “Random Number Generation,” Hand-

book of Computational Statistics, J.E. Gentle, W. Haerdle, and

Y. Mori, eds., Springer-Verlag, pp. 35-70.

44

[8] William H. Press (1989) Numerical Recipes: The Art of Sci-

entific Computing. Cambridge University Press, New York.

[9] Wang, L.T. and McCluskey, E.J. (1986) Circuite for Pseudo-

Exhaustive Pattern Generation. In Proc. IEEE Int. Test Con-

ference, pp. 25-37.

[10] Wang, L.T. and McCluskey, E.J. (1986a) A Hybrid Design

of Maximum Length Sequence Generators. In Proc. IEEE Int.

Test Conference, pp. 38-47.

[11] Kernighan, Brian W. (1988) The C Programing Language,

Prentice Hall, Inc., New Jersey.

45

