Abstract

The rapidly industrialized and urbanized areas show an ascending trend of both trace metals and various diverse effects on human health. In Taichung area, the under construction of Central Taiwan Science Park (CTSP) is possibly emitting metal pollutants and damages the ambient air quality. Thus, this study investigates the ambient metal content in period of construction. Both Dry Deposition Flux (DDF) and Total Suspended Particulate (TSP) samples were collected at Tunghai University campus, which is downwind site with CTSP. The results of this study show that both TSP and DDF in the sampling period (2004.9 to 2005.8) were higher than those of past four years (2000 to 2003), additionally the metal also found high concentration. Therefore, the under construction of CTSP is a remarkable emission for increasing pollutant concentration. Meteorological parameters show the relationship of quantity with both TSP and DDF. The simulation of dry deposition ratio indicates the major parameters that are wind speed and ground surface property, while the Cup can modify that ratio at the cement or lawn surfaces. In addition, the statistical analyses (Conditional Probability Function (CPF), Principal Component Analysis (PCA) and Enrichment Factor (EF)) indicated that the metals are possible related to several emission sources, which included the dust and soil emitted from the CTSP construction, emission of Taichung Industrial Park and the operations of Veteran General Hospital incinerator and Taichung City Refuse Incinerator.

Keywords: Metal; Dry Deposition Flux; Total Suspended Particulate; Dry Deposition Ratio; Central Taiwan Science Park

摘 要

在快速都市與工業化的地區,均顯示金屬元素的濃度有明顯上升的趨勢,其 居民健康的問題也日益嚴重。在台中地區,大型工業區的建構很可能會導致週遭 空氣品質惡化的問題,其操作後亦可能排放大量空氣污染物。因此,本研究致力 於園區週遭大氣中背景金屬元素濃度的調查,並分析中部科學園區(CTSP)的 開發對環境的衝擊。本研究的乾沉降(DDF)與總懸浮微粒(TSP)的樣品是收 集在位於 CTSP 下風處的東海大學校園裡。其調查的結果顯示採樣期間(2004 年9月~2005年8月)的乾沉降(5.28~12.24 μg/m²s)與總懸浮微粒(130.7 μg/m³) 是明顯高於前幾年(2000~2003),而大部分的金屬濃度也顯示高於其他地區, 主要以 Fe、Ca、Mg 與 Zn 為主,結果顯示 CTSP 的施工,可能導致週遭環境污 染物濃度的增加。氣象參數(風速、溫度、濕度與大氣壓力)顯示對乾沉降與懸 浮微粒有顯著的相關性。在乾沉降比率(DDR)的模擬結果中,顯示風速跟地 表特性都是影響乾沉降比率的主要參數,可用修正係數Cm來修正地表與風對乾 沉降比率的影響。此外,經由統計分析(條件機率函數(CPF)主成分分析(PCA) 與豐富因子(EF))發現,台中地區的金屬污染源,可能與中部科學園區的開發、 台中市焚化爐(TCRI)、台中工業區(TIP)以及台中榮民總醫院(VGH)醫療 用焚化爐的操作等相關。

關鍵字:金屬、乾沉降、總懸浮微粒、乾沉降比率、中部科學園區

Π

Contents

Chapter 1.	Introduction	1
Chapter 2.	Objectives	6
Chapter 3.	Materials and Method	7
	3.1 Sampling sites information	7
	3.2 Meteorological data	7
	3.3 Sample collection	8
	3.4 Analytical procedure	12
	3.5 Calculation of particulate and metal concentrations	15
	3.6 Quality control.	18
	3.7 Pollution source identification	20
Chapter 4.	Results and Discussion	22
	4.1 Atmospheric particulate concentration	22
	4.2 Dry deposition particulate / flux	30
	4.3 Meteorology	33
	4.3.1 Total suspended particulate (TSP)	34
	4.3.2 Dry deposition flux (DDF)	42
	4.4 Modeling the ratio of dry deposition flux (downward /	
	upward)	48
	4.4.1 Assumption of particulate motion	49
	4.4.2 Estimation of dry deposition ratio (DDR)	53
	4.4.3 Effect of ground covering	59
	4.5 Source identification	62
	4.5.1 Conditional probability function (CPF)	63
	4.5.2 Enrichment factor (EF)	65
	4.5.3 Principal component analysis (PCA)	66
	4.5.4 Source identification by the comparison between PCA	
	and EF methods	67
Chapter 5.	Conclusions and Suggestions	70
	5.1 Conclusions	70
	5.2 Suggestions	71
Chapter 6.	References	72
Appendix A.	Selection Metal Calibration Curve	
Appendix B.	Simulation Account of Model in Chinese	
Appendix C.	Simulation Process in Excel	
Appendix D.	The Deduction of Eq. 4-11	
Appendix E.	The Original Comparison Between Both TSP and DDF and	
	Meteorological Factors	

List of Figures

Figure 3-1.	Map of sampling sites and pollution spots nearby Tunghai	
	University (THU) campus, Taichung area	9
Figure 3-2.	The apparel of TE-1000 Poly-Urethane-Foam High Volume Air	
	Sampler (General Metal Work, USA)	11
Figure 3-3.	The apparel of dry deposition plate	12
Figure 3-4.	Downward side's detail scheme of the dry deposition plate	
	collector	13
Figure 3-5.	The flow chart of metal analyses in this study	14
Figure 3-6.	The digital-electron microbalance, 5-decimal place accuracy (TB	
	215D, DENVER, German), which applied to weight the microfilm	
	covered by silicon grease	16
Figure 3-7.	The Polarized-Zeeman Atomic Absorption Spectrophotometer	
	(Z5000, HITACHI, Japan), which analyzes metal concentration in	
	this study	16
Figure 4-1.	The average annual TSP ($\mu g/m^3$) of Taichung City between 2000	
	and 2004 compared to this study	23
Figure 4-2.	The total suspended particulate ($\mu g/m^3$) during sampling period	
	from September 2004 to August 2005 at the Provincial Research	
	Building (PRB) in Tunghai University, Taichung area, Taiwan	24
Figure 4-3.	The comparison of average monthly TSP ($\mu g/m^3$) between this study	
	(2004.9-2005.8) and past four years (2000-2003)	25
Figure 4-4.	The comparison of each metal concentration (ng/m^3) in total	
	suspended particulate (TSP) indicates different metal percentage at	
	every month	30
Figure 4-5.	The annual dry deposition flux (DDF) between 2000 and 2004	

	compared to this study (2004-2005) in Taichung area	33
Figure 4-6.	Accumulated values of total suspended particulate (TSP; $\mu g/m^3$)	
	separated at the sixteen wind directions	38
Figure 4-7.	The comparison between TSP ($\mu g/m^3$) and the wind speed (m/s),	
	which divided into three intervals: (A) 3 to 4, (B) 2 to 3 and (C) 1 to	
	2 m/s	38
Figure 4-8.	The relationship between TSP ($\mu g/m^3$) and the relative humidity	
	(%), which divided into two intervals: (A) 65 to 80 (high relative	
	humidity) and (B) 50 to 65 % (low relative humidity)	39
Figure 4-9.	The relationship between TSP ($\mu g/m^3$) and the temperature (°C),	
	which divided into two intervals: (A) 20 to 30 (high temperature)	
	and (B) 10 to 20 °C (low temperature)	40
Figure 4-10.	The comparison between TSP μ g/m ³ and the atmospheric pressure	
	(hPa), which divided into three intervals: (A) 1,010 to 1,020 (high	
	atmospheric pressure), (B) 1,000 to 1,010 (atmospheric pressure)	
	and (C) 990 to 1,000 (low atmospheric pressure)	41
Figure 4-11.	Accumulated values of downward and upward dry deposition flux	
	$(\mu g/m^2 s)$ in PRB, and divided at the sixteen wind directions	45
Figure 4-12.	Accumulated values of downward and upward dry deposition flux	
	$(\mu g/m^2 s)$ in CSTU, and divided at the sixteen wind directions	46
Figure 4-13.	The comparison between dry deposition flux ($\mu g/m^2 s$) and the wind	
	speed (m/s), which divided into two intervals: (A) 3 to 5 and (B) 1	
	to 3 m/s	47
Figure 4-14.	The comparison between dry deposition flux ($\mu g/m^2 s$) and relative	
	humidity (%)	48

Figure 4-15.	The comparison between dry deposition flux ($\mu g/m^2 s$) and	
	temperature (°C)	49
Figure 4-16.	The comparison between dry deposition flux ($\mu g/m^2 s$) and	
	atmospheric pressure (hPa) at different intervals of atmospheric	
	pressure: 970 to 1,005 (low atmospheric pressure) and 1,005 to	
	1,025 hPa (high atmospheric pressure)	50
Figure 4-17.	The mechanisms of dry deposition plates collecting particulate	
	matters on both sides of downward and upward	52
Figure 4-18.	The assumption of three external forces functioned on downward	
	and upward particulates	53
Figure 4-19.	The relationship of dry deposition ratio between estimation and	
	observation in tendency of four intervals of wind speed	57
Figure 4-20.	The calculated $C_{up}(\mu g/m^2s)$ at PRB (cement surface) and CSTU	
	(lawn surface) sites in different interval of wind speed: (1) 1 to 2, (2)	
	2 to 3, (3) 3 to 4 and (4) 4 to 5 m/s	61
Figure 4-21.	The contribution of selected metals at different zones of wind	
	direction	64

List of Tables

Table 1-1.	The emission standard for semiconductor manufacture in Taiwan	5
Table 3-1.	The meteorological information, which are collected from the	
	Taiwan Central Weather Bureau, includes Atmospheric pressure	
	(hPa), Temperature (°C), Relative humidity (%), Prevailing wind	
	(degree) and Wind speed (m/s)	10
Table 3-2.	Method detection limit (MDL) of each metal concentration by using	
	the Polarized-Zeeman Atomic Absorption Spectrophotometer	19
Table 4-1.	The year's death toll of respiratory disease in Taichung City and to	
	compare between total suspended particulate ($\mu g/m^3$) and dry	
	deposition flux (µg/m ² s)	26
Table 4-2.	The metal concentration comparison of total suspended particulate	
	(TSP) obtained by this study and other researches	29
Table 4-3.	The dry deposition flux collected at PRB and CSTU sites	32
Table 4-4.	Metal concentration of dry deposition flux during sampling period	
	between September 2004 and August 2005 at PRB and CSTU	
	sites	34
Table 4-5.	The comparison of metal dry deposition flux $(ng/m^2 s)$ between this	
	study and literature	35
Table 4-6.	The monthly frequency of rainfall day (days) during sampling	
	periods between September 2004 and August 2005 at Taichung area,	
	Taiwan	42
Table 4-7.	The information of TSP ($\mu g/m^3$) is compared between high rainfall	
	frequency (monthly rainfall days > 10) and low rainfall frequency	
	(monthly rainfall days < 10) categories	43
Table 4-8.	The average total suspended particulate (TSP) at different reasons	

	and meteorological conditions	43
Table 4-9.	The data comparison between value of estimation and actual	
	observation from this study classified into four intervals of wind	
	speed	55
Table 4-10.	The 2-tailed Pearson correlation analyzed between estimated dry	
	deposition ratio (Est. Ratio) and two observed dry deposition ratios	
	(Obs. Ratio I and II)	57
Table 4-11.	The conditional probability function (CPF) analyzed data during	
	sampling periods between September 2004 and August 2005	64
Table 4-12.	The enrichment factor (EF) calculated through metal concentration	
	in TSP divided by metal concentration in topsoil, which includes	
	both THU and CTSP sites	67
Table 4-13.	The factor loading (FL) of this study obtained from the principal	
	component analysis (PCA) method	68

Abbreviation

Abbr.	Description	Unit
AAS	Atomic Absorption Spectrophotometer	-
CPF	Conditional Probability Function	-
CSTU	College of Science in Tunghai University	-
CTSP	Central Taiwan Science Park	-
DDF	Dry Deposition Flux	$\mu g/m^2 s$
DDP	Dry Deposition Particulate	-
DDR	Dry Deposition Ratio	-
EF	Enrichment Factor	-
EU	European Union	-
FAAS	Flame Atomic Absorption Spectrophotometer	-
GFAAS	Graphite Furnace Atomic Absorption Spectrophotometer	-
HSP	Hsinchu Science Park	-
MDL	Method Detection Limit	-
PCA	Principal Component Analysis	-
PRB	Provincial Research Building	-
QC	Quality Control	-
TCRI	Taichung City Refuse Incinerator	-
TIP	Taichung Industrial Park	-
TSP	Total Suspended Particulate	$\mu g/m^3$
VGH	Veteran General Hospital	-

Expression

Expr.	Description	Unit
C _D	Drag Coefficient	-
C_{up}	Modification Coefficient of Upward Flux	$\mu g/m^2 s$
F_B	Buoyancy Force	kg-m/s ²
ΣF_{down}	Total Forces on Downward Particulate	kg-m/s ²
F_{D}	Drag Force	kg-m/s ²
F_{G}	Gravity Force	kg-m/s ²
ΣF_{up}	Total Forces on Upward Particulate	kg-m/s ²
Est. Ratio	Estimated Ratio	-
Obs. Ratio	Observed Ratio	-
Re	Reynolds number	-