摘 要

本研究利用人工製備磁性過氟辛酸鋁(magnetic perfluorooctylalumina, MPFOA)結合臭氧反應處理德基水庫原水,以 探討磁性催化劑製備情形與處理原水反應機制和處理後水中有機物 質之官能基分佈情形。

本研究採集中台灣地區德基水庫之飲用水水源為探討之水體,藉 由XAD-8樹脂分離出五種天然有機物質,水中有機物分離成腐植酸 (29.5%)、黃酸(19.5%)、疏水性中性物(37.9%)、疏水性鹼性物(2.9%) 以及親水性物質(10.2%)等五種有機物。

製備磁性催化劑(MPFOA)之特性可利用掃描式電子顯微鏡/能量 分散光譜儀(SEM/EDS)、超導量子干涉磁量儀(SQUID)、X光單晶繞 射儀(XRD)以及傅利葉轉換紅外線光譜(FTIR)來鑑定。 MPFOA具有 吸附臭氧及有機物的能力,亦可增加臭氧在水中的溶解度及穩定度, 故在臭氧化過程中添加MPFOA可提高臭氧對有機物質破壞之效率。 在整個臭氧反應中皆利用即時監測偵測氧化還原電位(ORP)、水中溶 臭氧(DO₃)及pH即時數據資料,以供來討論臭氧反應機制並建立臭氧 與添加催化劑反應之模擬Nemst方程式。

根據傅立葉轉換紅外線分光光譜儀和碳-13 核磁共振光譜儀來探 討原水經由臭氧反應與添加 MPFOA 後之官能基變化情形。本研究分

I

析結果發現水中部份官能基因臭氧添加 MPFOA 反應後而被破壞,有 提昇臭氧反應性之趨勢。

關鍵字:磁性過氟辛酸鋁、催化劑、天然有機物質、臭氧、傅立葉轉

换紅外線分光光譜儀、碳-13 核磁共振光譜儀

Abstract

This study the magnetic perfluorooctylalumina (MPFOA) is used to enhance the efficiency of ozonation on the treatment of the eutrophic raw water of Te-Chi Reservoir. The investigation includes the preparation of the magnetic catalyst, miasmic study on the ozonation of the raw water and the variation of functional groups upon the ozonation.

The water samples were collected from Te-Chi Reservoir which provides major domestic water supply in metropolitan central of the Taiwan area. The organic contents of water samples were extracted and classified into humic acids (HAs, 29.5 %), fulvic acids (FAs, 19.5 %), hydrophobic neutrals (37.9 %), hydrophobic bases (2.9 %) and hydrophilic fractions (10.2 %) by using of XAD-8 resins.

The characteristics of MPFOA can be identified by the scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), Superconducting quantum interference device (SQUID), X-ray powder diffraction (XRD) and Fourier-transform infrared spectrophotometer (FTIR). MPFOA has the more ability to adsorb ozone and organic matters, and furthermore to increase the ozone dissolving rate and stability. Therefore, the ozonation with MPFOA can raise the decomposition efficiency of toward to organic matters. During ozonation process, the ORP, DO₃, and pH values were monitored and

III

connected to an on-line oscilloscope to investigate the ozonation mechanisms. The data also used to establish the Nernst equation and simulate the possible ozonation mechanisms the presence of catalyst.

The profile of functional groups during the ozonation was examined by both FTIR and ¹³C NMR spectra. The variation of functional groups can represent the destruction by ozonation and ozonation with MPFOA in this study.

Keywords: magnetic perfluorooctylalumina (MPFOA), catalyst, NOMs,

ozonation, FTIR, ¹³C NMR

Chapter 1 Introduction1
1.1 Introduction
1.2 Objectives
Chapter 2 Literature Review
2.1 Natural organic matters in reservoir
2.2 Application of ozone
2.2.1 Advanced oxidation processes (AOPs)7
2.2.2 Two-stage ozone reactions
2.2.3 Hydroxyl radicals measurement in ozonation10
2.2.4 The catalytic ozonation11
2.3 Magnetic technology12
2.3.1 Magnetic particles and magnetic separation12
2.3.2 Magnetic application
2.4 Modeling
2.5 Change of functional groups
Chapter 3 Material and Methods18
3.1 Experimental design
3.2 Methods and instruments
3.2.1 Sampling site
3.2.2 Extraction procedure
3.2.3 Ozonation system
3.2.4 On-line oscilloscope monitors equipment
3.3 Analysis Methods
3.3.1 Basic water quality analysis

Contents

	3.3.2 Absorbance at wavelength of 254 nm	
	3.3.3 Dissolved organic carbon (DOC)	30
	3.3.4 Hydroxyl radicals determination	32
	3.3.5 Preparation of magnetic superparamagnetic perfluorooctanoic ac	id-type
	catalyst	34
	3.3.6 Scanning electron microscopy with energy dispersive spectroscopy	v
	(SEM/EDS)	37
	3.3.7 Superconducting quantum interference device (SQUID)	
	3.3.8 X-ray powder diffractometer (XRD)	38
	3.3.9 Fourier Transform Infrared Spectrometer (FTIR)	39
	3.3.10 Carbon-13 Nuclear Magnetic Resonance (CPMAS ¹³ C NMR)	39
С	Chapter 4 Results and Discussion	41
4.	1 Water quality of Te-Chi Reservoir	41
4.	2 Characteristics of preparation magnetic perfluorooctylalumina (MPFOA)	
	catalyst	50
	4.2.1 Specific surface area	50
	4.2.2 Magnetic particle patterns	50
	4.2.3 Magnetization curves	53
	4.2.4 Crystal structure of magnetic particles	54
	4.2.5 The characteristics and recycling test of MPFOA	
	catalyst	56
	4.2.6 The dose of catalyst	58
4.	3 The investigation of ozonation mechanisms	60
	4.3.1 Hydroxyl radicals measurement	60
	4.3.2 Ozonation and catalytic ozonation mechanisms	62

4.4 Modeling of ozone and catalyst reactions	66
4.5 Change of functional groups during ozonation	69
Chapter 5 Conclusions and Suggestions	77
5.1 Conclusions	77
5.2 Suggestions	
References	80
Appendix	89
Appendix I	
Appendix П.	

List of Tables

Table 3.1 Summary of the reagents and equipments for NOMs water separation from		
Te-Chi Reservoir by resin extraction process2		
Table 3.2 ORP analysis conditions by the Digital storage Oscilloscope		
Table 3.3 Basic water quality analysis items and methods		
Table 3.4 Summary of the reagent and equipment for DOC test. 3		
Table 3.5 Summary of the calibration equation for DOC		
Table 3.6 Summary of the calibration equations for coumarin		
Table 4.1 The water quality parameters of Te-Chi Reservoir raw water in recent years		
(1998-2006)4		
Table 4.2 The percentage distribution of Te-Chi Reservoir NOMs (% of DOC) in		
recent years (2001-2006) and compare to literature		
Table 4.3 The EDS spectra of atomic percent of the intermediates (a, b, c) along the		
preparation of MPFOA		
Table 4.4 Abbreviated tables of group frequencies for NOMs organic groups obtained		
by Lin et al.(2001), Hafidi et al.(2005) and Kanokkantapong et al.		
(2006)		

List of Figures

Figure 3.1 The experimental design and analysis process of this study20
Figure 3.2 The water sampling location of Te-Chi Reservoir, which supply water for
domestic water in Tai-Chung area, central Taiwan, ROC21
Figure 3.3 The flowchart of separated five NOMs categories (HAs, FAs, hydrophobic
bases, hydrophobic neutrals and hydrophilic fractions) from Te-Chi
Reservoir raw water by resin separation process
Figure 3.4 Schematic diagram of the 5-liter ozonation system equipped with a mixer
and three monitor sensors (pH, ORP and dissolved ozone) connected with
oscillographic recorder. Ultraviolet detector (Cary 50) connected with the
optical fiber probe for monitoring the change of A_{254} in ozonation
system
Figure 3.5 Schematic diagram of experimental system for the preparation experiments.
The system contains: nitrogen purge injector, mixer, the thermometer and
heating plate
Figure 4.1 The percentage of five species (HAs, FAs, hydrophobic bases, hydrophobic
neutrals and hydrophilic fractions) of organic fractions extracted from
Te-Chi Reservoir in 200645
Figure 4.2 The SUVA value (A ₂₅₄ /DOC) of raw water and five fractions (HAs, FAs,
hydrophobic bases, hydrophobic neutrals and hydrophilic fractions)
extracted from Te-Chi Reservoir in 2006
Figure 4.3 The SEM pictures and EDS spectra of the preparation steps of MPFOA. (a)
Fe_3O_4/SiO_2 , (b) $Fe_3O_4/SiO_2/Al(OH)_3$ and (c) MPFOA52
Figure 4.4 Magnetization curves of various magnetic particles

Figure 4.5 X-ray diffraction (XRD) patterns with the radiation source of Cu K α for
various magnetic particles: (a) Fe ₃ O ₄ particles; (b) Fe ₃ O ₄ /SiO ₂ particles; (c)
$Fe_3O_4/SiO_2/Al(OH)_3$ particles and the final product of (d) MPFOA
particles
Figure 4.6 The FTIR spectrum of (a) Perfluorooctanoic acid (PFA), (b) Original
MPFOA, (c) Reused MPFOA and (d) 5 th Reused MPFOA. The main
functional C-F bonds located between 1,100 to 1,250 cm ⁻¹
Figure 4.7 The ORP profiles of ozonation (blank) with the dose amount of 0, 0.5, 1.0,
2.0, 3.0 and 4.0 g/L of MPFOA
Figure 4.8 The maximum OH radicals (mg/L) in pure water during saturated ozone.
The initial coumarin concentration (65 mg/L) indicates the maximum
amount of OH radical (1.6 mg/L) in the reactor61
Figure 4.9 The analytic value on-line monitored data (a) ORP and DO ₃ , (b) OH
radicals during the ozonation and catalytic ozonation of pure water63
Figure 4.10 The on-line monitored data (a) ORP and OH radicals, (b) pH and DO_3
during the ozonation and catalytic ozonation of Te-Chi Reservoir raw
water
Figure 4.11 The Nernst model simulation of A_{254} during ozonation and catalytic
ozonation of Te-Chi Reservoir raw water
Figure 4.12 FTIR spectrums of Te-Chi Reservoir raw water during (a) before
ozonation (Raw water), (b) after ozonation (Raw water $+ O_3$) and (c)
after ozonation with MPFOA (Raw water + O_3 + MPFOA)72
Figure 4.13 ¹³ C NMR spectra of Te-Chi Reservoir raw water (a) before ozonation
(Raw water), (b) after ozonation (Raw water $+ O_3$) and (c) after
ozonation with MPFOA (Raw water + O ₃ + MPFOA)75
Figure 4.14 ¹³ C NMR spectra of humic acid from Te-Chi Reservoir raw water (a)

before ozonation (Humic acids), (b) after ozonation (Humic acids + O_3) and (c) after ozonation with MPFOA (Humic acids + O_3 + MPFOA)....76

Nomenclatures

¹³ C-NMR	¹³ C nuclear magnetic resonance	碳-13 核磁共振光譜儀
A ₂₅₄	Absorbance at 254 nm	254 nm 波長之吸光度
AOP	Advanced oxidation process	高級氧化法
COD	Chemical oxygen demand	化學需氧量
DO	Dissolved oxygen	溶氧
DO ₃	Dissolved ozone	溶臭氧
DOC	Dissolved organic carbon	溶解有機碳
FAs	Fulvic acids	黄酸
FTIR	Fourier transform infrared spectrophotometer	傅利葉轉換紅外線光譜儀
HAs	Humic acids	腐植酸
HPLC	High performance liquid chromatography	高效率液相層析儀
MPFOA	Magnetic perfluorooctylalumina	磁性過氟辛酸鋁
NOMs	Natural organic matters	天然有機物質
OH radical	Hydroxyl radical	氫氧自由基
ORP	Oxidation reduction potential	氧化還原電位
SUVA	Specific ultra-violet absorbance	比紫外光吸光度
SEM/EDS	Scanning electron microscopy with energy dispersive	掃描式電子顯微鏡/能量
SEM/EDS	spectroscopy	分散光譜儀
SQUID	Superconducting quantum interference device	超導量子干涉磁量儀
TDS	Total dissolved solids	總溶解固體
XRD	X-ray powder diffractometer	X 光粉末繞射儀