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Fig. 1 The PCR products of E-cadherin gene 3’-UTR C/T polymorphism on 3%
agarose gel. PCR-base restriction analysis of E-CDH gene 3’-UTR Pml I
polymorphism shown on 3 % agarose electrophoresis. The polymorphic
region was amplified by PCR which resulted in an undigestable fragment in
lane 1 (172 bp), a digestable fragment in lane 3 (146-bp and 26-bp) and a

heterozygote in lane 2.
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Fig. 2 The sequence of E-CDH 3’-UTR C/T polymorphism. 2a: Sequence of PCR

product with C/T heterozygote, arrow indicate the point of C/T
polymorphism. 2b: Sequence of PCR product with C/C heterozygote, arrow
indicate the point of C polymorphism. 2c: Sequence of PCR product with

T/T homozygote, arrow indicate the point of T polymorphism.
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Fig 3 NI8 RGCs grew in DMEM medium. After adding
hypoxanthine—aminoprerin-thymidine (HAT) medium to N18, NI18 RGCs

with dendritic process was seen. (Scale bar = 4 um)
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Fig. 4a RGCs stained with Thy-1 [stained with fluoresceinisothiocyanate (FITC)
conjugated secondary antibody]. NI8 cells were stained with Thy-1 which is

specific for neural cells. The neural projections are evident. (Scale bar = 0.4 um)

Fig. 4b N18 RGCs stained with anti-NR1. N18 RGCs stained with antibody to

NMDA receptor (NR1 antibody) conjugated with FITC. (Scale bar = 0.3 pm).
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Fig. 5a NMDA induced apoptosis of RGCs at the concentration100 uM. Flow

cytometry was used to detect percentage of apoptotic cells. 100 uM NMDA induced

69.9% apoptosis of N18 RGCs (red arrow head indicated cell with apoptosis).
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Fig. 5b  Apoptosis of N18 RGCs in various concentration of NMDA. Various

concentrations NMDA were added to RGCs and the apoptotic cells were detected to

select appropriate concentration which can be used in this study. NMDA at the

concentration 100 M was able to induce 69.9% of apoptosis in retina ganglion cells,

and was suitable to be used in this study (** p<0.001).
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Fig. 6 NMDA induced apoptosis in solution with or without Mg2*- NMDA at the
concentration 100 pM induced 69.9% apoptsis of N18 RGCs in Mg”>" free medium.

But in medium with Mg®* 100 uM NMDA just induced 20 % of apoptosis in RGCs.
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Fig. 7 The effects of neuroprotectors and polyphenols
NMDA-treated N18 RGCs. The concentrations of the aloe-emodin metaboliytes were
15 uM. The concentration of ascorbic acid was 80 M. The concentrations of IGF I,

IT and IGF BP were 10 M. In the control group, only 100 M NMDA was added
and it induced 69.9% apoptosis of RGCs. Aloe-emodin metabolites was the most
effective among the tested agents (** p< 0.001). Aloe-emodin metabolits reduced the

apoptosis to 50 %, which ws comparable with the effects of MK 801 which decreased

apoptosis from 69.9 % to 48%.
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Fig. 8 The effects of different concentration of aloe-emodin metabolites on NMDA
induced apoptosis in N18 RGCs. Aloe-emodin metabolites over then 15uM were not
more effective Nevertheless, the concentrations of aloe-emodin metabolites less then

15uM were null and void on NMDA -iduced apoptosis of N18 RGCs.
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Fig. 9 The effects of parent form and metabolites of aloe-emodin on NMDA-treated
N18 RGCs. At concentration of 15 pM, the parent form of aloe-emodin decreased

apoptosis of RGCs from 69.9% to 62%, whereas aloe-emodin metabolites decreased

apoptosis from 69.9% to 50% (* p <0.05, A p>0.05).
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Fig. 10 The effects of aloe-emodin metabolites on Ca’” concentration in
NMDA-treated N18 RGCs. BAPTA (Ca*" chelator) reduced cells stained with Ca*" in
the NMDA-treated RGCs from 27% to 4%. Aloe-emodin metabolites reduced cells

stained with Ca®" to 6% (A p > 0.05).
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Fig. 11 The effects of aloe-emodin metabolites and caspase 3 blocker on
NMDA-treated N18 RGCs. Aloe-emodin metabolites decreased the apoptosis of
NMDA treated RGCs from 69.9% to 50%. The effect of aloe-emodin metabolites was
comparable with that of Z-VAD-fmk (a commercial caspase-3 blocker) in increasing
the cell viability. The cells apoptosis decreased from 69.9% to 48% by Z-VAD-fmk

(A p>0.05).
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Fig. 12a-1 The effects of aloe-emodin metabolites on apoptosis pathway of

NMDA -treated N18 RGCs.
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Fig. 12a-2 Western blotting analysis the effects of aloe-emodin metabolites on
apoptosis pathway of NMDA-treated N18 RGCs. In the apoptosis pathway NMDA
increased the expression of p53, bax, caspase 9 and caspase 3. Aloe-emodin

metabolites decreased the activation of these molecules.

Fig. 12a-1 and 12a-2: Western blotting to detect molecules involved in the apoptosis
of aloe-emodin metabolites and NMDA-treated N18 RGCs. All data were normalized
to the control groups. In the apoptosis pathway NMDA increased the expression of
p53, bax, caspase 9 and caspase 3 (line 1 of each row 1) (Fig. 14a-1). Aloe-emodin
metabolites decreased the activation of these molecules (line 2 of each row 2) (Fig.

12a-1and 12a-2) (n=3) (*p< 0.05).
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Fig. 12b The route of aloe-emodin metabolites on apoptosis pathway of
NMDA-treated N18 RGCs. The apoptosis pathway of aloe-emodin metabolites and
NMDA- cotreated N18 RGCs. NMDA and aloe-emodin metabolites acted in the

apoptosis pathway by changing the expressions of p53, bax and caspase 9.
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Fig. 13a-g Histologic examination of retina after NMDA and aloe-emodin were

deliverd.
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Fig. 13h and i TUNEL stain of retina after NMDA and aloe-emodin were deliverd.

Fig. 13 Histologic examination of retina after NMDA and aloe-emodin were
deliverd. Fig. 13a-g RGCs were arranged in order at the inner layer of retina (Fig.
13a). Aloe-emodin (20 pg) itself was not toxic to RGCs (Fig. 13b). NMDA (20 pg)
induced cell loss and apoptosis in RGCs (Fig. 13c, 13h); the nucleus of RGCs became
irregular and fragmented. (Fig. 13g) Aloe-emodin (20 pg) increased the numbers and
improved the arrangement of RGCs treated by NMDA (20 pg). (Fig. 13d, 13h)
Aloe-emodin (40 pg) neither raised the numbers nor changed the appearances of
NMDA (20 pg)-treated RGCs (Fig. 13e). When PEG 400 (40 pl) was delivered via
deep sub-tendon injection; no evident change was noted (Fig. 13f). (Fig. 13a to Fig.
13f H&E 400x and Fig. 13g H&E 1600x). Fig. 13h and i TUNEL stain of retina
after NMDA and aloe-emodin were deliverd. TUNEL positive RGCs were less in
aloe-emodin 20 pg added RGCs then no aloe-emodin added RGCs. (In Fig. 13h and
131, Scale bar = 1 um) (ONL: outer nuclear layer, INL: inner nuclear layer. GCL:

ganglion cell layer).
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Fig. 14 Proteins expressed after N18 RGCs was co- treated with aloe-emodin
metabolites and NMDA were selected from 2DE gel. Spots 1-33 existed only
aloe-emodin was added to the cells and did not exist in negative control or only

NMDA is added to the cells.
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Fig. 15 Proteins preserved after aloe-emodin metabolites and NMDA-cotreated
were selected from the 2DE gel of negative control. Spots 34- 84 existed in negative
control and after aloe-emodin being added to the NMDA-treated cells but did not

exist in the cells only treated with NMDA.
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Fig. 16 The distribution of involved proteins in aloe-emodin and NMDA treated
N18 RGCs. 1. Stress evoked proteins; 2. Proteins involved in cell growth; 3.
Housekeeping proteins; 4. Proteins involved in production of energy in cells; 5.

Proteins involved in formation of cells structure; 6. Miscellaneous proteins.
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Fig. 17 (A)-(1) Identification of galectin-1, EF 1-B, Hsp60, stress-70 protein, Cu-Zn

SOD, Hsp10, VDAC-1 Mitofilin, and PDI A6 precursor
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Fig. 17 (B) The nanoelectrospray mass spectrum of EF 1-f
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Fig. 17 (C) The nanoelectrospray mass spectrum of Hsp60
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Fig. 17 (D) The nanoelectrospray mass spectrum of stress-70 protein
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Fig. 17 (E) The nanoelectrospray mass spectrum of Cu-Zn SOD
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Fig. 17 (F) The nanoelectrospray mass spectrum of Hsp10
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Fig. 17 (G) The nanoelectrospray mass spectrum VDAC-1
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Fig. 17 (I) The nanoelectrospray mass spectrum of PDI A6 precursor
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Fig. 17 Identification of galectin-1, EF 1-B, Hsp60, stress-70 protein, Cu-Zn SOD,
Hsp10, VDAC-1, Mitofilin, and PDI A6 precursor (A) The nanoelectrospray mass
spectrum of the triply charged ion m/z 496.22 for spot 2 is shown. The amino acid
sequence  DSNNLCLHFNPR was determined from mass differences in the
y-fragment ions series and matched residues 37-48 of the mouse galectin-1. (B) The
nanoelectrospray mass spectrum of the doubly charged ion m/z 809.42 for spot 4 is
shown. The amino acid sequence TPAGLQVLNDYLADK was determined from mass
differences in the y-fragment ions series and matched residues 7-21 of the mouse EF
1-B. (C) The nanoelectrospray mass spectrum of the doubly charged ion m/z 752.87
for spot 15 is shown. The amino acid sequence TLNDELEIIEGMK was determined
from mass differences in the y-fragment ions series and matched residues 206-218 of
the mouseHsp60. (D) The nanoelectrospray mass spectrum of the doubly charged ion
m/z 725.83 for spot 19 is shown. The amino acid sequence TTPSVVAFTADGER was
determined from mass differences in the y-fragment ions series and matched residues
86-99 of the stress-70 protein. (E) The nanoelectrospray mass spectrum of the doubly
charged ion m/z 587.76 for spot 21 is shown. The amino acid sequence
DGVANVSIEDR was determined from mass differences in the y-fragment ions series
and matched residues 92-102 of the Cu-Zn SOD. (F) The nanoelectrospray mass
spectrum of the doubly charged ion m/z 643.35 for spot 24 is shown. The amino acid
sequence VLQATVVAVGSGGK was determined from mass differences in the
y-fragment ions series and matched residues 40-53 of the Hsp 10. (G) The
nanoelectrospray mass spectrum of the doubly charged ion m/z 1088.47 for spot 32 is
shown. The amino acid sequence WNTDNTLGTEITVEDQLAR was determined
from mass differences in the y-fragment ions series and matched residues 74-92 of the
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VDAC-1. (H) The nanoelectrospray mass spectrum of the doubly charged ion m/z
809.31 for spot 34 is shown. The amino acid sequence STSETTEEAFSSSVR was
determined from mass differences in the y-fragment ions series and matched residues
180-194 of the Mitofilin. (I) The nanoelectrospray mass spectrum of the doubly
charged ion m/z 890.85 for spot 44 is shown. The amino acid sequence
VDATEESDLAQQYGVR was determined from mass differences in the y-fragment
ions series and matched residues 84-99 of the PDI A6 precursor.

*Only y- and b-fragment ions are labeled in the spectrum.
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Fig. 18a Western blotting of Cu-Zn SOD, Hsp 10 and PDI A6 after aloe-emodin

metabolites was added. Western blotting expressed of Cu-Zn SOD, Hsp10 and PDI

A6 were up-regulated after aloe- emodin metabolites added to NMDA treated RGCs.

The expression of Cu-Zn SOD had the most significant difference after aloe-emodin

added to N18 RGCs.
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Fig. 18b The results of Western blotting after aloe-emodin metabolites was added.
The expression of Cu-Zn SOD had the most significant difference after aloe-emodin

added to N18 RGCs (p<0.05).
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	Fig. 15  Proteins preserved after aloe-emodin metabolites and NMDA-cotreated were selected from the 2DE gel of negative control. Spots 34- 84 existed in negative control and after aloe-emodin being added to the NMDA-treated cells but did not exist in the cells only treated with NMDA.

