附錄 A

不同粒徑膠體粒子在不同濃度電解質溶液的 zeta potential

Fig[A-1] Plots of the zeta potential values for polystyrene colloids (particle diameter: 6.2µm)at 25°C, as a function of the electrolyte (NaCl) concentration.

Fig[A-2] Plots of the zeta potential values for polystyrene colloids (particle diameter: 3.04µm)at 25°C, as a function of the electrolyte (NaCl) concentration.

Fig[A-4] Plots of the zeta potential values for polystyrene colloids (particle diameter: 0.807µm)at 25°C, as a function of the electrolyte (NaCI) concentration.

Fig[A-6] Plots of the zeta potential values for polystyrene colloids (particle diameter: 3.04μ m)at 25° C, as a function of the electrolyte (MgCl₂) concentration.

Fig[A-8] Plots of the zeta potential values for polystyrene colloids (particle diameter: 0.807µm)at 25°C, as a function of the electrolyte (MgCl₂) concentration.

Fig[A-10] Plots of the zeta potential values for polystyrene colloids (particle diameter: 3.04μ m)at 25°C, as a function of the electrolyte (AICl₃) concentration.

Fig[A-12] Plots of the zeta potential values for polystyrene colloids (particle diameter: 0.807μm)at 25°C, as a function of the electrolyte (AICl₃) concentration.

附錄 B

由 DLVO 理論計算不同粒徑膠體 之全位能曲線

Fig[B-2] Schematic diagram of total interparticle potential energy curves for NaCl when particle diameters are at 0.807 μm and 6.2 μm, respectively.

Fig[B-4] Schematic diagram of total interparticle potential energy curves for NaCl when particle diameters are at 0.807 μ m and 3.04 μ m, respectively_o

Fig[B-5] Schematic diagram of total interparticle potential energy curves for NaCl when particle diameters are at 0.807 μ m and 1.1 μ m, respectively.

Fig[B-6] Schematic diagram of total interparticle potential energy curves for $MgCl_2$ when particle diameters are at 1.1 μ m and 6.2 μ m, respectively_o

Fig[B-8] Schematic diagram of total interparticle potential energy curves for $MgCl_2$ when particle diameters are at 1.1 μ m and 3.04 μ m, respectively.

Fig[B-10] Schematic diagram of total interparticle potential energy curves for $MgCl_2$ when particle diameters are at 0.807 μ m and 1.1 μ m, respectively.

Fig[B-11] Schematic diagram of total interparticle potential energy curves for $AICI_3$ when particle diameters are at 1.1 μ m and 6.2 μ m, respectively.

Fig[B-12] Schematic diagram of total interparticle potential energy curves for AlCl₃ when particle diameters are at 0.807 μ m and 6.2 μ m, respectively_o

Fig[B-13] Schematic diagram of total interparticle potential energy curves for $AlCl_3$ when particle diameters are at 1.1 μ m and 3.04 μ m, respectively.

Fig[B-14] Schematic diagram of total interparticle potential energy curves for AICl₃ when particle diameters are at 0.807 μ m and 3.04 μ m, respectively.

Fig[B-15] Schematic diagram of total interparticle potential energy curves for $AICl_3$ when particle diameters are at 0.807 μ m and 1.1 μ m, respectively_o

附錄 C

單一粒徑膠體粒子之膠凝穩定圖

 \mbox{AlCl}_{3} concentrations, when G-force=1.0G

附錄 D

不同粒徑膠體粒子等濃度混合 之膠凝穩定圖

 $\begin{array}{l} \mbox{Fig}[D\mbox{-}4] \mbox{ Experimental vaules of the stability factor (W_{ij}) for $3.04 \mbox{ mm}$ and $0.807 \mbox{ mm}$ colloids at different NaCl $, $MgCl_2$, $AlCl_3$ concentrations, when G-force=1.0G $} \end{array}$

 $\label{eq:FigED-5} \begin{array}{l} \mbox{Experimental values of the stability factor (W_{ij}) for 1.1 mm and 0.807 mm colloids at different NaCl $, $MgCl_2,AICl_3$ concentrations, when G-force=1.0G $} \end{array}$

 $\begin{array}{l} \mbox{Fig[D-6] Experimental values of the stability factor (W_{ij}) for} \\ \mbox{ 6.2 mm and 3.04 mm colloids at different NaCl ,} \\ \mbox{ MgCl}_2,\mbox{AlCl}_3 \mbox{ concentrations, when G-force=1.5G} \end{array}$

 $\begin{array}{l} \mbox{Fig[D-8] Experimental values of the stability factor (W_{ij}) for} \\ 6.2 \mbox{ mm} and 0.807 \mbox{ mm} colloids at different NaCl ,} \\ \mbox{MgCl}_2,\mbox{AlCl}_3 \mbox{ concentrations, when G-force=1.5G} \end{array}$

Fig[D-10] Experimental vaules of the stability factor (W_{ij}) for 3.04 mm and 0.807 mm colloids at different NaCl , MgCl₂,AlCl₃ concentrations, when G-force=1.5G

 $\label{eq:Fig} \begin{array}{l} \mbox{Fig}[D\mbox{-}12] \mbox{ Experimental values of the stability factor (W_{ij}) for $6.2\,\mbox{ mm}$ and $3.04\mbox{ mm}$ colloids at different NaCl $, $MgCl_2,AICl_3$ concentrations, when G-force=2.0G $} \end{array}$

MgCl₂,AlCl₃ concentrations, when G-force=2.0G

 $\begin{array}{l} \mbox{Fig[D-16] Experimental values of the stability factor (W_{ij}) for} \\ 3.04 \mbox{ mm} and 0.807 \mbox{ mm} colloids at different NaCl , \\ \mbox{MgCl}_2, \mbox{AlCl}_3 \mbox{ concentrations}, \mbox{ when G-force=}2.0G \end{array}$

附錄 E

不同粒徑膠體粒子等濃度混合膠凝沉降時在 不同重力值下的 -N_G圖

Fig[E-1] Effect of surface potential on the κ - N_G stability plane for the various electrolyte(NaCl) at particle size ratio=0.3816.

Fig[E-2] Effect of surface potential on the κ - N_G stability plane for the various electrolyte(MgCl₂) at particle size ratio=0.3816.

Fig[E-3] Effect of surface potential on the κ - N_G stability plane for the various electrolyte(AlCl₃) at particle size ratio=0.3816.

Fig[E-4] Effect of surface potential on the κ - N_G stability plane for the various electrolyte(NaCl) at particle size ratio=0.734.

Fig[E-5] Effect of surface potential on the $\kappa - N_G$ stability plane for the various electrolyte(MgCl₂) at particle size ratio=0.734

Fig[E-6] Effect of surface potential on the κ - N_G stability plane for the various electrolyte(AlCl₃) at particle size ratio=0.734.

附錄 F

不同粒徑膠體等濃度混合膠凝沉降 之理論凝集效率

Fig[F-2] Effect of gravity on the capture efficiency for the various electrolyte (MgCl₂) concentration at particle size ratio=0.3816.

Fig[F-4] Effect of gravity on the capture efficiency for the various electrolyte (NaCl) concentration at particle size ratio=0.734.

Fig[F-6] Effect of gravity on the capture efficiency for the various electrolyte $(AICI_3)$ concentration at particle size ratio=0.734.

Fig[F-7] Effect of gravity on the capture efficiency for the various electrolyte (NaCI) concentration at particle size ratio=0.266.

Fig[F-8] Effect of gravity on the capture efficiency for the various electrolyte $(MgCl_2)$ concentration at particle size ratio=0.266.

Fig[F-9] Effect of gravity on the capture efficiency for the various electrolyte (AICl₃) concentration at particle size ratio=0.266.

附錄 G

其它參考資料

(一)實驗步驟之-檢量線之製作

- (一) 製作濁度(turbidity) 對粒子濃度的檢量線(calibration curve):
 - 1.由上述配製好的膠體溶液基準品各量取 1~10ml 再分別稀釋成

100ml

- 2.各取 1ml 的稀釋膠體溶液加入 49ml ISOTON 電解質
 - ,利用 coulter counter 測量膠體的粒子濃度。
- 3.由 1.的膠體稀釋溶液取 15ml 量測其初始 (initial)

濁度值。

4.由 2.和 3.可得出濁度對膠體粒子濃度的關係,並方便未來做等濃度不同膠體粒子間的混和沉降實驗。

(二) V_{totak} W_{ii} 、 W_{ij} 和 W_{mix} 計算之流程圖:

(三)不同重力不同粒徑膠體粒子混合的 N_G值

表[G-1] 不同重力不同粒徑膠體粒子混合的 N_G值

g-force	9.8 m/s ²	14.7 m/s ²	19.6 m/s ²
3.04 µ m	165.6	248.42	331.23
1.16 µ m 6.2 µ m	162.43	243.64	324.86
0.76 µ m 6.2 µ m	161.64	242.46	323.27
1.16 µ m 3.04 µ m	5.36	8.04	10.72
0.76 µ m 3.04 µ m	4.82	7.22	9.63
0.76 µ m 1.16 µ m	0.109	0.16	0.22

附錄 H

膠體溶液在顯微鏡 4000 倍下 膠體粒子膠凝之圖片

Fig[H-1] 10⁻⁴M NaCl 6.2 μ m+3.04 μ m

Fig[H-2] 10^{-3} M MgCb 6.2 μ m+1.1 μ m

Fig[H-3] 10^{-4} M AlCl₃ 6.2 µ m+3.04 µ m

Fig[H-4] 10^{-3} M AlCb 6.2 μ m+1.1 μ m

Fig[H-5] 10⁻⁴M MgCb 6.2 μ m+0.807 μ m

Fig[H-6] 10⁻⁴M AlCl₃ 6.2 μ m+0.807 μ m