第四章 結果與討論

本研究是探討傳統含浸法與 CVD 法的比較,在含浸的方面只用 了一種給電子基,而在 CVD 的部分用了三種不同的給電子基。電子 基的部分用的是內部給電子基(internal donor),本實驗並無添加任何 的外部給電子基(external donor)。再討論對聚合反應產量之影響, 以及其他物理性質方面的影響。

4-1 載體氯化鎂的熱重損失分析

由於所使用的載體含有六個結晶水,所以在實驗之前先使用熱重 損失分析儀(TGA)做分析。圖 4-1 中可以看出,從 100℃~250℃時, 重量減輕了約 50%,由式 4-1 剛好可以看出是水份減少的量;從 450℃~650℃時,又有重量減輕的現象,經由式 4-2 算出是氯化鎂開 始裂解,最後只剩下鎂。所以之後將以 250℃~450℃做為鍛燒溫度的 區間。

表 4-1 與載體相關分子量

分子式	分子量
$MgCl_2 \cdot 6H_2O$	203.3
MgCl ₂	95.4
6H ₂ O	108

$$\frac{6H_2O}{MgCl_2 \bullet 6H_2O} \times 100\% = 53.1\%$$
(4-1)

$$\frac{Mg}{MgCl_2 \bullet 6H_2O} \times 100\% = 12\%$$
(4-2)

圖 4-1 氯化鎂的熱重損失分析圖

4-2 表面積與孔洞分析

藉由 MICROMERITICS 的 ASAP2020 表面積與孔洞分析儀精準 的分析,可輕易分析出鍛燒後表面狀態的改變,結果如表 4-2。由此 表可以看出在 250℃時其表面積是最大的,但經過高溫鍛燒後導致表 面結構燒結,影響到表面積大小。圖 4-2 與圖 4-3 為孔徑分佈圖,條 件是鍛燒 250℃,而在其他條件下的孔徑分佈圖也大致相似。

鍛燒溫度 (℃)	BET 表面積 m ² /g	Pore size (Å)	Pore volume cm ³ /g
250	49.756	109.282	0.272
300	41.859	101.847	0.213
350	39.718	98.225	0.195
400	35.368	105.600	0.187
450	30.202	94.768	0.143

表 4-2 鍛燒溫度對觸媒表面積及觸媒孔洞之影響

圖 4-2 鍛燒 250℃的氯化鎂孔徑分佈圖 (一)

圖 4-3 鍛燒 250℃的氯化鎂孔徑分佈圖 (二)

4-3 ICP-AES 分析

藉由清大貴儀中心之 ICP-AES 分析結果如表 4-3。固定鍛燒溫度時,可以發現在不同條件下,鈦(Ti)含量,會隨著時間及內部給電子基的種類不同而有所變化。

載體	加入的	鍛燒溫度	CVD 時間	Ti (wt%)
	electron donor	(C)		
	2,2 dimethoxypropane	250	2 小時	5.26
	Ethyl benzoate	250	2 小時	3.22
	Diethyl phthalate	250	2 小時	5.79
MgCla	不加	250	2 小時	1.74
MgCl	Ethyl benzoate	250	1小時	2.03
	Ethyl benzoate	250	3小時	2.98
Ethyl horzooto	250	含浸法 12	11.2	
	Ethyi benzoale	200	小時	11.4

表 4-3 鈦觸媒於不同條件下之鈦含量

4-4 CVD 時間對 PP 產量的影響

利用氯化鎂作為載體,於鍛燒溫度 250℃,使用的給電子基是 ethyl benzoate,滴入 0.5 毫升活性物質 TiCl₄,再改變不同 CVD 時間, 分別以1小時、2小時、2.5小時、3小時、4小時為區別,並加入製 備好的觸媒於 600 毫升的反應器作聚合反應,藉以觀察 CVD 時間對 於聚合反應的影響。

聚合反應操作條件: 觸媒用量為 0.04 克; TEA 用量 8 毫升; 庚 烷用量 100 毫升;反應溫度 40℃;攪拌速率 500 r.p.m.; CVD 時間 1 小時、2 小時、3 小時。

實驗結果如表 4-4、圖 4-4 所顯示, CVD 時間以 2 小時為最佳, 而 3 或 4 小時並沒有較佳的產量,原因可能是 CVD 時間過久,氮氣 帶走了接在載體上的活性物質鈦 (Ti),導致產量沒有隨著 CVD 時間 增加,由圖 4-4 可以看到產量隨著時間的增加有減少的趨勢;而且經 由 4-3 節的結果剛好可以佐證 CVD 2 小時的鈦含量高於 CVD 3 小 時,所以產量也是 2 小時大於 3 小時。因此之後的 CVD 反應條件皆 使用 CVD 2 小時。

鍛燒溫度	CVD 溫度	CVD 時間	PP 產量
(°C)	(°C)	(hr)	(g)
250	120	1	1.98
250	120	2	4.13
250	120	2.5	4.09
250	120	3	3.88
250	120	4	3.79

表 4-4 CVD 時間對 PP 產量之影響

圖 4-4 CVD 時間與 PP 產量關係圖

4-5 聚合反應溫度對 PP 產量的影響

為了得到最佳的產率與了解不同反應溫度對聚合反應的影響,因 此分別以70°C、60°C、50°C、40°C、30°C、20°C、10°C及55°C來作 聚合反應。因為由許多文獻中可以發現,改變反應時的溫度對丙烯聚 合的產量、產物熔點等,以及一些物理性質有所影響。反應溫度會影 響反應速率,進而牽涉到整個反應的產量,反應溫度對熔點的影響將 在 4-12 節中討論。

聚合反應操作條件: 觸媒用量為 0.04 克; TEA 用量 8 毫升(含 浸法觸媒用量為 0.01 克; TEA 用量 2 毫升); 庚烷用量 100 毫升; 攪 拌速率 500 r.p.m.; 反應時間 1 小時。

由實驗數據可以看出表 4-5~表 4-8、圖 4-5~圖 4-6,當使用的給 電子基為 Ethyl benzoate 時,不論是用含浸法或者是用化學氣相沉積 法,可以使得反應產出最大量聚丙烯的聚合溫度都是在 40℃;而使 用給電子基是 2,2-Dimethoxypropane 或 Diethyl phthalate 時,聚合反 應溫度為 55℃的時候可以有最大產量的聚丙烯,如圖 4-6。從反應活 性的觀點來看,如圖 4-5,也是一樣的結果。所以由本實驗的結果得 到,三種不同給電子基的活性比較,排除掉各個最高值的話,平均來 說可以看出活性大小為

Ethyl benzoate > 2,2 Dimethoxypropane > Diethyl phthalate

給電子基 Ethyl benzoate 與給電子基是 2,2 Dimethoxypropane 或 Diethyl phthalate 的差異,造成聚丙烯最大產量的反應溫度不同,主 要是因為給電子基本身結構上的差異造成丙烯單體接到觸媒上的活 化能不同所造成的,同時也因為在高溫的時候丙烯單體的熔解度低, 所以當反應溫度愈高的時候產量反而愈低。根據文獻的比較,一般以 氯化鎂為載體的系統,雖然使用不同的給電子基來反應,但是最佳的 反應溫度大約在 40° C~70°C 之間^{[21],[23],[34],[43]},即使是使用相同的給 電子基,卻會因為不同研究者所做出來的最佳反應溫度也會不一樣 (見附錄)。

反應溫度(℃)	產物重(g)	反應活性(g PP/g Ti・hr)
70	1.68	1304.3
60	1.98	1537.3
50	2.15	1669.3
40	4.13	3206.5
30	2.37	1840.1
20	2.46	1909.9
10	2.22	1723.6

表 4-5 反應溫度對產量之影響(給電子基: Ethyl benzoate)

反應溫度(℃)	產物重 (g)	反應活性(g PP/g Ti・hr)
70	2.27	1078.89
60	3.13	1487.6
55	5.62	2671.1
50	3.29	1563.7
40	2.46	1169.2
30	2.44	1159.7
20	2.05	974.3
10	1.77	841.3

表 4-6 反應溫度對產量之影響(給電子基: 2,2 Dimethoxypropane)

表 4-7 反應溫度對產量之影響(給電子基: Diethyl phthalate)

反應溫度(℃)	產物重(g)	反應活性(g PP/g Ti・hr)
70	1.01	436.1
60	1.14	492.2
55	2.36	1019.0
50	1.54	664.9
40	1.42	613.1
30	1.26	544.0
20	1.15	496.5
10	0.99	427.5

反應溫度(℃)	產物重(g)	反應活性 (g PP/g Ti・hr)
70	4.22	3767.9
60	5.01	4473.2
50	5.56	4964.3
40	7.13	6366.1
30	6.08	5428.6
20	4.58	4089.3
10	3.85	3437.5

表 4-8 反應溫度對產量之影響(含浸法)

圖 4-5 不同實驗條件之反應溫度對反應活性關係圖

圖 4-6 不同實驗條件之反應溫度對 PP 產量關係圖

4-6 聚合反應時間對 PP 產量的影響

為了瞭解在進行丙烯聚合反應的過程中觸媒的活性變化,所以本 節實驗改變了反應時間 0.5 小時、1 小時、2 小時,來觀察隨著反應 時間的不同 PP 產量以及反應活性的變化。

聚合反應操作條件: 觸媒用量為 0.04 克; TEA 用量 8 毫升(含 浸法觸媒用量為 0.01 克; TEA 用量 2 毫升); 庚烷用量 100 毫升; 攪 拌速率 500 r.p.m.;反應溫度 40℃。

從表 4-9~表 4-11 中運用了不同的內部給電子基(internal donor),都可以看出 PP 產量均隨著反應時間之增加而增加,但是並 非呈現線性關係(圖 4-7)。如果是由反應活性來看,更是可以明顯的 看出(圖 4-8)。會造成這種結果,主要是因為觸媒的活性會隨著時間 變長而下降,所以反應活性會降低、產量變少;此外反應時間越長將 會使得反應器裡的溶劑不光是含有最一剛開始的反應物,也慢慢的生 成產物 PP,也會造成整個反應開始受到質傳的影響,使得反應活性 變低。所以此時把溶劑的使用量提升到 150 毫升,如表 4-12,質傳的 影響將會比較有所改善。

表 4-9 不同反應時間與產物重量之關係

反應時間 (hr)	產物重 (g)	反應活性(△g PP/g Ti・△hr)
0.5	2.47	3835.4
1	4.13	2577.6
2	6.21	1630.4

(給電子基:Ethyl benzoate)

表 4-10 不同反應時間與產物重量之關係

(給電子基: 2,2-Dimethoxypropane)

反應時間 (hr)	產物重(g)	反應活性(△g PP/g Ti・△hr)
0.5	1.79	1701.6
1	2.46	636.9
2	3.72	598.9

表 4-11 不同反應時間與產物重量之關係

反應時間 (hr)	產物重(g)	反應活性(△g PP/g Ti・△hr)
0.5	0.99	855.0
1	1.42	371.3
2	1.85	185.7

(給電子基:Diethyl phthalate)

表 4-12 不同反應時間與產物重量之關係(給電子基: Ethyl benzoate;

溶劑用量:150 毫升)

反應時間(hr)	產物重(g)	反應活性(△g PP/g Ti・△hr)
0.5	2.85	4425.5
1	4.53	2608.7
2	6.81	1770.2

圖 4-7 不同實驗條件之反應時間對 PP 產量關係圖

圖 4-8 不同實驗條件之反應時間對反應活性關係圖

4-7 Al / Ti 比值對 PP 產量的影響

在許多文獻中都有提到觸媒中的鈦(Ti)與助觸媒三乙基鋁中的 鋁(Al)的比例不同,會影響丙烯聚合的產量多寡。大部份的文獻中 都有提及當 Al/Ti 值愈小的時候,丙烯聚合反應出來的產量會愈多, 但其最適值在各文獻中並無一致性,經歸納整理後可發現比值約都在 50~100 之間。故吾人即採用固定助觸媒之使用量,改變觸媒的用量, 以達到調整鈦跟鋁的比值,雖然吾人的實驗比值沒有小於 100 以下, 但是大致上已可以看出其規則性。

聚合反應操作條件:TEA 用量 8 毫升 (TEA 用量 2 毫升); 庚烷 用量 100 毫升; 攪拌速率 500 r.p.m.;反應時間 1 小時;反應溫度 40℃。

由表 4-13~表 4-15 及圖 4-9~圖 4-10 所示的實驗結果與預其相當 符合,當 Al/Ti 值愈小的時候,丙烯聚合反應出來的產量會愈多。因 為當比值變大的時候,會使三乙基鋁去烷基化活性中心的鈦,使得鈦 從四價(Ti⁴⁺)變成三價(Ti³⁺)或二價(Ti²⁺)^{[22]、[23]、[28]、[29]},讓鈦 的活性消失,而根據文獻^[21]討論,時間愈長,四價鈦的含量就會愈少。 另外參考文獻^[21]中也提及,當比值大於 850 時,將會沒有丙烯聚合反

觸媒用量 (g)	產物重(g)	Al / Ti (mole/mole)
0.02	3.09	655.3
0.04	4.13	327.7
0.06	5.44	218.4
0.08	6.57	163.8

表 4-13 觸媒用量對產量的關係(給電子基: Ethyl benzoate)

表 4-14 觸媒用量對產量的關係(給電子基:2,2 Dimethoxypropane)

觸媒用量 (g)	產物重(g)	Al / Ti (mole/mole)
0.02	1.89	401.2
0.04	2.46	200.6
0.06	3.24	133.7
0.08	4.11	100.3

觸媒用量 (g)	產物重(g)	Al / Ti (mole/mole)
0.02	0.82	364.4
0.04	1.42	182.2
0.06	2.11	121.5
0.08	2.87	91.1

表 4-15 觸媒用量對產量的關係(給電子基: Diethyl phthalate)

圖 4-9 不同實驗條件之反應時觸媒用量對 PP 產量關係圖

圖 4-10 不同實驗條件之 Al/Ti 比值對 PP 產量關係圖

4-8 攪拌速度對 PP 產量的影響

攪拌速度快慢對於觸媒在溶劑中的分散性有很大的關聯,而且也 會影響到丙烯單體在溶劑中的溶解速率。攪拌速度過低容易使整個反 應過程由反應速率控制變成是質傳控制,會導致無法得知觸媒的真正 活性。故攪拌速度增日,即可減少質傳影響

聚合反應操作條件: 觸媒用量為 0.04 克; TEA 用量 8 毫升(含 浸法觸媒用量為 0.01 克; TEA 用量 2 毫升); 庚烷用量 100 毫升;反 應時間 1 小時;反應溫度 40℃。

從表 4-16~表 4-19 及圖 4-11 中可發現使用不同種類的內部給電 子基(internal donor)時,其攪拌速率在 300 r.p.m.之後的影響非常小, 此種現象顯示聚合反應在 300 r.p.m.之後一直是由反應速率控制,而 不受質傳控制的影響。另外,特別使用給電子基 Ethyl benzoate 在 200 r.p.m.下來作比較,而其它內部給電子基的效果也是一樣在 300 r.p.m. 之前會受到質傳的影響。

攪拌速度 (r.p.m.)	產物重(g)
200	2.53
300	4.06
400	4.10
500	4.13
600	4.18

表 4-16 不同攪拌速率下之產物重(給電子基: Ethyl benzoate)

表 4-17 不同攪拌速率下之產物重(給電子基:2,2 Dimethoxypropane)

攪拌速度(r.p.m.)	產物重(g)
300	2.17
400	2.33
500	2.46
600	2.58

攪拌速度 (r.p.m.)	產物重(g)
300	1.33
400	1.37
500	1.42
600	1.46

表 4-18 不同攪拌速率下之產物重(給電子基: Diethyl phthalate)

表 4-19 不同攪拌速率下之產物重(含浸法)

攪拌速度(r.p.m.)	產物重(g)
300	6.54
400	6.89
500	7.13
600	7.37

圖 4-11 不同實驗條件之攪拌速度對 PP 產量關係圖

4-9 傅立葉轉換紅外線光譜儀分析 (FTIR) 之分析^[41]

藉由傅立葉轉換紅外線光譜儀,可以分析樣品上面的官能基類型,同排聚丙烯之紅外線光譜圖則有波長為2972~2952cm⁻¹、2882~2862 cm⁻¹及1470~1440 cm⁻¹之甲烷基(CH₃);波長為2863~2843 cm⁻¹之H-C-H官能基;波長為2929~291 cm⁻¹之C-H官能基;波長為1180~1120 cm⁻¹、1132~885 cm⁻¹之C-C官能基;波長為975~835 cm⁻¹之末端甲烷基以及波長為830~800 cm⁻¹之C-C官能基。圖4-12~ 圖4-15是使用不同種內部給電子基(internal donor),反應溫度在40°C 時反應出來產物 PP 之紅外線光圖譜。與文獻^[41]對照下,可知道反應 出來的產物是同排聚丙烯。

圖 4-12 產物 PP 的紅外線光圖譜(內部給電子基 Ethyl benzoate)

圖 4-13 產物 PP 的紅外線光圖譜

(內部給電子基 2,2 Dimethoxypropane)

1/cm

圖 4-14 產物 PP 的紅外線光圖譜

(內部給電子基 Diethyl phthalate)

1/cm

圖 4-15 產物 PP 的紅外線光圖譜(含浸法)

4-10 場發掃描式電子顯微鏡 (FE-SEM) 及掃描式電子顯微鏡 (SEM)之分析

此章節中分為三部份,一為載體(氯化鎂)且含有外部給電子基; 二為載體上含有活性物質鈦;三為產物(聚丙烯)。

圖 4-16~圖 4-19 為純載體(氯化鎂)在不同倍率下之 FESEM 及 SEM 圖。因為載體本身具有強吸水物質,因此在處理樣品的時候到 放進去抽真空的期間已經有潮解現象產生,當再次除完水後,氯化鎂 會有凝聚現象,所以由圖片中看到的幾乎都是片狀的,只有圖 4-19 比較好,看得到氯化鎂本身不規則的部份。

圖 4-20~圖 4-25 為載體(氯化鎂)且含有給電子基 Ethyl benzoate 在不同倍率下之 FESEM 及 SEM 圖;圖 4-26~圖 4-27 為載體(氯化 鎂)且含有給電子基 2,2 Dimethoxypropane,在不同倍率下所照之 FESEM 及 SEM 圖;圖 4-28~圖 4-29 為載體(氯化鎂)且含有給電子 基 Diethyl phthalate,在不同倍率下之 FESEM 及 SEM 圖。圖 4-28~ 圖 4-31 為載體(氯化鎂)在 250℃下鍛燒且含有活性物質鈦之 FESEM 圖,使用之給電子基是 Ethyl benzoate。從圖中大致上可以看出也是 以片狀居多,其原因是潮解的關係,但是從圖 4-24、4-27、4-29 中可

以在相同放大部率(X10000)中跟純載體(氯化鎂)圖 4-17 相比較, 可以發現不再是呈現片狀連結,而是由不規則的堆疊並且有孔洞,可 以使得表面積增大。圖 4-31(含有活性物質鈦)也是一樣,可以看出堆 疊而且很多小孔的存在。

圖 4-32~4-36 為運用 CVD 法,給電子基為 Ethyl benzoate,所聚 合出來不同條件的聚丙烯 FESEM 圖;圖 4-37~圖 4-42 為運用 CVD 法,給電子基為 2,2 Dimethoxypropane,所聚合出來不同條件的聚丙 烯 SEM 圖;圖 4-43~圖 4-45 為使用含浸法所聚合出來不同條件之聚 丙烯 FESEM 及 SEM 圖;圖 4-46~圖 4-47 為運用 CVD 法,給電子基 為 Diethyl phthalate,所聚合出來不同條件的聚丙烯 SEM 圖。

從圖 4-37~圖 4-42 中可以觀察到有棒狀結構或絲狀結構的聚丙烯。而在其它產物圖中,所看到的幾乎皆是大小不一(約 100 nm~1 (Lm之間)、形狀不一的顆粒狀聚丙烯。

圖 4-16 載體氯化鎂鍛燒 250℃之 FESEM 圖 (X30000)

圖 4-17 載體氯化鎂鍛燒 250℃之 FESEM 圖 (X10000)

圖 4-18 載體氯化鎂鍛燒 250℃之 SEM 圖 (X1000)

圖 4-19 載體氯化鎂鍛燒 250℃之 SEM 圖(X5000)

圖 4-20 載體氯化鎂鍛燒 250℃且含有給電子基為

Ethyl benzoate 之 SEM 圖 (X1000)

圖 4-21 載體氯化鎂鍛燒 250°C 且含有給電子基為

Ethyl benzoate 之 SEM 圖 (X1000)

圖 4-22 載體氯化鎂鍛燒 250℃且含有給電子基為

Ethyl benzoate 之 FESEM 圖 (X3000)

圖 4-23 載體氯化鎂鍛燒 250℃且含有給電子基為

Ethyl benzoate 之 FESEM 圖 (X30000)

圖 4-24 載體氯化鎂鍛燒 300℃且含有給電子基為

Ethyl benzoate 之 FESEM 圖 (X10000)

圖 4-25 載體氯化鎂鍛燒 300℃且含有給電子基為

Ethyl benzoate 之 FESEM 圖(X50000)

圖 4-26 載體氯化鎂鍛燒 250℃且含有給電子基為 2,2 Dimethoxypropane 之 FESEM 圖 (X50000)

圖 4-27 載體氯化鎂鍛燒 250℃且含有給電子基為

2,2 Dimethoxypropane 之 FESEM 圖 (X10000)

圖 4-28 載體氯化鎂鍛燒 250℃且含有給電子基為

Diethyl phthalate 之 FESEM 圖 (X50000)

圖 4-29 載體氯化鎂鍛燒 250℃且含有給電子基為

Diethyl phthalate 之 FESEM 圖 (X10000)

圖 4-30 載體氯化鎂鍛燒 250℃且含有活性物質鈦之 FESEM 圖為

給電子基為 Ethyl benzoate (X50000)

圖 4-31 載體氯化鎂鍛燒 250℃且含有活性物質鈦之 FESEM 圖;

給電子基為 Ethyl benzoate (X10000)

圖 4-32 產物聚丙烯之 FESEM 圖; CVD 法給電子基為

Ethyl benzoate 反應溫度 55℃ (X3000)

圖 4-33 產物聚丙烯之 FESEM 圖; CVD 法給電子基為

Ethyl benzoate 反應溫度 55℃ (X50000)

圖 4-34 產物聚丙烯之 FESEM 圖; CVD 法給電子基為

Ethyl benzoate 反應溫度 55℃ (X10000)

圖 4-35 產物聚丙烯之 FESEM 圖; CVD 法給電子基為

Ethyl benzoate 反應溫度 40℃ (X10000)

圖 4-36 產物聚丙烯之 FESEM 圖; CVD 法給電子基為

Ethyl benzoate 反應溫度 40℃ (X50000)

圖 4-37 產物聚丙烯之 SEM 圖; CVD 法給電子基為

2,2 Dimethoxypropane 反應溫度 40℃ (X5000)

圖 4-38 產物聚丙烯之 SEM 圖; CVD 法給電子基為

2,2 Dimethoxypropane 反應溫度 40℃ (X10000)

圖 4-39 產物聚丙烯之 SEM 圖; CVD 法給電子基為

2,2 Dimethoxypropane 反應溫度 55℃ (X5000)

圖 4-40 產物聚丙烯之 SEM 圖; CVD 法給電子基為

2,2 Dimethoxypropane 反應溫度 55℃ (X10000)

圖 4-41 產物聚丙烯之 SEM 圖; CVD 法給電子基為

2,2 Dimethoxypropane 反應時間 0.5 小時(X5000)

圖 4-42 產物聚丙烯之 SEM 圖;CVD 法給電子基為

2,2 Dimethoxypropane 反應時間 0.5 小時(X10000)

圖 4-43 產物聚丙烯之 FESEM 圖;含浸法反應溫度 40℃(X5000)

圖 4-44 產物聚丙烯之 FESEM 圖;含浸法反應溫度 40℃(X5000)

圖 4-45 產物聚丙烯之 FESEM 圖;含浸法反應溫度 40℃

(X10000)

圖 4-46 產物聚丙烯之 SEM 圖; CVD 法給電子基為

Diethyl phthalate 反應溫度 55℃ (X5000)

圖 4-47 產物聚丙烯之 SEM 圖; CVD 法給電子基為

Diethyl phthalate 反應溫度 55℃ (X10000)

4-11 X 射線繞射結晶儀實驗(XRD)之分析^{[1][8]}

利用 X 射線繞射儀 (XRD) 來分析載體之晶格結構以及高分子的 結晶狀態是常使用的方式, 載體氯化鎂並沒有作 (XRD) 的分析, 因 為氯化鎂在空氣中為強吸水性固體, 所以在掃描的過程中會一直不斷 的吸水, 進而影響到圖譜的準確性, 故本實驗將不放置其分析圖。

如前面第一章所述,聚丙烯具有同排、對排、亂排的結構,如圖 4-48。而本實驗系統所合成的聚丙烯為同排。圖 4-49 是利用 CVD 法 且給電子基為 Ethyl benzoate,反應溫度為 40℃時產生的 PP 之 XRD 圖形;而圖 4-50 是利用含浸法且給電子基為 Ethyl benzoate,反應溫 度為 40℃時產生的 PP 之 XRD 圖形。PP 是結晶性非常好的高分子, 所以結晶的 peak 非常明顯,對大部分不同條件所做的 XRD 圖形幾乎 都與圖 4-49、圖 4-50 相同,其特徵峰位置出現在 20=14⁰(110)、17⁰ (040)、18⁰(130)、21⁰(111),與文獻^{[1][8]}相同。圖 4-51~圖 4-54 為 利用 Scherrer 方程式計算出不同觸媒在相同鍛燒溫度下所產生之 PP 晶格大小。

Scherrer equation :
$$D = \frac{K\lambda}{\beta\cos\theta}$$

其中 D: 晶格大小;

K : Scherrer's number=0.94 ;

 β :半波峰寬,單位為弧度;

λ: X-Ray 波長, 值為 1.54;

θ:布拉格繞射角。

由表 4-20~4-23 及圖 4-51~圖 4-54 發現,當反應溫度愈低時,產 物聚丙烯的晶格會愈小。因為當反應活性愈小的時候,丙烯聚合的速 度會比較慢,使得丙烯有夠的時間來進行排列,所以當反應活性愈小 或反應溫度愈低的時候,晶格就會愈小。

圖 4-48 同排、對排、亂排之 X 射線繞射圖譜^[8]

圖 4-49 產物 PP 之 X 射線繞射圖譜 (CVD 法;

給電子基為 Ethyl benzoate;反應溫度為 40℃)

圖 4-50 產物 PP 之 X 射線繞射圖譜(含浸法;

給電子基為 Ethyl benzoate;反應溫度為 40℃)

表 4-20 不同反應溫度聚合聚丙烯之晶格大小

反應溫度(℃)	14^{0} (Å)	17 ⁰ (Å)	18^0 (Å)	21 ⁰ (Å)
70	68.05364	62.6141	48.08269	35.99899
60	74.46911	80.54889	57.68325	48.10551
50	76.36088	69.71958	45.94868	47.29769
40	62.69593	60.39649	54.11102	42.72023
30	57.40334	46.0831	25.94219	35.19198
20	52.28117	40.81837	26.84896	39.53458
10	44.19349	37.21874	19.92935	34.07628

(CVD 法給電子基: Ethyl benzoate)

表 4-21 不同反應溫度聚合聚丙烯之晶格大小

(CVD 法給電子基: 2,2 Dimethoxypropane)

反應溫度(℃)	14^{0} (Å)	17 ⁰ (Å)	18^0 (Å)	21 ⁰ (Å)
70	67.6815	68.94689	66.94851	47.68567
60	70.03752	62.73543	49.39585	38.89542
55	68.48573	62.04872	45.34857	37.36274
50	66.94809	61.4543	42.418	37.02315
40	58.86122	55.82334	32.45287	37.50563
30	61.5182	46.07755	31.99375	37.94335
20	48.11354	38.05734	19.38106	35.72215
10	39.11318	24.47554	15.66815	28.69036

表 4-22 不同反應溫度聚合聚丙烯之晶格大小

反應溫度(℃)	14 ⁰ (Å)	17 ⁰ (Å)	18^{0} (Å)	21 ⁰ (Å)
70	68.89375	66.38473	64.98433	51.84376
60	65.38573	61.83652	60.82815	47.43737
55	61.38947	60.15937	59.5743	42.5288
50	62.0933	54.84834	51.38647	36.18252
40	58.83387	56.03488	45.45687	38.01551
30	56.56937	55.7958	42.76546	20.42938
20	50.13846	51.58473	32.4524	16.34534
10	54.93856	52.65453	23.88082	10.54333

(CVD 法給電子基: Diethyl phthalate)

表 4-23 不同反應溫度聚合聚丙烯之晶格大小(含浸法)

反應溫度(℃)	14 ⁰ (Å)	17 ⁰ (Å)	18 ⁰ (Å)	21 ⁰ (Å)
70	98.84948	96.45439	90.01921	78.5731
60	96.45884	91.5276	88.38493	77.8023
50	94.0458	85.37493	84.25833	70.64784
40	87.95843	80.9653	77.43924	65.10039
30	85.25466	82.55484	79.39579	66.68474
20	86.55369	78.43589	68.49385	60.23945
10	79.32684	78.34532	71.39543	52.8163

圖 4-51 不同實驗條件合成之 PP 晶格大小 (14^0)

圖 4-52 不同實驗條件合成之 PP 晶格大小 (17⁰)

圖 4-53 不同實驗條件合成之 PP 晶格大小 (18⁰)

圖 4-54 不同實驗條件合成之 PP 晶格大小 (22^{0})

4-12 熱差式掃描卡量計分析實驗(DSC)之分析^[19]

將不同反應條件下所合成出的 PP 取 2~5 毫克,裝填於 DSC 專用 鋁盤中,分別作 DSC 測試,測得熔融溫度 T_m 、熔融焓 Δ H 以及結晶 溫度 T_c 。圖 4-55~圖 4-59 是 DSC 分析圖,分析圖譜的上半部為升溫 過程,下半部為降溫過程,上半部圖譜的峰頂為熔融溫度 T_m ,下半 部為結晶溫度 T_c 。其中圖 4-57 為商業用的聚丙烯,其 T_m 為 167.41°C。 表 4-25 為歸納計算出各條件下的熔融溫度 (T_m) 。

從表 4-24 中可以看出,當反應溫度下降的時候熔融溫度(T_m) 也會跟著下降,但是並不是線性的關係,因為熔融溫度愈高的時候分 子量愈大;相反的熔融溫度愈低的時候分子量就會愈小^[19],所以反應 溫度愈高,熔點愈高。根據文獻^{[22]、[28]、[33]}中的比較,最高的熔融溫 度不一定會隨著反應溫度下降而上升,最高的熔點也不一定會出現在 某一個特定的溫度,而且文獻^[28]中,熔點隨著反應溫度愈高而愈高, 與本人所作結果相同。

圖 4-55 反應溫度 40℃對產物 PP 之 DSC 圖

(給電子基: Ethyl benzoate)

圖 4-56 反應溫度 50℃對產物 PP 之 DSC 圖

(給電子基: 2,2 Dimethoxypropane)

圖 4-57 反應溫度 55℃對產物 PP 之 DSC 圖

(給電子基:Diethyl phthalate)

圖 4-58 反應溫度 40℃ 對產物 PP 之 DSC 圖(含浸法)

圖 4-59 商業用 PP 之 DSC 圖

反應溫度 (℃)	Ethyl- benzoate 產物熔點 (℃)	2,2-Dimethoxypropane 產物熔點(℃)	Diethyl- phthalate 產物熔點 (℃)	含浸法 産物熔點 (℃)
70	161.09	161.06	160.74	160.74
60	160.32	158.65	160.62	161.02
55		. 158.43	158.29	
50	159.72	157.49	158.78	158.85
40	158.81	157.65	158.99	158.29
30	158.23	154.98	159.12	157.84
20	156.78	154.97	157.65	157.66
10	159.28	157.2	155.09	159.38

表 4-24 不同條件製備觸媒合成之聚丙烯 DSC 結果

4-13 光學顯微鏡 (Optical Microscope, OM) 之分析

聚丙烯是典型的結晶性高分子材料,結晶的結構及型態會影響聚 丙烯材料的巨觀性質。因此在測試其結晶度及晶格大小前先以偏光顯 微鏡對於聚乙烯進行觀察。一般同排聚丙烯之結晶結構乃是一球晶, 必須在偏光顯徑鏡下方可觀察,如圖 4-60~圖 4-63 所示。其它不同條 件所合成出來的聚丙烯,因為光學顯微鏡的圖形都一樣,所以在此並 不顯示。在圖 4-61 及圖 4-62 中,因為晶體在成長的過程中太過於靠 近,兩個晶體互相擠壓,所以在旁邊會有類似切橫的出現。

圖 4-60 產物之偏光顯微鏡照片 (CVD 法;反應溫度 40°C;

給電子基: Ethyl benzoate)

圖 4-61 產物之偏光顯微鏡照片(CVD 法;反應溫度 40℃;

給電子基:Ethyl benzoate)

圖 4-62 產物之偏光顯微鏡照片(商業用聚丙烯)

圖 4-63 產物之偏光顯微鏡照片(CVD 法;反應溫度 40℃;

給電子基: 2,2 Dimethoxypropane)

4-14 密度測定^{[1][10]}

密度測定是為了瞭解製備的 PP 是否達到一般市售 PP 的標準, 由参考文獻中可知,一般市售 i-PP 的密度為 0.92~0.94 g/cm³,使用不 同反應溫度所合成 PP 作密度測試,結果如表 4-25~表 4-28,可以看 到所有產物的密度經過電子比重計測量出來後的結果。

表 4-25 不同反應溫度合成之 PP 的密度(給電子基: Ethyl benzoate)

反應溫度(℃)	密度(g/c.c.)
70	0.9384
60	0.9254
50	0.9382
40	0.9002
30	0.9531
20	0.8967
10	0.9102

表 4-26 不同反應溫度合成之 PP 的密度

反應溫度(℃)	密度(g/c.c.)
70	0.9321
60	0.9342
55	0.9165
50	0.9297
40	0.9037
30	0.9434
20	0.9234
10	0.9473

(給電子基: 2,2 Dimethoxypropane)

表 4-27 不同反應溫度合成之 PP 的密度

反應溫度(℃)	密度(g/c.c.)
70	0.9089
60	0.9125
55	0.9325
50	0.9523
40	0.9412
30	0.9483
20	0.9278
10	0.9456

(給電子基:Diethyl phthalate)

反應溫度(℃)	密度(g/c.c.)
70	0.9253
60	0.9012
50	0.9234
40	0.9331
30	0.9475
20	0.9481
10	0.9122

表 4-28 不同反應溫度合成之 PP 的密度(含浸法)