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Abstract

With censoring, high-dimensional regression becomes much more complicated.

Since censoring can cause severe bias in estimation, modification to adjust such bias

is needed to be made. Under the conditionally independent censoring condition, we

propose the modification of sliced average variance estimation (SAVE) for estimating

the joint effective dimension reduction (e.d.r.) space of lifetime and censoring time.

Several simulation examples are reported and comparisons are made with the sliced

inverse regression method of Li, Wang and Chen (1999).
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1. Introduction

With censoring, there are several methods and techniques have been suggested, includ-

ing censored linear regression, the Cox model and many others. In this article, we shall

show how censored regression data can be analyzed without assuming the functional from

a priori and offer methods of finding the data structure.

For these difficulties, we consider the dimension reduction model as given in Li

(1992):

Y = g(β′1x, · · · , β′kx, ε) (1.1)

whereβ′js are unknown vectors to be estimated from data,x is a p-dimensional predictor

vector,g is a completely unknown link function and the error termε is independent of

x. The space spanned by theseβ′js is called the e.d.r. (effective dimension reduction)

space and any vector in this space is referred to as an e.d.r. direction andν ′x, a linear

combination ofx, is called the e.d.r. variate.

To incorporate censoring into the dimension reduction framework, let

Y 0 = the true lifetime (unobservable),

C = the censoring time,

δ = the censoring indicator;δ = 1, if Y 0 ≤ C andδ = 0, otherwise,

Y = min{Y 0, C}, the observed time.

We assume that

Y 0 follows model (1.1); (1.2)
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Conditional onx, C is independent ofY 0. (1.3)

The observed sample consists of n i.i.d. observations,(Yi, xi, δi), i = 1, . . . , n from the

distribution of(Y, x, δ).

In section 2, we introduce some dimension reduction methods. Since censoring can

cause severe bias in estimation, modification to adjust such bias is needed to be made. We

propose the modification of sliced average variance estimation under the condition (1.3)

in section 3. In section 4, we want to make inference about the dimension of e.d.r. space

and propose a permutation test to do it. Several simulation examples are reported and

comparisons are made with the sliced inverse regression method in section 5.

2. Dimension Reduction

2.1. Sliced Inverse Regression

Li (1991) proposed a data-analytic tool, sliced inverse regression (SIR), for dimension

reduction. Instead of regressing the univariate output variableY againstx, the method

explores the simplicity of the inverse view,x againstY .

Denote the inverse regression curve byη(y) = E(x|Y = y), the population version of

SIR is based on the following eigenvalue decomposition:

Σηαi = τiΣxαi,

τ1 ≥ · · · ≥ τp,

whereΣη = cov(E(x|Y = y)) andΣx = cov(x).
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The justification for using the firstk eigenvectorsαi with nonzero eigenvalue to esti-

mate the e.d.r. direction (Lemma 3.1 of Li, 1991).

Lemma 2.1. Under the linear condition and the dimension reduction assumption (1.1)

holds, then for anyy, Σ−1
x (η(y)− E(x)) falls into the e.d.r. space.

To implement SIR on the data(Yi, xi), i = 1, . . . , n, we follow Li (1991). First we

partitiony′is into H slices and construct the slice meanx̄h:

x̄h =
1

nh

∑
xi∈Ih

xi,

wherenh is the number of cases falling intoIh. Then the sample covariance matrix is

Σ̂η =
H∑

h=1

nh

n
(x̄h − x̄)(x̄h − x̄)′.

The sample version of SIR is based on the following eigenvalue decomposition:

Σ̂ηα̂i = τ̂iΣ̂xα̂i,

whereΣ̂x is the sample covariance matrix,τ̂1 ≥ · · · ≥ τ̂p.

2.2. Sliced Average Variance Estimation

Cook and Weisberg (1991) proposed sliced average variance estimation (SAVE) to

overcome the inability of SIR to detect certain types of nonlinear regression relationships.

Consider standardization of the predictors. IfΣx = cov(x) is positive definite, taking

z = Σ
−1/2
x (x − E(x)), then the population version of SAVE is based on the following
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eigenvalue decomposition:

Mbi = λibi,

λ1 ≥ · · · ≥ λp, , (2.1)

where

M = E(Ip − cov(z|Y = y))2, (2.2)

λi andbi denote the eigenvalues and eigenvectors ofM for i = 1, . . . , p. Let k denote the

number of nonzero eigenvalues, the eigenvectors corresponding to thek positive eigen-

values are estimated the e.d.r. directions. Under the linearity and constant covariance

conditions, SAVE estimates e.d.r. directions (Cook and Weisberg 1991, Cook and Lee

1999).

Construct the sample mean̄x and covariance matrix̂Σx and then form the sample

standardized predictorŝzi = Σ̂
−1/2
x (xi − x̄), i = 1, . . . , n. Divide the observed rang of

responseY into H slices, then form

M̂ =
H∑

h=1

nh

n
(Ip − V̂h)

2,

whereV̂h is the sample version ofcov(z|Y = y) for sliceh. The sample version of SAVE

is based on the following eigenvalue decomposition:

M̂ b̂i = λ̂iΣ̂zb̂i,

λ̂1 ≥ · · · ≥ λ̂p.

Thejth sample SAVE predictor can be constructed as

Sj = b̂′jzi, j = 1, . . . , p, i = 1, . . . , n,
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whereb̂j is thejth eigenvector ofM̂ corresponding to thejth nonzero eigenvalue.

3. Modification for SAVE

Because the true lifetimeY 0 is unobservable, the key observations come from an iden-

tity derived in section 3.1, which relates the conditional expectation to the observed time

Y andδ. We develop an method under the conditional independence (1.3) and LDC. In

section 3.2, we used this identities to modify by a suitable weighting function for offset-

ting the censoring bias in estimating.

3.1. Identity

We known thatcov(z|Y ) = E(zz′|Y ) − E(z|Y )E(z′|Y ). Consider0 = t1 < t2 <

· · · < tH < ∞ = tH+1. Let m1
j = E{z|Y 0 ∈ [tj, tj+1)} be the expected value ofz in jth

slice. Li, Wang and Chen (1999) proved the following equality

m1
j =

E{z1(Y 0 ∈ [tj, tj+1))}
P{Y 0 ∈ [tj, tj+1)} =

E{z1(Y 0 ≥ tj)} − E{z1(Y 0 ≥ tj+1)}
E{1(Y 0 ≥ tj)} − E{1(Y 0 ≥ tj+1)} , (3.1)

where

E{z1(Y 0 ≥ t)} = E{z1(Y ≥ t)}+ E{z1(Y < t, δ = 0)}w(Y, t, z), (3.2)

and

E{1(Y 0 ≥ t)} = E{1(Y ≥ t)}+ E{1(Y < t, δ = 0)}w(Y, t, z). (3.3)

For more details, see Li, Wang and Chen, (1999).
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The weight function can be further expressed as

w(t′, t, z) =
S0(t|z)
S0(t′|z) = exp{−Λ(t′, t|z)} (3.4)

where fort′ < t,

Λ(t′, t|z) = E

{
1(t′ < Y < t, δ = 1)

SY (Y |z)

∣∣∣∣∣z
}

,

S0(t|z) = P{Y 0 ≥ t|z}

= conditional survival forY 0 givenz,

SY (·|z) = the conditional survival function ofY conditional onz.

Let m2
j = E{zz′|Y 0 ∈ [tj, tj+1)}. Using the same argument, we obtain

m2
j =

E{zz
′
1(Y 0 ≥ tj)} − E{zz

′
1(Y 0 ≥ tj+1)}

E{1(Y 0 ≥ tj)} − E{1(Y 0 ≥ tj+1)} , (3.5)

where

E{zz
′
1(Y 0 ≥ t)} = E{zz

′
1(Y ≥ t)}+ E{zz

′
1(Y < t, δ = 0)}w(Y, t, z). (3.6)

Plugging (3.1)-(3.6) into (2.2), then we can conduct the eigenvalue decomposition (2.1).
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3.2. Estimation

We describe the estimates form1
j andm2

j as follows: By (3.1), (3.2) and (3.5), (3.6),

m̂1
j =

Ê{z1(Y 0 ≥ tj)} − Ê{z1(Y 0 ≥ tj+1)}
P̂{Y 0 ≥ tj} − P̂{Y 0 ≥ tj+1}

, (3.7)

m̂2
j =

Ê{zz
′
1(Y 0 ≥ tj)} − Ê{zz

′
1(Y 0 ≥ tj+1)}

P̂{Y 0 ≥ tj} − P̂{Y 0 ≥ tj+1}
, (3.8)

Ê{z1(Y 0 ≥ t)} = n−1

n∑
i: Yi≥t

zi + n−1

n∑

i: Yi<t, δi=0

ziŵ(Yi, t, zi), (3.9)

Ê{zz
′
1(Y 0 ≥ t)} = n−1

n∑
i: Yi≥t

ziz
′
i + n−1

n∑

i: Yi<t, δi=0

ziz
′
iŵ(Yi, t, zi), (3.10)

P̂{Y 0 ≥ t} = ]{i : Yi ≥ t}/n + n−1

n∑

i: Yi<t, δi=0

ŵ(Yi, t, zi). (3.11)

By (3.7) and (3.8), construct

M̂0 =
H∑

j=1

p̂j{Ip − [m̂2
j − m̂1

jm̂′1
j ]}2,

p̂j = P̂{Y 0 ≥ tj} − P̂{Y 0 ≥ tj+1}.

Now, we can conduct the eigenvalue decomposition to find the SAVE directions

M̂0b̂0
i = λ̂iΣ̂zb̂

0
i ,

λ̂1 ≥ · · · ≥ λ̂p. (3.12)

To estimatew(t′, t, z), we needed using the smoothing technique. We only consider

the kernel smoothing method here for simplicity. LetKp(·) be a kernel function onRp

andhn be the bandwidth in each coordinate. We shall assume thathn = o(1) andnhp
n

tends to infinity. For some one-dimensional kernel functionK(·), it is common forKp(·)
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to take a product form,Kp(z1, · · · , zp) = K(z1) · · ·K(zp). Our kernel estimate is defined

by

Λ̂(t′, t|z) =
n−1

∑n
i: t′<Yi<t, δi=1(ŜY (Yi|zi))

−1h−p
n Kp(h

−1
n (zi − z))

f̂(z)
, (3.13)

ŜY (Yi|zi) =
n−1

∑n
j: Yj>Yi

h−p
n Kp(h

−1
n (zj − z))

f̂(zi)
, (3.14)

f̂(z) = n−1

n∑
i

h−p
n Kp(h

−1
n (zi − z)). (3.15)

However, the kernel smoothing only works well in the low-dimensional case. Thus,

we must reduce the dimensionality first before applying the kernel smoothing technique

in estimating the weight function.

4. Permutation Tests

In this section, we want to make inference about the dimension of the e.d.r. space. Is-

sues encountered when making inference about the dimension may weaken some methods

in practice. The asymptotic distributions of the various test statistics are generally linear

combinations of chi-squared variables with unknown coefficients, reducing to simper chi-

squared distributions with normal predictors. Even with a simple chi-squared asymptotic

distribution, these may be concern about the accuracy of the approximation it provides.

Li (1991) proposed a chi-squared test for determining the number of the significant

e.d.r. directions obtained by SIR. Cook and Weisberg (1991) propose simple permutation

tests that can bypass some of these issues and generalize the permutation tests.

Let U = [uj] be thep × p matrix of eigenvectorsuj of the population kernel matrix
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M , and assumeS(M) = SY |z the e.d.r. space. DenotedY |z be the dimension of the

e.d.r. space. Consider testing the hypothesis thatdY |z ≤ m versusdY |z > m. Partition

U = (U1, U2) whereU1 is p ×m so that under the null hypothesisS(U1) ⊇ SY |z. Cook

and Yin (2001) proposed the following proposition for constructing a permutation test

and for inference ondY |z.

Proposition 4.1. LetU be constructed as indicated previously.

(a) If (Y, U ′
1z) ⊥ U ′

2z then S(U1) is a D.R.S. (dimension reduction subspace) for the

regressionY onz. Thereforedim(S(U1)) ≥ dY |z.

(b) Assume thatU ′
1z ⊥ U ′

2z. ThenS(U1) is a D.R.S. for the regression ofY on z if and

only if (Y, U ′
1z) ⊥ U ′

2z.

(c)Assume thatU ′
1z⊥ U ′

2z|Y . If U ′
2z⊥ Y thenS(U1) is a D.R.S. for the regression ofY

onz.

Application of Proposition 4.1 to test the hypothesis thatdY |z ≤ m in practice involves

four general steps.

1. Compute the sample kernel matrix̂M for SIR or SAVE and from the matrices of its

eigenvectorŝU1 = (û1, . . . , ûm) andÛ2 = (ûm+1, . . . , ûp).

2. Construct the vectors of sample principal predictorsV̂1i = Û ′
1ẑi and V̂2i = Û ′

2ẑi,i =

1, . . . , n.

3. Randomly permute the indicesi of theV̂2i to obtain the permuted set̂V ∗
2i.

4. Construct the test statistiĉΛ∗m based on the original dataYi, V̂1i along with the per-

muted datâV ∗
2i, i = 1, . . . , n.
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After repeating the steps 3, 4 a number of times, and computing the permutationP-

value. Repeating steps 1-4 form = 0, . . . , p− 1 gives the series ofP-values. This simple

test can be able to be quite useful in practice. In next section, we used this procedure with

SAVE for making inference about the dimension of the e.d.r. space.

5. Simulations

In order to find d.r. directions we propose the following two-stage procedure:

1. Apply double slicing on(Y, δ) and find the joint e.d.r. directions,̂bdi. Let B̂r =

(b̂d1, . . . , b̂dr) be the firstr significant directions.

2. Apply the r-dimensional kernel smoothing on̂B′
rz, and use that for estimating the

weight functionŵ,

ŵ(t′, t|z) = exp{−Λ̂(t′, t|z)}, (5.1)

where

Λ̂(t′, t|z) =
n−1

∑n
i: t′<Yi<t, δi=1(ŜY (Yi|zi))

−1h−r
n Kr(h

−1
n (B̂r(zi − z)))

f̂(z)
, (5.2)

ŜY (Yi|zi) = max

{
n−1

∑n
j: Yj>Yi

h−r
n Kr(h

−1
n (B̂r(zj − z)))

f̂(zi)
, c

}
, (5.3)

f̂(z) = n−1

n∑
i

h−r
n Kr(h

−1
n (B̂r(zi − z))). (5.4)

Note that prevent̂SY (Yi|zi) from being too small, make use of a constantc to replace it

(set to 0.05 in following examples). Apply (3.7)∼(3.11) to estimate the true lifetime e.d.r.
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directions after estimating the weight function. To illustrate how this strategy works, we

report some simulation studies.

5.1. Example 1

Takep = 6 and letβ̃1 = (1,−1, 0, 0, 0, 0)′ andx = (x1, . . . , x6)
′ be generated from

the standard normal distribution. Suppose

Y 0 = |x1 − x2|+ σ1ε1,

C = 0.5 + σ2ε2 for x3 > 0,

= 10 otherwise,

whereσ1 = σ2 = 0.1. Hereε1, ε2 are normal random variables. Generate 300 cases.

There are 104 cases censored in the data set. Applying double slicing with the number

of slices equal to 5 for the censored and the uncensored groups. The first two SAVE

directions, (-.72,.69,-.05,.02,-.06,.03)′ and (.02,.11,.99,-.05,.01,-.01)′, are close to the joint

d.r. directions.

Table 1. Mean and standard deviation for the eigenvalues and the coefficients

in the leading direction for Example 1 by modified SAVE in 100 runs

eigenvalues .76(.15) .31(.06) .22(.04) .18(.03) .14(.02) .11(.02)

b̂1 .692(.06) -.693(.06) -.021(.11) .001(.08) -.003(.08) .001(.08)
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With the weight adjustment and the smoothing method, we apply modified SAVE

for estimating the true lifetime directionsβ1 = β̃1/‖β̃1‖ =(.71,-.71,0,0,0,0)′. By the

permutation test we can get the permutationP -values (.00,.31,.65,.83,.94,.64).

Table 2. Performance of modified SAVE

and modified SIR of Example 1 with 100 runs

Modified SAVE Modified SIR

| ˆcos(θ)| .979(.02) .097(.15)

P-value .002(.01) .832(.22)

The results from 100 runs are summarized in Table 1 and Table 2 which report statis-

tics related to eigenvalues,b̂1 and| ˆcos(θ)|, whereθ denote the angle between the estimate

andβ1. The mean of̂b1 is very close toβ1 and the mean of| ˆcos(θ)| is close to 1.

Table 3.| ˆcos(θ)| of modified SAVE and modified

SIR as the number of dimensions increases

under Example 1 with 100 runs

p Modified SAVE Modified SIR

6 .9799(.0175) .1043(.1407)

10 .9505(.0711) .0817(.1568)

15 .9174(.0725) .1039(.1526)

20 .8219(.1855) .0933(.1500)
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5.2. Example 2

Let β1 = (1, 0, 0, 0, 0, 0)′ andx = (x1, · · · , x6). xi ∼ U(0, θ), i = 1, 2 andx3 ∼ x5

from the standard normal distribution. The true survival timeY 0 and the censoring time

C are generated from

Y 0 = αλ1(λ1x1)
α−1e−(λ1x1)α

+ σε1,

C = αλ2(λ2x2)
α−1e−(λ2x2)α

+ σε2.

Takeλ1 = 0.3, λ2 = 0.4, α = 3, σ = 0.05 andθ = 6. We obtain 300 independent

observations of(Y, δ); among them, 181 cases are censored.

First, we apply SAVE with double slicing procedure onY andδ give two significant

directions. The first two SAVE directions, (-.99,.05,.04,.07,.11,-.05)′ and (.05,.98,.06,-

.14,.01,-.15)′, are close to the joint d.r. directions.

Table 4. Mean and standard deviation for the eigenvalues and the coefficients

in the leading directions for Example 2 by modified SAVE in 100 runs

eigenvalues .68(.11) .29(.07) .21(.03) .16(.02) .13(.02) .09(.02)

b̂1 .945(.04) -.017(.15) .001(.16) .021(.13) -.007(.15) -.006(.14)

We use these two directions with weight adjustment to apply modified SAVE for esti-

mating the lifetime directionsβ1. The permutationP -values are given by (.00,.37,.50,.56,.99,.95).

In this example, we summarized the results from 100 runs in Tables 4 and Table 5. Our

estimate is very close to the true lifetime direction.
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Table 5. Performance of modified SAVE

and modified SIR of Example 2 with 100 runs

Modified SAVE Modified SIR

| ˆcos(θ)| .945(.04) .325(.26)

P-value .001(.01) .730(.28)

Figure 1. (a) The lifetime structure (b) The censoring pattern (c) Modified SAVE’s view.

(• : true lifetime × : censoring time)
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Table 6.| ˆcos(θ)| of modified SAVE and modified

SIR as the number of dimensions increases

under Example 2 with 100 runs

p Modified SAVE Modified SIR

6 .9435(.0474) .3392(.2546)

10 .8915(.0660) .3451(.2356)

15 .8021(.1165) .3038(.2281)

20 .6894(.1801) .2802(.2091)

5.3. Example 3

Consider that the lifetime has two e.d.r. directions. In this example, we assume that

the true survival timeY 0 follows an exponential distribution with the natural parameter

equal toε2x2
1 until time τ = 0.1. From timeτ on, the additional survival time follows the

exponential distribution with the natural parameterε3x2
2. More specifically, we assume

Y ∗ ∼ exponential with parameterε2x2
1,

Y ∗∗ ∼ exponential with parameterε3x2
2,

Y 0 = Y ∗1(Y ∗ < τ) + (τ + Y ∗∗)1(Y ∗ > τ).

The censoring timeC follows an exponential distribution with parameter equal toεx2
3.

Let β1 = (1, 0, 0, 0, 0, 0)′ andβ2 = (0, 1, 0, 0, 0, 0)′. Again 300 independent obser-

vations of(Y, δ) are obtained. Among them, 100 cases are censored. The first three
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eigenvectors of the double slicing SAVE are (-.98,-.01,.18,.08,.03,-.06)′, (.18,.21,.94,.14,-

.03,.14)′ and (.05,-.94,.17,.22,-.20,-.06)′. The eigenvalues are 1.14,.82,.47,.22,.21,.18.

Apply the modified SAVE, the first two significant directions are (.99,-.05,-.09,-.08,-

.02,.05) and (.05,.94,.15,-.14,.24,.09). The eigenvalues are 1.30,.81,.26,.17,.16,.13.Now

we see that only the first two eigenvectors stand out and the important variablesx1 and

x2 can be identified. Table 7 and Table 8 summarized results aboutb̂1, b̂2, | ˆcos(θ1)| and

| ˆcos(θ2)| from 100 simulation runs. We can see that the means ofb̂1 andb̂2 are very close

to the true lifetime directions.

Table 7. Mean and standard deviation for the eigenvalues and the coefficients in the

leading directions for Example 3 by SAVE with weight adjustment in 100 runs

eigenvalues 1.44(.21) .65(.14) .29(.05) .21(.03) .16(.03) .12(.02)

b̂1 .977(.02) -.006(.13) -.010(.09) .005(.08) .007(.08) .006(.08)

b̂2 .003(.13) .952(.08) -.035(.15) .011(.12) -.002(.13) .001(.13)

In this example, the first two eigenvectors of the modified SIR are (0.38,-0.72,-0.21,-

0.20,-0.40,0.30)′ and (-0.05,0.01,0.23,-0.75,0.48,0.38)′. We can see that the modified SIR

failed to find the true lifetime directions.

Table 8. Performance of modified SAVE

and modified SIR of Example 3 with 100 runs

| ˆcos(θ1)| P-value | ˆcos(θ2)| P-value

Modified SAVE .977(.02) .000(.00) .952(.08) .001(.01)

Modified SIR .341(.26) .997(.01) .320(.21) .999(.01)
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Table 9.| ˆcos(θ)| of modified SAVE and modified SIR as the number of

dimensions increases under Example 3 with 100 runs

p 6 10 15 20

Modified SAVE | ˆcos(θ1)| .9771(.0235) .9601(.0709) .9495(.0189) .9333(.0254)

| ˆcos(θ2)| .9504(.0438) .8673(.1852) .7412(.2352) .6153(.2435)

Modified SIR | ˆcos(θ1)| .3105(.2533) .2521(.2076) .2314(.1886) .1777(.1439)

| ˆcos(θ2)| .3380(.2346) .2546(.1895) .2097(.1561) .1737(.1264)

6. Conclusion

Under the conditionally independent censoring condition, we have demonstrated how

to extend the dimension reduction method of SAVE to censored data and made compar-

isons with SIR. In estimating the kernel matrix of SAVE, we introduce a weight function

to modify.

The estimation of the weight function requires nonparametric smoothing. There are

two stage options. Using the double slicing procedure to find the joint e.d.r. directions

first. Applying the kernel smoothing technique in estimating the weight function. We

can construct the sample kernel matrix of SAVE by the two-stage procedure then find the

true lifetime directions. However, if the censoring time also has a dimension reduction

structure, we can use the same procedure to study the censoring pattern.

When making inference about the dimensions, we suggest the simple permutation

tests by Cook and Weisberg to do it. Using the permutationP-values to find the significant
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lifetime directions.

If the data have the left truncated and right censored structure, how to adjust such

bias caused by truncation and censoring is very difficult to be made. This prospect merits

further study.

Appendix

Derivation of (3.4). Under the conditionally independent (1.3), it implies thatSY (y|z) =

S0(y|x)SC(y|z), whereSC(y|z) = P (C > y|z). From the well-known relationship be-

tween survival function and cumulated hazards,Λ(t′, t|x) can be written as

Λ(t′, t|z) = E

{
1(t′ < Y < t, δ = 1)

SY (Y |z)

∣∣∣∣∣z
}

= E

{
1(t′ < Y < t, δ = 1)

S0(Y 0|z)SC(Y 0|z)

∣∣∣∣∣z
}

= E

{
1(t′ < Y 0 < t)1(Y 0 < C)

S0(Y 0|z)SC(Y 0|z)

∣∣∣∣∣z
}

= E

{
1(t′ < Y 0 < t)

S0(Y 0|z)SC(Y 0|z)
E{1(Y 0 < C)|z, Y 0}

∣∣∣∣∣z
}

= E

{
1(t′ < Y 0 < t)

S0(Y 0|z)

∣∣∣∣∣z
}

=

∫

t′<Y 0<t

1

P (Y 0 ≥ y0|z)
f 0(y0|z)dy0 =

∫

t′<Y 0<t

−1

S0(y0|z)
dS0(y0|z)

= −lnS0(y0|z)

∣∣∣∣
t

t′
= ln

S0(t′|z)

S0(t|z)
.

⇒ w(t′, t, z) =
S0(t|z)

S0(t′|z)
= exp{−Λ(t′, t|z)}.
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