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ABSTRACT

Statistical applications and repercussions of the Poisson distribution. In

this thesis, we introduce the relationship between the Poisson distribution

and the Binomial , Negative Binomial, and hypergeometric distributions.

Moreover, we consider the Poisson approximation to the distribution of the

sums of iid Bernoulli / geometric and non-identically distributed random

variables.
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CHAPTER 1 INTRODUCTION

Simeon Denis Poisson (1781-1840) was a famous French mathematician

and physicist. The distribution which attributed to him now called the Pois-

son distribution is of great importance in theory and in practice. The Poisson

approximation is a subject with a long history and many ramifications. It

can be used as a tool for estimating probabilities connected with rare or

exceptional occurrences. Poisson approximations are essential in extreme

value theory, in reliability, in actuarial mathematics, and in many other ap-

plied fields. Following the work of Poisson(1837), there has been considerable

practical and theoretical interest in how well the Poisson distribution approx-

imates the binomial and many other distributions. This thesis contained a

good deal of mathematics, including a limit theorem which derive the Pois-

son distributions as the limiting distributions of the binomial distribution.

He approached the distribution by considering limiting forms of the bino-

mial distribution. Although initially viewed as a little more than a welcome

approximation for hard-to-compute binomial probabilities, this particular re-

sult was destined for bigger things: it was the analytical seed out of which
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grew what is now one of the most important of all probability models, the

Poisson distribution.

Actually, as will be seen below, Poisson derived the distribution directly as

an approximation to the negative binomial cumulative distribution. There is

no indication that he sensed the wide applicability of the distribution; rather,

it was one of several approximations and received no special comment.

Bortkiewicz(1898) considered circumstances in which Poisson’s distribu-

tion might arise. He wrote a monograph included the first consideration of

the Poisson limit as a probability distribution, and, most important, the use

of the ”Poisson” to model real-world phenomena. From the point of view

of Poisson’s own approach, these are situations where in addition to the re-

quirements of independence of trials, and constancy of probability from trial

to trial , the number of trials must be very large while the probability of

occurrence of the outcome under observation must be small.

In this thesis, we shall present the proofs various distributions converging

to the Poisson distributions. It is then expanded into a section of its own

with detailed descriptions of the applications. In early 20th century, the

development of applied probability, especially the queueing theory, owns a

great deal to the Poisson distributions. Poisson process is a natural model

in input process and output process, such as arrival and the departure of

customers at certain business institutions.



CHAPTER 2 SOME DISCRETE DISTRIBUTIONS

In this chapter, we briefly summarize some related discrete distributions

used in this thesis.

2.1 Bernoulli Trials

Repeated independent trials are called Bernoulli trials1 if there are only

two possible outcomes at each trial. Bernoulli trials are the simplest type of

random variable with two possible outcomes. One outcome is usually called

a ”success”, denoted by S, the other outcome is called a ”failure”, denoted

by F.

The sample space of a Bernoulli trial contains two points, S and F, the

random variable defined by X(S) = 1 and X(F ) = 0 is called a Bernoulli

1 Bernoulli trials, named after the Swiss mathematician James Bernoulli(1654-1705),

are perhaps the simplest type of random variable.
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random variable. The probability function of X is

P (X = x) =





p if x = 1

q = 1− p if x = 0

0 otherwise.

Clearly, p and q must be non-negative, and p + q = 1.

Lemma 1. X has a Bernoulli(p) distributions, then the probability generating

function (pgf) g(s) = E(sX) is g(s) = (1− p + ps), |s| ≤ 1.

Proof.

g(s) = E (sx)

= P (X = 0) s0 + P (X = 1) s1

= (1− p) + ps.

2.2 Binomial Distribution

Now we are interested in the total number of successes in a succession of n

independent Bernoulli trials. The number of successes can be 0, 1, . . . n. The

event n trials results in k successes and n−k failures can happen in as many

different ways as k letters S can be distributed among n places. The event

contains
(

n
k

)
points, and each point has the probability pk (1− p)n−k. If n
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Bernoulli trials all with probability of success p are performed independently,

then X, the number of successes is one of the most important random vari-

ables called a binomial with parameters n and p. The probability function

is given by the following theorem.

Theorem 1. Let Sn be a Binomial random variable with parameters n and

p, then the probability function of X, is

P (Sn = x) =





(
n
x

)
px (1− p)n−x if x = 0,1,2,. . . ,n

0 otherwise.

If we let the random variable X equal the number of observed successes

in n independent Bernoulli trials, the possible values of X are 0, 1, . . . , n. If x

successes occur, where x = 0, 1, . . . , n, then n−x failures occur. The number

of ways of selecting the x positions for the x successes in the n trials is

(
n

x

)
=

n!

x!(n− x)!
.

Summarizing a binomial experiment satisfies these properties as follows:

1. A Bernoulli experiment is performed n times.

2. The random variable X equals the number of successes in the n trials.

3. The trials are independent.

4. The probability of success on each trial is a constant p; the probability

of failure is q = 1− p.
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Lemma 2. X has a Binomial (n, p) distributions, then the probability gen-

erating function (pgf) gn (s) = E(sX) is gn (s) = (1− p + ps)n, for |s| ≤ 1.

Proof.

gn (s) = E(sx)

=
n∑

x=0

P (Sn = x)sx

=
n∑

x=0

(
n

x

)
px (1− p)n−x sx

=
n∑

x=0

(
n

x

)
(ps)x (1− p)n−x

= [ps + (1− p)]n .

2.3 Geometric Distribution

Suppose that a sequence of independent Bernoulli trials, each with prob-

ability of success p, 0 < p < 1. Let X be the number of failures until the

first success occurs, then X is a discrete random variable called geometric.

Theorem 2. Let X be a geometric random variable with parameter p, 0 <

p < 1, and its set of possible values is {0, 1, 2, . . . }, then the probability

function of X is

P (X = x) =





(1− p)x p if x = 0, 1, . . . ,

0 otherwise.
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where there are x trials are all failures, (x + 1)th trial is a success, and the

successive Bernoulli trials are all independent.

Lemma 3. X has a Geometric(p) distributions, then the probability gener-

ating function (pgf) g(s) = E(sX) is g(s) = p
1−(1−p)s

, for |s| ≤ 1.

Proof.

g(s) = E(sx)

=
∞∑

x=0

sx (1− p)x p

= p

∞∑
x=0

((1− p) s)x

=
p

1− (1− p)s
, for |(1− p) s| ≤ 1.

2.4 Negative Binomial Distribution

Negative binomial random variables are generalizations of geometric ran-

dom variables. Suppose that a sequence of independent Bernoulli trials, each

with probability of success p, 0 < p < 1. Let X be the number of failures

until the rth success occurs, where r is a fixed integer, then X is a discrete

random variable called a negative binomial.

Theorem 3. Let X be a negative binomial random variable with parameters

r and p, 0 < p < 1, and its set of possible values is {r, r + 1, r + 2, . . . }, then
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the probability function of X is

P (X = x) =





(
x−1
r−1

)
pr (1− p)x−r if x = r, r + 1, . . . ,

0 otherwise,

where the outcome of the xth trial is the rth success, then in the first (x− 1)

trials exactly (r − 1) successes have occurred and the xth trial is a success.

The negative binomial distribution is sometimes defined in terms of the

random variable Y = number of failures before the rth success. This formu-

lation is statistically equivalent to X = trial at which the rth success occurs,

since Y = X − r.

Theorem 4. Let Y be a negative binomial random variable with parameter

p, 0 < p < 1, Y = X - r, and its set of possible values is {0, 1, 2, . . . }, then

the probability function of Y , p(y) is

p(Y = y) =





(
r+y−1

y

)
pr (1− p)y if y = 0, 1, . . . ,

0 otherwise.

Lemma 4. Y has a Negative Binomial(r, p) distributions, then the probability

generating function (pgf) gr(s) = E(sY ) is gr(s) =
[

p
1−(1−p)s

]r

, for |s| ≤ 1.
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Proof.

gn (s) = E(sy)

=
∞∑

y=0

P (Sn = y)

=
∞∑

y=0

sy

(
r + y − 1

y

)
pr (1− p)y

= pr

r∑
y=0

(−1)y

(−r

y

)
(s(1− p))y

=

[
p

1− (1− p) s

]r

.

2.5 Poisson Distribution

In many situations the number of events of a specified kind has approxi-

mately the Poisson distribution such as

• Accidents happened in a given stretch of road during a fixed period.

• Sharks attacked the sightseer at a beach.

• The number of misprints on a document page typed by a secretary.

• The soldiers killed by the kick of horses.

• Supreme Court vacancies.
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Many textbooks in statistics content themselves with an explanation of

this phenomenon that runs something like this: There is a large number,

say n, of events that might occur, for example, there are many telephone

subscribers who might place a call in a minute. The chance, say p, that

any specified one of these events will occur. The Poisson distribution can

be derived from a set of basic assumptions, sometimes called the Poisson

postulates, and these processes are called Poisson processes. Now we state

as a theorem as follows:

Theorem 5. For each t ≥ 0, let N(t) denote the number of events that occur

in a given interval [0, t], and suppose that the following assumptions hold.

a) The probability that an event will occur in a given short interval [t, t + ∆t]

is approximately proportional to the length of the interval, ∆t; b) Does not

depend on the position of the interval; c) That the occurrences of events in

nonoverlapping intervals are independent; and d) The probability of two or

more events in a short interval [t, t + ∆t] is negligible, if these assumptions

are valid as ∆t → 0, then the distribution of Nt is Poisson. Note that o (∆t)

denotes a function of ∆(t) such that lim∆t→0
o(∆t)
∆(t)

= 0,o (∆t) is negligible

relative to ∆(t).

Now let N(t) be the number of occurrences in the interval [0, t], and

Pn(t) = P (N(t) = n). Consider the properties as follows:



Contents 14

(1) Start with no arrivals, denoted N(0) = 0.

(2) P [N(t + h)−N(t) = n|N(s) = m] = P [N(t + h)−N(t) = n] for all

0 ≤ s ≤ t and h > 0.

(3) P [N(t + ∆t)−N(t) = 1] = λ∆t + o (∆t) for some constant λ > 0.

(4) P [N(t + ∆t)−N(t) ≥ 2] = o (∆t).

If it satisfies conditions (1)-(4), then for any integer n and for all t > 0,

Pn(t) = P (N(t) = n) =
e−λt(λt)n

n!
.

That is, N(t) ∼ Poisson(λt).

Proof. Now n events may occur in the interval [0, t + ∆t] by having 0 events

in [t, t + ∆t] and n events in [0, t], or one event in [t, t + ∆t], and n−1 events

in [0, t], or two or more events in [t, t + ∆t]; thus for n > 0,

Pn (t + ∆t) = Pn−1(t)P1 (∆t) + Pn(t)P0 (∆t) + o (∆t)

= Pn−1(t) [λ∆t + o (∆t)] + Pn(t) [1− λ∆t− o (∆t)] + o (∆t)

but

dPn (t)

dt
= lim

∆t→0

Pn (t + ∆t)− Pn (t)

∆t

= lim
∆t→0

Pn−1 (t) λ∆t + Pn (t)− Pn (t) λ∆t− Pn (t)

∆t

= λ [Pn−1(t)− Pn(t)] .
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For n = 0,

P0 (t + ∆t) = P0 (t) P0 (∆t)

= P0 (t) [1− λ∆t− o (∆t)]

dP0 (t)

dt
= lim

∆t→0

P0 (t + ∆t)− P0 (t)

∆t

= lim
∆t→0

−P0 (t) λ∆t− P0 (t)o (∆t)

∆t

= −λ [P0(t)] .

Assuming that the initial condition P0 (0) = 1, the solution to the above dif-

ferential equation is verified to be P0 (t) = e−λt, by mathematical induction,

let n = 1, then

dP1 (t)

dt
= λ [P0(t)− P1 (t)]

= λ
[
e−λt − P1 (t)

]
,

which gives P1 (t) = λte−λt. Assume n = k, Pk (t) = e−λt (λt)k /k!, now for

n = k + 1,

dPk+1 (t)

dt
= λ [Pk(t)− Pk+1 (t)]

= λ
[
e−λt (λt)k /k!− Pk+1 (t)

]

which gives Pk+1 (t) = e−λt(λt)k+1

(k+1)!
.

Thus, N(t) ∼ Poisson (λt), where µ = E [N(t)] = λt. The proportion-

ality constant λ reflects are rate of occurrence or intensity of the Poisson

process. Since λ is assumed constant over t, the process is referred to as a
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homogeneous Poisson process(HPP). Now we define Poisson distribution as

follows,

Theorem 6. A discrete random variable X with possible values 0, 1, 2, . . . is

called Poisson with parameter λ, λ > 0, if

P (X = x) =
e−λλx

x!
, x = 0, 1, 2, . . . .

Lemma 5. Let X be a Poisson(λ) distribution, the probability generating

function (pgf) g(s) of X is g(s) = e−λ(1−s), for all s ∈ R.

Proof.

g(s) = E (sx) =
∞∑

x=0

P (X = x) sx

=
∞∑

x=0

e−λλxsx

x!

= e−λ

∞∑
x=0

(λs)x

x!
= e−λeλs = e−λ(1−s).



CHAPTER 3 THE POISSON APPROXIMATION

FOR SUMS OF INDEPENDENT AND

IDENTICALLY DISTRIBUTED RANDOM

VARIABLES

We first consider the Bernoulli random variables.

3.1 Limits of the Binomial Distributions

Assuming that the events are independent, has exactly the binomial dis-

tribution B(n, p). Now let n → ∞, and p → 0, so that np → λ, where

0 < λ < ∞, is fixed.

Now we prove that B(n, p) tends to the Poisson distribution P(λ) with

expectation λ.

Lemma 6. Let a be a real number, then limn→∞
(
1 + a

n

)n
= ea.

Proof. • Method I
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Define f(x) = a ln x , then f ′(x) = a
x

, f ′(1) = a

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

a

h
ln (1 + h)

= lim
h→0

[ln (1 + h)]
a
h

= ln
[
lim
h→0

(1 + h)
a
h

]
= a.

so that

lim
h→0

(1 + h)
a
h = ea.

By replacing h with x , then

lim
x→0

(1 + x)
a
x = ea.

Let n = a
x

, x = a
n

, as n →∞ , x → 0 , so that

lim
x→0

(1 + x)
a
x = lim

n→∞

(
1 +

a

n

)n

= ea.

• Method II

Let yn =
(
1 + a

n

)n
, then log (yn) = n log

(
1 + a

n

)
.

Using the Maclaurin series for log (yn) as follows:

log (yn) = n log
(
1 +

a

n

)

= n

(
a

n
− a2

2n2
+

a3

3n3
− a4

4n4
+ · · ·

)

= n

(
a

n
+ o(

1

n
)

)
,
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o
(

1
n

)
must be expressly stated, where o (h) denotes o(h)

h
→ 0 as h → 0.

The limit of log (yn) as n approaches infinite is the number a, written

lim
n→∞

log (yn) = lim
n→∞

n

(
a

n
+ o(

1

n
)

)

= a.

Now we can easily find that

lim
n→∞

(yn) = ea.

Then

lim
n→∞

(
1 +

a

n

)n

= ea.

Theorem 7. Next we prove, if Sn ∼ Binomial(n, p), for each value x =

0, 1, 2, . . . , and as n →∞, p → 0 with np = µ constant, then

lim
n→∞

(
n

x

)
px(1− p)n−x =

e−µµx

x!
for fixed x = 0, 1, 2, . . . .

Proof. • Method I

Let µ = np,

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!

(µ

n

)x (
1− µ

n

)n−x

=
µx

x!

(µ

n

)x (
1− µ

n

)n−x

=
µx

x!

(
n

n

n− 1

n
. . .

n− x + 1

n

)

︸ ︷︷ ︸
x times

(
1− µ

n

)n (
1− µ

n

)−x
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lim
n→∞

(
n

x

)
px(1− p)n−x n!

x!(n− x)!
=

µx

x!
lim

n→∞

[(
n

n

n− 1

n
. . .

n− x + 1

n

) (
1− µ

n

)n (
1− µ

n

)−x
]

=
µx

x!
lim

n→∞

(
1− µ

n

)n

lim
n→∞

(
1− µ

n

)−x

=
µx

x!
lim

n→∞

(
1− µ

n

)n

=
e−µµx

x!

Since

lim
n→∞

(
n

n

n− 1

n
. . .

n− x + 1

n

)
= lim

n→∞
n

n
lim

n→∞
n− 1

n
. . . lim

n→∞
n− x + 1

n

= 1 · 1 . . . · 1 = 1

and

lim
n→∞

(
1− µ

n

)x

= 1x = 1.

Hence

lim
n→∞

(
1− µ

n

)n

= e−µ

• Method II

X has a Binomial(p) distributions, then the probability generating func-

tion (pgf) gn (s) = E(sX) is gn(s) = (1 − p + ps)n, for |s| ≤ 1, and Y has a

Poisson(λ) distribution, the probability generating function (pgf) g(s) of X

is g(s) = e−λ(1−s), for all s ∈ R.If n → ∞, p → 0 such that λ = np, then

gn (s) → g (s).
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Proof.

If λ = np, then p =
λ

n

gn (s) =

(
1− λ

n
+

λ

n
s

)n

= {1− λ (1− s) /n}n

lim
n→∞

{1− λ (1− s) /n}n = e−λ(1−s).

Now we rewrite the prove of Shey(1984), it can be easily used to show

the Poisson approximation to the Binomial distribution uniformly in x.

Theorem 8. Let Sn have the Binomial(n, p) distribution and Yn have the

Poisson(np) distribution, then

lim
n→∞

∞∑
x=0

|P (Sn = x)− P (Yn = x)| = 0, for all x = 0, 1, 2, . . . .

Proof. First, we show that
∑∞

x=0 |P (Sn = x|n, p)− P (Yn = x|λ = np)| ≤

2np2

For n = 1,

∞∑
x=0

|P (Sn = x|n, p)− P (Yn = x|λ = np)|

=

∣∣∣∣
(

1

0

)
p0(1− p)1−0 − e−pp0

0!

∣∣∣∣ +

∣∣∣∣
(

1

1

)
p1(1− p)1−1 − e−pp1

1!

∣∣∣∣ +
∞∑

x=2

e−ppx

x!

=
∣∣(1− p)− e−p

∣∣ +
∣∣p− pe−p

∣∣ + [1− P (Y = 0|λ = p)− P (Y = 1|λ = p)]

=
[
e−p − (1− p)

]
+

[
p− pe−p

]
+

[
1− e−p − pe−p

]

= 2p− 2pe−p.

= 2p(1− e−p) ≤ 2p2, because 1− p < e−p.



Contents 22

For general n, we use the identities as follows:

P (Sn = x) = (1− p)P (Sn−1 = x) + (p)P (Sn−1 = x− 1)

and

P (Yn = x) =
e−np(np)x

x!
=

x∑
j=0

e−p(p)j

j!
P (Yn−1 = x− j)

then

|P (Sn = x)− P (Yn = x)|

≤
∣∣(1− p)P (Sn−1 = x)− e−pP (Yn−1 = x)

∣∣

+
∣∣(p)P (Sn−1 = x− 1)− pe−pP (Yn−1 = x− 1)

∣∣

+
x∑

j=2

e−ppj

j!
P (Yn−1 = x− j)

≤
∣∣1− p− e−p

∣∣P (Yn−1 = x)

+
∣∣p− pe−p

∣∣P (Yn−1 = x− 1)

+ (1− p) |P (Sn = x)− P (Yn−1 = x)|

+ (p) |P (Sn−1 = x− 1)− P (Yn−1 = x− 1)|

+
x∑

j=2

e−ppj

j!
P (Yn−1 = x− j)
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For x = 1, 2, . . . n, then by induction,

∞∑
x=0

|P (Sn = x)− P (Yn = x)|

≤ [
e−p − (1− p)

]
+

[
p− pe−p

]
+

[
1− e−p − pe−p

]

+
∞∑

x=0

|P (Sn = x)− P (Yn−1 = x)|

≤ 2p2 + 2(n− 1)p2

= 2np2.

Next, we show that

∞∑
x=0

|P (Sn = x)− P (Yn = x)| ≤ 3p

Now, we assume 2np ≥ 3 and 3p < 2, following Le Cam(1965).

Let

ψ(x) =
P (Yn = n− x)

P (Sn = n− x)

=
e−(np)(np)n−(n−x)/(n− x)!

n!
(n−x)!x!

pn−x(1− p)x

=
x!e−(np)nn

n!(nq)x
, where x = 0, 1, 2, . . . n, q = 1− p

ψ(x) is minimum if x = [nq] = [n(1− p)], and [nq] is a integer such that

nq − 1 < [nq] ≤ nq.

Let g = [nq] = nq − ε, 0 ≤ ε < 1.

Using the inequalities in Feller(1968) as follows:

√
2πn nne−ne(12n+1)−1

< n! <
√

2πn nne−ne(12n)−1
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e−t/1−t ≤ 1− t, 0 ≤ t ≤ 1

then

ψ(x) ≥ ψ(g) ≥
√

g/n en−np−g(g/nq)g =
√

g/n eεe−ε =
√

g/n

where

ψ(x) =
x!e−npnn

n!(nq)x

ψ(g) =
g!e−npnn

n!(nq)g

Hence ∞∑
x=0

|P (Sn = x)− P (Yn = x)|

= 2
∑

{X: x∈A}
|P (Sn = x)− P (Yn = x)|

≤ 2(1−
√

g/n)

where A = {x : P (Sn = x)− P (Sn = x|λ = np) > 0}

Also, we prove

2(1−
√

g/n) ≤ 3p

Consider 1− g
n

= 1− (
nq−ε

n

)
= 1− (

q − ε
n

)
= 1− (1− p− ε

n
) = p + ε

n
,

then we have

1− g

n
≤ p +

ε

n
≤ p +

1

n
≤ p +

2

3
p =

5

3
p.
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Since

1

n
≤ 2

3
p, and p ≤ 2

3

then

1

n
≤ 2

3
p ≤ 4

9
.

We only consider the situation for n ≥ 3.

If n = 3, we have

n(1− p) = nq ≥ 1, and p ≤ 2
3
, 1− p = q ≥ 1

3
, then

(10/3)p

1 +
√

[nq]/n
≤ (10/3)p

1 +
√

1/3
≤ 3p

If n ≥ 4, we have

[nq]

n
≥ q − 1

n
≥ 1

12
,

then

(10/3)p

1 +
√

[nq]/n
≤ (10/3)p

1 +
√

1/12
≤ 3p.

Corollary 1. If npn → λ, 0 < λ < ∞, then P (Xn = x|n, pn) → P (Yn =

x|λ = npn) uniformly in x as n →∞.

Proof. Let λn = npn, by the above theorem,

P (Xn = x|n, pn)− P (Yn = x|λ = npn) → 0

uniformly in x.
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Next we consider the non-negative integer-valued random variables.

3.2 Limits of the Negative Binomial Distribution

Theorem 9. Let Xr have the negative binomial (n, p) distributions with den-

sity P (X = x|r, p) =
(

r+x−1
x

)
pr (1− p)x then P (X = x|r, p) → e−λλx

x!
, as

r (1− p) = λ, and r →∞.

Proof. • Method I

Let λ = r (1− p), then
(
1− λ

r

)
= p.

We write
(

r + x− 1

x

)
pr (1− p)x =

(r + x− 1)!

x! (r − 1)!

(
1− λ

r

)r (
λ

r

)x

=
λx

x!

(
1− λ

r

)r
(r + x− 1)!

(r − 1)!

(
1

r

)x

.

Then

lim
n→∞

(
r + x− 1

x

)
pr (1− p)x =

λx

x!
lim

n→∞

(
1− λ

r

)r
(r + x− 1)!

(r − 1)!

(
1

r

)x

=
λx

x!
lim

n→∞

(
1− λ

r

)r
(r + x− 1) (r + x− 2) · · ·n

nx

=
λx

x!
e−λ.

• Method II

Now we write the term p/ (1− (1− p)s) as p/ [p + (1− p)(1− s)]−1 =

[1 + (1− p)(1− s)/p]−1, so that the probability generating function gr(s) as

[1 + (1− p)(1− s)/p]−r =

[
1 +

λ

r

(1− s)

p

]−r

.
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which converges, under the conditions of limit to e−λ(1−s) which is the proba-

bility generating function of the Poisson distribution with parameter λ (note

p → 1, as r →∞).

3.3 Limits of the Hypergeometric Distributions

In the next subsections, we consider the hypergeometric random variables,

which is the distribution of sums of dependent random variables.

Theorem 10. The hypergeometric(z, n1, n2) distribution is defined as

P (X = x|z, n1, n2) =

(
n1

x

)(
n2

z−x

)
(

n1+n2

z

) ,

for x = 0, 1, 2, . . . z, and z ≤ min (n1, n2). We shall show that under the

limiting conditions, (a) min (n1, n2) → ∞, (b) z
(

n1

n1+n2

)
, as z → ∞, it

converges to the Poisson(λ) distribution.

Proof. Denote n = n1 + n2, we write
(

n1

x

)(
n2

z−x

)
(

n
z

) =
n1!

x!(n1 − x)!

n2!

(z − x)!(n2 − z + x)!

z!(n− z)!

n!

=

(
z

x

) [(n1

n

)
· · ·

(
n1 − x + 1

n

)][(n2

n

)
· · ·

(
n2 − z + x + 1

n

)]

×
[(n

n

)
· · ·

(
n

n− z + 1

)]
.

So that, for fixed x and z, if

n1

n1 + n2

→ p as min (n1, n2) →∞,
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then (
n1

x

)(
n2

z−x

)
(

n
z

) →
(

z

x

)
px (1− p)z−x ,

the binomial(z, p) distribution, because under the condition n1

n
→ p as

min (n1, n2) →∞,

n1 − k

n
→ p

and

n2 − k

n
→ 1− p,

for all fixed k.

Now if zp → λ, as z → ∞, then
(

z
x

)
px (1− p)z−x converges to the

Poisson(λ) distribution. Since z ≤ min (n1, n2), the limit ”z → ∞” must

be preceded by the limit ”min (n1, n2) → ∞”. From this we conclude that

the hypergeometric(z, n1, n2) distribution converges to the Poisson(λ) dis-

tribution under the conditions min (n1, n2) → ∞, and z
(

n1

n1+n2

)
→ λ as

z →∞



CHAPTER 4 THE POISSON APPROXIMATION

FOR SUMS OF INDEPENDENT BUT

NON-IDENTICALLY DISTRIBUTED RANDOM

VARIABLES

Let X1, X2, . . . Xn be independent Bernoulli random variables with pi =

P (Xi = 1) = 1 − P (Xi = 0), 0 < pi < 1, i = 1, 2, . . . , n, and Y1, . . . , Yn be

independent Poisson random variables with expectations λi, i = 1, 2, . . . . Let

Un =
∑n

i=1 Xi and Vn =
∑n

i=1 Yi. Now we consider the total variation dis-

tance which is the approximation of the distribution of Un by the distribution

of Vn as follows:

d (Un, Vn) = sup
A

|P (Un ∈ A)− P (Vn ∈ A)|

=
1

2

∞∑

k=0

|P (Un = k)− P (Vn = k)|.

Estimations of this distance have been given by different authors, such as

Le Cam(1960), and recently by Yannaros(1991) and Wang(1993).
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Lemma 7. Let |θ| < 1, then − ln (1 − θ) = θ + θ2K(θ), where K(θ) < 1 if

|θ| < 1
2
.

Proof.

− ln (1− θ) = θ +
1

2
θ2 +

1

3
θ3 + . . . , |θ| < 1

K(θ) =
∞∑

k=0

θk

k + 2
≤ 1

2 (1− θ)
.

For |θ| < 1

2
, |K(θ)| < 1.

Let Xi be independent Bernoulli(θi) distribution, and let Y be Poisson(λ), λ =

∑n
i=1 θi,mn = max(θ1, θ2 . . . , θn)

Theorem 11. If mn → 0, then Sn =
∑n

i=1 Xi → Y in distribution.

Proof.

gn(s) = E(sSn) =
n∏

i=1

(1− θi(1− s)) , |s| < 1

h(s) = E(sY ) = e−λ(1−s), |s| < 1.

ln gn(s) =
n∑

i=1

(1− θi(1− s))

= −
n∑

i=1

θi (1− s) +
n∑

i=1

θ2
i K(θi).

Take mn < 1
2
, then K(θi) < 1 and

∑n
i=1 θ2

i ≤ λmn, so that

ln gn(s) = −λ(1− s) + λmn → h(s) as n →∞, for all |s| < 1.
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Theorem 12. Let X1, X2, . . . , Xn be independent Bernoulli random vari-

ables, where P (Xi = 1) = θi and P (Xi = 0) = 1 − θi, Y be Poisson(λ).

Let Sn =
∑n

i=1 Xi, λ =
∑n

i=1 θi, and mn = max θi. If mn → 0, then

Sn =
∑n

i=1 Xi → Y uniformly in x.

Proof.

λ =
n∑

i=1

θi, with θ1 . . . θn assumed to be independent.

Now comparing P (Sn = k) with P (Y = k), as a first step, we observe that if

Sn and Y are unequal, then at least one of the pairs P (Xi = i) 6= P (Yi = i).

In the following table, we define a joint distribution of X and Y .

Y ∼ Poisson(λ)

0 1 2 3 . . . . . . marginal of X

X ∼ Bernoulli(θi) 0 1− p 0 0 0 . . . 0 (1− p)

1 e−p − (1− p) pe−p p2e−2

2!
p3e−3

3! . . . . . . p

marginal of Y e−p pe−p p2e−2

2!
p3e−3

3! . . . . . .

By the table, we can calculate |P (Xi) 6= P (Yi)| ≤ p2
2, where

|P (Xi) 6= P (Yi)| = 1− P (Xi = 0, Yi = 0)− P (Xi = 1, Yi = 1)

= 1− (1− p)− pe−p

= p(1− e−p).
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Obtain |P (Xi) 6= P (Yi)| = p2(1− e−p2) ≤ p2
2.

According to the above result we can establish the stronger result

∞∑

k=0

|P (Sn = k)− P (Y = k)| ≤
n∑

k=1

p2
i

≤ (max (pi)) λ → 0 as pi → 0.

So that Sn → Y uniformly in k.



BIBLIOGRAPHY

Bernard, W. L. (1993). Statistical Theory. Chapman-Hall, New York.

Bortkiewicz, L. von. (1898). Dzs Gesetz der Kleinen Zahlen. Leipzig:

Teubner.

Feller, W. (1968). An Introduction to Probability Theory and Its Ap-

plications. Vol. 1. Wiley, New York.

Ghahramani, S. (2000). Fundamentals of Probability. Prentice-Hall,

New Jersey.

Good, I. J. (1986). Some Statistical Applications of Poisson’s work.

Statist. Sci. 1 157-180.

Le Cam, L. (1965). Bernoulli, Bayes, Laplace Anniversary Volume,

eds.. Berkeley: University of California Press.

Morris L. M. and Richard J. L. (1986). An Introduction to Mathemat-

ical Statistics and Its Applications. Prentice-Hall, New Jersey.



Contents 35

Norman L. J. and Samuel K. (1969). Discrete Distributions. Wiley,

New York.

Poisson S. D. (1837). Recherches sur la probabilité des jugements en
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