
 

東海大學統計學研究所 

碩士論文 

指導教授：沈葆聖 教授 

 

 

 

 

A General Semiparametric Model for  

Left-Truncated and Right-Censored Data 

 

 

 

 

 

研究生：林文琦 

中華民國九十五年七月



 

 

 

A General Semiparametric Model for  

Left-Truncated and Right-Censored Data 

 

 

 

 

Wen-Chi Lin 

Dept. of Statistics 

Tunghai University 

Taichung, 40704 

Taiwan, R.O.C. 

 

 

July 4, 2006 



謝誌 

 本篇論文能夠順利完成，必須感謝我的指導教授沈葆聖博士。在我研

究所的這二年中，老師非常用心的教導，無論在課業，或是在做人處事的

道理上，老師都常常提供我最大的幫助。而老師對於做研究的積極與努力

不懈的態度，更是讓我深受影響，並常以他做為最好的學習榜樣。感謝老

師在這二年中對我的照顧與關心，您的付出，我深深感激。 

 其次，我要感謝黃連成教授以及戴政教授，在口試時提供了許多寶貴

的意見，使我獲益匪淺；還要感謝東海統研所的教授們，在這二年中對我

的教導與鼓勵，因為你們，才使我學到了這麼多的學問，也使我在研究所

的這二年中，感覺非常踏實，生活的很有意義。 

 另外，要感謝研究室的學長姊、學弟妹，以及我的同學們，因為你們

的陪伴，使我感覺我並不孤單。謝謝你們在學業上對我的幫助，以及在生

活上對我的照顧，讓我這個外地人，有了第二個家的感覺，也給了我許多

許多美好的回憶。 

 最後，我要感謝我的親愛的家人，一直在我求學的過程中，給我最大

的支持與鼓勵；在我遇到挫折時，不斷的給我力量及依靠，使我能克服困

難，順利的完成我的求學歷程。 

 感謝所有對我好的人，因為你們，使我擁有了正面積極的態度，也讓

我能以微笑，來面對我的人生。謝謝你們！ 



Content

Abstract 1

1 Introduction 2

2 Semiparametric Estimates 5

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Estimation of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Estimation of F (x) . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 A Simulation Study 13

3.1 General Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Concluding Remarks 19

References 20

List of Tables

Table 1. Simulation results for biase, std and
√

mse of the estimators

F̂n(x; θ̂) and F̂n(x), Case 1 . . . . . . . . . . . . . . . . . . . . . . 16

Table 2. Simulation results for biase, std and
√

mse of the estimators

F̂n(x; θ̂) and F̂n(x), Case 2: C∗
2 ∼ exp(2) . . . . . . . . . . . . . . 17

Table 3. Simulation results for biase, std and
√

mse of the estimators

F̂n(x; θ̂) and F̂n(x), Case 3: C∗
2 ∼ exp(0.25) . . . . . . . . . . . . . 18



Abstract

In many follow-up studies survival data are often observed according to a cross-

sectional sampling scheme. Data of this type are subject to left truncation and right

censoring. In many practical cases, two types of censoring may occur. The first

type of censoring (type A) is due to termination of the follow-up period. The second

type of censoring (type B) is a consequence of other types of failure which might

occur before the cross-section time. Let T ∗, V ∗, C∗
1 and C∗

2 denote the lifetime, left

truncation, type A and type B censoring variables, respectively. Assume that T ∗,

(V ∗, C∗
1) and C∗

2 are independent of one another but V ∗ and C∗
1 are dependent with

P (C∗
1 ≥ V ∗) = 1. Let F , G and Q denote the common distribution functions of T ∗,

V ∗ and C∗
2 , respectively. Let Z∗ = min(T ∗, C∗

2). For left-truncated and right-censored

(LTRC) data, one can observe nothing if Z∗ < V ∗, and observe (X∗, δ∗), if Z∗ ≥ V ∗,

where X∗ = min(Z∗, C∗
1), and δ∗ is equal to one if X∗ = T ∗, equal to two if X∗ = C∗

1

and zero otherwise. For LTRC data, the truncation product-limit estimate F̂n is the

maximum likelihood estimate (MLE) for nonparametric models. If the distribution of

V ∗ is parameterized as G(x; θ) and the distributions of T ∗ and C∗
2 are left unspecified,

the product-limit estimate F̂n is not the MLE for this semiparametric model. When

C∗
1 = C∗

2 = ∞ (i.e. left-truncated data), Wang (1989) derived the MLE of F for

the semiparametric model and established its weak convergence properties. When

G(x; θ) = x/θ and C∗
2 = ∞ (the so-called stationarity assumption), Asgharian et

al. (2002, 2005) derived an unconditional MLE of F and established its asymptotic

properties. In this note, we extend previous models by distinguishing two types

of censoring. Iterative algorithms are proposed to obtain a semiparametric estimate,

F̂n(x; θ̂n). The consistency of F̂n(x; θ̂n) is established. A simulation study is conducted

to compare the performance of F̂n(x; θ̂n) against that of F̂n(x).

Key Words: Left truncation, right censoring, conditional likelihood.
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1. Introduction

In many follow-up studies involving cross-sectional sampling, an individual is

observed only when a certain sampling status is satisfied. Data of this type are

subject to left truncation and right censoring (see Wang (1991) for further details).

In some case, the censoring (type A) is restricted to termination of the follow-up

period. However, in many practical cases, censoring (type B) is a consequence of

other types of failure which might occur before the cross-section time. Let T ∗, V ∗, C∗
1

and C∗
2 denote the lifetime, left truncation, type A and type B censoring variables,

respectively. Assume that T ∗, (V ∗, C∗
1) and C∗

2 are independent of one another but V ∗

and C∗
1 are dependent with P (C∗

1 ≥ V ∗) = 1. Let F , G and Q denote the common

distribution functions of T ∗, V ∗ and C∗
2 , respectively. Let Z∗ = min(T ∗, C∗

2). For

left-truncated and right-censored (LTRC) data, one can observe nothing if Z∗ < V ∗,

and observe (X∗, δ∗) if Z∗ ≥ V ∗, where X∗ = min(Z∗, C∗
1) and δ∗ is equal to one

if X∗ = T ∗, equal to two if X∗ = C∗
1 and zero otherwise. Consider the following

examples.

Example 1.1 (Channing House data)

Channing House is a retirement center in Palo Alto, California. The data were

collected between the opening of the house in January 1964 and July 1, 1975. In that

time 97 men and 365 women passed through the center. Some of the individuals were

censored due to leaving. The left truncation variable (V ∗) here is the entry age into

the Channing House and type B censoring (C∗
2) variable is the age on leaving. It is

clear that only subjects with entry age (V ∗) smaller than or equal to age on leaving

(C∗
2) and death (T ∗), i.e. Z∗ ≥ V ∗, can become part of the sample. Moreover, a large

number of the observations were censored due to the residents being alive on July

2



1, 1975 (termination of the follow-up). Hence, type A censoring variable (C∗
1) is the

censored age on July, 1975, and the relationship C∗
1 ≥ V ∗ is always satisfied.

Example 1.2 (Life-testing data)

Assume that n objects were put in use at some time in the distant past. These

objects may fail due to type 1 or type 2 causes; whenever an object failed (type 1 or

type 2), it was promptly replaced by another member of the same population. The

parameters of interest are the distribution functions, F and Q, of the lifetimes for

these objects until failure type 1 (T ∗) or type 2 (C∗
2). At some time t0 long after the

start of the process a statistician arrives on the scene. It is assumed that the age

(V ∗) of each object in use at t0 is known. Hence, his observation is restricted to the

n objects in use at that time, i.e. Z∗ ≥ V ∗. Suppose that each object is observed

until t0 + d0. Hence, type A censoring variable (C∗
1 = V ∗ + d0) is induced due to

termination of the follow-up period.

Let aF and bF denote the left and right endpoints of F . Define (aG, bG) and

(aQ, bQ) similarly. For identifiablities of F , G,and Q, we assume that

aG ≤ min(aF , aQ) and bG ≤ min(bF , bQ). (1.1)

Let (X1, δ1, V1), . . . , (Xn, δn, Vn) denote the left-truncated and right-censored sample.

Let Rn(u) = n−1
∑n

i=1 I[Vi≤u≤Xi], NF (u) =
∑n

i=1 I[Xi≤u,δi=1] and NF (du) = NF (u)−
NF (u−). Suppose that nRn(Xi) > NF (dXi) for i = 1, . . . , n (see Wang (1987)). Then,

the nonparametric maximum likelihood estimate (NPMLE) of F (x) is given by

F̂n(x) = 1−
∏
u≤x

[
1− NF (du)

nRn(u)

]
.
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Note that when G is not specified, the NPMLE of F is obtained condition on the

observed Vi’s. There are many applications (such as example 1.2), however, in which

the initiation times follow a stationary Poisson process which implies G(x; θ) = x/θ

(the so-called stationarity assumption or length-biased sampling). When G(x; θ) =

x/θ and C∗
2 = ∞, Wang (1991) had suggested that an unconditional likelihood ap-

proach is more efficient than its conditional counterpart. This improvement in ef-

ficiency was later confirmed by Asgharian, M’Lan and Wolfson (2002). Under the

model of stationarity and C∗
2 = ∞, Asgharian and Wolfson (2005) established the

asymptotic properties of the unconditional MLE of F . A compromise between the

stationarity assumption and the nonoparametric assumption on G would be the pa-

rameterized G(x; θ), where θ ∈ Θ ⊂ Rq, and θ is a q-dimensional vector. In example

1.1, the truncation distribution G can be interpreted as the distribution of the po-

tential elderly resident’s age at entry, which can follow uniform or some other distri-

butions. In Section 2, we consider a general semiparametric model by distinguishing

two types of censoring. Iterative algorithms are proposed to obtain a semiparametric

estimate, F̂n(x; θ̂n). The consistency of F̂n(x; θ̂n) is established. In Section 3, a sim-

ulation study is conducted to compare the performance of F̂n(x; θ̂n) against that of

F̂n(x).
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2. Semiparametric Estimates

2.1 Notations

Let T1, . . . , TnD
be the observed failure times, i.e. the observations from the subset

D = {Xi : δi = 1; i = 1, . . . , n}, C11, . . . , C1nA
be the observed type A censoring

times, i.e. the observations from the subset CA = {Xi : δi = 2; i = 1, . . . , n}, and

C21, . . . , C2nB
be the observed type B censoring times, i.e. the observations from the

subset CB = {Xi : δi = 0; i = 1, . . . , n}. Let Z1, . . . , ZnK
be the observations from

the subset D ∪ CB. Let x1 < · · · < xm denote the distinct values of Z1, . . . , ZnK
and

C11, . . . , C1nA
in increasing order.

For j = 1, . . . ,m, let tj =
∑nD

i=1 I[Ti=xj ], c1j =
∑nA

i=1 I[C1i=xj ], c2j =
∑nB

i=1 I[C2i=xj ], and

kj = tj + c2j.

Let K(x) denote the distribution function of Z∗ and K̄(x) = (1− F (x))(1−Q(x)).

2.2 Estimation of θ

First, we consider the estimation of K(x). Given θ, the marginal likelihood of

Zi’s is given by

L(K; θ) =
m∏

j=1

(K(dxj)

α

)kj
m∏

j=1

(K̄(xj)

α

)c1j

,

where α =
∫

G(x; θ)K(dx) and K(dxj) = K(xj)−K(xj−).

For a fixed θ, maximizing L(K; θ) with respect to K(dxj) is equivalent to maxi-

mizing

L∗(K; θ) =
m∏

j=1

(G(xj; θ)K(dxj)

α

)kj
m∏

j=1

(K̄(xj)

α

)c1j

,
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subject to K(dxj) ≥ 0 and
∑m

j=1 K(dxj) = 1.

Let H(dx; θ) = G(x; θ)K(dx)/α. Then the problem of maximizing L∗(K; θ) is

equivalent to that of maximizing

L(H; θ) =
m∏

j=1

[H(dxj; θ)]
kj

m∏
j=1

(∫

z≥xj

1

G(z; θ)
H(dz; θ)

)c1j

.

Note that when G(x; θ) = x/θ, the likelihood L(H; θ) is reduced to the likelihood

for problem A of Vardi (1989). In considering the problem of estimating survivor

function from multiplicatively right censored data, Vardi (1989) derived the uncondi-

tional NPMLE of a length-biased survival function from informatively censored data.

The following example extend Vardi’s problem A (see Vardi (1989), page 751).

Example 2.1: Multiplicative censoring

Let W1, . . . , WnK
and W c

1 , . . . , W c
nA

be i.i.d. random variables from the lifetime

distribution function H(x; θ), let U1, . . . , UnA
be i.i.d. uniform (0,1) random variables,

and write Yi = G−1
θ (G(W c

i ; θ)Ui), where G−1
θ (z) denote the inverse function of G(z; θ).

Given θ, we want to derive the nonparametric MLE of H(x; θ) based on the data

W1, . . . , WnK
and Y1, . . . , YnA

.

Since

HA(y; θ) = P (Yi ≤ y) = P (G(W c
i ; θ)Ui ≤ G(y; θ))

=

∫

z≥y

G(y; θ)

G(z; θ)
H(dz; θ) + H(y; θ).

Assume that G(x; θ) has a density function g(x; θ). Hence, the probability density

function of Yi is given by

hA(y; θ) =

∫

z≥y

g(y; θ)

G(z; θ)
H(dz; θ) y > 0.
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Therefore, the marginal likelihood of Wi’s and Yi’s is given by

L∗(H; θ) =

nK∏
i=1

[H(dWi; θ)]

nA∏
i=1

(∫

z≥Yi

g(Yi; θ)

G(z; θ)
H(dz; θ)

)
.

For a fixed θ, the likelihood function L∗(H; θ) treats g(Yi; θ) as constants. Hence,

the likelihood function L∗(H; θ) is equivalent to L(H; θ) by writing Wi = Zi (i =

1, . . . , nK) and Yi = C1i (i = 1, . . . , nA).

For j = 1, . . . , m, let pj = H(dxj; θ). The problem of maximizing L(H; θ) is reduced

to maximizing

L(p; θ) =
m∏

j=1

p
kj

j

( m∑

k=j

1

G(xk; θ)
pk

)c1j

,

subject to pj ≥ 0 (j = 1, . . . , m) and
∑m

j=1 pj = 1. Similar to Vardi’s (1989) approach,

the following EM algorithm is used to find out the MLEs of pj’s.

Initialization: Start with an arbitrary pold = [pold
1 , . . . , pold

m ] satisfying for j = 1, . . . , m,

pold
j > 0 and

∑m
j=1 pold

j = 1.

Iteration step: Replace pold
j with

pnew
j = n−1E

[ nK∑
i=1

I[Zi=xj ] +

nA∑
i=1

I[C1i=xj ]

∣∣∣Z1, . . . , ZnK
, C11, . . . , C1nA

, pold
]

= n−1
[
kj +

1

G(xj; θ)
pold

j

j∑

k=1

c1k

( m∑

i=k

1

G(xi; θ)
pold

i

)−1]
. (2.1)

Given θ, it follows that there exists a unique maximizer, p̂(·; θ) of the likelihood func-

tion L(p; θ) (see Vardi (1989), page 755). Let Ĥn(dxj; θ) = p̂(xj; θ). Given Ĥn(dx; θ),

we can obtain the maximizer of L(K; θ), K̂n(dx; θ) by

K̂n(dx; θ) =
[G(x; θ)]−1Ĥn(dx; θ)∫∞

0
[G(u; θ)]−1Ĥn(du; θ)

. (2.2)
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Based on (2.1) and (2.2), we can estimate θ using the following iterative algorithm.

For fixed K(dx1), . . . , K(dxm), the marginal likelihood of V1, . . . , Vn is given by

Lv(θ; K(dx)) =
n∏

i=1

g(Vi; θ)
∑m

j=1 I[xj≥Vi]K(dxj)∑m
j=1 G(xj; θ)K(dxj)

.

Since the likelihood Lv(θ; K(dt)) treats I[xj≥Vi]K(dxj) as constants, the log-likelihood

is

log Lv(θ; K(dx)) =
n∑

i=1

log g(Vi; θ)− n log
( m∑

j=1

G(xj; θ)K(dxj)
)
.

For j = 1, . . . , m, we use the product-limit estimate, K̂
(0)
n (dx) = K̂

(0)
n (x)− K̂

(0)
n (x−),

as the initial estimator, where

K̂(0)
n (x) = 1−

∏
u≤x

[
1− NK(du)

nRn(u)

]
,

where NK(u) =
∑nK

i=1 I[Zi≤u].

Step 1: For fixed K̂
(0)
n (dx1), . . . , K̂

(0)
n (dxm), maximize Lv(θ; K̂

(0)
n (dx)) with respect to

θ. Let θ̂(1) denote the unique maximizer of Lv(θ; K̂
(0)
n (dx)).

Step 2: For fixed θ̂(1), a unique maximizer p̂(·; θ̂(1)) of the likelihood function L(p; θ̂(1))

can be obtained by (2.1). Given Ĥn(dx; θ̂(1)), we can obtain the maximizer of L(K; θ̂(1)),

K̂
(1)
n (dx; θ̂(1)) by

K̂(1)
n (dx; θ̂(1)) =

[G(x; θ̂(1))]−1Ĥn(dx; θ̂(1))∫∞
0

[G(u; θ̂(1))]−1Ĥn(du; θ̂(1))
.

Repeat steps 1 and 2 until the solution is stable. Let θ̂n, Ĥn(dxj; θ̂n)’s and K̂n(dxj; θ̂n)’s

denote the stable solutions. Let Ĥn(x; θ̂n) =
∑m

j=1 Ĥn(dxj; θ̂n)I[xj≤x]. Define K̂n(x; θ̂n)

similarly.

8



Assume that K(x) has a density function k(x). Let

log Lv(θ; k(x)) =
n∑

i=1

log g(Vi; θ)− n log

∫ bK

aK

G(x; θ)k(x)dx.

Since the product-limit estimator K̂
(0)
n (x) is uniformly consistent, we have

| log Lv(θ; K̂
(0)
n (dx))− log Lv(θ; k(x))| → 0

as n → ∞. Hence, the strong consistence of θ̂n can be established. Similar to the

proof of Theorem 3.1 of Wang (1989), we need the following assumptions to derive

the consistency of Ĥn(x; θ̂n) and K̂n(x; θ̂n):

(a) K is continuous.

(b) G(x; θ) is continuous in x for each θ ∈ Θ.

(c) θ̂n
p→ θ implies G(x; θ̂n) → G(x; θ) for each x.

Lemma 2.1

Under assumptions (a), (b) and (c), if nK/(nK + nA) → pK > 0 then

supaK≤x≤bK
|Ĥn(x; θ̂n)−H(x; θ)| → 0 with probability 1.

Proof : The proof is technical and is omitted.

2.3 Estimation of F (x)

Given θ̂n, the estimated marginal likelihood of Ti’s and C2i’s is given by

L(F,Q; θ̂n) =
m∏

j=1

(F (dxj)Q̄(xj−)

α̂

)tj
m∏

j=1

(Q(dxj)F̄ (xj−)

α̂

)c2j
m∏

j=1

( F̄ (xj−)Q̄(xj−)

α̂

)c1j

,

where α̂ =
∫

G(x; θ̂n)K(dx).

9



Let G(xj; θ̂n)F (dxj)Q̄(xj−)/α̂ = F̃ (dxj) and G(xj; θ̂n)Q(dxj)F̄ (xj−)/α̂ = Q̃(dxj).

Then L(F, Q; θ̂n) can be written as

L(F̃ , Q̃; θ̂n) =
m∏

j=1

(
F̃ (dxj)

)tj
m∏

j=1

(
Q̃(dxj)

)c2j
m∏

j=1

( m∑

k=j

1

G(xk; θ̂n)
[F̃ (dxk) + Q̃(dxk)]

)c1j

.

For j = 1, . . . , m, let p̃j = F̃ (dxj) and q̃j = Q̃(dxj). The problem of maximizing

L(F̃ , Q̃; θ̂n) is reduced to maximizing

L(p̃, q̃; θ̂n) =
m∏

j=1

p̃
tj
j q̃

c2j

j

( m∑

k=j

1

G(tk; θ)
(p̃k + q̃k)

)c1j

,

subject to p̃j ≥ 0, q̃j ≥ 0 (j = 1, . . . ,m) and
∑m

j=1(p̃j + q̃j) = 1. Similar to Vardi’s

(1989) approach, the following EM algorithm is used to find out the MLEs of p̃j’s

and q̃j.

Initialization: Start with an arbitrary p̃old = [p̃old
1 , . . . , p̃old

m ] and q̃old = [q̃old
1 , . . . , q̃old

m ]

satisfying for j = 1, . . . , m, p̃old
j > 0, q̃old

j > 0 and
∑m

j=1(p̃
old
j + q̃old

j ) = 1.

Iteration step: Replace p̃old
j and q̃old

j with

p̃new
j = n−1E

[ nD∑
i=1

I[Ti=xj ]+

nA∑
i=1

I[C1i=xj ]

∣∣∣T1, . . . , TnD
, C21, . . . , C2nB

, C11, . . . , C1nA
, p̃old, q̃old

]

= n−1
[
tj +

1

G(xj; θ̂n)
p̃old

j

j∑

k=1

c1k

( m∑

i=k

1

G(xi; θ̂n)
(p̃old

i + q̃old
i )

)−1]

and

q̃new
j = n−1E

[ nB∑
i=1

I[C2i=xj ]+

nA∑
i=1

I[C1i=xj ]

∣∣∣T1, . . . , TnA
, C21, . . . , C2nB

, C11, . . . , C1nA
, p̃old, q̃old

]

= n−1
[
c2j +

1

G(xj; θ̂n)
q̃old
j

j∑

k=1

c1k

( m∑

i=k

1

G(xi; θ̂n)
(p̃old

i + q̃old
i )

)−1]
.
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Let F̃n(dxj; θ̂n) and Q̃n(dxj; θ̂n) denote the maximizer of L(F̃ , Q̃; θ̂n). Based on

F̃n(dxj; θ̂n) and Q̃n(dxj; θ̂n), a semiparametric estimator of F is given by

F̂n(x; θ̂n) = 1−
∏
xj≤x

[
1− F̃n(dxj; θ̂n)

G(xj; θ̂)C̃n(xj; θ̂n)

]
,

where C̃n(xj; θ̂n) =
∑

k≥j
1

G(xk;θ̂n)

(
F̃n(dxk; θ̂n) + Q̃n(dxk; θ̂n)

)
.

The F̃n(dt; θ̂n) and Q̃n(dt; θ̂n) must satisfy the following two score equations

F̃n(dx; θ̂n) =
nD

n
ĤnD

(dx) +
nA

n

∫

0<y≤x

ĤnA
(dy)∫

z≥y
[G(z; θ̂n)]−1H̃n(dz; θ̂n)

1

G(x; θ̂n)
F̃n(dx; θ̂n),

(2.3)

Q̃n(dx; θ̂n) =
nB

n
ĤnB

(dt) +
nA

n

∫

0<y≤x

ĤnA
(dy)∫

z≥y
[G(z; θ̂n)]−1H̃n(dz; θ̂n)

1

G(x; θ̂n)
Q̃n(dx; θ̂n),

(2.4)

subject to
∑m

j=1 H̃n(dxj; θ̂n) = 1, where H̃n(dz; θ̂n) = F̃n(dz; θ̂n) + Q̃n(dz; θ̂n), ĤnD

and ĤnB
denote the empirical distribution function of Ti’s and C2i’s, respectively. By

Lemma 2.1, (2.3) and (2.4), it follows that H̃n(dx; θ̂n) = Ĥn(dx; θ̂n). By Lemma 2.1,

H̃n(dx; θ̂n) is a consistent estimator of H(dx; θ).

Next, we derive the consistency of F̃n(x; θ̂n) and Q̃n(x; θ̂n). First, (nD/n)ĤnD
(dx)

is a consistent estimator of α−1F (dx)Q̄(x)P (V ∗ ≤ x ≤ C∗
1). Similarly, (nA/n)ĤnA

(dy)

is a consistent estimator of α−1A(dy)K̄(y), where A(dy) = A(y) − A(y−), A(y) =

P (C∗
1 ≤ y). By Lemma 2.1, it follows that

∫
z≥y

[G(z; θ̂n)]−1H̃n(dz; θ̂n) consistently

estimate α−1K̄(y). It follows that

nA

n

∫

0<y≤x

ĤnA
(dy)∫

z≥y
[G(z; θ̂n)]−1H̃n(dz; θ̂n)
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is a consistent estimator of A(x) = P (C∗
1 ≤ x). Hence, the estimator F̃n(x; θ̂n) is

asymptotically equivalent to the solution of U(x; θ) = 0, where

U(x; θ) =
[
F̃n(x; θ)

(
1− A(x)

G(x; θ)

)]− [α−1F (x)Q̄(x)P (V ∗ ≤ x ≤ C∗
1)].

Since P (C∗
1 ≥ V ∗) = 1, we have 1 − A(x)/G(x; θ) = P (V ∗ ≤ x ≤ C∗

1)/G(x; θ). It

follows that F̃n(x; θ̂n) is a consistent estimator of F̃ (x; θ) = α−1G(x; θ)F (x)Q̄(x).
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3. A Simulation Study

A simulation study is conducted to compare the performance of the semipara-

metric estimator F̂n(x; θ̂n) against that of the product-limit estimator F̂n(x)

3.1 Cases State

For all the cases considered, the T ∗’s are exponential distribution: F (x) = 1−e−x

for x > 0, and the C∗
1 ’s are defined by C∗

1 = D∗ + V ∗, where D∗’s are independent of

V ∗. We generate V ∗, D∗ and C∗
2 from the following three cases:

Case 1 (Stationarity) :

The V ∗’s are uniform distribution: G(x; θ) = x/θ with varying parameters θ =

0.25, 1.0, and 4.0. The D∗’s are exponentially distributed: QD(x) = 1 − e−x for

x > 0. The C∗
2 ’s are exponential distribution: Q(x) = 1 − e−β2x for x > 0, with

varying parameters β2 = 1.0, 2.0, and 4.0.

Case 2 :

The V ∗’s are exponential distribution: G(x; θ) = 1− e−θx for x > 0, with varying

parameters θ = 1.0, 4.0, and 8.0. The D∗’s are exponentially distributed: QD(x) =

1− e−βdx for x > 0, with varying parameters βd = 4.0, 8.0. The C∗
2 ’s are exponential

distribution: Q(x) = 1− e−2x for x > 0.

Case 3 :

The V ∗’s are exponential distribution: G(x; θ) = 1− e−θx for x > 0, with varying

13



parameters θ = 1.0, 4.0, and 8.0. The D∗’s are exponentially distributed: QD(x) =

1− e−βdx for x > 0, with varying parameters βd = 1.0, 4.0. The C∗
2 ’s are exponential

distribution: Q(x) = 1− e−0.25x for x > 0.

For case 1, the θ is assumed to be known. For cases 2 and 3, the θ is assumed

to be unknown. For all the cases, we consider the estimation of F (0.5) = 0.39,

F (1.0) = 0.63 and F (2.0) = 0.87. The sample size is chosen as 200 and the replication

is 3000 times. Tables 1 through 3 show the bias, standard deviation (std.) and

squared root of the ratio of mean squared errors (denoted by eff) of the F̂n(x; θ̂n)

to that of the product-limit estimator F̂n(x). Tables 1 through 3 also show the

proportion of truncation (α) and the proportion of type A and type B censoring

(pA = nA/n, pB = nB/n). Based on the results of Tables 1 through 3, we have the

following conclusions.

3.2 Simulation Results

Case 1: (see Table 1)

In terms of squared root of mean squared error (
√

mse), the semiparametric esti-

mator F̂n(x; θ̂n) outperforms the product-limit estimator F̂n(x) except in the case of

light truncation and heavy censoring (i.e. α = 0.79 pA = 0.26 pB = 0.37, eff=1.11).

The ratio of the
√

mse of F̂n(x; θ̂n) to that of F̂n(x) varies between 0.27 to 1.11.

For the estimation of F (2.0), when truncation is light and censoring is heavy (e.g.

α = 0.79, pA = 0.52, pB = 0.24, and eff=0.27), the improvement of F̂n(x; θ̂n) can be

very significant.

Case 2: (see Table 2)

For the estimation of F (1.0) and F (2.0), The estimator F̂n(x; θ̂n) outperforms the
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product-limit estimator for all the cases considered. The ratio of the
√

mse of

F̂n(x; θ̂n) to that of F̂n(x) varies between 0.22 to 0.86. However, for the estima-

tion of F (0.5), the product-limit estimator can outperform F̂n(x; θ̂n). The ratio of

the
√

mse of F̂n(x; θ̂n) to that of F̂n(x) varies between 0.85 to 1.11. For the estimation

of F (2.0), when truncation is light and censoring is heavy (e.g. α = 0.57, pA = 0.42,

pB = 0.39, and eff=0.22), the improvement of F̂n(x; θ̂n) can be very significant.

Case 3: (see Table 3)

The semiparametric estimator F̂n(x; θ̂n) outperforms the product-limit estimator for

most of the case considered. The ratio of the
√

mse of F̂n(x; θ̂n) to that of F̂n(x)

varies between 0.24 to 1.08. For the estimation of F (2.0), when truncation is light

and type A censoring is heavy (e.g. α = 0.87, pA = 0.66, pB = 0.06, and eff=0.24),

the improvement of F̂n(x; θ̂n) can be very significant.

15



Table 1. Simulation results for bias, std and
√

mse

of the estimators F̂n(x; θ̂) and F̂n(x), Case 1

F̂n(0.5; θ) F̂n(0.5)
θ β2 α pA pB bias std eff bias std

0.25 1.0 0.79 0.26 0.37 -0.000 0.051 0.87 -0.001 0.059
0.25 2.0 0.79 0.41 0.30 -0.001 0.055 0.88 -0.003 0.062
0.25 4.0 0.79 0.52 0.24 0.015 0.059 0.88 -0.002 0.070
1.00 1.0 0.43 0.14 0.42 -0.002 0.069 0.86 0.008 0.081
1.00 2.0 0.43 0.22 0.39 -0.001 0.073 0.84 0.006 0.087
1.00 4.0 0.43 0.29 0.35 -0.000 0.077 0.81 0.004 0.094
4.00 1.0 0.13 0.04 0.48 -0.001 0.072 0.97 -0.025 0.071
4.00 2.0 0.13 0.04 0.47 -0.010 0.074 0.89 -0.008 0.084
4.00 4.0 0.13 0.09 0.46 -0.010 0.077 0.87 -0.025 0.086

F̂n(1.0; θ) F̂n(1.0)
θ β2 α pA pB bias std eff bias std

0.25 1.0 0.79 0.26 0.37 -0.001 0.057 0.81 0.003 0.070
0.25 2.0 0.79 0.41 0.30 0.006 0.079 0.96 -0.002 0.083
0.25 4.0 0.79 0.52 0.24 0.104 0.108 0.99 0.002 0.150
1.00 1.0 0.43 0.14 0.42 -0.001 0.055 0.90 0.006 0.062
1.00 2.0 0.43 0.22 0.39 0.002 0.061 0.85 0.003 0.071
1.00 4.0 0.43 0.29 0.35 -0.012 0.065 0.81 0.002 0.083
4.00 1.0 0.13 0.04 0.48 -0.009 0.057 0.97 -0.017 0.060
4.00 2.0 0.13 0.04 0.47 -0.007 0.057 0.89 -0.008 0.063
4.00 4.0 0.13 0.09 0.46 -0.011 0.064 0.77 -0.001 0.072

F̂n(2.0; θ) F̂n(2.0)
θ β2 α pA pB bias std eff bias std

0.25 1.0 0.79 0.26 0.37 0.007 0.086 1.11 -0.007 0.077
0.25 2.0 0.79 0.41 0.30 0.017 0.078 0.59 -0.051 0.136
0.25 4.0 0.79 0.52 0.24 -0.084 0.067 0.27 -0.167 0.246
1.00 1.0 0.43 0.14 0.42 0.007 0.062 0.97 0.005 0.060
1.00 2.0 0.43 0.22 0.39 0.025 0.070 0.83 -0.010 0.090
1.00 4.0 0.43 0.29 0.35 0.032 0.051 0.45 -0.074 0.134
4.00 1.0 0.13 0.04 0.48 -0.005 0.041 0.92 -0.004 0.045
4.00 2.0 0.13 0.04 0.47 -0.009 0.047 0.81 -0.001 0.060
4.00 4.0 0.13 0.09 0.46 -0.011 0.059 0.73 -0.011 0.079
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Table 2. Simulation results for bias, std and
√

mse

of the estimators F̂n(x; θ̂) and F̂n(x), Case 2: C∗
2 ∼ exp(2)

F̂n(0.5; θ̂n) F̂n(0.5)
θ βd α pA pB bias std eff bias std

1.0 4.0 0.25 0.15 0.57 0.004 0.086 1.11 -0.006 0.077
1.0 8.0 0.25 0.18 0.55 0.031 0.090 1.06 -0.000 0.089
4.0 4.0 0.57 0.33 0.45 0.007 0.067 0.94 0.000 0.071
4.0 8.0 0.57 0.42 0.39 0.002 0.075 0.85 -0.002 0.088
8.0 4.0 0.73 0.42 0.39 0.017 0.074 1.00 -0.006 0.076
8.0 8.0 0.73 0.53 0.31 0.068 0.091 1.07 -0.002 0.105

F̂n(1.0; θ̂n) F̂n(1.0)
θ βd α pA pB bias std eff bias std

1.0 4.0 0.25 0.15 0.57 0.007 0.086 0.83 -0.001 0.104
1.0 8.0 0.25 0.18 0.55 0.039 0.066 0.49 0.006 0.154
4.0 4.0 0.57 0.33 0.45 0.052 0.114 0.74 -0.006 0.154
4.0 8.0 0.57 0.42 0.39 0.138 0.106 0.86 -0.044 0.196
8.0 4.0 0.73 0.42 0.39 0.103 0.120 0.67 -0.034 0.178
8.0 8.0 0.73 0.53 0.31 0.161 0.087 0.76 -0.113 0.212

F̂n(2.0; θ̂n) F̂n(2.0)
θ βd α pA pB bias std eff bias std

1.0 4.0 0.25 0.15 0.57 0.013 0.078 0.47 -0.078 0.149
1.0 8.0 0.25 0.18 0.55 0.042 0.043 0.27 -0.119 0.181
4.0 4.0 0.57 0.33 0.45 -0.039 0.093 0.38 -0.188 0.189
4.0 8.0 0.57 0.42 0.39 -0.036 0.065 0.22 -0.261 0.208
8.0 4.0 0.73 0.42 0.39 -0.061 0.093 0.35 -0.259 0.190
8.0 8.0 0.73 0.53 0.31 -0.064 0.079 0.25 -0.345 0.212
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Table 3. Simulation results for bias, std and
√

mse

of the estimators F̂n(x; θ̂) and F̂n(x), Case 3: C∗
2 ∼ exp(0.25)

F̂n(0.5; θ̂n) F̂n(0.5)
θ βd α pA pB bias std eff bias std

1.0 1.0 0.44 0.20 0.16 -0.006 0.072 0.83 -0.005 0.087
1.0 4.0 0.44 0.34 0.13 -0.003 0.087 0.98 -0.004 0.089
4.0 1.0 0.76 0.34 0.13 -0.002 0.052 0.85 -0.002 0.061
4.0 4.0 0.76 0.58 0.08 0.002 0.059 0.82 -0.001 0.072
8.0 1.0 0.87 0.39 0.12 0.002 0.045 1.07 -0.002 0.042
8.0 4.0 0.87 0.66 0.06 0.011 0.051 1.06 0.001 0.049

F̂n(1.0; θ̂n) F̂n(1.0)
θ βd α pA pB bias std eff bias std

1.0 1.0 0.44 0.20 0.16 -0.004 0.055 0.90 -0.001 0.061
1.0 4.0 0.44 0.34 0.13 -0.008 0.071 0.85 0.005 0.083
4.0 1.0 0.76 0.34 0.13 -0.004 0.049 0.92 -0.001 0.053
4.0 4.0 0.76 0.58 0.08 0.021 0.073 0.83 0.008 0.091
8.0 1.0 0.87 0.39 0.12 0.005 0.043 1.06 0.003 0.040
8.0 4.0 0.87 0.66 0.06 0.074 0.085 1.08 0.013 0.104

F̂n(2.0; θ̂n) F̂n(2.0)
θ βd α pA pB bias std eff bias std

1.0 1.0 0.44 0.20 0.16 0.001 0.038 0.88 -0.000 0.043
1.0 4.0 0.44 0.34 0.13 -0.016 0.054 0.56 -0.008 0.097
4.0 1.0 0.76 0.34 0.13 -0.002 0.051 0.96 0.002 0.053
4.0 4.0 0.76 0.58 0.08 0.038 0.047 0.39 -0.076 0.138
8.0 1.0 0.87 0.39 0.12 0.006 0.057 1.02 -0.028 0.052
8.0 4.0 0.87 0.66 0.06 0.030 0.048 0.24 -0.128 0.148
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4. Concluding Remarks

The semiparametric estimate proposed in this article is designed to incorporate

both information contained in the data and the available information on the trunca-

tion distribution, and are expected to have better performance than the nonparamet-

ric methods. Our simulation study indicates that under the semiparametric model

V ∗ ∼ G(x; θ), the semiparametric estimator F̂n(x; θ̂n) can perform much better than

the product-limit estimator F̂n(x). The truncation product-limit estimator, however,

is still most appropriate under a totally nonparametric model. In practice, we can

perform a formal goodness-of-fit test on the hypothesis H0 : V ∗ ∼ G(x; θ) using

the method of Li and Doss (1993). Their method is based on a modified minimum

chi-square estimator of θ, θ̂c. For a fixed θ̂c, an alternative semiparametric estima-

tor, F̂n(x; θ̂c), can be obtained by maximizing L(F̃ , Q̃; θ̂c). Further investigation is

required for a comparison between F̂n(x; θ̂c) and F̂n(x; θ̂n).
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