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Abstract

In many follow-up studies survival data are often observed according to a cross-
sectional sampling scheme. Data of this type are subject to left truncation and right
censoring. In many practical cases, two types of censoring may occur. The first
type of censoring (type A) is due to termination of the follow-up period. The second
type of censoring (type B) is a consequence of other types of failure which might
occur before the cross-section time. Let 7™, V* C} and CJ denote the lifetime, left
truncation, type A and type B censoring variables, respectively. Assume that T,
(V*,C5) and C§ are independent of one another but V* and C} are dependent with
P(Cy > V*)=1. Let F', G and @ denote the common distribution functions of 7™,
V*and Cj, respectively. Let Z* = min(T*, C3). For left-truncated and right-censored
(LTRC) data, one can observe nothing if Z* < V* and observe (X* §*), if Z* > V*,
where X* = min(Z*, CY), and ¢* is equal to one if X* = T*, equal to two if X* = C}
and zero otherwise. For LTRC data, the truncation product-limit estimate F, is the
maximum likelihood estimate (MLE) for nonparametric models. If the distribution of
V* is parameterized as G(z;6) and the distributions of 7% and C are left unspecified,
the product-limit estimate F,, is not the MLE for this semiparametric model. When
Cy = C5 = oo (i.e. left-truncated data), Wang (1989) derived the MLE of F' for
the semiparametric model and established its weak convergence properties. When
G(z;0) = x/0 and C5 = oo (the so-called stationarity assumption), Asgharian et
al. (2002, 2005) derived an unconditional MLE of F' and established its asymptotic
properties. In this note, we extend previous models by distinguishing two types
of censoring. Iterative algorithms are proposed to obtain a semiparametric estimate,
E,(2:0,). The consistency of F},(x;0,) is established. A simulation study is conducted

to compare the performance of Fn(:c; én) against that of Fn(x)

Key Words: Left truncation, right censoring, conditional likelihood.



1. Introduction

In many follow-up studies involving cross-sectional sampling, an individual is
observed only when a certain sampling status is satisfied. Data of this type are
subject to left truncation and right censoring (see Wang (1991) for further details).
In some case, the censoring (type A) is restricted to termination of the follow-up
period. However, in many practical cases, censoring (type B) is a consequence of
other types of failure which might occur before the cross-section time. Let 7™, V* C}
and C5 denote the lifetime, left truncation, type A and type B censoring variables,
respectively. Assume that 7%, (V*, C}) and C3 are independent of one another but V*
and C} are dependent with P(C} > V*) = 1. Let F, G and @ denote the common
distribution functions of 7%, V* and Cj, respectively. Let Z* = min(7™,C5). For
left-truncated and right-censored (LTRC) data, one can observe nothing if Z* < V*,
and observe (X*,¢6%) if Z* > V*, where X* = min(Z*, CY) and 0* is equal to one
if X* =T, equal to two if X* = Cf and zero otherwise. Consider the following

examples.

Example 1.1 (Channing House data)

Channing House is a retirement center in Palo Alto, California. The data were
collected between the opening of the house in January 1964 and July 1, 1975. In that
time 97 men and 365 women passed through the center. Some of the individuals were
censored due to leaving. The left truncation variable (V*) here is the entry age into
the Channing House and type B censoring (C5) variable is the age on leaving. It is
clear that only subjects with entry age (V*) smaller than or equal to age on leaving
(C3) and death (7%), i.e. Z* > V*, can become part of the sample. Moreover, a large

number of the observations were censored due to the residents being alive on July



1, 1975 (termination of the follow-up). Hence, type A censoring variable (CY) is the

censored age on July, 1975, and the relationship C7 > V* is always satisfied.

Example 1.2 (Life-testing data)

Assume that n objects were put in use at some time in the distant past. These
objects may fail due to type 1 or type 2 causes; whenever an object failed (type 1 or
type 2), it was promptly replaced by another member of the same population. The
parameters of interest are the distribution functions, F' and (), of the lifetimes for
these objects until failure type 1 (7*) or type 2 (C5). At some time ty long after the
start of the process a statistician arrives on the scene. It is assumed that the age
(V*) of each object in use at ty is known. Hence, his observation is restricted to the
n objects in use at that time, i.e. Z* > V*. Suppose that each object is observed
until ¢y + do. Hence, type A censoring variable (C} = V* + dj) is induced due to

termination of the follow-up period.

Let ar and br denote the left and right endpoints of F. Define (ag,bs) and

(ag, bg) similarly. For identifiablities of F, G,and @, we assume that
ac < min(ap, ag) and bg < min(bp, bg). (1.1)
Let (X1,61, V1), ..., (Xn,dn, Vi) denote the left-truncated and right-censored sample.
Let R, (u) =n ' Y00 Ivi<u<x,), Ne(u) = D00 Iixi<us,=1] and Np(du) = Np(u)—

Np(u—). Suppose that nR,,(X;) > Np(dX;) fori =1,...,n (see Wang (1987)). Then,

the nonparametric maximum likelihood estimate (NPMLE) of F'(z) is given by

=111 - )

u<z



Note that when G is not specified, the NPMLE of F' is obtained condition on the
observed V;’s. There are many applications (such as example 1.2), however, in which
the initiation times follow a stationary Poisson process which implies G(x;0) = x/0
(the so-called stationarity assumption or length-biased sampling). When G(z;0) =
z/0 and C5 = oo, Wang (1991) had suggested that an unconditional likelihood ap-
proach is more efficient than its conditional counterpart. This improvement in ef-
ficiency was later confirmed by Asgharian, M’Lan and Wolfson (2002). Under the
model of stationarity and C5 = oo, Asgharian and Wolfson (2005) established the
asymptotic properties of the unconditional MLE of F'. A compromise between the
stationarity assumption and the nonoparametric assumption on GG would be the pa-
rameterized G(x;0), where § € © C RY, and 0 is a g-dimensional vector. In example
1.1, the truncation distribution G can be interpreted as the distribution of the po-
tential elderly resident’s age at entry, which can follow uniform or some other distri-
butions. In Section 2, we consider a general semiparametric model by distinguishing
two types of censoring. Iterative algorithms are proposed to obtain a semiparametric
estimate, F),(z;0,). The consistency of Fy(x;0,) is established. In Section 3, a sim-

ulation study is conducted to compare the performance of Fn(x, én) against that of

A



2. Semiparametric Estimates

2.1 Notations

Let Ty, ...,T,, be the observed failure times, i.e. the observations from the subset
D={X;,:6 =1i=1,...,n}, Ci,...,Cy,, be the observed type A censoring
times, i.e. the observations from the subset C4 = {X; : ; = 2;i = 1,...,n}, and
Cs1,...,Cy,, be the observed type B censoring times, i.e. the observations from the
subset Cg = {X; : §; = 0;i = 1,...,n}. Let Zy,...,Z,, be the observations from

the subset D UCg. Let 1 < -+ < x,, denote the distinct values of Z1,...,Z,,. and

nK

Ci1,...,CY,, in increasing order.

For j=1,....m,let ¢; = Z?:Dl ][Tz:wj]? €y = Z?ﬁl I[Cli:Ij]7 C25 = Z?jl I[C2i=xj}v and
/i)j = tj + Coj.

Let K (z) denote the distribution function of Z* and K (x) = (1 — F(2))(1 — Q(z)).

2.2 Estimation of 6

First, we consider the estimation of K(x). Given 6, the marginal likelihood of

Z;’s is given by

NI

J=1 J=1

where a = [ G(z;0)K (dz) and K (dz;) = K(z;) — K(z;—).

For a fixed 6, maximizing L(K’;6) with respect to K(dz;) is equivalent to maxi-
mizing -
lm_[( xj, K(dz;) ) Jﬁ(K )61]

Jj=1 Jj=1




subject to K(dr;) > 0 and > 7", K(dz;) = 1.

Let H(dz;0) = G(2;0)K(dx)/co. Then the problem of maximizing L*(K;0) is

equivalent to that of maximizing

L(H:0) = ﬁ[H(dxj; 6" ﬁ( / G (21; g1 9))6”.

7j=1
Note that when G(z;60) = /0, the likelihood L(H;#) is reduced to the likelihood
for problem A of Vardi (1989). In considering the problem of estimating survivor
function from multiplicatively right censored data, Vardi (1989) derived the uncondi-
tional NPMLE of a length-biased survival function from informatively censored data.

The following example extend Vardi’s problem A (see Vardi (1989), page 751).

Example 2.1: Multiplicative censoring

Let Wy,..., Wy, and W,... , Wy be iid. random variables from the lifetime
distribution function H(x;0), let Uy, ..., U,, beii.d. uniform (0,1) random variables,
and write Y; = G, ' (G(W£;0)U;), where G, ' (2) denote the inverse function of G(z;6).
Given 6, we want to derive the nonparametric MLE of H(z;6) based on the data

Wi,...,Wy, and Y7,...,Y,,.

s YWng

Since

Ha(y;0) = P(Y; <y) = P(GIW0)U; < G(y;0))

= /Z>y gg: Z;H(dz; 0) + H(y;0).

Assume that G(z;0) has a density function g(x;6). Hence, the probability density

function of Y; is given by

hatit) = [ ZEGH@z0) g



Therefore, the marginal likelihood of W;’s and Y;’s is given by

L*(H:6) = [[[H(aw:: 6) H( / . fgézg H(dz; 9)).

i=1 i=1
For a fixed 6, the likelihood function L*(H;0) treats g(Y;;0) as constants. Hence,

the likelihood function L*(H;#) is equivalent to L(H;#) by writing W, = Z; (i =
L,...,ng)and Y; = Cy; (i=1,...,n4).

For j=1,...,m, let p; = H(dx;;8). The problem of maximizing L(H;§) is reduced

to maximizing

v0:0) =TI (X )

Jj= k=j

subject top; >0 (j =1,...,m) and Z;”Zl p; = 1. Similar to Vardi’s (1989) approach,
the following EM algorithm is used to find out the MLEs of p;’s.

Initialization: Start with an arbitrary pd = [p?, ... p2l] satisfying for j = 1,...,m,
Old > 0 and Zj 1pJ°ld 1.
[teration step: Replace p"ld with
new_n 1E|:ZIZ xj]—i_ZI[Ch—x] Zla-- nK70117"'701nA7p0ld
. . »
= TL_I |:k3] l‘ ld Z Clk ( Old) i| . (21)
.7’ i=k

Given 6, it follows that there exists a unique maximizer, p(-; @) of the likelihood func-
tion L(p; #) (see Vardi (1989), page 755). Let H,(dx;;0) = p(z;;6). Given H,(dx;6),
we can obtain the maximizer of L(K;0), K,(dz;6) by

G (z; «9)]‘11973(@; o)
Jo 1G(u; 0)] - H, (dus; 0)

K, (dz;0) = (2.2)



Based on (2.1) and (2.2), we can estimate § using the following iterative algorithm.

For fixed K(dzy),..., K(dz,,), the marginal likelihood of Vi, ...V}, is given by

"g(Vi; 0 S K (dx;
J(6: K (dz)) q( nzz >Vi] ( x])
s 2 Gl H)K(d%‘)

Since the likelihood L, (0; K (dt)) treats I|,,>v; K (dz;) as constants, the log-likelihood

18
m

log L, (6; K (dz)) Zlogg Vi 0) nlog(ZG(xj;G)K(dxj)>.

=1
For j =1,...,m, we use the product-limit estimate, K,(lo)(dx) = K" (x) — KV (x—),

as the initial estimator, where

KOz)=1- ul;[z[l . ]:}éic(lzﬂ

where Ny (u) = Y0 Tiz,<u)-

Step 1: For fixed K(O)(d:cl) : K(O)(da:m) maximize L, (6; Kflo)(d:c)) with respect to
6. Let 8 denote the unique maximizer of L, (6; K (dm))

Step 2: For fixed 61, a unique maximizer p(-; #) of the likelihood function L(p; D)
can be obtained by (2.1). Given H,,(dx; V), we can obtain the maximizer of L(K; (1),
K3 (dw;00) by

(G (a; )]~ H,,(d; 6V
(G (w; 6D 1 H,, (du; 60

KW (da; 0M) =

Repeat steps 1 and 2 until the solution is stable. Let 6,,, f[n(da:j; én)’s and Kn(dxj; én)’s
denote the stable solutions. Let H,(z;6,) = > e H,(dz;; én)I[ijx]. Define K, (;0,)

similarly.



Assume that K (x) has a density function k(z). Let

by
log L,(0; k(x Zlogg (Vis 0) — nlog/ G(z;0)k(z)dz.

ag

Since the product-limit estimator KV (x) is uniformly consistent, we have
|log L, (6; K" (dx)) — log Ly(6; k(x))| — 0

as n — oo. Hence, the strong consistence of 6, can be established. Similar to the
proof of Theorem 3.1 of Wang (1989), we need the following assumptions to derive
the consistency of H,(x;6,) and K, (z;0,):

(a) K is continuous.
(b) G(x;0) is continuous in x for each 6 € ©.

~

(¢) 0, 2 0 implies G(z;0,) — G(x;0) for each z.
Lemma 2.1

Under assumptions (a), (b) and (c), if ng/(ng + na) — px > 0 then
SUD, . <x<hy |H,,(x:0,) — H(x;0)| — 0 with probability 1.

Proof : The proof is technical and is omitted.

2.3 Estimation of F(x)

Given 6, the estimated marginal likelihood of T;’s and CYy;’s is given by

LF.Q:0,) — ﬁ( (dxjé? > j ﬁ( d:vjf )>02]' ﬁ(F(a:j—)dQ(xj—)yu’

j=1 j=1 j=1

where & = [ G(x;0,)K (dz).




Let G(xj;0,)F(dz;)Q(w;=)/& = F(dz;) and G(xj;0,)Q(dx;)F(w;=) /& = Q(dz;).
Then L(F,Q;0,) can be written as

N~ A - [~ C2j 1o /e 1 ~ ~ c1y
L(F, Q:6,) :H(me) H(Q(dm) H(kz G, o) + Q)™

For j=1,...,m, let p; = F’(da:j) and ¢; = Q(da:j). The problem of maximizing

L(F, Q; én) is reduced to maximizing

m

DTS g+ )™

subject to p; > 0,¢; > 0 (j =1,...,m) and Z;n:l(ﬁj + ¢;) = 1. Similar to Vardi’s

(1989) approach, the following EM algorithm is used to find out the MLEs of p;’s

and g;.
Initialization: Start with an arbitrary p°@ = [pg'd ... p%] and ¢ = [§9, ..., 2]
satisfying for j = 1,...,m, p9¢ > 0, ¢9* > 0 and > (P94 ) = 1.
[teration step: Replace p"ld and q?ld with
new =n [Z [[T %]“’Z I[Clz—azj] 1, .. npv C’217 S 027137 Clla .- ClnAypOlda (jOld
—1
-1 ld old | ~old
=N |:t Clk( (pz + q; ))
’ G(x]; Z zz: G(Iu en) ]
and
grew — [Z Iicy IJ]+Z T |1y -+ Togy Coty -, Cong, Cits -, Cli 57, 67

ot g (S e ) ]

J’” i=k

10



Let Fn(d:cj;én) and Qn(da:j;én) denote the maximizer of L(ﬁ’,@;én). Based on

(dl‘j, ) and Qn(da:]7 ), a semiparametric estimator of F' is given by

~

Fu(w;6,) =1-]] [1_ G(x],é) > (xg)ﬂ )]7

where C,(z;;0,) = D ki G(:va )(}3’ (day; 6,,) —I—Qn(dxk;én)).

The F,(dt;0,,) and Q,(dt;0,) must satisfy the following two score equations

r- N n_ A HnA (dy> 1 [ )
Fulds 6a) = 2 Hap () + 5, / [ (G0, F(d=:0,) Gy ")
(2.3)
~ h\ _ '“B n_A HnA(dy) 1 A N
Onld; 0n) = =7 Hnp ) + = / [ [Gb,) od=:0,) Gy o)
(2.4)

subject to > 7, H,(dz;;0,) = 1, where H,(dz;0,) = Fo(dz;0,) + Qn(dz;0,), H,,
and H, , denote the empirical distribution function of 7;’s and Cb;’s, respectively. By
Lemma 2.1, (2.3) and (2.4), it follows that H,(dz;6,) = H,(dz;6,). By Lemma 2.1,

~ A~

H,(dx;0,) is a consistent estimator of H(dz;6).

Next, we derive the consistency of F,(z;0,) and Qy(x;8,). First, (np/n)H,, (dz)
is a consistent estimator of o' F(dz)Q(z)P(V* < x < C%). Similarly, (na/n)H, , (dy)
is a consistent estimator of a~'A(dy)K (y), where A(dy) = A(y) — A(y—), Aly) =
P(C} < y). By Lemma 2.1, it follows that [ [G(z; 0,)] " H,(dz;0,) consistently
estimate o~ 'K (y). It follows that

na Hy, (dy)
N Jocy<a fzzy[G(z;é’ )1 H,(dz;6,)

11



~

is a consistent estimator of A(z) = P(Cf < z). Hence, the estimator F,(z;6,) is

asymptotically equivalent to the solution of U(z;6) = 0, where

A(z)
G(z;0)

U(x;0) = [Fn(:c;ﬁ)(l — )] = [a ' F(2)Q(z)P(V* <z < CY)).

Since P(CY > V*) =1, we have 1 — A(z)/G(x;0) = P(V* < o < CY)/G(z;0). It
follows that F,(x;6,) is a consistent estimator of F(z;0) = o G(z; 0)F(z)Q(x).

12



3. A Simulation Study

A simulation study is conducted to compare the performance of the semipara-

metric estimator F),(x;6,) against that of the product-limit estimator F),(x)

3.1 Cases State

For all the cases considered, the T*’s are exponential distribution: F(z) =1—e™*

for x > 0, and the C7’s are defined by C} = D* + V*, where D*’s are independent of

V*. We generate V*, D* and C from the following three cases:

Case 1 (Stationarity) :

The V*’s are uniform distribution: G(z;6) = /0 with varying parameters 0 =
0.25,1.0, and 4.0. The D*’s are exponentially distributed: QP(z) = 1 — e® for
x > 0. The C3’s are exponential distribution: Q(z) = 1 — e 722 for x > 0, with

varying parameters o = 1.0, 2.0, and 4.0.

Case 2 :

The V*’s are exponential distribution: G(x;0) =1 — =% for z > 0, with varying
parameters 6 = 1.0,4.0, and 8.0. The D*’s are exponentially distributed: QP(z) =
1 — ePa® for > 0, with varying parameters 3; = 4.0,8.0. The C3’s are exponential

distribution: Q(x) =1 — €2 for z > 0.

Case 3 :

The V*’s are exponential distribution: G(z;6) =1 — e~% for # > 0, with varying

13



parameters 6 = 1.0,4.0, and 8.0. The D*’s are exponentially distributed: QP(z) =
1 — e P4 for > 0, with varying parameters 3; = 1.0,4.0. The C3’s are exponential

distribution: Q(z) =1 — e7%2% for z > 0.

For case 1, the 6 is assumed to be known. For cases 2 and 3, the 6 is assumed
to be unknown. For all the cases, we consider the estimation of F(0.5) = 0.39,
F(1.0) = 0.63 and F'(2.0) = 0.87. The sample size is chosen as 200 and the replication
is 3000 times. Tables 1 through 3 show the bias, standard deviation (std.) and
squared root of the ratio of mean squared errors (denoted by eff) of the F,(x;0,)
to that of the product-limit estimator Fn(x) Tables 1 through 3 also show the
proportion of truncation (a) and the proportion of type A and type B censoring
(pa = na/n,pp = np/n). Based on the results of Tables 1 through 3, we have the

following conclusions.

3.2 Simulation Results

Case 1: (see Table 1)

In terms of squared root of mean squared error (y/mse), the semiparametric esti-
mator F,(z;0,) outperforms the product-limit estimator F,(x) except in the case of
light truncation and heavy censoring (i.e. o = 0.79 p4 = 0.26 pp = 0.37, eff=1.11).
The ratio of the y/mse of F,(x;0,) to that of F,(x) varies between 0.27 to 1.11.
For the estimation of F'(2.0), when truncation is light and censoring is heavy (e.g.
a=0.79, pa = 0.52, pg = 0.24, and eff=0.27), the improvement of Fn(x, én) can be

very significant.
Case 2: (seec Table 2)

~

For the estimation of F(1.0) and F(2.0), The estimator F,(x;6,) outperforms the

14



product-limit estimator for all the cases considered. The ratio of the y/mse of
E,(2;0,) to that of F,(z) varies between 0.22 to 0.86. However, for the estima-
tion of F(0.5), the product-limit estimator can outperform Fn(:v, én) The ratio of
the \/mse of F,(x;0,) to that of F),(x) varies between 0.85 to 1.11. For the estimation
of F(2.0), when truncation is light and censoring is heavy (e.g. a = 0.57, p4 = 0.42,
pp = 0.39, and eff=0.22), the improvement of Fn(x, én) can be very significant.

Case 3: (see Table 3)

The semiparametric estimator Fn(x, én) outperforms the product-limit estimator for
most of the case considered. The ratio of the \/mse of E,(z;6,) to that of F,(x)
varies between 0.24 to 1.08. For the estimation of F'(2.0), when truncation is light
and type A censoring is heavy (e.g. a = 0.87, p4 = 0.66, pp = 0.06, and eff=0.24),

the improvement of Fn(x; én) can be very significant.

15



Table 1. Simulation results for bias, std and y/mse

of the estimators F,(z;0) and F,(z), Case 1

F,(0.5;0) F,(0.5)

0 [0 a  pa PB bias std eff bias std
0.25 1.0 0.79 0.26 0.37 -0.000 0.051 0.87 -0.001 0.059
0.25 2.0 0.79 0.41 0.30 -0.001 0.0550.88 -0.003 0.062
0.25 4.0 0.79 0.52 0.24 0.0150.059 0.88 -0.002 0.070
1.00 1.0 0.43 0.14 0.42 -0.002 0.069 0.86 0.008 0.081
1.00 2.0 0.43 0.22 0.39 -0.0010.073 0.84 0.006 0.087
1.00 4.0 0.43 0.29 0.35 -0.000 0.077 0.81 0.004 0.094
4.00 1.0 0.13 0.04 0.48 -0.0010.072 0.97 -0.025 0.071
4.00 2.0 0.13 0.04 0.47 -0.0100.074 0.89 -0.008 0.084
4.00 4.0 0.13 0.09 0.46 -0.0100.077 0.87 -0.025 0.086

F,(1.0;0) F,(1.0)

0 [ o« pa pp bias std eff  bias std
0.25 1.0 0.79 0.26 0.37 -0.001 0.057 0.81 0.003 0.070
0.25 2.0 0.79 0.41 0.30 0.006 0.079 0.96 -0.002 0.083
0.25 4.0 0.79 0.52 0.24 0.104 0.108 0.99  0.002 0.150
1.00 1.0 0.43 0.14 0.42 -0.001 0.055 0.90 0.006 0.062
1.00 2.0 0.43 0.22 0.39 0.002 0.061 0.85 0.003 0.071
1.00 4.0 0.43 0.29 0.35 -0.012 0.065 0.81 0.002 0.083
4.00 1.0 0.13 0.04 0.48 -0.009 0.057 0.97 -0.017 0.060
4.00 2.0 0.13 0.04 0.47 -0.007 0.057 0.89 -0.008 0.063
4.00 4.0 0.13 0.09 0.46 -0.0110.064 0.77 -0.001 0.072

£,(2.0;6) £,(2.0)

0 P o« pa pp bias std eff bias std
0.25 1.0 0.79 0.26 0.37 0.007 0.086 1.11 -0.007 0.077
0.25 2.0 0.79 0.41 0.30 0.017 0.078 0.59 -0.051 0.136
0.25 4.0 0.79 0.52 0.24 -0.084 0.067 0.27 -0.167 0.246
1.00 1.0 0.43 0.14 0.42 0.007 0.062 0.97 0.005 0.060
1.00 2.0 0.43 0.22 0.39 0.0250.070 0.83 -0.010 0.090
1.00 4.0 0.43 0.29 0.35 0.032 0.051 0.45 -0.074 0.134
4.00 1.0 0.13 0.04 0.48 -0.0050.041 0.92 -0.004 0.045
4.00 2.0 0.13 0.04 0.47 -0.009 0.047 0.81 -0.001 0.060
4.00 4.0 0.13 0.09 0.46 -0.0110.0590.73 -0.011 0.079
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Table 2. Simulation results for bias, std and y/mse

of the estimators F,(x;60) and F,(z), Case 2: C§ ~ exp(2)

=

F,(0.5;0,) F,(0.5)

0 Ba Q@  pa DB bias std eff  bias std
1.0 4.0 0.25 0.15 0.57 0.004 0.086 1.11 -0.006 0.077
1.0 80 0.25 0.18 0.55 0.031 0.090 1.06 -0.000 0.089
4.0 4.0 0.57 0.33 0.45 0.007 0.067 0.94 0.000 0.071
4.0 8.0 0.57 0.42 0.39 0.002 0.075 0.85 -0.002 0.088
80 4.0 0.73 042 0.39 0.0170.074 1.00 -0.006 0.076
80 80 0.73 0.53 0.31 0.068 0.091 1.07 -0.002 0.105

F,(1.0;6,) F,(1.0)

0 Ba Q  pa  PB bias std eff  bias std
1.0 4.0 0.25 0.15 0.57 0.007 0.086 0.83 -0.001 0.104
1.0 80 0.25 0.18 0.55 0.039 0.066 0.49 0.006 0.154
4.0 4.0 0.57 0.33 0.45 0.0520.114 0.74 -0.006 0.154
4.0 8.0 0.57 042 0.39 0.138 0.106 0.86 -0.044 0.196
80 4.0 0.73 042 0.39 0.1030.120 0.67 -0.034 0.178
80 &80 0.73 053 0.31 0.161 0.087 0.76 -0.113 0.212

F,(2.0;6,) F,(2.0)

0 Ba a  pa PB bias std eff bias std
1.0 4.0 0.25 0.15 0.57 0.013 0.078 0.47 -0.078 0.149
1.0 80 0.25 0.18 0.55 0.042 0.043 0.27 -0.119 0.181
4.0 4.0 0.57 0.33 0.45 -0.039 0.093 0.38 -0.188 0.189
4.0 8.0 0.57 042 0.39 -0.036 0.0650.22 -0.261 0.208
80 4.0 0.73 042 0.39 -0.061 0.093 0.35 -0.259 0.190
80 80 0.73 0.53 0.31 -0.064 0.079 0.25 -0.345 0.212
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Table 3. Simulation results for bias, std and y/mse
of the estimators F),(z;0) and F,(x), Case 3: C} ~ exp(0.25)

=

F,(0.5;0,) F,(0.5)

0 Ba Q@  pa DB bias std eff  bias std
1.0 1.0 044 0.20 0.16 -0.006 0.072 0.83 -0.005 0.087
1.0 4.0 044 0.34 0.13 -0.003 0.087 0.98 -0.004 0.089
4.0 1.0 0.76 0.34 0.13 -0.002 0.052 0.85 -0.002 0.061
4.0 4.0 0.76 0.58 0.08 0.002 0.059 0.82 -0.001 0.072
80 1.0 0.87 0.39 0.12 0.002 0.045 1.07 -0.002 0.042
80 4.0 0.87 0.66 0.06 0.011 0.051 1.06 0.001 0.049

F,(1.0;6,) F,(1.0)

0 Ba Q  pa  PB bias std eff  bias std
1.0 1.0 044 0.20 0.16 -0.004 0.0550.90 -0.001 0.061
1.0 40 044 0.34 0.13 -0.008 0.071 0.85 0.005 0.083
4.0 1.0 0.76 0.34 0.13 -0.004 0.049 0.92 -0.001 0.053
4.0 4.0 0.76 0.58 0.08 0.021 0.073 0.83 0.008 0.091
80 1.0 0.87 0.39 0.12 0.0050.043 1.06 0.003 0.040
80 4.0 0.87 0.66 0.06 0.074 0.0851.08 0.013 0.104

F,(2.0;6,) F,(2.0)

0 Ba a  pa PB bias std eff bias std
1.0 1.0 044 0.20 0.16 0.001 0.038 0.88 -0.000 0.043
1.0 4.0 044 0.34 0.13 -0.016 0.054 0.56 -0.008 0.097
4.0 1.0 0.76 0.34 0.13 -0.002 0.051 0.96 0.002 0.053
4.0 4.0 0.76 0.58 0.08 0.038 0.047 0.39 -0.076 0.138
80 1.0 0.87 0.39 0.12 0.006 0.057 1.02 -0.028 0.052
80 4.0 0.87 0.66 0.06 0.030 0.048 0.24 -0.128 0.148
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4. Concluding Remarks

The semiparametric estimate proposed in this article is designed to incorporate
both information contained in the data and the available information on the trunca-
tion distribution, and are expected to have better performance than the nonparamet-
ric methods. Our simulation study indicates that under the semiparametric model
V* ~ G(x;0), the semiparametric estimator Fn(:c, én) can perform much better than
the product-limit estimator Fn(x) The truncation product-limit estimator, however,
is still most appropriate under a totally nonparametric model. In practice, we can
perform a formal goodness-of-fit test on the hypothesis Hy : V* ~ G(z;60) using
the method of Li and Doss (1993). Their method is based on a modified minimum
chi-square estimator of 6, 0.. For a fixed éc, an alternative semiparametric estima-
tor, Fn(x, éc), can be obtained by maximizing L(F, Q; éc) Further investigation is

required for a comparison between F,(z:6,) and E,(z;6,).
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