第一章 序論

人類對抗壞血酸(ascorbic acid)的認識可追溯至十六世紀末,當時 西方海軍及船員執勤期間,因為在海上的飲食只有五穀及肉類,缺乏 蔬果,常發生有牙齦出血、皮膚出現紫斑、瘀青等現象,當時被診斷 為壞血病的症狀,且發現這類的狀況可以用檸檬汁來治療,只是為什 麼檸檬汁有此醫治功能,則不得而知,直至 1920 年代初期, Zilva 才 從檸檬汁中分離出可治療壞血病症狀的成分化合物 1-3,只是此化合 物非常不穩定,對氧氣相當敏感,一直無法瞭解其結構,為了暸解其 成分特性, King 以及他的學生⁴, 仔細的分析所分餾出來每種成分的 化合物、在水溶液中很小心的控制 pH 值、以及盡可能的避免所得化 合物與銅或者與空氣接觸,終於確定了分子量以及一些重要性質 5.6。 但由於當時的分析儀器並不夠精密,在結構的判別仍有其困難性,只 能推測結構可能是類似 hexurnic acid 的結構。1933 由 Szent-Györgyi⁷ 發現從紅椒(paprikas)提煉大量此化合物的方法。同時,他們將此化 合物命名為 ascorbic acid, ascorbic 是拉丁語, 解作沒有壞血的意思⁸。 很遺憾的是仍無法決定抗壞血酸正確的結構,主要乃抗壞血酸對氧非 常的敏感,容易被氧化而破壞,儘管如此,還是能夠確定是一個簡單 且小的分子,包含了20個原子(C₆H₈O₆),同時也探討一些化學性質, 幫助後來建立 ascorbic acid 的合成方法⁹。1964 年 Hvoslef^{10,11}利用 x-ray 解析,進一步的得到其立體結構,如圖一所示,同時也證實 King 所分離出類似 hexurnic acid 的化合物事實上就是 ascorbic acid。而到 目前為止,抗壞血酸酮基有酸性特性, -lactone ring 異常的穩定, 還原能力強,以及與生物體作用後有對掌性異構物之分,一直是生物 及化學家興趣的焦點。

抗壞血酸今日已被廣泛使用,被歸類為維他命的一種,即眾所皆知的 維他命 C, 維他命 C 已經成為最受歡迎也最神奇的維他命, 主要是因 為已被醫學界證實,為一種抗氧化極強的物質,不僅可以對抗壞血病 12. 對於人體長期由於暴露在不良的環境中所產生的自由基,例如長 期曝露陽光下受紫外線照射以及在我們生存的含氧環境下之正常食 物代謝。自由基會破壞皮膚裡面的膠原蛋白、織維母細胞、醣蛋白、 細胞膜以及細胞核的成分。這些改變會使結締組織分解、老化、且產 生皺紋,且可能導致癌症,特別是皮膚癌。維他命 C 可藉快速還原 消除這些自由基,因此它可以保護皮膚,中和自由基離子,避免因曝 曬陽光所產生的劇烈反應,因而損害皮膚及其成分。由於人體不能自 行合成維他命 C, 必須由食物中攝取, 又是屬於水溶性維他命, 多餘 的也身體無法貯存, 會被排出體外, 一旦缺乏就會產生壞血病的症 狀,嚴重的還會因為皮下出血而死亡,因此需要經常性的補充,這就 是我們需經常服用維他命 C 的理由。

2

圖一、維他命 C 分子結構圖

在化學系統中,維他命 C 也是一個廣泛且常用的還原劑,就是 因為它的反應速率快,且濃度容易控制。維他命C為雙質子酸¹³,在 不同的酸性條件下,分別以 H_2A , HA^- 及 A^{2-} 型態存在,如 scheme I 所示¹⁴。每種型態均具有兩電子的還原能力¹⁵,而以 H_2A^+ 、HA、A ⁻為中間體(intermediate)。其中 H_2A^+ 因 pKa < 0, 會立即解離為 H^+ + HA 。A 為較穩定的自由基, pH 在 0 13¹⁶ 時, 依然可以存在, 不 過 pH < 0 時 17,有質子化的現象,形成 HA。除此之外, Hvoslef 18和 Albers¹⁹ 發現維他命 C 氧化的最後產物為去氫抗壞血酸 A(dehydroascorbic acid),如 Scheme I 所示。於惰性溶液(inert solvents) 中如 dimethylformamide 或 dimethyl sulfoxide, A 會形成穩定的二聚 物²⁰,再低溫時,此二聚物具對稱性(symmetric dimmer)。但當溫度 逐漸升高時,其會逐漸的改變成非對稱性二聚物(unsymmetric dimmer), 如圖二所示。而在水溶液中, A 亦會聚合成二聚物, 但結 構不穩定,分離時又以 A 型態析出, Pfielstucker²¹發現,當 pKa 8.8 時會有去質子的現象,如 scheme I 所示。

有關於維他命 C 與金屬錯合物的反應機制,內圈電子轉移機制 (inner-sphere electron transfer)與外圈電子轉移機制(outer-sphere electron transfer)均有文獻報導。維他命 C 是一個還原力強的兩個電 子還原劑,當與鐵(III)離子(ferric ion)反應時,會與鐵離子螯合

4

Scheme I

(**a**)

(chelates)形成錯合物,如 scheme II 所示²²,第一個反應步驟為 H₂A 先掉一個 H⁺ , 再與 Fe(III)形成螯合錯合物中間體 , 其結構為 I , 電子 迅速藉由分子內進行電子的轉移,將 Fe(III)還原成 Fe(II)。而形成 II, B 隨即解離形成 III 及 Fe²⁺, III 再與第二個 Fe(III)形成螯合錯合物中 間體 IV, 電子再次經由分子內電子的傳遞, 形成最後的產物為 V。 即 Scheme I 中之 A。另外 Cu(II)離子同樣也可藉與維他命 C 形成螯合 錯合物,藉分子內電子傳遞進行氧化還原反應²³,機構與 Fe(III)的 反應相似,唯反應的速率比較慢,主要的原因乃受反應中間物的穩定 性以及立體效應的影響。除了與維他命 C 直接內圈電子轉移反應外, Cu(II)及 Fe(III)還可以扮演催化劑的角色,使維他命 C 自然被空氣氧 化為去氫抗壞血酸(dehydroascorbic acid),如 Scheme III 所示^{22,24},雖 然金屬離子與 O₂的鍵結相當的弱,不過 Hamilton²⁵ 發現可藉共振效 應會使中間物穩定(如 VI, VII), 藉由此中間物將兩電子傳遞至 O2上 (如 VIII), 形成最後產物 IX, 而 O_2 被還原成過氧化氫(H_2O_2), 金屬離 子維持不變。

截至目前為止,大部分維他命C與金屬錯合物離子的氧化還原反應, 多屬於外圈電子轉移機構^{26~30},根據此機構,在反應前後過程並沒有 改變,電子直接由一錯合物配位圈(coordination sphere)傳至另一錯合 物配位圈,反應物首先形成離子對,為極快速之步驟,屬於擴

7

Scheme II

Scheme III

散控制(diffusion controlled)時間尺度,然後在離子對狀態下進行電子 傳遞之後,離子對再度解離形成最後產物,反應過程可以式(1)至式(3) 表示

$$ML_n^{m+} + Red \longrightarrow ML_n^{m+} Red Q_{IP}$$
 (1)

$$ML_n^{m+}$$
 Red $\longrightarrow ML_n^{(m-1)+}$ Ox k_{et} (2)

$$ML_n^{(m-1)+}$$
 Ox \longrightarrow $ML_n^{(m-1)+} + Ox$ rapid (3)

根據此機構,反應速率式為

$$-\frac{d[ML_n^{m+}]}{dt} = k_{obs}[red]$$

$$k_{obs} = \frac{k_{el}Q_{IP}[red]}{1+Q_{IP}[red]}$$
(5)

當 1»Q_{IP}[red],亦即大部分系統的情況,式(5)可簡化為

$$k_{\rm obs} = k_{\rm ox} [\rm red] \qquad k_{\rm ox} = k_{\rm et} Q_{\rm IP} \tag{6}$$

所有 ascorbic acid 之外圈電子轉移還原反應之反應速率,均受溶液 pH 值之控制,且均屬於絕熱(adiabatic)反應系統,而大部分的動力學結 果都可以單電子還原之理論模型分析,因此一般均認為反應過程速率 決定步驟應屬於單電子還原。

我們過去在研究釕氨系統或者鐵氰系統時,也經常使用維他命 C 作為還原劑,即使錯合物在還原態 M(II) ($M = Ru(NH_3)_5L^{2+}$, Fe(CN)₅L³⁻),溶液中也常加入維他命 C,以防止空氣對錯合物之干

10

擾。儘管如此,維他命 C 雖為本實驗常用的試劑,大部分情況的使 用皆為過量,並未控制濃度,更從未進一步去探討反應速率, Haim 等人曾以維他命 C 為還原劑探討 Ru(NH₃)₅L³⁺錯合物之還原反應動力 學³¹,由於 Fe(CN)₅L²⁻許多熱力學及動力學性質均與 Ru(NH₃)₅L^{2+/3+} 系統極為相似³²⁻³⁵,引起我們對 Fe(CN)₅L²⁻ - H₂A 反應系統的興趣, 本論文將報導我們探討結果,並以 Marcus theory 理論分析所得結果 所得動力學數據,同時與 Ru(NH₃)₅L³⁺系統所得結果作比較。

第二章 實驗部份

一、 主要的藥品來源

藥品英文名	藥品中文名	藥品化學式	來源
Sodium nitroprusside dihydrate		Na[Fe(CN) ₅ NO] . $2H_2O$	RDH
Ammonia gas	氨氣	NH ₃	大統氣體
Ammonia water (35%)	氨水	NH₄OH	BDH
L-Ascorbic acid	維他命 C	$C_6H_8O_6$	Merck
Potassium hexacyanoferrate(III)	六氰鐵(III)鉀鹽	K ₃ [Fe(CN) ₆]	Merck
4,4'-Bipyridine	4,4'-聯 啶	$C_{10}H_8N_2$	Fluka
Lithium perchlorate	過氯酸鋰	LiClO ₄	Aldrich

Perchloric acid	過氯酸	HClO ₄	Merck
Pyridine	啶	C ₅ H ₅ N	Merck
Zinc granular	鋅粒	Zn	Merck
Ethanol	乙醇	C ₂ H ₅ OH	Merck
Diethyl Ether	乙醚	$C_2H_5OC_2H_5$	Merck
Sodium Acetate	醋酸鈉	CH ₃ COONa	Merck
Acetic acid	醋酸	CH ₃ COOH	Merck
Chromium(III) chloride hexahydrate	三氯化鉻	CrCl₃· 6H₂O	Merck
Mercury(II) chloride	氯化汞	HgCl ₂	Merck

二、 藥品的純化與溶液配製

1.4,4'-聯 啶(4,4'-bipyridine)的純化

將2 3克的4,4'-bipyridine 加入10mL的二度水,加熱(不 超過50)溶解後,靜置約3 5分鐘後即形成針狀結晶析出, 冷卻過濾並以0 乙醇沖洗(勿攪拌,以免溶化),可得白色針 狀結晶,置於真空乾燥器抽乾三小時左右。

2. 鋅汞齊(zinc/mercury amalgam)之製備

將適量的鋅粒,以6M 鹽酸(HCl)洗數分鐘以去除表面 氧化物,再以二度水反覆清洗鋅粒,使表面的鹽酸殘留物完全 去除;加入飽和氯化汞溶液(於0.1M 硫酸溶液中)汞化,即得 閃亮的鋅汞齊,再以二度水清洗鋅汞齊的表面,以kimwipe 試 紙拭乾,所得的鋅汞齊必須立即使用以免被空氣氧化。

3. 亞鉻溶液(chromous solution)的製備

將 40g 三氯化鉻 CrCl₃ 6H₂O 溶於 500mL 的 1M 過氯酸 中,加入適量鋅汞齊,再持續通入氫氣直到所有的三價鉻離子 完全還原成藍色二價鉻溶液為止。

4. 緩衝溶液(buffer solution)的配製

(a) pH=4 醋酸根/醋酸緩衝溶液(acetate-acetic buffer)

將 13.6g 醋酸鈉溶於 400mL 二度水,以醋酸或鹽酸滴 定此溶液達到pH=4,再稀釋此溶液至500mL,即為0.2M pH=4 之 OAc⁻/HOAc buffer,依所需不同濃度而加以稀釋。

(b) pH=5.5 醋酸根/醋酸緩衝溶液(acetate-acetic buffer)

將 13.6g 醋酸鈉溶於 400mL 二度水,以醋酸或鹽酸滴定 此溶液達到 pH=5,再稀釋此溶液至 500mL,即為 0.2M pH=5.5 之 OAc⁻/HOAc buffer,依所需不同濃度而加以稀釋。

(c) pH=8 三-(烴基甲基)-胺基甲烷緩衝溶液(tris(hydroxy methyl) amimomethane buffer ; tris buffer)

取三-(烴基甲基)-胺基甲烷 12.1 克, 溶於 400 mL 二度去離 子水中,以 HCl 滴定到 pH=8, 再以量瓶稀釋到 500 mL 的標 線刻度, 即為 0.2M pH=8之 tris buffer, 依所需不同濃度而加 (d) pH=9 碳酸根-碳酸氫根緩衝溶液(carbonate-bicarbonate buffer)

取碳酸鈉 8.3 克,溶於 400 mL 二度去離子水中,以 HCl 滴定 到 pH=9,再以量瓶稀釋到 500 mL 的標線刻度,即為 0.2M pH=9 之 CO₃²⁻/HCO₃⁻ buffer,依所需不同濃度而加以稀釋。

5. 蒸餾水系統(distilled water system)

自來水經過三個活性碳濾心處理顆粒狀雜質,直接進入 Aries 48547 逆滲透裝置,再通過 CHRIST CMINITIL P-12 離 子交換樹脂,純化後得二次去離子水,本實驗室的合成、緩衝 溶液的配製,以及所有反應需要水溶液的均採用二度去離子 水。 三、 合成

1. Na₃[Fe(CN)₅NH₃] 3H₂O 之合成³⁶

將 5 克的 Na₂[Fe(CN)₅NO] 2H₂O 加入盛有 20ml 二度蒸餾水的 錐形瓶,置於冰鹽混合浴中冷卻,通以飽和氨氣並隨時控制氨氣流 量,使反應溫度不超過 0 ,15 分鐘後開始有黃色晶體產生,繼續反 應直至反應完全(約 3 小時),直到有氨氣溢出且反應溫度明顯下降, 過濾,以乙醇及乙醚清洗數次,得黃色結晶粗產物。

再結晶:

將初產物溶於 28 32% 氨水中,過濾去除雜質,將乙醇逐滴加 入濾液中,直到溶液成為混濁狀,置於冰浴中冷卻約兩小時,過濾, 以乙醇和乙醚沖洗數次所得淡黃色針狀結晶,置於真空乾燥器中乾 燥,放置冰櫃中保存,其產率為 (1.08 克) 19.6%,產物的純度可以與

啶形成之錯合物吸收光譜鑑定。光譜結果顯示 ë_{max}=362nm, _{max}=3780 M⁻¹cm⁻¹與文獻值相符³⁷。

2. Na₃[Fe(CN)₅(4,4'-bpy)]之合成³⁸

將 1.67g 4,4'-Bipyridine 溶入 55ml 的水中,加入 0.35g 的 Na₃[Fe(CN)₅NH₃] 3H₂O 於避光的環境下反應 40 min 後過濾,將濾 液以 Br₂(g)氧化,直至溶液會由深紫色轉變為淡黃色,且有黃綠色沉

澱物,冰浴二小時後,過濾收集沉澱物用乙醇、乙醚清洗。

再結晶 將粗產物溶於 70ml 熱水,溫度維持在≤ 40 ,趁熱過 濾不純物,將濾液置於冰浴冷卻二小時後,過濾,用乙醇、乙醚清洗 產物,真空乾燥三小時,產率 (0.14 克) 26%。元素分析計算值所得 (FeC₂₅H₂₄N₉O₃)為%C:53.16、%N:22.74、%H:4.36。實驗所測得 結果,%C:52.42、%N:22.05、%H:4.70。

四、 去氧處理

1. 隔氧處理系統

由於維他命 C (L-ascorbic acid)對空氣十分敏感,所有溶 液的配製包括 Fe(III)及維他命 C 溶液與反應過程,均需維持在 飽和氫氣或氮氣下操作,以防止滲入空氣的干擾,我們所使用 的隔氧系統如圖三所示,鋼瓶中的氫氣,先經過含過量鋅汞齊 的 Cr(II)溶液的氣體洗滌瓶,以除去氫氣鋼瓶中少量的空氣, 再經裝有二度水的氣體洗滌瓶,以防止含鋅汞齊的溶液直接與 空氣接觸而容易被氧化,同時平衡反應瓶內水溶液的含量,氮 氣系統(N₂-line)與氫氣系統(Ar-line)的組合相同,僅以氯化亞

Air-Sensitive Treatment (N_2 -line or Ar-line)

- 註: Ar-line: Scrubbing towers containing Cr(II) ion and Zn/Hg amalgam.
 - N₂-line : Scrubbing towers containing VCL solution and Zn/Hg amalgam.

釠取代鉻(II)化合物。

處理過程乃以針筒及不銹鋼針連結反應物溶液,如圖四所 示,先將溶劑置於血清瓶內,瓶口以血清塞塞住,再將兩根(一 長一短)注射鋼針插入,長針沒入溶劑中,為氬氣(或氦氣) 入口,短針則遠離液面,為氬氣(或氦氣)出口,通入氬氣至 少五分鐘,以除去溶劑中的溶氧,然後加入錯合物。

- 五、 分析儀器及方法
 - 1. 微量秤重測量

三位天平 OHAUS TS 400D

四位天平 PRECISA 125A

五位天平 METTLERAE-42C

2. 酸鹼度測量

使用 Orion 420A pH 儀,量測之前視緩衝液之 pH,分別以 pH=7、4 或 pH=7、10 標準溶液先校正儀器。

3. 吸收光譜分析測量

以 Hitachi U-2000 或 HP 8453 UV/VIS 光譜儀測量錯合物

Ż

圖四、注射器轉移錯合物溶液裝置

21

紫外-可見光區(UV-VIS)吸收光譜, 樣品槽(cell)使用 1.0 公分的石英材質樣品槽。

消光係數 å_{max}可從錯合物吸收Beer's law(A=bc)求得。

4. 動力學測量

反應動力學按照反應速率快慢,分別以 Photo RA 401 Stopped Flow Spectrophotometer 或 Hewlett Packard HP 8453 UV-Vis Spectrophotometer 測量,並用 Hotech 63HP 恆溫槽控制反應溫度。 反應在偽一級條件下進行,並以 ascorbic acid 為過量,藉觀測 Fe(III)的消失(L=CN)或 Fe(II)的形成(L=4,4'-bpy),反應的變化隨 時間改變成單指數曲線,且 h $A_i - A_t$ 對時間變化呈線性關 係,如圖五。 K_{obs} 可利用線性最小平方差(linear least-square fit) 分析 h $A_i - A_t$ 對 t(時間)之關係圖,從斜率求得。

5. 電化學測量

錯合物之還原電位是以 Princeton Applied Research (PAR) Model 273A Potentiostat/Galvanostat 測量,所得結果由與儀器連

22

 $[H^+]{=}0.1M~(HClO_4)$, μ =0.5M(LiClO_4) , T=25 $[Fe(CN)_6{}^{3-}]{\cong}5{\times}10{}^{-4}M$ $[H_2A]$ ${\cong}5{\times}10{}^{-3}M$

圖五、Fe(CN)₆³⁻還原反應圖

(a) A_t vs 時間 (b) ln | A_t-A_i | vs 時間

接之個人電腦 PC 486 DX 利用 Princeton Applied Research Model 270/250 Research Electrochemistry software ver.4.0 記錄存檔,並由 EPSON Stylus 800 Printer 列印所得之循環伏安圖。圖六為實驗所 使用之環路伏安電池裝置,以飽和甘汞電極(Saturated calomel electrode, SCE)作為參考電極(reference electrode), 鉑絲(Platinum wire)作為輔助電極(auxiliary electrode),用碳電極(carbon paste electrode)做工作電極(working electrode), 電化電池一端接氮氣系 統在每次測試前反應溶液必先通以氮氣,以清除電極表面附著物,並重新將溶液混合均匀。

6. 元素分析

所有化合物均送往中興大學或交通大學貴重儀器中心,以 Heraeus CHN-O Rapid 元素分析儀, 偵測樣品之 N、C、H 元素的 含量百分比。

(a) Working Electrode

- (b)Saturated Calomel Electrode
- (c) Counter Electrode
- (d) N₂-line

圖五、環路伏安儀電池裝置圖

第三章 結果

一、 光譜鑑定

 $Fe(CN)_{5}L^{2-}$ (L = CN, 4,4'-bpy)錯合物在可見光區(UV-Vis)皆有 明顯的吸收,當L=CN時,由圖七我們可以發現,Fe(III)在光譜上有 三個吸收,分別在 ё = 261、303、420nm,與文獻報告值相符³⁹,其 中 ё = 261nm 為配位基的吸收,ё = 303nm 為 d-d band 的吸收,ё = 420nm 下有 _{CN}—→d 的吸收,當還原成 Fe(II)時波長在 ё = 313nm 有一微小的肩形吸收屬於 d-d 躍遷,由於 d →→ _{CN} 能量太高無法 從光譜上觀察得到,Fe(CN)₆^{3-/4}錯合物的吸收光譜不受 pH 的改變影 響(pH = 4~9)。

當 L = 4,4'-聯 啶時,由於配位為含氮-芳香雜環, $[Fe(CN)_5(4,4'-bpy)]^{3-}$ 錯合物在可見光區有一極強的 $Fe(II) \longrightarrow _{bpy}$ 電荷轉移吸收,且由於 錯合物有一未鍵結之 啶鹼基可供質子化,而 H⁺又有很強的拉電子 效應,因此在酸性溶液中錯合物配位子的質子化,導致 $_{bpy}$ 能量降低 ⁴⁰,而使吸收波長較未質子化情況為大, $[Fe(CN)_5(4,4'-bpyH)]^{2-}([H^+]=0.01M) 及 [Fe(CN)_5(4,4'-bpy)]^{3-}(pH=8) 吸$ 收波長分別在 477 及 437nm,如圖八所示,pH=8 之光譜結果與文獻 $值相符 ⁴¹, <math>[Fe(CN)_5(4,4'-bpy)]^{2-}$ 錯合物由於缺少 MLCT 吸收,因此只

[H⁺]=0.1M HClO₄ , μ =0.5M LiClO₄ , T=25 [Fe(CN)₆³⁻]=5.28×10⁻⁴M [Fe(CN)₆⁴⁻]=6.86×10⁻⁴M

圖七、Fe(CN)₆³⁻吸收光譜圖

(a) $Fe(CN)_6^{3-1}$ (b) $Fe(CN)_6^{4-1}$

 μ =0.5M LiClO₄ , T=25 [Fe(CN)₅(4,4'-bpy)²⁻]≅2×10⁻⁴M

圖八、[Fe(CN)5(4,4'-bpy)]².吸收光譜圖

- a. [H⁺]=0.01M [Fe(CN)₅(4,4'-bpy)]²⁻
- b. [H⁺]=0.01M [Fe(CN)₅(4,4'-bpyH)]²⁻
- c. pH=8.00 (tris buffer) [Fe(CN)₅(4,4'-bpy)]³⁻

Complex	max	10^{-3} max(M ⁻¹ cm ⁻¹)
$\operatorname{Fe}(\operatorname{CN})_{6}^{3}$		
	261 ^b	1.18
	303 ^b	1.53
	420 ^b	0.94
$\operatorname{Fe}(\operatorname{CN})_{6}^{4-}$		
x ,0	313 ^b	0.36
$[Fe(CN)_{\epsilon}(4.4'-bnv)]^{2-}$		
	426 ^c	1.73
$[Fe(CN)_{5}(4.4'-bpv)]^{3-}$		
	477 ^c	3.59
	437(437) ^d	5.46(5.80)
a. µ = 0.5M,T = 25 括弧內ź b. [HClO ₄] = 0.10M	為文獻值	5.70(5.00)

表一、單核錯合物的 UV-vis 光譜 ^a

c. $[HClO_4] = 0.01M$

d. pH = 8.00 (tris buffer)

錯合物光譜結果皆列於表一。

二、 還原反應動力學

在動力學探討中,維他命 C 雖對空氣敏感,但因在可見光區無吸收,不會影響反應的觀察,因此我們還是以之為過量 ($[H_2A] \ge 10[Fe(III)]$),以維持反應在擬一級條件下進行。分別在 $[H^+]$ = 0.01~0.10M (HClO₄),以及 pH = 4~9 範圍下,於µ = 0.5M LiClO₄, T = 25 的條件下進行還原反應的測量。

A, $Fe(CN)_6^{3-}$

1. $[H^+] = 0.01 \sim 0.10M (HClO_4)$

 $Fe(CN)_{6}^{3-3}$ 錯合物還原反應速率,藉觀測 max = 420nm 的消失測 量,於不同酸濃度下所得之觀測反應速率常數 k_{obs} 列於表二, k_{obs} 與 維他命 C 濃度呈線性關係,如圖九所示,以線性最小平方差 (linear-lease-squares fit)方法分析 $k_{obs}=k[AA]$,得不同酸性條件下之 k 值,結果列於表三,從表三得知 k 隨著[H⁺]濃度增加而遞減但呈非線 性關係,如圖十(a)所示。但當以 k 對 $\frac{1}{[H^{+}]}$ 作圖時兩者呈線性關係, 如圖十(b)所示,根據 k 與[H⁺]的關係,反應速率式應為

[H⁺], M	10 ³ [AA], M	$10^2 k_{obs}, s^{-1}$	[H ⁺], M	10 ³ [AA], M	$10^2 k_{obs}, s^{-1}$
0.01	0.50	4.79±0.01	0.06	0.55	1.30±0.01
	1.05	10.1±0.1		1.01	2.38±0.01
	1.53	14.8±0.1		1.53	3.56±0.01
	2.03	18.9±0.1		2.04	4.72±0.01
	2.55	23.8±0.1		2.54	5.89±0.01
				3.00	6.81±0.01
0.02	0.54	2.99±0.01	0.07	0.53	1.29±0.01
	1.02	5.22±0.01		1.01	2.34±0.01
	1.56	8.07±0.02		1.50	3.26±0.01
	1.99	9.88±0.02		2.01	4.38±0.01
	2.58	13.7±0.1		2.51	5.87±0.01
	3.02	16.0±0.1		3.03	6.49±0.02
0.03	0.52	2.13±0.01	0.08	0.51	0.955±0.003
	1.02	4.08±0.01		1.01	1.95±0.01
	1.53	5.83±0.02		1.51	2.77±0.01
	2.03	7.66±0.02		2.01	3.68±0.01
	2.53	9.61±0.02		2.53	4.61±0.01
	3.00	11.3±0.1		3.01	5.33±0.01
0.04	0.54	1.70±0.01	0.09	0.51	0.947±0.004
	1.08	3.31±0.01		1.02	1.73±0.01
	1.53	4.62±0.01		1.50	2.59±0.01
	2.13	6.18±0.01		2.05	3.52±0.01
	2.50	7.62±0.01		2.53	4.40±0.01
	3.03	8.73±0.01		3.03	5.10±0.01
0.05	0.50	1.45±0.01	0.10	0.53	0.902±0.005
	1.00	2.80±0.01		1.01	1.67±0.01
	1.59	4.29±0.02		1.51	2.55±0.01
	2.03	5.39±0.02		2.01	3.33±0.01
	2.51	6.60±0.02		2.52	4.12±0.01
	3.01	7.66±0.02		3.04	4.98±0.01

表二、酸性條件下, $Fe(CN)_6^{3-3}$ 錯合物還原反應之 k_{obs}^{a}

a. $[Fe(CN)_6^{3-}] \cong 5 \times 10^{-4} M$, $\mu = 0.5 M(LiClO_4)$, T=25

 1.
 0.10M
 2.
 0.09M
 3.
 0.08M
 4.
 0.07M
 5.
 0.06M

 6.
 0.05M
 7.
 0.04M
 8.
 0.03M
 9.
 0.02M
 10.
 0.01M

圖九、 $Fe(CN)_6^{3-}$ 之 k_{obs} 與維他命C濃度線性關係圖

表三、不同酸性下 $Fe(CN)_6^{3-}$ 之還原速率常數 k^a

$[\mathbf{H}^{*}], \mathbf{M}$	k, M ⁻¹ s ⁻¹
0.01	9.41±0.06
0.02	5.22±0.05
0.03	3.79±0.02
0.04	2.96±0.03
0.05	2.62±0.03
0.06	2.30±0.01
0.07	2.22±0.04
0.08	1.81±0.02
0.09	1.71±0.01
0.10	1.65±0.01

a. $[Fe(CN)_6^{3-}] \cong 5 \times 10^{-4} M$, $\mu = 0.5 M(LiClO_4)$, T=25

圖十、 $Fe(CN)_6^{3-}$ 錯合物還原之 k 與 $[H^+]$ 關係圖

(a) k vs [H⁺]

$$(b) k vs \frac{1}{[H^+]}$$

$$k = \frac{a[H^+] + b}{[H^+]}$$
(7)

以非線性平方差(non-linear least square fit)分析 eq (7)得 a=0.845±0.042、b=0.086±0.001。

2. pH = 4~9

 $Fe(CN)_{6}^{3-}$ 之吸收光譜不受 pH 的改變影響,還原反應動力學亦藉 觀測 max=420nm 的消失求得,所得不同[AA]濃度下還原反應之 k_{obs} 列於表四,當於 pH=3.99 及 pH=5.49 時, k_{obs} 對[AA]濃度作圖呈線性 關係,如圖十一所示,以線性最小平方差方法分析 $k_{obs}=k[AA]$,從斜 率求得 k 值,列於表五。然而在 pH=8.02 與 pH=8.95 時, k_{obs} 與[AA] 濃度呈非線性關係,如圖十二(a)所示,但 $\frac{1}{k_{obs}}$ vs $\frac{1}{[AA]}$ 則呈線性關係, 如圖十二(b)所示,根據此結果 k_{obs} 應以式(5)表示,利用非線性平方差 法,依式(5)分析,分別求得 k_{et} 及 Q_{IP}。結果亦列於表五。

$$k_{obs} = \frac{k_{el}Q_{IP}[red]}{1 + Q_{IP}[red]}$$
(5)

B, $[Fe(CN)_5(4,4'-bpy)]^{2-1}$

1. $[H^+] = 0.01 \sim 0.10M (HClO_4)$

 $[Fe(CN)_5(4,4'-bpy)]^{2-}$ 錯合物還原反應速率,由於有質子化的現象 表四、於 pH下,不同 ascorbic acid 濃度下之 $Fe(CN)_6^{3-}$ 還原

	10 ³ [AA], M	$\mathbf{k}_{obs}, \mathbf{s}^{-1}$
pH = 3.99	2.17	1.17±0.01
	3.11	1.56±0.01
	4.04	1.91±0.01
	5.00	2.39±0.01
	6.01	2.89±0.01
pH = 5.49	2.05	3.18±0.03
	3.01	4.21±0.02
	4.00	6.11±0.04
	5.01	7.16±0.05
	6.12	8.14±0.02
pH = 8.02	1.02	21.5±0.1
	1.54	30.8±0.5
	2.00	36.7±0.5
	2.58	43.4±0.6
	3.01	48.6±0.7
pH = 8.95	1.05	116±1
	1.53	159±2
	2.04	194±3
	2.56	221±2

反應觀測速率常數 kobs^a

a. $[Fe(CN)_6^{3-}] \cong 5 \times 10^{-4} M$, $\mu = 0.5 M(LiClO_4)$, T=25

圖十一、Fe(CN)₆³⁻於 pH=3.99 及 5.49,k_{obs} 與維他命 C 濃度 線性關係圖

表五、不同 pH 下,Fe(CN)₆³⁻之還原速率常數

рН	k, $M^{1}s-1$	k_{et}, s^{-1}	$Q_{IP,}M^{-1}$
3.99	(4.83±0.07)×10 ² a		
5.49	(1.41±0.03)×10 ³ a		
8.02	(2.58±0.07)×10 ⁴ b	$(1.29\pm0.03)\times10^2$	(2.00±0.17)×10 ²
8.95	(1.42±0.05)×10 ⁵ b	(5.75±0.20)×10 ²	$(2.47\pm0.03)\times10^2$
a. k _{obs} =k[AA]			

b. $k = k_{et}Q_{IP}$

非線性關係圖

(a) $k_{obs} vs [AA]$

(b)
$$\frac{1}{k_{obs}}$$
 vs $\frac{1}{[AA]}$

產生,因此藉觀測 $_{max}=513$ nm的生成測量不同[AA]濃度下還原反應 之 k_{obs} 列於表六, k_{obs} 與[AA]濃度呈線性關係,如圖十三所示,以線 性最小平方差方法分析 $k_{obs}=k$ [AA],得不同酸性條件下之 k 值,結果 列於表七, k 值與[H⁺]的關係為非線性關係與 Fe(CN)₆³⁻錯合物的情況 相同,如圖十四所示,以非線性最小平方差分析式(7),得 $a=5.02\pm0.38$ 、 $b=1.60\pm0.01$ 。

2. pH=4.00, 5.50

[Fe(CN)₅(4,4'-bpy)]²⁻之吸收光譜會受 pH 的改變影響,因此還原 反應動力學必須先測量其吸收光譜,在不同[AA]濃度下還原反應之 k_{obs} 列於表八,k_{obs} 與[AA]濃度呈線性關係,如圖十五所示,以線性 最小平方差方法分析 k_{obs}=k[AA],分別可求得之 k 值亦列於表八。

三、電化學

Fe(CN)₅L^{2-/3-}(L=CN、4,4'-bpy)之環路伏安圖,皆同時呈現有氧化還原 波,如圖十六、十七所示,顯示所有錯合物均屬於單電子可逆氧化還 原過程,E_{1/2}結果列於表九。 表六、酸性條件下, $[Fe(CN)_5(4,4'-bpy)]^{2-}$ 錯合物還原反應之 k_{obs} ^a

[H [⁺]], M	10 ³ [AA], M	$10^{2}k_{obs}, s^{-1}$	[H [⁺]], M	10 ³ [AA], M	$10^2 k_{obs}, s^{-1}$
0.01	1.14	19.5±0.1	0.06	2.14	7.84±0.10
	2.13	35.6±0.1		3.05	9.74±0.08
	3.06	49.3±0.1		4.10	13.8±0.1
	4.21	69.6±0.1		5.08	16.7±0.1
	5.04	83.2±0.2			
0.02	1.12	10.5±0.1	0.07	1.12	3.83±0.03
	2.08	18.0±0.1		2.04	5.99±0.05
	3.05	25.8±0.1		3.06	8.64±0.05
	4.08	34.2±0.1		4.07	10.8±0.1
	5.07	43.2±0.1		5.18	13.6±0.1
0.03	1.08	7.21±0.08	0.08	1.03	2.97±0.05
	2.06	11.9±0.1		2.12	5.39±0.05
	3.07	18.8±0.1		3.13	7.41±0.0
	4.01	23.5±0.1		4.13	10.3±0.1
	4.98	29.1±0.1		5.36	13.0±0.1
0.04	1.12	5.90±0.08	0.09	1.00	2.80±0.04
	2.01	9.90±0.09		2.01	5.04±0.06
	3.06	14.3±0.1		3.03	6.89±0.05
	4.08	18.7±0.1		4.05	8.94±0.05
	5.08	22.5±0.1		5.05	10.5±0.1
0.05	1.01	4.67±0.09	0.10	1.03	2.43±0.04
	2.15	8.34±0.07		2.01	4.49±0.05
	3.27	12.4±0.1		3.04	6.28±0.04
	4.03	14.9±0.1		4.24	8.58±0.08

5.00	18.2±0.1	5.07	9.75±0.09
a. $[Fe(CN)_5(4,4'-bpy)^{2-}] \cong$	1×10^{-4} M , $\mu = 0.5$ M (LiClO	0 ₄), T=25	

 1.
 0.10M
 2.
 0.09M
 3.
 0.08M
 4.
 0.07M
 5.
 0.06M

 6.
 0.05M
 7.
 0.04M
 8.
 0.03M
 9.
 0.02M
 10.
 0.01M

表七、不同酸性下[Fe(CN)5(4,4'-bpy)]²⁻之還原速率常數 k

[H⁺], M	k, M ⁻¹ s ⁻¹
0.01	164.8±0.8
0.02	85.26±0.67
0.03	59.10±0.67
0.04	45.66±0.80
0.05	37.08±0.36
0.06	33.27±0.58
0.07	27.04±0.65
0.08	24.50±0.35
0.09	21.95±0.63
0.10	20.72±0.43

a. [Fe(CN)₅4,4'-bpy²⁻] \cong 1×10⁻⁴M , μ =0.5M(LiClO₄) , T=25

圖十四、[Fe(CN)₅(4,4'-bpy)]²⁻錯合物還原之 k 與[H⁺]關係圖 (a) k vs [H⁺]

$$(b) k vs \frac{1}{[H^+]}$$

表八、於 pH 下,不同維他命 C 濃度下[Fe(CN)5(4,4'-bpy)]²⁻

之還原反應觀測速率常數	\mathbf{k}_{obs}	及〕	k ^a
-------------	--------------------	----	----------------

	10 ³ [AA], M	$\mathbf{k}_{\mathrm{obs}}, \mathbf{s}^{-1}$	k, M ¹ s ⁻¹
pH = 4.00	1.13	6.05±0.01	$(5.45\pm0.03)\times10^3$
	2.06	11.0±0.1	
	3.03	16.8±0.1	
	4.02	22.2±0.1	
	5.01	27.0±0.1	
pH = 5.50	1.01	9.37±0.02	(9.06±0.04)×10 ³
	2.02	18.7±0.1	
	3.15	28.3±0.1	
	4.07	36.5±0.1	
	5.05	46.0±0.1	

a. [Fe(CN)₅(4,4'-bpy)²⁻] \cong 1×10⁻⁴M , μ =0.5M(LiClO₄) , T=25

圖十五、[Fe(CN)₅(4,4'-bpy)]²⁻於 pH=4.00 及 5.50,k_{obs} 與維 他命 C 濃度線性關係圖

E (mV)

圖十六、Fe(CN)₆³⁻錯合物的環路伏安圖

(a)pH=1.00,(b)pH=4.00,(c)pH=8.00,掃瞄時間:100(mV/sec)

表九、Fe(CN)5L²⁻錯合物之還原電位

Complex	рН	E _{1/2} Volt(vs. NHE)
$Fe(CN)_{6}^{3-/4-}$		
	1.00	0.50
	4.00	0.37
	8.00	0.37
$[Fe(CN)_5(4,4'-bpy)]^{2-/3-}$		
	1.00	0.59
	4.00	0.50
	5.50	0.50
	8.00	0.50

第四章 討論

一、 還原反應動力學

如前所述,維他命 C 為雙質子酸,隨溶液中 pH 的改變而以不同 型式存在,而且所有熱力學及動力學性質,也隨不同形式的酸而有顯 著的差異,維他命 C 在不同型式之熱力學及動力學參數列於表十。

由於 Fe(CN)₅L³⁻對取代反應為惰性之錯合物,也沒有額外可供鍵 結的位置,因此與維他命 C 的反應屬於外圈電子轉移反應,根據所 得動力學結果,我們推測反應機構為

$$H_2A \xrightarrow{Ka_1} H^+ + HA^-$$
(8)

$$HA^{-} \xrightarrow{Ka_{2}} H^{+} + A^{2-}$$
(9)

$$\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{2^{-}} + \operatorname{H}_{2}\operatorname{A} \xrightarrow{k_{0}} \operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{3^{-}} + \operatorname{H}_{2}\operatorname{A} \cdot \stackrel{+}{} (10)$$

$$Fe(CN)_5L^{2-} + HA^{-} \xrightarrow{k_1} Fe(CN)_5L^{3-} + HA^{-}$$
(11)

$$\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{2^{-}} + \operatorname{A}^{2^{-}} \xrightarrow{k_{2}} \operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{3^{-}} + \operatorname{A}^{\cdot}$$
(12)

$$\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{2^{-}} + \operatorname{H}_{2}\operatorname{A}^{\cdot} \xrightarrow{fast} \operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{3^{-}} + 2\operatorname{H}^{+} + \operatorname{A}$$
(13)

$$Fe(CN)_5L^{2-} + HA \cdot \xrightarrow{fast} Fe(CN)_5L^{3-} + H^+ + A$$
(14)

$$\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{2^{-}} + \operatorname{A} \xrightarrow{fast} \operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{3^{-}} + \operatorname{A}$$
(15)

根據此反應機構,反應速率式為

表十、Ascorbic acid 之熱力學及動力學參數

	рК
$H_2A \implies HA^- + H^+$	4.08 ⁴²
$HA^{-} \implies A^{2-} + H^{+}$	11.34 ⁴³
	$E_{1/2}$, V ²⁸
$H_2A^{+} + e \implies H_2A$	1.17
$HA \bullet + e \iff HA^-$	0.71
$A^{\bullet} + e \implies A^{2^{-}}$	0.015
	$\mathbf{k_{ex}}, \mathbf{M}^{-1} \mathbf{s}^{-1} 28, 31$
$H_2A + H_2A^{\dagger} \implies H_2A^{\dagger} + H_2A$	2.0×10^3
$HA^- + HA^\bullet \implies HA^\bullet + HA^-$	1.0×10^{6}
$A^{2-} + A^{-} \implies A^{-} + A^{2-}$	2.0×10 ⁵

$$-\frac{d[Fe(III)]}{dt} = k_{obs}[Fe(III)]$$
(16)

$$k_{obs} = 2k[H_2A] \tag{17}$$

$$k = \frac{k_0 [H^+]^2 + k_1 K a_1 [H^+] + k_2 K a_1 K a_2}{[H^+]^2 + K a_1 [H^+] + K a_1 K a_2}$$
(18)

由式(17)中之2為統計因子(statistical factor),乃為考慮兩電子的還原。

1. pH 1~2

從表十中之 Ka₁, Ka₂得,在此範圍[H⁺]» Ka₁、Ka₂,式(18)可簡化為 $k = \frac{k_0[H^+] + k_1 K a_1}{[H^+]}$ (19)

從非線性最小平方差分析式(7)所得 a、b 值,並帶入 Ka₁=8.32×10⁻⁵ 得 k_o及 k₁值列於表十一

2. pH 4~6

表十顯示 k_o[H⁺]² + k₂Ka₁Ka₂«k₁Ka₁Ka₂, 且 Ka₁Ka₂«[H⁺]² + Ka₁[H⁺], 因此式(18)可簡化為

$$k = \frac{k_1 K a_1 [H^+]}{[H^+] + K a_1}$$
(20)

Ka₁及表五、表八中 pH=4.00 及 5.00 之 k 值,求得 k₁值,當 L=CN⁻時,分別為(5.38±0.08)×10²及(7.3±0.2)×10²M⁻¹s⁻¹,兩者相當接近,當

L=4,4'-bpy 時,應可同時代表在此條件下之 k₁值,取其平均值結果亦 列於表十一。

表十一、Fe(CN)5L2-錯合物之還原反應速率常數 *

	k_0 , M -	¹ s ⁻¹	k_1 , M ⁻¹ s ⁻¹		k_2, \mathbf{M}	⁻¹ s ⁻¹
ligand	Meas.	Calc.	Meas.	Calc.	Meas.	Calc.
CN ⁻	0.42 ± 0.02 ^b		$(5.2 \pm 0.1) \times 10^{2} b$	1.95×10^3	$(9.62 \pm 0.06) \times 10^{3} \text{ d}$	2.29×10^7
			$(6.4 \pm 0.1) \times 10^{2}$ c	1.72×10^2		
4,4'-bpy	2.52 ± 0.2 ^b	4.81 ^e	$(9.62 \pm 0.06) \times 10^{3 \text{ b}}$	5.93×10^4		6.4×10^8
			$(5.37 \pm 0.03) \times 10^{3 \text{ c}}$	1.13×10^4		

a. µ=0.5M (LiClO₄), T=25
b. [H⁺]=0.01~0.1M
c. pH=4.00 及 pH=5.50 所得 k₁ 之平均值
d. pH=8.00 及.pH=9.00 所得 k₂之平均值
e. 以 E_{1/2}(H₂A· ⁺/H₂A)=1.01V 計算

53

3. pH 8~9

k₀[H⁺]²«k₁Ka₁[H⁺] + k₂Ka₁Ka₂,且Ka₁[H⁺]«[H⁺]² + Ka₁Ka₂,此時式(18) 可簡化為

$$k = k_1 + \frac{k_2 K a_2}{[H^+]}$$
(21)

從表五我們發現,在此條件下, k 較 k₁ 值大上兩次幕以上,因此式(21) 中之 k₁ 可以忽略,如式(22)表示

$$k = \frac{k_2 K a_2}{[H^+]}$$
(22)

代入表五中 pH=8.02 及 8.95 之 k 值, 求得 k₂ 值分別為(2.52±0.07)×10⁷ 及(1.54±0.06)×10⁷ M⁻¹s⁻¹, 取平均值結果亦列於表十一。

從表十一,我們發現 Fe(CN) $_{6}^{3}$:錯合物在 pH=3.99 及 5.49 時還原 所得 k₁ 值與[H⁺]=0.01~0.10M 時所得結果相當一致,其間些微的差距 主要乃 pH 測量之誤差所導致,pH=8.02 及 8.95 時還原所得之 k₂亦皆 一致,但[Fe(CN)₅(4,4'-bpy)]²在 pH=4.00 及 5.50 時所得之 k₁ 值則與酸 性條件下所得結果有相當大的出入,主要原因乃在,[H⁺] \geq 0.01M 時, Fe(III)錯合物以[Fe(CN)₅(4,4'-bpyH)]⁻形式存在,而當 pH \geq 4.85 時,則 為[Fe(CN)₅(4,4'-bpy)]²形式,因此所得結果無法比較,另外在 pH=8.00 與 9.00,反應速率相當快,無法在實驗上求得。

\Box , Marcus Theory

由於 Fe(CN)₅L²⁻ - H₂A 系統屬外圈電子轉移反應,而外圈電子轉移反應的特色,便是結果可以 Marcus 理論加以印證或修正。

根據 Marcus 理論 44,45, 氧化還原反應(式(23))

$$Ox_1 + Red_2 - Red_1 + Ox_2$$
(23)

外圈電子轉移反應速率常數為

$$k_{12} = \sqrt{k_{11}k_{22}K_{12}f_{12}}W_{12} \tag{24}$$

$$\ln f_{12} = \frac{\left[\ln K_{12} + (w_{12} - w_{21})/RT\right]^2}{4\left[\ln(k_{11}k_{22})/10^{22} + (w_{11} + w_{22})/RT\right]}$$
(25)

$$W_{12} = exp\left[-(w_{12} + w_{21} - w_{11} - w_{22})/2RT\right]$$
(26)

$$w_{ij} = \frac{z_i z_j e^2}{D_s a_{ij} \left(1 + \boldsymbol{b} a_{ij} \boldsymbol{m}^{\frac{1}{2}}\right)}$$
(27)

$$\boldsymbol{b} = \left(\frac{8N\boldsymbol{p}\boldsymbol{e}^2}{1000\boldsymbol{D}_s kT}\right)^{1/2} \tag{28}$$

 k_{11} 、 k_{22} 為氧化劑及還原劑之自身電子轉移反應速率常數, w_{11} 、 w_{22} 為相對的 work terms, w_{12} 、 w_{21} 為式(23)反應物及生成物之 work

terms, K 為反應平衡常數, a_{ij} 為反應物的原子核間最近距離(closes approach distance),通常為反應物的半徑和, z_i、 z_j 為離子電荷數, e 為電子的電荷, μ 為離子強度, N 為亞佛加厥常數。

Fe(CN)₅L^{2-/3-}錯合物的自身電子轉移速率(k₂₂)分別為9.6×10³M⁻¹s⁻¹ (L=CN)、4.0×10⁵M⁻¹s⁻¹(L=4,4'-bpy),半徑 $g_{H_{2A}}$ =3.5×10⁻⁸cm、 $g_{Fe(CN)_{5}^{3-}}$ =4.5×10⁻⁸cm、 $g_{Fe(CN)_{5}4,4'-bpy^{2-}}$ =5.0×10⁻⁸ cm,而K₁₂可由在不同pH 條件下 Fe(CN)₅L^{2-/3-}(表九)及H₂A(表十)之還原電位依 Nerst 方程式 求得,在水溶液中25 條件下,Nerst 方程式可以式(28)表示

$$\Delta E = E_{1/2}^{O_X} - E_{1/2}^{red} = 0.0591 \times \log K_{12}$$
(29)

根據以上數據,我們可以 Marcus 理論分析 H₂A 還原反應 k₀、k₁及 k₂ 值。

1. pH 1~2

 k_0 為式(10)之反應速率常數, H_2A 為酸性溶液中,如表九所示, 當 L=CN⁻時,Fe(CN)₆³⁻/Fe(CN)₆⁴⁻之還原電位在酸性溶液中較中性溶 液高出 0.13V,此差距乃是由於 Fe(CN)₆³⁻質子化之故,導致還原後 Fe(II)氧化狀態因 MLCT 回饋鍵結能增加而較未質子化錯合物為穩定 之故,事實上,Fe(CN)₅L³⁻錯合物 CN⁻質子化之 pKa 均在 1.9~2.6 之間 ⁴⁶,Fe(III)則將更小,因此在酸性溶液中鐵氰錯合物以 HFe(CN)₆²⁻/HFe(CN)₆³⁻形式存在,從錯合物及 ascorbic acid 之半徑、

電荷利用式(25)~(27)求得 W₁₂=3.45 kcal mole⁻¹,從表九及十 $E_{1/2}(HFe(CN)_6^{-2}/HFe(CN)_6^{-3})$ 及 $E_{1/2}(H_2A^+/H_2A)$ 求得 $K_{12}=4.41\times10^{-9}$,將 以上所得數據代入式(23)、(24)得 $f_{12}=7.37\times10^{-3}$, $k_0=2.73\times10^{-3}$ M⁻¹s⁻¹, k₁=1.95×10³ M⁻¹s⁻¹, k₁較實驗值(5.15×10² M⁻¹s⁻¹)大 3.8 倍,尚稱合理, 但 k₀ 則較實驗值小了兩次冪,如此大的差異我們認為可能是 H_2A ⁺/ H_2A 還原電位差異所引起,表十所列 H_2A ⁺/ H_2A 還原電位乃以 間接方法從 hydroquinone 的解離常數 47 推測而得的,可能不是很準 確, Kimura 等²⁸ 曾探討在酸性溶液中 H₂A 還原 Fe(phen)₃³⁺之反應動 力學得 k₀=1.7×10⁵M⁻¹s⁻¹, 但若以 E_{1/2}(H₂A⁺/H₂A)=1.17V, 則 Marcus 理論計算值為 $2.0 \times 10^4 M^{-1} s^{-1}$, 相差一次冪之多, 若以我們測得的 $k_0(0.42)$ M⁻¹s⁻¹)代入 Marcus 處理,則求得 H₂A⁺/H₂A 之還原電位為 1.01V,再 以此值嘗試 $Fe(phen)_3^{3+}$ - H₂A 系統之 Marcus 理論計算值,得 $k_0=4.8\times10^5 M^{-1}s^{-1}$,與實驗值頗為一致,因此我們相信,以 $E_{1/2}=1.01V$ 較能代表 H₂A ⁺/H₂A 還原電位實際值。當 L=4,4'-bpy 時, 由於 4,4'-bpy 配位遠較 CN 容易質子化³⁷, 且質子化後產物具有相當強的拉電子能 力,而使 CN 配位不易質子化,因此酸性溶液中, Fe(III)以 Fe(CN)₅4,4'-bpyH'狀態存在,依與L=CN 相同方法,求得 Marcus 理論 值 $k_0=4.81$ M⁻¹s⁻¹、 $k_1=5.93\times10^4$ M⁻¹s⁻¹其中 k_0 與實驗值相當接近,但 k_1 則較實驗值(9.62×10³ M⁻¹s⁻¹)大了~6 倍,差異相當大,但因在一次冪

57

內,仍可接受。

2. pH=4.0, 5.50

在此 pH 條件下當 L=CN時,鐵氰錯合物以 Fe(CN) $_{6}^{3-7}$ Fe(CN) $_{6}^{4-7}$ 狀態存在,可從電化學結果進一步印證(E_{1/2}=0.37V),在這種情況下, 如前法求得 Marcus 理論計算值 k₁=1.7×10² M⁻¹s⁻¹,亦與實驗值 (6.4±0.1)×10² M⁻¹s⁻¹尚稱一致,當 L=4,4'-bpy時,由於 pH=5.5及8之 還原電位均為 0.50V,因此錯合物均以[Fe(CN)₅(4,4'-bpy)]²⁻形式存在, 依同樣方法求得 k₁之 Marcus 理論計算值為 k₁=1.13×10⁴ M⁻¹s⁻¹,與實 驗值(5.37±0.03)×10³ M⁻¹s⁻¹亦相 合

3. pH=8.02, 8.95

如式(22)所示,在此條件只有 k_2 影響反應速率式,因此還原反應 應以式(12)為主,L=CN求得 k_2 之 Marcus 理論值為 2.29×10⁷ M⁻¹s⁻¹, 與實驗平均值幾乎相同。當 L=4,4'-bpy 時,同樣可求得 k_2 之 Marcus 理論值為 6.4×10⁸ M⁻¹s⁻¹,以此值代入式(22)求得 k=2.9×10⁵ M⁻¹s⁻¹,當 $[H_2A]=1.0×10^{-3}M$ 亦即在本實驗中最低之 H_2A 濃度, $k_{obs}=k_2[H_2A]=2.9×10^2$ s⁻¹或 $t_{1/2}=2.4×10^{-3}$ 秒,已超越 stopped-flow 的時 間尺度,這也是我們無法測得 pH=8 時的反應速率的原因。 從以上分析,可以印證在不同 pH 條件下,我們所得的動力學結 果與 Marcus 理論有相當的一致性,也進一步證實我們所推測的反應 機構。

從表十一中,發現維他命C與Fe(CN)₅L²錯合物之電子轉移反應 速率受溶液之pH影響極大,以Fe(CN)₆^{3.} - H₂A反應系統為例,k₀: $k_1 : k_2 \cong 1 : 10^3 : 10^8$ 。根據 Marcus 理論(式(24)),我們得知影響反應 速率因素有三,分別為 work term (W₁₂), equilibrium barrier (K₁₂)及 H₂A 不同型式之 intrinsic reactivity (k_{ex}),其中,W₁₂分別求得為 3.45、 2.91 及 1.44 kcal mole⁻¹,或~2.4:2:1,明顯 work term 對反應速率的 影響並不大,甚至還稍微有利於 H₂A 型態的反應,可見反應差異來 自於 equilibrium barrier (K₁₂)及 H₂A 不同型式之 intrinsic reactivity (k_{ex}), $\sqrt{k_{ex}K}$ 分別為 2.1×10⁻³、1.0 及 3.8×10⁵,或~1:10³:10⁸,與 k₀: k₁:k₂比相同。

Haim 等人 ³¹ 亦曾探討[H⁺]=0.01~0.10M 條件下, Ru(NH₃)₅L²⁺ -H₂A 系統的電子轉移反應,結果發現即使在酸性條件,仍然無法求得 k_0 值,換句話說,在酸性溶液中 HA⁻仍主導整個還原反應,我們亦可 從 Marcus 理論探討其原因,以 Ru(NH₃)₅py²⁺為例, g_{Ru} =4.0×10⁻⁸cm⁴⁸, k_{ex}^{Ru} =4.7×10⁵M⁻¹s^{-1 49}, $E_{1/2}^{Ru}$ =0.32V⁵⁰, 根據這些資料, 我們求得 k₀及 k₁ 分別為 3.0×10⁻²及 3.8×10² M⁻¹s⁻¹, 根據此結果,即使在[H⁺]=0.10M, $\frac{k_1Ka_1}{k_0[H^+]}$ =11,因此式(19)可簡化為 $k = \frac{k_1Ka_1}{[H^+]}$, k₀的影響幾乎可忽略。

另一有趣的現象,也是我們在執行本論文研究才發現,即從表十 得知 H₂A、HA^{*}、A²⁻之還原電位分別為 1.17、0.71、0.015V,其中除 A²⁻確構成良好的還原劑條件外,以一般化合物而言,似 H₂A 及 HA^{*} 如此高的還原電位,幾已構成良好的氧化劑條件,而 H₂A 及 HA^{*} 如此高的還原電位,幾已構成良好的氧化劑條件,而 H₂A 及 HA^{*} 均為相當良好且常用之還原劑,從我們探討結果,我們認為最可能的 原因,除以維他命 C 為氧化劑無法獲得穩定之還原產物外,最重要 的乃是維他命 C 之氧化中間產物,即單電子氧化之產物,均為非常 不穩定的自由基型態,極易被進一步氧化成穩定的去氫抗壞血酸 (dehydroascorbic acid)之最後產物。H₂A 還原反應位能圖如圖十八所 示,此獨特現象構成了極大的驅動力(driving force),促使 H₂A 及 HA^{*} 反成良好的還原劑。

nuclear coord.

圖十八、H₂A 還原反應位能圖

第五章 結論

- 1、 維他命 C 對 Fe(CN)₅L²⁻(L=CN, 4,4'-bpy)還原反應隨溶液 pH 的 增加而有明顯的增快, k₀: k₁: k₂=1:10³:10⁸。
- 2、 還原反應的差異主要導因於維他命 C 之 equilibrium barrier (K_{12}) 及維他命 C 在不同型態中反應活性(k_{ex})。
- 3 Fe(CN)₆³⁻在酸性溶液中的反應速率常數 k₀, 進一步推測 H₂A ⁺/H₂A
 之還原電位為 1.01V

參考文獻

- 1. S. S. Zilva, Biochem. J., <u>18</u>, 182 (1924)
- 2. S. S. Zilva, *Biochem. J.*, <u>18</u>, 632 (1924)
- 3. S. S. Zilva, *Biochem. J.*, <u>23</u>, 1199 (1929)
- 4. C. G. King, Proc. Nutrit. Soc., <u>12</u>, 219 (1953)
- 5. H. L. Sipple and C. G. King, J. Amer. Chem. Soc., <u>52</u>, 470 (1930)
- 6. D. P. Grettie and C. G. King, J. boil. Chem., <u>84</u>, 771 (1929)
- 7. J. L. Svirbely, and A. Szent-Györgyi, *Biochem. J.*, <u>27</u>, 279 (1933)
- 8. A. Szent-Györgyi and W. N. Haworth, Nature, Lond., 24, 131 (1933)
- W. N. Haworth, E. L. Hirst, J. K. N. Jones, and F. J. Smith, J. Chem. Soc., 1192 (1934)
- 10.J. Hvoslef, Acta Chem. Scand., <u>18</u>, 841 (1964)
- 11.J. Hvoslef, Acta Crystallogr., Sect. B 24, 23 (1968)
- 12. D. L. Sorby, J. Pharm. Sci., <u>58</u>, 788 (1966)
- 13.P. A. Seib and B. M. Tolbert, Ascorbic Acid : Chemistry, Metabolism,

and Uses; American Chemical Society: Washington, D.C. 1982.

- 14. D. M. Bryan, S. D. Pell, R. Kumar, M. J. Clarke, V. Rodriguez, M. Sherban and J. Charkoudian, J. Am. Chem. Soc., <u>110</u>, 1498 (1988)
- 15.L. Michaelis, J. Biol. Chem., <u>96</u>, 703 (1932)

- 16.K. M. Laeoff, R. W. Fessenden and R, H, Schuler, J. Am. Chem. Soc., <u>94</u>, 9062 (1972)
- 17. A. E. Martell, R. M. Smith, "Critical Stability Constants"; PlenumPress: New York, <u>3</u>, 264 (1979)
- 18.J. Hovslef, Acta Crystallogr., Sect. **B** <u>28</u>, 916 (1972)
- 19.H. Albers, E. Müller, and H. Dietz, Hoppe-Seyler's Z. Physiol. Chem., <u>334</u>, 243 (1963)
- 20.J. Hvoslef and B. Pedersen, Acta Chem. Scand., Ser. B 33, 503 (1979)
- 21. K. Pfielstucker, F. Marx and M. Bockisch, *Carbohydr. Res.*, <u>45</u>, 269 (1975)
- 22. M. M. Taqui Khan and A. E. Martell, *J. Am. Chem. Soc.*, <u>89</u>, 4176 (1967)
- 23. M. M. Taqui Khan and A. E. Martell, *J. Am. Chem. Soc.*, <u>89</u>, 7104 (1967)
- 24. A. O. Dekker and R. G. Dickinson, *J. Am. Chem. Soc.*, <u>62</u>, 2165 (1940)
- 25.G. A. Hamilton, Adv. Enzymol. Delat. Subj. Biochem., <u>32</u>, 55 (1969)
- 26.U. S. Mehrotra, M. C. Agrawal and S. P. Mushran, *J. Phy. Chem.*, <u>75</u>, 1996 (1969)
- 27. E. Pelizzetti, E. Mentasti and E. Pramauro, *Inorg. Chem.*, <u>17</u>, 1181 (1978)
- 28. D. H. Macartney and N. Sutin, Inorg. Chim. Acta., <u>74</u>, 221 (1983)
- 29. E. Pelizzetti, E. Mentasti and E. Pramauro, *Inorg. Chem.*, 15, 1898 (1976)
- 30.S. K. Saha, M. C. Ghosh and E. S. Gould, *Inorg. Chem.*, <u>31</u>, 5439

(1992)

- 31.M. J. Akhtar and A. Haim, *Inorg. Chem.*, <u>27</u>, 1608 (1988)
- 32. P. C. Ford, De F. Rudd, G. Gaunder and H. Taube, *J. Am. Chem. Soc.*, <u>90</u>, 1197 (1968)
- 33. R. E. Shepherd and H. Taube, *Inorg. Chem.*, <u>12</u>, 1392 (1973)
- 34. H. E. Toma and J. M. Malin, *Inorg. Chem.*, <u>12</u>, 1039 (1973)
- 35. H. E. Toma and J. M. Malin, Inorg. Chem., <u>12</u>, 2080 (1973)
- 36.G. Brauer, "Handbook of prepartive Inorganic Chemistry" Vol. 2, and ed., Academic Press, New York, N. Y., <u>9</u>, 1511 (1965)
- 37. A. Yeh and A. Haim, J. Am. Chem. Soc., <u>107</u>, 269 (1985)
- 38.J. Phillips, A. Haim, *Inorg. Chem.*, <u>19</u>, 1616 (1980)
- 39. D. A. Dows, W. K. Wilmarth and A. Haim, J. Inorg. Nucl. Chem., <u>21</u>, 33 (1961)
- 40.G. W. Franco and H. Taube, *Inorg. Chem.*, <u>17</u>, 571 (1978)
- 41. M. L. Chen and A. Yeh, J. Chin. Chem. Soc., <u>48</u>, 849 (2001)
- 42. M. Kimura, M. Yamamoto, and S. Yamabe, J. Chem.Soc, Dalton Trans., 423 (1982)
- 43.N. H. Williams and J. K. Yandell, Aus. J. Chem., <u>35</u>, 1133 (1982)
- 44. R. A. Marcus, Ann. Rev. Phys. Chem., <u>15</u>, 155 (1964)
- 45.R. A. Marcus and N. Sutin, *Biochim. Biophy. Acta.*, <u>811</u>, 265 (1985)
- 46.J. M. Malin and R. C. Koch, *Inorg. Chem.*, <u>17</u>, 752 (1978)
- 47. E. Pelizzetti, E. Mentasti and E. Baiochi, *J. Phys. Chem.*, <u>81</u>, 2979 (1976)
- 48. M. H. Chen, S. Lee, S. Liu and A. Yeh, Inorg. Chem., <u>35</u>, 2627 (1996)
- 49.G. M. Brown, H. J. Krentzien, M. Abe and H. Taube, *Inorg.Chem.*, <u>18</u>, 409 (1979)

50. U. Fürholz and A. Haim, J. Phys. Chem., <u>90</u>, 3686 (1986)