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Abstract

It is difficult to asses reliability with traditional life tests for high reliability products

that record only time to failure and usually have not many observations. When degra-

dation measures can be taken over time, a relationship between component failure

and degradation makes it possible to use degradation models to provide inferences

about failure time. In this research, we explore the failure distributions with discrete

and continuous degradation process. The mark point process and the Wiener process

will be introduced.

For the needs of flexibility of the models to fit the data, three parameter models

are considered such as extended generalized gamma (EGENG), exponential Weibull

and generalize inverse Gaussian distributions. We employ probability plot and also

Anderson-Darling test to identify the proper distribution for the 2024-T351 aluminum

data. The data set was produced by the fatigue laboratory in the Department of Me-

chanical Engineering of National Taiwan University in year 2001. We use bootstrap

method to give the confidence intervals of the p-th quantile of the best fitted distri-

bution.

1 Introduction

1.1 Overview

Chapter 1 we give literature review. Chapter 2 introduces discrete degradation process

by mark point process and continuous degradation process by Wiener process and

some continuous degradation models. About the failure time distribution, we describe

the EGENG, GIG and EW distributions. In the last section of this chapter, we
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describe some general methods of goodness of fit. Chapter 3 describes the form

of estimation of degradation model and failure time distribution. We also describe

the bootstrap confidence intervals. Chapter 4 explores failure distributions under

degradation models by simulations. Chapter 5 gives a real data example from of the

2024-T351 aluminum data and check by goodness of fit. Chapter 6 includes conclusion

and future research.

1.2 Literature Review

1.2.1 Degradation Modeling

Design of high-reliability systems generally requires that the individual system com-

ponents have extremely high reliability, even after long periods of time. With short

product development time, reliability tests must be conducted with severe time con-

strains. Frequently no or few failures occur during such tests. Thus it is difficult to

assess reliability with traditional life tests that record only failure time. Degradation

data provide more information from the life test than the failure time data. Lu and

Meeker (1993) used a parametric model to describe the degradation measurements.

They offered some path models that lead to a closed-form expression for the cdf of the

time-to-failure distribution and they also discussed the autocorrelation errors. Meeker

and LuValle (1995) described an accelerated life test model based on chemical kinetic

models of failure modes. Meeker and Escobar (1998, Ch.13) described the degrada-

tion and failure time and showed how to estimate CDF from degradation data. They

also used an example to compare degradation analysis with traditional failure-time

analysis and presented a simple approximate method for degradation analysis that

might be approximated in some applications. In application, Tseng, Hamada and

Chiao (1995) used degradation data to improve Fluorescent Lamp reliability.
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For some products, however, degradation rates at use conditions are so low that

appreciable degradation will not be observed during usual tests. So Meeker and Esco-

bar (1998, Ch.21) described how accelerated degradation tests can be used to assess

and improved product reliability and how to analyze accelerated degradation data.

Yu and Tseng (1998) described a on line procedure for terminating an accelerated

degradation test and used some light-emitting diode (LED) data to demonstrate the

proposed procedure. Meeker, Escobar and Lu (1998) also described the accelerated

degradation test about that modeling and analysis.

1.2.2 Mark Point Process

Heide-Wendt (1997) described damage processes and resulted in first passage times.

He examined a shock model with accumulating damages and the system was suffered

from shocks where the shocks happen at time point (Tn)n≥1 and bring about a gradual

damage of the system. Each damage from a shock at random time Tn was described

by a scalar non-negative r.v. Xn, (n = 1, 2, . . .). The damages accumulate so that

at any time t the whole damages of the system is given by an r.v. Zt with Zt =
∑∞

n=1 I(Tn≤t) ·Xn. Suppose the existence of a certain wear level h where the system

is intact as long as Zt does not exceed the value h.

The book by Anderson, Borgan, Gill and Keiding (1993) described that a multi-

variate counting process is a stochastic process which can be thought of as registering

the occurrences in time of a number of types of disjoint, discrete events. They sup-

posed that either a filtration is already given, relative to which the processes adapted,

or that one constructs the so-called self-exciting filtration generated by the process.



14

1.2.3 Wiener Process and Inverse Gaussian Distribution

The notion of Brownian motion is applicable in describing the inherent process of

many phenomena, particularly in the nature and physical sciences. Because the first

passage time of a Brownian motion is distributed as inverse Gaussian (IGAU), it is

logical to use it as a lifetime model. The book by Chhikara and Folks (1989) described

the inverse Gaussian distribution in detail.

Meeker and Escobar (1998, pp103 - 105) described the properties of IGAU distri-

bution and give a figure of CDF, pdf, quantile and hazard function.

1.2.4 EGENG, EW and GIG Distributions

Many parametric models have been used in the analysis of lifetime data. The most

commonly used univariate parametric models in the reliability analysis include the

exponential, weibull, gamma, and lognormal distribution. For the needs of flexibility

of the models to fit the data, three parameter models are considered such as extended

generalized gamma (EGENG), exponential Weibull and generalized inverse Gaussian

models.

Shiping Liu (1997) described the generalized gamma model and its maximum

likelihood estimation. Early work with the generalized gamma distribution showed

that the ”natual” parameterization was very unstable. Some authors suggested that

hundreds of observation were needed in order to used this distribution. So he devel-

oped a reparameterization method that can be used to obtain compuratively stable

parameter estimates for the generalized gamma model.

Meeker and Escobar (1998, pp98 - 102) described the properties of GENG dis-

tribution and EGENG distribution and give figures of cdf, pdf, quantile and hazard
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function.

Mudholkar and Srivastava (1995) described the exponential weibull family. They

presented an extension of the weibull family and not only contained distributions with

unimodal and bathtub failure rate but also allowed for a broder class of monotone

harzard rates and is computationally convenient for censored data.

The book by Brillinger, Gani, Hartigan, Kiefer and Krickeberg (1982) offered

the basic properties of the generalized inverse gaussian and given a expressions for

moments and cumulants.

Alexandrov and Lacis (2000) described a three-parameter cloud/aerosol size dis-

tribution based on the generalized inverse Gaussian density function and explicit

expressions for moments, effective radius and variance.

1.2.5 Goodness of Fit

Lawless (1982, Ch. 9) described some general methods of testing hypotheses H0 :

F (x) = F0(x). The best known procedures for this are the classical goodness of fit

tests based on the empirical distribution function (EDF) for continuous unground

data and pearson χ2 or likelihood ratio tests for discrete or grouped data.

Gunes, Dietz, Auclair and Moore (1997) employed Monte Carlo methods to de-

velop and compared modified goodness-of-fit test for the inverse Gaussian model.

Stephens (1974) offered a practical guide to goodness-of-fit tests using statistics

based on the empirical distribution function (EDF). Five statistics were examined—

those are Kolmogorov statistics D, Cramer-von Mises statistics W 2 , Kuiper statistics

V , Watson statistics U 2, Andeson-Darling statistics A2. Under power comparisons of

these statistics, the W 2 and A2 tests generally have good power against broad ranges
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of alternatives.

1.2.6 Real Case Examples

Lu and Meeker (1993) used fatigue-crack-growth data from Bogdanoffand Kozin

(1985). There were 21 sample paths (figure 1), one for each of 21 test units and

defined a critical crack length of 1.6 inches to be a ”failure”. They also assumed

that testing stopped at 0.12 million cycles. Then, they took the traditional approach

of fitting parametric models to the censored time-to-failure data and compared the

results with the nonparametric estimate based on the actual failure times of all the

21 units.

Wu and Chen (2001) used the fatigue crack growth of aluminum alloy of the

experiment where there were 30 2024-T351 sample paths (figure 2). Since the experi-

mental data that used different fatigue reliability models and then appropriate model

to explain the experimental result. It is found that a modified Yang/Manning fatigue

reliability model can be adopted for the tested 2024-T351 aluminum alloy specimens.

It can then be used as references for the integrity and reliability prediction of aero-

nautical structures made of 2024-T351 aluminum alloy.

We use these examples to illustrate the procedures we develop in this research.
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2 Degradation and Failure Distribution

In this chapter, we describe the discrete degradation by the Marked point process

and we also use the result to develop failure time distribution for Gamma and weibull

increment. We present the continuous degradation process that relate to failure time

distributions. The failure distribution of Inverse Gaussian model can be derived from

the Brownian motion as a first passage time distribution we display some properties

about the Wiener process. Some failure can be traced to an underlying degradation

process which might be linear, convex or concave degradation and some degradation

paths that it is possible to write down a closed-form expression. This chapter we also

employ some simple degradation paths to derive the failure time distribution. In the

lifetime data, the most commonly distributions used to fit the first passtime distribu-

tion are location-scale parametric models. For the needs of flexibility of the models

to fit the data, we consider the three different failure distributions each having three

parameters such as extended generalized gamma, exponential Weibull and general-

ized inverse Gaussian distributions. In the last section of this chapter, we describe

some general methods of goodness of fit.

2.1 Mark Point Process

In connection with the investigation of the reliability of technical systems it is mostly

necessary to consider damage processes which are able to occur at these systems. The

failure behaviour of technical systems is often influenced by shocks. Wendt (1997)

examined a shock model with accumulating damages. Here the system is suffered

from shocks where the shocks happened at time points (Tn)n≥1 and bring about a

gradual damage of the system. Each damage from a shock at random time Tn is

described by a scalar non-negative r.v. Xn(n = 1, 2, . . .). The damages accumulate

so that at any time t the whole damage of the system is given by an r.v. Zt with
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Zt =
∑∞

n=1 I(Tn≤t)Xn. They supposed the existence of a certain wear level h where

the system was intact as long as Zt does not exceed the value h. The model will be

described by marked point processes Φ = ((Tn, Xn))n≥1.

System Failure Time of Independent Marking

The following formulation is given by Wendt (1997). Let (X∗
n) be a sequence of i.i.d

X-valued random elements with distribution G independent of an arbitrary point

process (Tn) . Φ = ((Tn, Xn))n≥1 is called an independent G-marking of (Tn) if

Xn = X∗
n in the case Tn <∞ and else Xn = x∞. Then the (P, Ft) -compensator of Φ

is given as follows

ν(w, t, B) = ν(w, (0, t]×B) = ν(w, t,X)·
∫

B

G(dx) B ∈ χ

So that the distribution of an independent G-marking is uniquely determined by G

and the distribution of (Tn).

1. Let the sequence (Tn) is the jump times and corresponding counting process

denoted by N, i.e Nt = Φ((0, t] × X) = card(n ≥ 1 : Tn ≤ t). Now assumed

the existence of the (P, Ft) -stochastic intensity λ̃ of the point process (Tn) , i.e.

ν(w, t,X) =
∫ t

0
λ̃(w, s)ds where λ is an {Ft} -predictable function. A heuristic equa-

tion is given as

P (Φ(dt×X) > 0 | Ft−) = λ̃(w, t)dt

Let Ft = FN
t

∨

σ(Λ) be a history of (Tn) where FN
t = σ(Φ((0, t] × X)) is the

internal history of (Tn) and Λ -generating F0 - is non-negative random element of any

measurable space. The (P, Ft) -stochastic intensity λ̃(w, t) is assumed to be given by

λ̃(w, t) = Λ(w) ·a(t)

Where a(t) denotes a deterministic function. If a(t) is left-continuous with right-

hand limits then λ̃ will be {Ft} - predictable. Usually Λ and a(t) will depend on
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unknown parameters. Then obtain for Nt = card{n ≥ 1 : Tn ≤ t} and j ∈ Z+

p(Nt = j) = E

[

(Λ
∫ t

0
a(s)ds)j

j!
exp

(

−Λ

∫ t

0

a(s)ds

)

]

(2.1.1)

2. The system failure time Z∗
h can be written as

Z∗
h = inf

{

t :
∞

∑

n=0

I(Tn≤t) ·Xn ≥ h
}

And

P (Z∗
h) =

∞
∑

n=0

P (Nt = n)·P (X0+X1+. . .+Xn < h|Tn ≤ t < Tn+1) (2.1.2)

And in the special case of independent marking we can get

P (Z∗
h) =

∞
∑

n=0

P (Nt = n)·P (X0+X1+. . .+Xn < h) (2.1.3)

Now we give three examples for the distributions of Z∗
h by independent marking.

The first one was given by Wendt (1997). We use the result to develop failure time

distribution for Gamma and weibull increment. First we assume continue random

variables Xn where the event {Xn = 0} does not occur (n ≥ 1).

Example 1. Let Xn have an exponential distribution with parameter p and assume

Tn is given as mixed poisson process with λ̃(w, t) = Λ ∼ Exp(c). i.e. the distribution

function of Λ has the density

c ·exp−cλ I(λ≥0)
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And since λ̃(w, t) = Λ(w) · a(t) and n ∈ Z+

p(Nt = n) = E





(

Λ
∫ t

0
a(s)ds

)n

n!
exp

(

−Λ

∫ t

0

a(s)ds

)





=

∫ ∞

0

(λt)n

n!
exp−λt ·c exp−λc dλ

= c ·
∫ ∞

0

λntn

n!
exp−λ(c+t) dλ

=
c · tn

(c+ t)n+1

∫ ∞

0

(c+ t)n+1

Γ(n+ 1)
λn exp−λ(c+t) dλ

=

(

c

c+ t

) (

t

c+ t

)n

Let X0 = x0 = const. < h, then we determine the survival distribution of Z∗
h as

follows

P (Z∗
h > t) = P (Nt = 0) +

∞
∑

n=1

∫ h−x0

0

pn
Xn−1

(n− 1)!
exp−px dx · c

c + t

(

t

c+ t

)n

=
c

c+ t
+

c

c+ t

∫ h−x0

0

exp−px

[

∞
∑

n=1

pn
(

t

c+ t

)n

xn−1 1

(n− 1)!

]

dx

=
c

c+ t
+

c

c+ t
· pt

c+ t

∫ h−x0

0

exp

[

−x
(

p− pt

c+ t

) ]

dx

= 1− c

c + t
· exp

[

−(h− x0)p ·
(

c

c+ t

)]

The density fZ∗

h
of Z∗

h is given, for t ≥ 0

fZ∗

h
(t) =

∂ [1− P (Z∗
h > t)]

∂t

= exp

[

−(h− x0)p ·
(

c

c+ t

)]

·
[

c

(c+ t)2
+ (h− x0)

pct

(c+ t)3

]

Example 2. Let Xn have a Gamma distribution with parameters (α, β). In the

case of independent marking, the sum X1 +X2 + . . .+Xn has the density

1

Γ(nα)βnα
Xnα−1 exp−

(

X

β

)

I(X>0), α > 0, β > 0
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Now, we assume λ̃(w, t) = Λ(w) ∼ Uni[a, b] , with [a, b] ∈ B+ and has the density

1

b− a
·Iλ∈[a,b]

It follows that

P (Nt = n) =

∫ a

b

(λt)n

n!
· exp−λt · 1

b− a
dλ

=
tn−1

b− a

∫ b

a

λn

n!
d exp−λt

After repeat partial integration

P (Nt = n) =
1

t(b− a)

n
∑

i=0

(

(at)i

i!
· exp−at−(bt)i

i!
· exp−bt

)

And we assume X0 = x0 = const < h .

P (Z∗
h > t) = P (Nt = 0) +

∞
∑

n=1

∫ h−x0

0

1

Γ(nα)βnα
Xnα−1 exp−

(

X

β

)

· P (Nt = n)dX

= P (Nt = 0) +
∞

∑

n=1

P (Nt = n) · ΦGam(h− x0)

=
1

t(b− a)

[

(exp−at− exp−bt)
]

+
∞

∑

n=1

n
∑

i=0

[

ΦGam(h− x0) ·
(

(at)i

i!
· exp−at−(bt)i

i!
· exp−bt

)]

where ΦGam(·) is the distribution function of Gamma.

ΦGam(h− x0) =

∫ h−x0

0

1

Γ(nα)βnα
Xnα−1 exp−

(

X

β

)

dX

Example 3. Let Xn has a weibull distribution with parameters (η, β). As in

Example 1 we assume that P (Nt = n) = c
c+t
·

(

t
c+t

)n
and X0 = x0 = const. < h. The

density of Xn is

f(x; η, β) =
β

η

(

x

η

)β−1

exp

[

−
(

x

η

)β
]

, x > 0, η > 0, β > 0
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In the case of independent marking,

f(x1, x2, . . . , xn, η, β) =

(

β

η

)n (

x

η

)nβ−n

exp
[

−
n

∑

i=1

(

xi
η

)β
]

P (x1 + x2 + . . .+ xn < h− x0) =

∫

. . .

∫

x1+...+xn<h−x0

f(x1, . . . , xn, η, β) dx1 . . .dxn

By the form so that we can write

P (Z∗
h > t) = P (Nt = 0) +

∞
∑

n=1

∫

. . .

∫

x1+...+xn<h−x0

(

β

η

)n (

x

η

)nβ−n

exp

[

−
n

∑

i=1

(

xi
η

)β
]

· c

c+ t

(

t

c+ t

)n

dx1 . . .dxn

=
c

c+ t

{

1 +
∞

∑

n=1

∫

. . .

∫

x1+...+xn<h−x0

(

βt

η(c+ t)

)n (

x

η

)nβ−n

exp

[

−
n

∑

i=1

(

xi
η

)β
]

dx1 . . .dxn

}

where the expression of n integrals can be solved by numerical method.

2.2 Wiener Process and Inverse Gaussian Distribution

This section presents the distribution of Inverse Gaussian (IGAU), which is derived

from the Brownian motion as a first passage time distribution. IGAU distribution can

be used to describe the failure distribution under conditions that will be described

below. The Brownian motion process is sometimes called the Wiener process and

there are two parameters, drift ν and diffusion σ2. Now we describe the Wiener

process properties below:

1. The nonoverlay differences of W(t) are independent. That is, when 0 ≤ t1 <

t2 . . . ti < ti+1 ≤ ∞. W (t2)−W (t1), . . . ,W (ti+1)−W (ti) are independent.

2. W (ti+1)−W (ti) ∼ N(ν(ti+1 − ti), σ
2(ti+1 − ti)), for ti+1 > ti.
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If ν = 0 and σ = 1 , the process is called the standard Brownian motion Bt. The

form of Wiener process can be obtained as W (t) = νt + σBt.

When the process reaches a critical quality, the first passage time T follows distri-

bution of IG (Chhikara and Folks, 1989, Chapter 3). Now we describe the arguments

to obtain the relationship between (ν, σ2) and (µ, φ) where (µ, φ) are the parameters

of IG. Let Q(t|s0) be the quality of detected object in the stress s0 which may be

temperature or voltage or others. Let DQ denote the lower critical value of the qual-

ity. When Q reaches DQ, the product could be claimed as failed. Suppose we can

find a transformable function ϕ by character of product, such that ϕ(Q(t|s0)) satisfy

the Wiener process with drift ν and σ2. So the first passage time T is defined as

T = inf{t|ϕ (Q(t|s0)) ≤ ϕ (DQ)}.

The form of CDF of IG distribution is:

F (t;µ, φ) = Φ

[

√

µφ

t
(
t

µ
− 1)

]

+ e2φΦ

[

−
√

µφ

t
(
t

µ
+ 1)

]

where Φ(·) is the CDF of standard normal.

The pdf of IG distribution is:

f(t;µ, φ) =

√

µφ

2π
t−

3
2 exp

[

−φ(t− µ)2

2µt

]

, for all t > 0.

where µ = ϕ(DQ)/ν and φ = νϕ(DQ)/σ2.

The reliability function of IGAU distribution is:

R(t) = 1−F (t) = Φ

[

√

λ

t
(1− t

µ
)

]

−exp(2λ/µ) Φ

[

−
√

λ

t
(1+

t

µ
)

]

The character of product Q(t|s0) often is not expressed in numeric form or the prim-
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itive data are hard to analysis. It is important for analysis to identify the dataset

which determined by a professional with specialized knowledge in order to obtain ϕ.

Suppose Q(t|s) be the quality of product in the stress s, denote ξ as a transfor-

mation between s0 and s. Consider:

Q(t|s) = Q(eAξt|s0)

, hence

ϕ(Q(t|s)) = ν(eAξt) + σBeAξt

= (eAξν)t+ (e
Aξ
2 σ)Bt

where A > 0, then ϕ((Q(t|s)) be a Wiener process with drift eAξν and diffusion eAξσ2.

As defined above we have random variates following IG(µ(ξ), φ(ξ)) at the stress s,

where

µ(ξ) =
ϕ(DQ)

eAξν
=

µ

eAξ

φ(ξ) =
eAξνϕ(DQ)

eAξσ2
= φ

Take logarithm for first equation, and consider β0 = ln(µ); β1 = −A , then we can

obtain below:

lnµ(ξ) = β0 +β1ξ

By results above, we assume the criteria below:

1. The failure time of the every experiment units follow IG distribution with mean

µ and shape φ.

2. There is a relation between the mean µ and the transformable function ξ such

that

lnµ(ξ) = β0 +β1ξ.
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3. The shape φ is a constant.

The IGAU distribution has some useful properties, including the following (Chhikara

and Folks,1989):

1. The family of IGAU distributions is closed under a change of scale. that is, for

any IGAU random variable T and any number c > 0, cT is IGAU distributed

with parameters cµ and cλ.

2. For a linear combination
∑

ciTi , ci > 0 , of IGAU random variables has an

IGAU distribution with parameters µ =
∑

ciµi and λ = ξ(
∑

ciµi)
2 if λ/(µ2

i ci) =

ξ ∀i.

3. The family of inverse Gaussian distributions is complete.

4. The sample mean X̄ from a sample of iid IGAU random variables has an IGAU

distribution.

2.3 General Continuous Degradation Path Model

Following the description of Meeker and Escobar (1998, Ch. 11). Let the notation by

the actual degradation path of a particular unit over time be denoted D(t), t > 0. In

applications, values of D(t) are sampled at discrete points in time t1, t2, t3, . . .. The

observed sample degradation yij of unit i at time tij is

yij = Dij+εij, i = 1, . . . , n, j = 1, . . . , mi, (2.3.1)

where Dij = D(tij, β1i, . . . , βki) is the actual path of the unit i at time tij (the times

need not be the same for all units ) and εij ∼ N(0, σε) is a residual deviation for

unit i at time tij. The total number of inspections on unit i is denoted by mi. Time

t could be real-time, operating time, or some other appropriate measure of use like
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miles for automobile tires or cycles in fatigue tests. The parameters β1, . . . , βk could

be modeled as common across all units.

Degradation model choice requires not only specification of the form of the D(tij)

function, but also specification of which of the β1, . . . , βk are random (differing from

unit to unit) and which are fixed (common to all units). For some cases deviations

εij can be ignored. Because in many practical applications involving inference on

the degradation of units from a population or process, the correlation is weak and

dominated by unit-to-unit variability in the β1, . . . , βk values. But in situations where

autocorrelation cannot be ignored, one can use time series model for the residual term.

2.3.1 Continuous Degradation Models

Most failures can be traced to an underlying degradation process, and degradation

paths might be linear, convex or concave degradations ( e.g. Figure 3). In some

applications, there may be more than one degradation variable or more than one un-

derlying degradation process. Usually models start with a deterministic description

of the degradation process — often in the form of a differential equation or system

of differential equations. Then randomness can be introduced, as appropriate, us-

ing probability distributions to describe variability in initial conditions and model

parameters like rate constants or material properties. The following three cases, we

describe some general degradation path models.

Case 1. Linear Degradation.

Linear degradation arises in some simple wear processes (e.g., automobile tire wear). If

D(t) is the amount of automobile tire tread wear at time t and wear rate is dD(t)/dt =

C, then

D(t) = D(0)+C×t
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where the parameters D(0) and C could be taken as constant for individual units,

but random from unit-to-unit (Meeker and Escobar, 1998, Ch.13)

Tseng, Hamada and Chiao ( 1995 ) use degradation model to improve fluorescent

lamp reliability. The model for luminous flux D(t) at time t is

lnD(t) = θ+λt

where the parameters θ and λ are the initial luminous flux and rate of degradation,

and the fluorescent lamp industry defined the lamp failure when a lamp’s luminous

flux D(t) falls below 60% of its luminous flux after 100 hours of use.

Case 2. Convex Degradation.

Let a(t) denote the size of a crack at time t. A simple deterministic Pairs-rule model

da(t)

dt
= C× [4K(a)]m

provides a useful model for cracks within a certain size range, where C and m are

material properties and 4K(a) is a function of crack size a ( Meeker and Escobar

1998, Ch. 13 ). For example, to model a two-dimensional edge-crack in a plate with

a crack that is small relative to the width of the plate, 4K(a) = Stress
√
πa. The

deterministic solution to the resulting differential equation is

a(t) =







{

[a(0)]1−m/2 + (1−m/2)× C × (Stress
√
π)m × t

}2/(2−m)

m 6= 2

a(0)× exp
{

C × (Stress
√
π)2 × t

}

m = 2

Case 3. Concave Degradation

D(tij) = β0 + βi1 ×
√

tij.

Figure 14 display the simple concave degradation.
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2.3.2 Model Relating to Continuous Degradation and Failure Distribu-

tion

A fixed value of Df will be used to denote the critical level for the degradation path

above (or below) which failure is assumed to have occurred. The failure time T is

defined as the time when the actual path D(t) crosses the critical degradation level

Df and use tc denote the planned stopping time in the experiment which is called

censor time. Since a specific degradation model D(t) and specific fail level Df can

define a failure-time distribution. In general, this distribution can be written as a

function of the degradation model parameters. Suppose that a unit fails at time t if

the degradation level first reaches Df at time t. Then

P (T ≤ t) = F (t) = F (t; θβ) = P ( D(t, β1, β2, . . . , βk) ≥ Df ) (2.3.3)

In some simple degradation models, it is possible to write down a closed-form ex-

pression for F (t) by the (2.3.3) and the failure distribution of T depends on the

parameters (β1, β2, . . . , βk), which are the degradation path parameters.

Here we display some simple path models which F (t) can be expressed as a func-

tion of the basic path parameters in a closed form. The following example 1 to

example 3 are given by Meeker, Luvalle and Michael (1995).

Example 1. Suppose the degradation path of a particular unit is given by

D(t) = β1 +β2t

where β1 is fixed and β2 varies from unit to unit according to a LOGNOR(µ, σ)

distribution. The parameter β1 represents the common initial amount of degradation

of all the test units at time 0 and β2 represents the degradation rate, random from
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unit to unit. Then

FT (t; β1, µ, σ) = Pr(D(t) > Df)

= Φnor

[

log t− [log(Df − β1)− µ]

σ

]

, t > 0.

This shows that T has a lognormal distribution with parameters that depend on

the path parameters (β1, µ, σ) and Df . So that path model can be a close form for

failure-time distribution.

Example 2. With example 1, let β1 has a Normal distribution with parameters

(µ1, σ1) and β2 also has a Normal distribution with parameters (µ2, σ2). β1 > 0, β2 >

0, β1 and β2 are independent. In practice, both P (β1 < 0) and P (β2 ≤ 0) would be

negligible. Then, D(t) ∼ N(µ1 + µ2t, σ
2
1 + σ2

2t
2) and the density is

FT (t) = Pr(D(t) > Df)

≈ 1− Φnor

[

Df − (µ1 + µ2t)
√

σ2
1 + σ2

2t
2

]

≈ 1− Φnor

[

t− (Df − µ1)/µ2
√

(σ2
1 + σ2

2t
2)/µ2

2

]

, t > 0.

Example 3. Similarly, in the Example 1. If β1 is fixed and β2 follows a exponential

distribution with parameter θ; that is,

Gβ2(y) = 1− exp(−y/θ), y > 0, θ > 0

For the critical level Df , Df = β1 + β2 · T and T = (Df − β1)/β2. The distribution

function of T is

FT (t) = P (T ≤ t) = P (
Df − β1

β2
≤ t) = P (β2 ≥

Df − β1

t
)

= 1− P (β2 ≤
Df − β1

t
) = exp

[

− (
Df − β1

θt
)
]

, t > 0.
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So the distribution FT (t) depends on Df , β1, θ, and distribution parameter θ. The

distribution of T is known as the reciprocal exponential because 1/T follows a expo-

nential distribution.

Example 4. Suppose that a unit path is given by

D(t) = φ1 +ψ ·exp(φ2t), φ2 > 0

where φ = (φ1, φ2)
′ are fixed and ψ has a Weibull distribution with parameters (η, β).

In particular, log(ψ) ∼ SEV (µ, σ), where σ = 1/β and µ = log(η). So

Fψ(x) = Φsev

[

log(x)− µ

σ

]

where Φsev(z) = 1− exp
[

− exp(z)
]

. Then T can be expressed as follows:

T =
log(Df − φ1)− logψ

φ2

The distribution function of T for the critical level Df is

FT (t) = P (T ≤ t) = P

[

log(Df − φ1)− log(ψ)

φ2

≤ t

]

= P

[

− log(ψ) ≤ tφ2 − log(Df − φ1)

]

= P

[

log(ψ) ≥ log(Df − φ1)− tφ2

]

= 1− Φsev

[

log(Df − φ1)− tφ2 − µ

σ

]

= 1− Φsev

{ −
[

t−
(

log(Df − φ1)− µ
)/

φ2

]

σ/φ2

}

The possibility of negative T arises because, if ψ > Df − φ1, ψ + φ > Df , then

D(0) > Df which D(t) crosses Df before time 0.
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2.4 Failure Distributions

Many parametric models have been used in the analysis of lifetime data. The most

commonly used location-scale parametric models in the reliability analysis include

exponential, weibull, normal, and lognormal distribution. For the needs of flexibility

of the models to fit the data, we consider three parameter models such as extend gen-

eralized gamma, exponential Weibull and generalized inverse Gaussian distributions.

This section we will describe the properties of extend generalized gamma, exponential

Weibull and generalized inverse Gaussian distributions.

2.4.1 Generalized Gamma Distribution

The Generalized Gamma Model

Meeker and Escobar (1998, Ch.5) described that generalized gamma distribution

contains the exponential, gamma, weibull, and lognormal distributions as special

cases. When T has a generalized gamma distribution we indicate that by T ∼
GENG(θ, β, k).

The cdf and pdf for the generalized gamma distribution are

F (t; θ, β, k) = ΓI

[

(

t

θ

)β

; k

]

,

f(t; θ, β, k) =
β

Γ(k)θ

(

t

θ

)kθ−1

exp

[

−
(

t

θ

)β
]

, t > 0.

Where θ > 0 is a scale parameter, β > 0 and k > 0 are shape parameters, and ΓI(ν, k)

is the incomplete gamma distribution and is given as follows

ΓI(ν, k) =

∫ ν

0
xk−1 exp(−x)dx

Γ(k)
, ν > 0.



32

Generalized Gamma Moments and Quantiles

For m ≥ 0, E(Tm) = θm · Γ(m/β + k)/Γ(k). From this

E(T ) =
θΓ(1/β + k)

Γ(k)
,

V ar(T ) = θ2[
Γ(2/β + k)

Γ(k)
− Γ2(1/β + k)

Γ2(k)
] ,

tp = θ[Γ−1I(p; k)]
1/β .

Special Cases of the Generalized Gamma Distribution

Here we show the relationship between the GENG(θ, β, k) and the well-known dis-

tributions that special cases:

1. When β = 1, T ∼ GAM(θ, k).

2. When k = 1, T ∼ WEI(θ, β).

3. When (β, k) = (1, 1), T ∼ EXP (θ).

4. As k →∞, T ∼ LOGNOR(log(θ) + log(k)/β, 1/(β
√
k)).

Generalized Gamma Reparameterization for Numerical Calculation

The parameterization in terms of (θ, β, k) is generally numerically unstable for fitting

the distribution to data. Farewell and Prentice (1977) recommend the alternative

parameterization

µ = log(θ)+
1

β
log(λ−2), σ =

1

β
√
k
, λ =

1√
k
.

This parameterization is numerically stable if there is little or no censoring. By

considering the transformation of w = [log(t)− µ]/σ the pdf, cdf and p quantile of T
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can be written

F (t; θ, β, k) = ΓI [λ
−2 exp(λw);λ−2]

= Φlg[λw + log(λ−2);λ−2] ,

f(t; θ, β, k) =
λ

σt
φlg[λw + log(λ−2);λ−2], t > 0

tp = exp{µ+
σ

λ
log[λ2Γ−1

I (p;
1

λ2
)]} ,

where −∞ < µ <∞, σ > 0, and λ > 0

and

Φlg(s; k) = ΓI [exp(s); k] ,

φlg(s; k) =
1

Γ(k)
exp[ks− exp(s)] ,

are the cdf and pdf for the standardized loggamma variable S = log(T/θ) = log(T )−
µ, T ∼ GAM(θ, k) (Meeker and Escobar, 1998).

Extended Generalized Gamma Distribution

Using the alternative stable parameterization and allowing λ to become negative,

Meeker and Escobar (1998, pp 101-102) called it the extended generalized gamma

distribution, which enlarges the family to include other distributions as special cases.

Let T have an EGENG(µ, σ, λ) distribution, the form of the cdf and pdf are given

as follows.

F (t;µ, σ, λ) =



















Φlg[λw + log(λ−2);λ−2] if λ > 0,

Φnor(w) if λ = 0,

1− Φlg[λw + log(λ−2);λ−2] if λ < 0.

(2.4.1)

f(t;µ, σ, λ) =







|λ|
σt
φlg[λw + log λ−2;λ−2] if λ 6= 0,

1
σt
φnor(w) if λ = 0,

(2.4.2)
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where t > 0, w = [log(t) − µ]/σ, −∞ < µ < ∞, and σ > 0, Φlg, φlg as defined in

previous distribution.

And the form of the p quantile

tp = exp[µ+ σw(p;λ)],

where w(p;λ) is the p quantile of [log(T )− µ]/σ given by

w(p;λ) =



















(1/λ) log[λ2Γ−1
I (p;λ−2)] if λ > 0,

φ−1
nor(p) if λ = 0,

(1/λ) log[λ2Γ−1
I (1− p;λ−2)] if λ < 0.

Some properties of the EGENG distribution

• If T ∼ EGENG(µ, σ, λ) and c > 0 ⇒ cT ∼ EGENG(µ+ log(c), σ, λ).

• exp(µ) is a scale parameter and σ and λ are shape parameters.

• If λ is fixed, the EGENG distribution is a log-location-scale distribution.

Special Case of the EGENG Distribution

1. If λ > 0, then EGENG(µ, σ, λ) = GENG(µ, σ, λ).

2. If λ = 1, T ∼ WEIB(µ, σ).

3. If λ = 0, T ∼ LOGNOR(µ, σ).

4. If λ = −1, 1/T ∼ WEIB(−µ, σ).

5. If λ = σ, T ∼ GAM(θ, k), where θ = λ2 exp(µ) and k = λ−2.

6. If λ = σ = 1, T ∼ EXP (θ), where θ = exp(µ).

2.4.2 Exponential Weibull Family

The Weibull distribution is commonly used for analyzing lifetime data. The Weibull

family accommodates increasing and decreasing failure rate. But it is not allow non-

monotone failure rates, which are common in practice and on occasion. The most
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common nonmonotone failure rate situation involves bathtub shapes. The exponen-

tial weibull family not only contains distribution with unimodal and bathtub failure

rates (Figure 4) but also allows for a broader class of monotone hazard rates and is

computationally convenient for censor data (Mudholkar and Srivastava, 1995).

The form of the cdf, pdf, p quantile and hazard function are

F (t;α, θ, σ) = [1− exp(−(
t

σ
))α]θ,

f(t;α, θ, σ) =
αθ

σ
[1− exp(−(t/σ)α)]θ−1 × exp(−(t/σ)α)(t/σ)α−1,

tp = σ[− log(1− p1/θ)]1/α,

h(t;α, θ, σ) =
αθ[1− exp(−(t/σ)α)]θ−1 exp(−(t/σ)α)(t/σ)α−1

σ[1− (1− exp(−(tσ)α))θ]
,

where α > 0, θ > 0, σ > 0 and t > 0.

Note when θ = 1, the exponential weibull family corresponds to the weibull dis-

tribution.

2.4.3 Generalized Inverse Gaussian

Let T has a generalized inverse Gaussian which T ∼ GIG(t;λ, χ, ψ) (Jorgensen,

1982). The probability density function of the generalized inverse Gaussian is

(ψ/χ)λ/2

2Kλ(
√
χψ)

tλ−1 exp[−1/2(χt−1+ψt)], t > 0, (2.4.3)

where Kλ is the modified Bessel function of the third kind of order λ.

Special cases of the Generalized Inverse Gaussian

• If χ = 0, λ > 0, T ∼ the Gamma distribution.
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• If ψ = 0, λ < 0, T ∼ the inverted Gamma distribution.

• If λ = −1
2
, T ∼ the inverse Gaussian distribution.

• If λ = 1
2
, T ∼ the inverted inverse Gaussian distribution.

• If λ = 0, T ∼ the hyperbola distribution

Basic properties of the Generalized Inverse Gaussian

The domain of variation for the parameters is given by

λ ∈ R, (χ, ψ) ∈ Θλ.

Where

Θλ =



















{(χ, ψ) : χ ≥ 0, ψ > 0} if λ > 0,

{(χ, ψ) : χ > 0, ψ > 0} if λ = 0,

{(χ, ψ) : χ > 0, ψ ≥ 0} if λ < 0.

In the case χ = 0 and ψ = 0 the norming constant in (2.4.3) is found using (A.2) and

the asymptotic relation (A.8).

Now we introduce the parameters w and η which are given by

w =
√

χψ, η =

√

χ

ψ
.

Thus w > 0 denotes the case where both χ and ψ are positive and where the den-

sity(2.4.1) takes the alternatives form

η−λ

2Kλ(w)
tλ−1 exp−w

2
(ηt−1 + η−1t). (2.4.4)

If the random variable T has distribution GIG(λ, χ, ψ) , let Y = T−1 and by the
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transformation and (2.4.3). We can derive that

f(y;λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

(1/y)λ−1 exp

[

−1

2
(χy + ψ/y)

]

(1/y)2

=
(χ/ψ)−λ/2

2Kλ(
√
χψ)

y−λ−1 exp

[

−1

2
(χy + ψ/y)

]

=
(χ/ψ)−λ/2

2K−λ(
√
χψ)

y−λ−1 exp

[

−1

2
(χy + ψ/y)

]

, (By the A.2).

So we can get that T−1 ∼ GIG(−λ, ψ, χ).

Similarly if c > 0 we can also derive that

cT ∼ GIG(λ, cχ, c−1ψ).

The density (2.4.1) is unimodal and the mode point is given by

m =







λ−1+
√

(λ−1)2+χψ

ψ
if ψ > 0,

χ
2(1−λ)

if ψ = 0.

Some convolution formulas from the density (2.4.3) :

GIG(−1/2, χ1, ψ) +GIG(−1/2, χ2, ψ) = GIG(−1/2, (
√
χ1 +

√
χ2)

2, ψ),

GIG(−λ, χ, ψ) +GIG(λ, 0, ψ) = GIG(λ, χ, ψ) (λ > 0),

GIG(−1/2, χ1, ψ) +GIG(1/2, χ2, ψ) = GIG(1/2, (
√
χ1 +

√
χ2)

2, ψ).

Moments of the Generalized Inverse Gaussian

Let T be a random variables with distribution (2.4.3). The Moments u
′

k = E(T k) are

given by

u
′

k =
Kλ+k(w)

Kλ(w)
ηk, k ∈ R. (2.4.5)

In the case χ = 0, λ > 0, we have by (A.8)

u
′

k =







Γ(λ+k)
Γ(λ)

( 2
ψ
)k if k > −λ,

∞ if k ≤ −λ.
(2.4.6)
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And in the case ψ = 0, λ < 0, we have by (A.8) and (A.2)

u
′

k =







Γ(−λ−k)
Γ(−λ)

(χ
2
)k if k < −λ,

∞ if k ≥ −λ.
(2.4.7)

Let the formulas are simplified by using the functions Rλ and Dλ defined by

Rλ(w) =
Kλ+1(w)

Kλ(w)
,

Dλ(w) =
Kλ+1(w)Kλ−1(w)

K2
λ(w)

.

From (2.4.5), (2.4.6) and (2.4.7), we have

E(T ) =































Rλ(w)η if w > 0,

2λ
ψ

if χ = 0, λ > 0,

χ
2(−λ−1)

if ψ = 0, λ < −1,

∞ if ψ = 0, −1 ≤ λ < 0.

(2.4.8)

And

E(T−1) =































R−λ(w)η−1 if w > 0,

ψ
2(λ−1)

if χ = 0, λ > 1,

∞ if χ = 0, 0 < λ ≤ 1,

−2λ
χ

if ψ, λ < 0.

(2.4.9)

From the (2.4.3) that the variance of the distribution is given by

V (T ) = η2(
Kλ+2(w)

Kλ(w)
−K2

λ+1(w)

K2
λ(w)

). (2.4.10)

Using the definitions of Rλ and Dλ, we have

V (T ) = η2R2
λ(w)(Dλ+1(w)−1). (2.4.11)
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2.5 Goodness-of-Fit

Some general methods of testing fit

Some general methods of testing hypotheses H0 : F (x) = F0(x), where F0(x) is

a specified family of models. The best known procedures for this are the classical

goodness of fit tests based on the empirical distribution function (EDF) for continuous

ungrouped data and the pearson χ2 or likelihood ratio tests for discrete or grouped

data. The following are given by Lawless (1982, ch 9).

2.5.1 Tests of Fit Based on Grouped Data

Uncensored grouped data. With grouped uncensored data, tests of fit can be based on

the multinomial model, the best-known procedures being the classical Pearson (χ2)

test and the likelihood ratio test. Let the observations can fall into k + 1 classes

Ij = [aj − 1, aj), j = 1, 2, . . . , k + 1, with a0 = 0, ak+1 = ∞, and ak = T as an

upper limit of observations. Let dj represent the number of observations in a random

sample of size n that fall into Ij, let pj be the probability of an observation falling

into Ij, and consider the hypothesis

H0 : pj = pj0, j = 1, 2, . . . , k+1,

where the pj0 are specified but may involve unknown parameters. Let p̃j0 be the

m.l.e. of pj under H0, or some other asymptotically fully efficient estimator, and let

ej = np̃j0. The Pearson statistic for testing H0 is

X2 =

k+1
∑

j=1

(dj − ej)
2

ej
.

When the pjo are known constants, ej = npj0 and the limiting distribution ofX2 is χ2
(k).

When the Pjo involve s unknown parameters, the limiting distribution is χ2
(k−s).
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The likelihood ratio test is an alternative test of H0. The likelihood function for

p1, p2, . . . , pk is multinomial,

L(p1, p2, . . . , pk) ∝
k+1
∏

j=1

p
dj

j .

where pk+1 = 1−p1−p2− . . .−pk. The likelihood ratio statistic for testing H0 against

the alternative that the p′js satisfy only pj ≥ 0,
∑

pj = 1, is easily seen to be

Λ = 2
k=1
∑

j=1

dj log(
dj
n

)− 2
k+1
∑

j=1

dj log p̃j0

= 2
k+1
∑

j=1

dj log(
dj
ej

).

The limiting distribution of Λ under H0 is χ2
(k−s) when the pj0’s involve s unknown

parameters. When testing a hypothesis H0 : F (t) = F0(t) about a continuous model,

the X2 and likelihood ratio tests have the advantages of easy computation and the

ability to accommodate unknown parameters. They are less powerful than based

on the EDF in some situation, but are not appreciably less so in most situations of

practical importance, provided that intervals are chosen appropriately. In general,

the X2 and likelihood ratio statistics provide good omnibus tests of fit.

2.5.2 Tests Based on the EDF

Case 1 : Uncensored data. Let T be a random variables with continuous distribution

function (d.f.) F (t) and the hypotheses H0 : F (t) = F0(t), where F0(t) is some family

of d.f.’s and is completely specified (i.e. does not contain any unknown parameters ).

Give a random sample t1, t2, . . . , tn from the distribution for T ,

F̃n(t) =
Number of t′is ≤ t

n
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is the empirical d.f. ( EDF ) for the sample. A great many statistics that have been

proposed for testingH0 are based on the notion of measuring ”distance” between F̃n(t)

and F0(t) (e.g. Stephens, 1974). Two statistics are discussed here, large values of the

statistics are indicative of evidence against the hypothesized model. The statistics

are

1. The Kolmogorov-Smirnov statistics:

D+
n = sup

t
[F̃n(t)− F0(t)],

D−
n = sup

t
[F0(t)− F̃n(t)], (2.5.1)

Dn = sup
t
|F̃n(t)− F0(t)| = max(D+

n , D
−
n ).

2. The Anderson-Darling statistic:

A2
n = n

∫ ∞

−∞

[F̃n(t)− F0(t)]
2

F0(t)[1− F0(t)]
dF0(t). (2.5.2)

F̃n(t) is a step function with jumps at the order statistics t(1) < t(2) < . . . < t(n) and

the EDF satisfies that

F̃n(t) = 0 t < t(1),

F̃n(t) = i/n t(i) ≤ t < t(i+1), i = 1, 2, . . . , n− 1,

F̃n(t) = 1 t(n) ≤ t.

For computational purposes the expressions (2.5.1) and (2.5.2) can be expressed by

D+
n = max

1 ≤ i ≤ n
(
i

n
− F0(t(i))), D−

n = max
1 ≤ i ≤ n

(F0(t(i))−
i− 1

n
),

Dn = max(D+
n , D

−
n ), (2.5.3)

A2
n = −

n
∑

i=1

2i− 1

n
{ log[F0(t(i))] + log[1− F0(t(n+1−i))] } − n. (2.5.4)
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Case 2 : Censored data. When data are Type II or singly Type I censored, simple

modifications can be made to the EDF goodness of fit statistics, and distribution

theory becomes only slightly more complicated than in the corresponding uncensored

situation.

Single Type I or Type II Censoring

If the data are Type II censored at tr, the r smallest observation in a random sample

of n, then Dn and A2
n can be modified as

Dn, r = sup
−∞< t ≤ t(r)

|F̃n(t)− F0(t)|, (2.5.5)

A2
n, r = n

∫ t(r)

−∞

[ F̃n(t)− F0(t) ]2

F0(t)[ 1− F0(t) ]
dF0(t). (2.5.6)

For single Type I censoring at the point tc analogous statistics are defined

Dn, p = sup
−∞ < t ≤ L

|F̃n(t)− F0(t)|, (2.5.7)

A2
n, p = n

∫ L

−∞

[ F̃n(t)− F0(t) ]2

F0(t)[ 1− F0(t) ]
dF0(t), (2.5.8)

where p = F0(L).

Alternate forms of (2.5.6) and (2.5.8) are convenient for computation. It can be

expressed by

A2
n, r = −

r
∑

i=1

(
2i− 1

n
logF0(t(i))−

2n− 2i+ 1

n
log[ 1− F0(t(i)) ] )

+
r2

n
logF0(t(r))−

(n− r)2

n
log[ 1− F0(t(r)) ]− nF0(t(r)), (2.5.9)

A2
n, p = −

r
∑

i=1

(
2i− 1

n
logF0(t(i)) +

2n− 2i+ 1

n
log[ 1− F0(t(i)) ] )

+
r2

n
logF0(tc)−

(n− r)2

n
log[ 1− F0(tc) ]− nF0(tc). (2.5.10)

Note that in A2
n,r, r is fixed. However in A2

n,p, r is random.
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2.5.3 Simulate Quantiles for Functions of A2 with Failure Distribution

(1). Pseudorandom Observations from Continuous Distributions

Suppose U1, U2, . . . , Un is a pseudorandom sample from a Unif(0, 1). If tp = F−1
T (p)

is the quantile function for the distribution of the random variable T , then T1 =

F−1
T (U1), . . . , Tn = F−1

T (Un) is a pseudorandom sample from FT . For exam-

ple, to generate a pseudorandom sample from EGENG distribution for specified

parameters (µ, σ, λ) (see section 2.4). First we obtain the Unif(0, 1) pseudoran-

dom sample U1, U2, . . . , Un and then compute T1 = exp [µ+ σw(U1;λ)] , . . . , Tn =

exp [µ+ σw(Un;λ)]. Similarly, for the Exponential Weibull Family and Generalized

Inverse Gaussian distribution.

(2). Quantiles for Anderson-Darling Statistic with Exact Failure Time

Data

Let T(i) be the ith order statistic from T1, T2, . . . , Tn and since (2.5.4)

A2
n = −

n
∑

i=1

2i− 1

n
{ log[F0(t(i))] + log[1− F0(t(n+1−i))] } − n,

where F0(·) is specified as needed.

By the process in (1) and (2) that we can obtain a value of A2. We repeat the process

m times to obtain m values of A2 and use it to approximate the distribution of A2

under specified model parameters. Then quantiles of the distribution of A2 can be

easily approximated.

(3). Quantiles for Anderson-Darling Statistic with Type I Censoring Data

Let tc denote the censoring time and by the T(1), . . . , T(n), if T(i) > tc which the sample

consists of the failure time T(1), . . . , T(i−1) and (n − i + 1) censored observations.

However from the (2.5.10) and the process as in (1) and (2), we can obtain a value

of A2
n,p. Then we repeat the process m times which it will obtain m values of A2

n,p

and use it to approximate the distribution of A2
n,p under specified model parameters.
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Then quantiles of the distribution of A2
n,p can be easily approximated.

3 Inference

3.1 Estimation of Degradation Model Parameters

Considering the degradation model (2.3.1), let the parameters β1, β2, . . . , βk be a

multivariate normal distribution with mean vector µβ and covariance matrix Σβ and

use the θβ = (µβ,Σβ) to denote the overall population process parameters.

The likelihood for the random parameter degradation model can be expressed as

L(θβ, σε | data) =
n

∏

i=1

∫ ∞

−∞

. . .

∫ ∞

−∞

[

mi
∏

j=1

1

σε
φnor(ξij)

]

(3.1.1)

× fβ(β1i, . . . , βki; θβ)dβ1i, . . . , dβki ,

where ξij = [yij − D(tij, β1i, . . . , βki)]/σε and fβ(β1i, . . . , βki; θβ) is the multivariate

normal distribution density function. Maximizing (3.1.1) with respect to (µβ,Σβ, σε)

directly, even with today’s computational capabilities, is extremely difficult unless

D(t) is a linear function. (Meeker and Escobar, 1998, Ch.13)

With the same degradation model in (2.3.1) and following the expression (3.1.1),

we can extend to three parameters distributions. For example the EGENG distri-

bution, suppose εij ∼ EGENG(0, σ, λ) as in (2.4.2), we can give the expression as

belowing:

L(θβ, σ, λ | data) = =
n

∏

i=1

∫ ∞

−∞

. . .

∫ ∞

−∞

[

mi
∏

j=1

f(wij; σ, λ)

]

× fβ(β1i, . . . , βki; θβ)dβ1i, . . . , dβki,

where wij = [log (yij −D(tij, β1i, . . . , βki))] /σ.
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3.2 Likelihood Function for Failures Distributions

The likelihood for a sample t1, t2, . . . , tn from a location-scale distribution for a ran-

dom variable −∞ < T < ∞, consisting of exact (i.e., not censored) and right-

censored observations, can be written as

L(θ) =

n
∏

i=1

Li(θ; datai) =

n
∏

i=1

[

f(ti; θ)
]δi[

1− F (ti; θ)
]1−δi

,

where

δi =







1 if ti is an exact observation,

0 if ti is a right-censored observation.

3.3 Bootstrap Confidence Intervals of percentiles

The following is given by Efron and Tibshirani (1993). This method ”Parametric

Bootstrap” that simulates each sample of size n from the assumed parametric dis-

tribution, using the ML estimates computed from the actual data to replace the

unknown parameters. That is, sampling is from F (t; θ̂) which is defined to be a

random sample of size n draw from F (t; θ̂), say X∗ = (x∗1, x
∗
2, . . . , x

∗
n),

F (t; θ̂) → (x∗1, x
∗
2, . . . , x

∗
n).

On the other hand, the ”nonparametric bootstrap” data points X∗ = (x∗1, x
∗
2, . . . , x

∗
n)

are a random sample of size n drawn with replacement from the population of n

objects (x1, x2, . . . , xn). Thus the bootstrap data set X∗ = (x∗1, x
∗
2, . . . , x

∗
n) consists

of members of the original data set (x1, x2, . . . , xn).

Corresponding to a bootstrap data set X∗ is a bootstrap replication of t̂p,

t̂∗p = S(X∗)
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That is, we must use some finite number of B of replications. To proceed, we generate

B independent bootstrap data sets X∗1, X∗2, . . . , X∗B and compute the bootstrap

replications t̂∗p(b) = S(X∗b), b = 1, 2, . . . , B. Let t̂
∗(α)
pB be the 100 · αth empirical

percentile of the t̂∗p(b) values, that is the B · αth value in the order list of the B

replications of t̂∗p. So the t̂
∗(α)
pB be the 100 · αth empirical percentile and the t̂

∗(1−α)
pB be

the 100 · (1−α)th empirical percentile. The approximate 1− 2α percentile interval is

[

t̂p(lower) , t̂p(upper)
]

≈
[

t̂
∗(α)
pB , t̂

∗(1−α)
pB

]

.
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4 Exploring Failure Distributions under Degrada-

tion Models

Because the close forms of failure distributions that be difficult to obtain for most

degradation models except some simple degradation ones (e.g. section 2.3.2 exam-

ples). So in this chapter, we employ the computer to simulate some degradation data

from several interesting degradation models that contain both the ”Type I censoring”

data and exact failure data. From the data, we can find the firstpass times on dif-

ferent failure levels and employ the lognormal probability plot to fit some parametric

distributions such as EGENG, EW and GIG distributions.

4.1 Linear Models

Case 1. Consider the degradation model

D(tij) = β0+βi1×tij , i = 1, . . . , 50, j = 1, . . . , 60, (4.1.1)

where i is the experiment unit, j is the experiment time. We let β0 equal 50 to

indicate the initial level of degradation. βi1 has a normal distribution with parameters

µ = 3, σ = 0.3 that indicates the variability from unit-to-unit. Let the degradation

paths be linear in time t. Figure 5 shows this linear degradation model (4.1.1). To

illustrate a complete failure data set, we define the failure levels at 130 and 150,

where we can obtain the firstpass time. Figure 6 and Figure 7 show the lognormal

probability plot of the firstpass time data, comparing ML estimates of the EGENG,

exponential Weibull,GIG and lognormal distributions. We find that the EGENG and

exponential Weibull distributions can fit better than others.

Case 2. Consider the degradation model

D(tij) = βi0+βi1×tij, i = 1, . . . , 50, j = 1, . . . , 60, (4.1.2)
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where βi0 has a exponential distribution with parameter rate equal to 1 that indicates

the initial level with a little variability, βi1 has a weibull distribution with shape

parameter equal to 3 and scale parameter equal to 1. Here we assume that βi0 is

independent with βi1. Figure 8 shows the (4.1.2) model and we can see that the

variation is increasing from unit-to-unit. Here we define that the failure levels are

equal to 30 and 50, censor time is equal to 5.9. From Figure 8 we can see that the

data of the firstpass time are censored. Figure 9 and Figure 10 show the lognormal

probability plot of the firstpass time data, comparing ML estimates of the EGENG,

lognormal, generalized inverse Gaussian and exponential Weibull distributions. We

find that EGENG distribution can fit well. Additionally, generalized inverse Gaussian

and exponential Weibull distributions also fit well except for early failures.

4.2 Nonlinear Models

Case 3. Consider the degradation model

D(tij) = βi0+exp (|βi1| × tij), i = 1, 2, . . . , 150, j = 1, . . . , 60, (4.1.3)

where βi0 has a Normal distribution with parameters µ = 4, σ2 = 0.001 and βi1

has a Normal distribution with parameters µ = 0, σ2 = 0.01. βi0 is independent

with βi1. Figure 11 shows this degradation model (4.1.3). Here we define that failure

levels at 5.025 and 5.04, censor time is equal to 59. The data of the firstpass time are

right censored. Figure 12 and Figure 13 show the lognormal probability plot of the

firstpass time data, comparing ML estimates of the EGENG, lognormal, generalized

inverse Gaussian and exponential Weibull distributions. We see that EGENG and

generalized inverse Gaussian distributions fit well.

Case 4. Consider the degradation model

D(tij) = β0 + βi1 ×
√

tij, i = 1, . . . , 100, j = 1, . . . , 60, (4.1.4)
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where β0 is fixed and is equal to 20, βi1 has a normal distribution with parameters µ =

3, σ = 0.3. Figure 14 shows that model (4.1.4) is a concave degradation path model.

Here we define the failure levels at 32 and 36, censor time is equal to 59. Figure 15 and

Figure 16 show the lognormal probability plot of the firstpass time data, comparing

ML estimates of the EGENG, exponential Weibull, lognormal and generalized inverse

Gaussian distributions. We see that EGENG and EW distributions fit well and the

lognormal distribution can also fit well except for early failure.

4.3 Random Error Models

Case 5. Consider the degradation model

D(tij) = β + |ηi| × tij + εij, i = 1, . . . , 50, j = 1, . . . , 60, (4.1.5)

where β is fixed and is equal to 20, ηi has a normal distribution with parameters

µ = 5, σ = 2 and εij has a uniform distribution with (0, tij). Figure 17 shows that

model (4.1.5) with degradation rate varying due to variations in time. Here we define

the failure levels at 35 and 40, censor time is equal to 5.9. The data of the firstpass

time are the right censored. Figure 18 and Figure 19 show the lognormal probability

plot of the firstpass time data, comparing ML estimates of the EGENG, lognormal,

generalized inverse Gaussian and exponential Weibull distributions. We see that the

only EGENG distribution fits better than others.

Case 6. Consider the degradation model is

D(tij) = β0 + |ηi0| × tij + εij, i = 1, . . . , 100, j = 1, . . . , 60, (4.1.6)

where β0 is fixed and is equal to 20, ηi0 has a normal distribution with parameters

µ = 5, σ = 2 and εij has a exponential distribution with mean equal to tij/2. Figure

20 shows the model (4.1.6). Here we define the failure levels at 32 and 34, censor

time is equal to 5.9. The data of the firstpass time are right censored. Figure 21 and
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Figure ?? show the lognormal probability plot of the firstpass time data, comparing

ML estimates of the EGENG, exponential Weibull, lognormal and generalized inverse

Gaussian distributions. We see that EGENG and generalized inverse Gaussian dis-

tributions fit well. Additionally, the lognormal and exponential Weibull distributions

also fit well except for early failure.

Case 7. Consider the degradation model

D(tij) = |βi0|+ |ηi0| × tij + |γi0| × t2ij + εij, i = 1, . . . , 100, j = 1, . . . , 60,

(4.1.7)

where βi0 has a normal distribution with parameters µ = 0, σ = 3, ηi0 has a normal

distribution with parameters µ = 5, σ = 2, γi0 has a normal distribution with

parameters µ = 2, σ = 1 and εij has a uniform distribution with (0, 2t+ 0.1). Figure

23 shows the model (4.1.7). Here we define the failure levels at 45 and 50, censor

time is equal to 5.9. The data of the firstpass time are right censored. Figure 24 and

Figure 25 show the lognormal probability plot of the firstpass time data, comparing

ML estimates of the EGENG, exponential Weibull, lognormal and generalized inverse

Gaussian distributions. We see that EGENG distribution fits well.

4.4 First Order Autocorrelated Models

Case 8. Consider the degradation model

D(tij) = θij +D(tij−1), i = 1, . . . , 100, j = 1, . . . , 65, (4.1.8)

where θij has a uniform distribution with (0, 2). Model (4.1.8) indicates that D(tij)−
D(tij−1) is independent with D(tij−1) − D(tij−2) that has a uniform distributions.

Figure 26 shows the model (4.1.8). Here we define the failure levels at 30 and 40,

censor time is equal to 600. Figure 27 and Figure 28 show the lognormal probability

plot of the firstpass time data, comparing ML estimates of the EGENG, exponential
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Weibull, lognormal and generalized inverse Gaussian distributions. We see that all of

the four parametric distributions fit well.

Case 9. Consider the degradation model

D(tij) = βij +D(tij−1), i = 1, . . . , 100, j = 1, . . . , 65, (4.1.9)

where βij has a exponential distribution with parameter λ = 4. Model (4.1.9) is

similar to model (4.1.8) on that the increment between tij and tij−1 has an exponential

distribution and every increment is independent. Figure 29 shows the model (4.1.9).

Here we define the failure levels at 7 and 11, censor time is equal to 600. Figure 30 and

Figure 31 show the lognormal probability plot of the firstpass time data, comparing

ML estimates of the EGENG, exponential Weibull, lognormal and generalized inverse

Gaussian distributions. We see that EGENG and exponential Weibull distributions

fit well and the GIG distribution also fit well except the later period failures.
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5 Real Data Example

The 2024-T351 aluminum data was produced by the fatigue laboratory in the De-

partment of Mechanical Engineering of National Taiwan University in year 2001 (Wu

and Chen). There are 30 sample paths (figure 2).

Here we consider several specified failure levels (Df) and different censor times.

We use probability plot and Anderson-Darling test to identify the proper failure

distribution for the 2024-T351 aluminum data. First we will discuss the case of

complete failures, then discuss the case of right censoring.

Case 1. Complete Failure Case

We consider the specified failure level Df at crack size 23, 24, 25 and 26 mm. Figure

32, 33, 34 and 35 show the lognormal probability plot of the complete failure data

for 2024-T351 aluminum, comparing ML estimates of the EGENG, lognormal, gen-

eralize inverse Gaussian and exponential Weibull distributions. The ML estimates of

EGENG, GIG and exponential Weibull distributions are in Table 1.

The fitting result is not very convincing for all four distributions. By our expe-

rience in chapter 4, EGENG is very flexible for different degradation models. We

use Anderson-Darling test to check the goodness of fits for EGENG, GIG and EW

distributions. Table 2 is the quantile of Anderson-Darling statistic obtained by 5000

simulations for those distributions with parameters in table 1. Using the MLE of

EGENG, GIG, EW and the expression (2.5.4), we can find the Anderson-Darling

statistic A2
30 in Table 3. From Table 2 and Table 3, there are no evidence against the

hypothesis of EGENG and GIG from that test.

For simplicity of computation we will use the parametric way to generate data

and nonparametric way to generate bootstrap samples which to give the confidence

intervals of the p-th quantile of the EGENG distribution in Table 4, 5, 6 and 7 by
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10000 replications. The result will be similar to pure parametric bootstrap when

sample size is large.

Table 1: ML estimates of EGENG, GIG and EW Distributions with Complete 2024-

T351 Aluminum Data

MLE of the EGENG Distribution

µ σ λ

Fail level 23 10.4518 0.1598 -0.818

Fail level 24 10.5414 0.1515 -0.982

Fail level 25 10.6332 0.1557 -0.840

Fail level 26 10.6830 0.1506 -0.943

MLE of the GIG Distribution

w η λ

Fail level 23 14.91 9999.99 26.16

Fail level 24 13.73 10000.01 27.09

Fail level 25 13.20 9999.98 28.41

Fail level 26 12.61 9999.96 28.93

MLE of the EW Distribution

θ α σ

Fail level 23 12.69 1.26 10000.5

Fail level 24 160.47 1.21 10000.5

Fail level 25 203.44 1.17 10000.9

Fail level 26 239.13 1.15 10000.9
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Table 2: Quantiles of Anderson-Darling Statistics from Complete 2024-T351 Alu-

minum Data with EGENG, GIG and EW Distributions.

Percentage 0.01 0.05 0.1 0.80 0.85 0.90 0.95 0.99

αth-Quantile 0.2018 0.2780 0.3463 1.4031 1.6190 1.9442 2.4875 3.8025

Table 3: The Anderson-Darling statistic A2
30 from Complete 2024-T351 Aluminum

Data

A2
30 EGENG GIG EW

Fail level 23 0.4437 0.6841 4.1908

Fail level 24 0.4885 0.7785 4.1100

Fail level 25 0.5243 0.7829 6.4527

Fail level 26 0.5361 0.8184 3.7193

Table 4: The Confidence Intervals of the t̂p by Bootstrap method with fail level equal

to 23.

t̂p 2.5% 5% 95% 97.5%

5% 28614 28614 28650 28879 28888

10% 29907 29907 29924 30151 30177

20% 31649 31649 31678 31874 31880
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Table 5: The Confidence Intervals of the t̂p by Bootstrap method with fail level equal

to 24.

t̂p 2.5% 5% 95% 97.5%

5% 32100 31979 31998 32236 32258

10% 33406 33266 33282 33520 33542

20% 35254 35145 35157 35351 35368

Table 6: The Confidence Intervals of the t̂p by Bootstrap method with fail level equal

to 25.

t̂p 2.5% 5% 95% 97.5%

5% 34527 34376 34410 34705 34722

10% 36178 36015 36034 36299 36326

20% 38278 38136 38154 38401 38435

Table 7: The Confidence Intervals of the t̂p by Bootstrap method with fail level equal

to 26.

t̂p 2.5% 5% 95% 97.5%

5% 36831 36705 36719 36935 36972

10% 38188 38032 38053 38324 38347

20% 40334 40194 40215 40463 40494



56

Case 2. Right Censored

In field applications and experimental processes, life test may stop earlier because

of time restrictions. We mimic the situation by setting the possible censor time at

52000, 57500, and 60500 cycles. We consider the specified failure level Df equal to

24, 25, 26 mm. Figure 36, 37 and 38 show the lognormal probability plot of the 2024-

T351 aluminum data, comparing ML estimates of the EGENG, lognormal, generalize

inverse Gaussian and exponential Weibull distributions. The EGENG distribution

fits better than others. The ML estimates of EGENG are in Table 8.

The fitting is well in the probability plot for EGENG distribution. We also

use Anderson-Darling test to check the goodness of fit. Table 9 is the quantile of

Anderson-Darling statistic obtained by 10000 simulations for EGENG distribution

with parameters in Table 8. Using the MLE of EGENG and the expression (2.5.10),

we can obtain the Anderson-Darling statistic A2
30,p in Table 10. Since Table 9 and

Table 10, there are no evidence against the hypothesis of EGENG from that test. The

EGENG distribution can be used to estimate the quantile before the censor time. It

is quite useful because most fild problems are interested in the early failure time.

With the same method in last case, we also obtain the confidence intervals of the

p-th quantile of EGENG distribution in Table 11, 12 and 13.

Table 8: MLE of EGENG Distribution of Censor 2024-T351 Aluminum Data

Parameters µ σ λ

Fail level 24 10.39 0.058 -5.881

Fail level 25 10.56 0.124 -1.886

Fail level 26 10.587 0.101 -2.684
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Table 9: Quantiles of Anderson-Darling Statistics from Censor 2024-T351 Aluminum

Data with EGENG Distribution.

Percentage 0.01 0.05 0.1 0.80 0.85 0.90 0.95 0.99

Fail level 24 0.1185 0.1734 0.2188 1.1032 1.2870 1.5539 2.0546 3.3605

Fail level 25 0.1439 0.2072 0.2550 1.2212 1.4197 1.7210 2.2427 3.6373

Fail level 26 0.1368 0.1968 0.2458 1.1896 1.3811 1.6794 2.1733 3.5505

Table 10: The Anderson-Darling statistic A2
30,p from Censor 2024-T351 Aluminum

Data of EGENG Distribution

A2
30,p EGENG

Fail level 24 0.1616

Fail level 25 0.2081

Fail level 26 0.1957

Table 11: The Confidence Intervals of the t̂p by Bootstrap method with fail level

equal to 24 mm and censor time equal to 52000 cycles.

t̂p 2.5% 5% 95% 97.5%

5% 32126 32067 32075 32177 32189

10% 32752 32690 32696 32825 32832

20% 34149 34027 34039 34250 34268
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Table 12: The Confidence Intervals of the t̂p by Bootstrap method with fail level

equal to 25 mm and censor time equal to 57500 cycles.

t̂p 2.5% 5% 95% 97.5%

5%37105 37018 37024 37197 37205

10% 38073 37976 37996 38143 38165

20% 39601 39487 39511 39721 39740

Table 13: The Confidence Intervals of the t̂p by Bootstrap method with fail level

equal to 26 mm and censor time equal to 60500 cycles.

t̂p 2.5% 5% 95% 97.5%

5% 37122 37019 37035 37210 37219

10% 38026 37948 37962 38117 38133

20% 39673 39555 39576 39764 39782
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6 Conclusion and Future Research

6.1 Conclusion

In considering degradation problems, we explore the discrete and continuous degra-

dation process. In discrete degradation process that is defined by the mark point

process, we describe the property of the mark point process that leads to the failure

distribution. So we extend the result of Wendt (1997) to develop failure time distri-

bution with Gamma and Weibull increment. In the case of continuous degradation

process as a special random process of Wiener process, the failure distribution of

inverse Gaussian model can be derived from the Wiener process as a first passage

time distribution. We show the relation between a simple degradation model and the

Wiener process.

On the other hand, some failure distributions can be traced down from an un-

derlying degradation process which might be linear, convex or concave. It is possible

for some simple degradation paths to be written down with a closed-form expres-

sion. In this thesis we consider 9 different degradation paths and fit the failure time

distributions.

Many parametric models have been used in the analysis of lifetime data. The

most commom distributions used to fit the first passtime distribution are location-

scale parametric models. For the needs of flexibility of the models to fit the data, we

consider the three different failure distributions each having three parameters such as

extended generalized gamma, exponential Weibull and generalized inverse Gaussian

distributions.

Because the close forms for failure distributions are difficult to obtain for most con-

tinuous degradation models except some simple ones or a Wiener process. We employ



60

the computer to simulate some degradation data from several interesting degradation

models such as linear, nonlinear, random error and first order autocorrelated models

that result in both complete failure data and the right censored data. From the sim-

ulated data, we define the firstpass times on different failure levels and employ the

lognormal probability plot to fit four parametric distributions such as EGENG, EW,

GIG and lognormal distributions. We find that, EGENG distribution can fit better

than others in those the degradation model we consider.

In this thesis, we also investigate a real data set of the 2024-T351 aluminum

crack size. First we discuss the case of complete failures, then discuss the case of

right censoring. In the complete case, we consider the specified failure level Df

at crack size 23, 24, 25 and 26 mm. We employ the lognormal probability plot,

comparing the EGENG, GIG, EW and lognormal distributions. The fitting results

are not very convincing for the four distributions from the probability plots. So

we also use Anderson-Darling statistic to check the goodness-of-fit. We calculate the

quantiles of Anderson-Darling statistic by 5000 simulations for EGENG, GIG and EW

distributions. In the result, there are no evidence to against the hypothesis of EGENG

and GIG from that test. By our experience in chapter 4, EGENG distribution is very

flexible for different degradation models. So we employ the bootstrap method to

estimate the confidence interval of quantile by using EGENG distribution.

In field applications and experimental processes, life test may stop earlier because

of time restrictions. We mimic the situation by setting the possible censor time at

52000, 57500, and 60500 cycles for the 2024-T351 aluminum crack test. We consider

the specified failure level Df equal to 24, 25, 26 mm. We also employ the lognormal

probability plot, comparing the EGENG, GIG, EW and lognormal distributions. We

find that only EGENG distribution fits better than others. So we also check the

goodness-of-fit of EGENG distribution. There is no evidence against the hypothesis

of EGENG from the test. The EGENG distribution can use to estimate the quantile



61

before the censor time. The better fitted models for right censoring such as EGENG

are quite useful because most fild problems are interested in the early failure times.
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6.2 Future Research

There are several directions that could use for future research.

• Further research on Mark point process to estimate the increment parameters.

For the different qualities of products, we may employ different degradation

paths and together with mark point process to derive the failure distributions.

• Use parametric model as GIG, EW and EGENG to fit the failure distributions

form from Mark point process.

In mark point processes, we derive the failure distributions by using the Wendt

(1997) forms (2.1.1) and (2.1.3) with different distribution of increment. The

numerical calculation is not carried out yet. One comparison is to fit the para-

metric models as GIG, EW and EGENG.

• Fit the 2024-T351 aluminum data from degradation model using physical model.

Figure 2 displays the degradation paths of 2024-T351 aluminum data. If we

obtain more knowledge on the material fatigue properties, we could employ a

physical model to fit the degradation paths and comparing with failure fitting

by the qualities of 2024-T351 aluminum.

• Search a distribution model to have a better fitting for the 2024-T351 aluminum

data. In chapter 5 we employ some parametric distributions to fit 2024-T351

aluminum but the result is not very convincing. So we could extend our search

of distribution models to have a better fitting for the 2024-T351 aluminum data.

• Consider the time series models on the degradation processes. The degradation

process are taken serially on units, hence, there is some potential for autocorre-

lation and the crack growth depends on previous status (e.g. 2.3.1). Especially if

there are many closely spaced readings. In situations where the autocorrelation

cannot be ignored, one can use a time series model to describe the data.
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Appendix

Some properties of the modified Bessel function

(1). The modified Bessel function of the third kind and index λ ∈ R is denoted by

Kλ(·). And Kλ(w), w > 0 is given by

Kλ(w) =
1

2

∫ ∞

0

tλ−1 exp−
1
2
w(t+t−1) dt (A.1)

And the Bessel functions Kλ, λ ∈ R, satisfy the relations

Kλ(w) = K−λ(w) (A.2)

Kλ+1(w) =
2λ

w
Kλ(w) +Kλ−1(w) (A.3)

Kλ−1(w) +Kλ+1(w) = −2K
′

λ(w) (A.4)

(2). For λ = n+ 1
2

and n = 0, 1, 2, . . . one has

Kn+ 1
2
(w) =

√

π

2
w−1/2 exp−w(1+

n
∑

i=1

(n+ 1)!

(n− i)!(i!)
(2w)−i) (A.5)

(3). The connection between Kλ and the modified Bessel function of the first kind Iv

can be expressed by

Kλ(w) =
π

2

1

sin(πλ)
(I−λ(w)−Iλ(w)) (A.6)

where the right hand side is to be interpreted in the limiting sense in case λ is an

integer. Since

Iλ(w) =

∞
∑

m=0

(w/2)2mλ

m!Γ(m + λ+ 1)
(A.7)

(4). As w → 0, in particular one has the first order approximation

Kλ(w) ' Γ(λ)2λ−1w−λ, (λ > 0) (A.8)
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For λ = 0,

K0(w) ' − lnw

(5). For large w , the asymptotic expansion of Kλ(w) is

Kλ(w) =

√

π

2
w−1/2 exp−w(1+

u−1

8w
+

(u− 1)(u− 9)

2!(8w)2
+

(u− 1)(u− 9)(u− 25)

3!(8w)3
+. . .)

(A.9)

where u = 4λ2.
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Figure 1: Fatigue-Crack-Growth Data from Bogdanoff and Kozin (1985).
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data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 130.
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Figure 7: Lognormal probability plot of degradation model (4.1.1) with complete

data, comparing EGENG, lognormal , generalized inverse Gaussian and exponential
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Figure 8: Plot of degradation model (4.1.2) with random initial level and unit to unit

variability from 50 degradation paths.
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Figure 9: Lognormal probability plot of degradation model (4.1.2) with right censored

data, comparingEGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 30 and censored time equal to 59.
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Figure 10: Lognormal probability plot of degradation model (4.1.2) with right cen-

sored data, comparing EGENG, lognormal, generalized inverse Gaussian and expo-

nential Weibull distributions. Approximate 95% pointwise confidence intervals for

F (t) is added to EGENG distribution. Fail level equal to 50 and censored time equal

to 59.
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Figure 11: Plot of degradation model (4.1.3) with nonlinear degradation paths.
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Figure 12: Lognormal probability plot of degradation model (4.1.3) with right cen-

sored, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution.Fail level equal to 5.025 and censored time equal to

5.9.
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Figure 13: Lognormal probability plot of degradation model (4.1.3) with right cen-

sored, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution.Fail level equal to 5.04 and censored time equal to 5.9.
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Figure 14: Plot of degradation model (4.1.4) with nonlinear degradation paths.
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Figure 15: Lognormal probability plot of degradation model (4.1.4) with complete

data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 32.
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Figure 16: Lognormal probability plot of degradation model (4.1.4) with complete

data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 36.
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Figure 17: Plot the random error degradation model of (4.1.5).



85

Cycles

.0001

.0005
.001
.002

.005
.01

.02

.05

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

.99

1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0

Fr
ac

tio
n F

ail
ing

 
 Lognormal Probability Plot  

EGENG
Lognormal
GIG
EW

Figure 18: Lognormal probability plot of degradation model (4.1.5) with right cen-

sored, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 35 and censored time equal to 5.9.
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Figure 19: Lognormal probability plot of degradation model (4.1.5) with right cen-

sored, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 40 and censored time equal to 5.9.
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Figure 20: Plot of the random error degradation model of (4.1.6).
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Figure 21: Lognormal probability plot of degradation model (4.1.6) with right cen-

sored, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 32 and censored time equal to 5.9.
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Figure 22: Lognormal probability plot of degradation model (4.1.6) with complete

data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 34 and censored time equal to 5.9.
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Figure 23: Plot of the random error degradation model of (4.1.7).
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Figure 24: Lognormal probability plot of degradation model (4.1.7) with right cen-

sored, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 45 and censored time equal to 5.9.
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Figure 25: Lognormal probability plot of degradation model (4.1.7) with right cen-

sored, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 50 and censored time equal to 5.9.



93

  0 100 200 300 400 500 600 700

 0

 5

10

15

20

25

Tue Mar 19 02:58:24 2002
Time

Am
ou

nt 
of 

the
 de

gr
ad

ati
on

Figure 26: Plot of the First Order Autocorrelated degradation model of (4.1.8).
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Figure 27: Lognormal probability plot of degradation model (4.1.8) with complete

data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 30 and censored time equal to 600.
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Figure 28: Lognormal probability plot of degradation model (4.1.8) with complete

data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 40 and censored time equal to 600.
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Figure 29: Plot of the First Order Autocorrelated degradation model of (4.1.9).
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Figure 30: Lognormal probability plot of degradation model (4.1.9) with complete

data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 7 and censored time equal to 600.



98

Time

.0005
.001
.002

.005
.01

.02

.05

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

.99
.995

.998

.999

260 280 320 360 400 440 480 520 560

Fr
ac

tio
n F

ail
ing

 
 Lognormal Probability Plot  

Tue Mar 19 03:04:48 2002

egeng
lognormal
gig
ew

Figure 31: Lognormal probability plot of degradation model (4.1.9) with complete

data, comparing EGENG, lognormal, generalized inverse Gaussian and exponential

Weibull distributions. Approximate 95% pointwise confidence intervals for F (t) is

added to EGENG distribution. Fail level equal to 11 and censored time equal to 600.
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Figure 32: Lognormal probability plot of the 2024-T351 aluminum data, comparing

EGENG, lognormal, exponential Weibull and generalize inverse Gaussian distribu-

tions with fail level equal to 23mm.
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Figure 33: Lognormal probability plot of the 2024-T351 aluminum data, compar-

ing EGENG, lognormal, exponential Weibull family and generalize inverse Gaussian

distributions with fail level equal to 24mm.
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Figure 34: Lognormal probability plot of the 2024-T351 aluminum data, comparing

EGENG, lognormal, exponential Weibull and generalize inverse Gaussian distribu-

tions with fail level equal to 25mm.
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Figure 35: Lognormal probability plot of the 2024-T351 aluminum data, comparing

EGENG, lognormal, exponential Weibull and generalize inverse Gaussian distribu-

tions with fail level equal to 26mm.
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Figure 36: Lognormal probability plot of the 2024-T351 aluminum data, comparing

EGENG, lognormal, exponential Weibull and generalize inverse Gaussian distribu-

tions with fail level equal to 24mm and censored after 52000 cycles.
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Figure 37: Lognormal probability plot of the 2024-T351 aluminum data, comparing

EGENG, lognormal, exponential Weibull and generalize inverse Gaussian distribu-

tions with fail level equal to 25mm and censored after 57500 cycles.
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Figure 38: Lognormal probability plot of the 2024-T351 aluminum data, comparing

EGENG, lognormal, exponential Weibull and generalize inverse Gaussian distribu-

tions with fail level equal to 26mm and censored after 60500 cycles.


