Find-Reassemble-Path Algorithm for Finding Node

Disjoint Paths in Telecommunication Networks with
Two Technologies

Student: Chia-Ching Li

Advisor: Kwang-Fu Li

Jun, 2001

Abstract

Consider a network with two different types of arcs, each type stands for one transmission
technology. Each arc in the graph is associated with a transmission cost and each node in
the graph may be associated with a transition cost. Transition cost is concerned with the
technologies and occurs whenever a message enters node i on an arc (j,) belonging to one
type of transmission technologies and leaves node i on an arc (i, k) belonging to the other
type of transmission technologies. The problem we are focusing on is finding two node
disjoint paths with minimum cost in the network. In 1995, Jongh, Gendreau, and Labbe
showed that it is strong NP-complete and then provided heuristic solutions for the problem.
In this paper, we provide a new algorithm, called Find-Reassemble-Path algorithm, to find

two node disjoint paths with lower cost.

1 Introduction

Due to the rapid development of communication protocols, it is common to encounter that
two different transmission technologies coexist in a network. In these networks, whenev-
er a message is transmitted from sources to destinations, the message often needs to be
routed over links of different transmission technologies. It may encounter some costs when
the message passes through links of different transmission technologies. Hence, not only
transmission costs but also transition costs should be taken into consideration. Transition
costs occur only when messages pass through a link of one technology to a link of the other

technology.

Reliability is an important issue in communications. We can provide more than one
routes in networks from sources to sinks to strengthen the reliability. In fact, when two
arc disjoint paths are provided, the messages transmitted from the source to the sink won't
be lost if a single link of the network fails. Similarly, when two node disjoint paths are

provided, the messages won’t be lost if a single node of the network runs out of order.

Two arc disjoint paths with minimum cost can be found after we transform each node
i into two nodes i; and iy, as shown in Figure 1, and add two arcs (i1, is) and (ig,4;) with
costs equal to the transition costs [1]. After the transformation, we can easily find the
optimal two arc disjoint paths by the procedure provided by Suurballe and Tarjan [6]. In
this paper, we emphasize on finding two node disjoint paths from the source to the sink with
minimum cost in a network with two types of transmission technologies. Jongh, Gendreau
and Labbe proved that it is NP-Hard to find two node disjoint paths with minimum cost
from the source to the sink in a network with two types of transmission technologies [1].
They also provided polynomial time heuristics for finding two node disjoint paths from the
source to the sink. They used Dijkstra’s algorithm [3][5] to find the first shortest path and
delete all nodes on the path as well as arcs incident to the nodes. And they used Dijkstra’s
algorithm again to find the second shortest path if the source and the sink are connected
in the remaining graph. Although the algorithm can be easily executed, the source and the
sink may become disconnected if some nodes are removed. Even if the remaining graph
is connected, the removal of the first shortest path may also affect the selections of better

pair of node disjoint paths. If the remaining graph is not connected, they ignore transition

costs and find a pair of node disjoint paths in the network and add transition costs when

necessary.

f"
— T~ .
7 -_¥
» ; .
N~ .
f |
‘l ‘l
ori gi nal node transf or nred node

———————» Arcsbelonging to A
——— — Transition costs
————-- - - » Arcsbelonging to A

Figure 1: Transition of node i.

In this paper, we present a new algorithm, Find-Reassemble-Path algorithm, for finding
two node disjoint paths with lower cost than the original heuristics if the remaining graph
is connected. We will reverse the directions of arcs on the first shortest path, instead of
deleting all nodes on the path and the arcs incident to the nodes, then find the second path

on the reversed graph. Finally, we reassemble these two paths to two node disjoint paths.

This paper is consisted of five sections. In section 1, we briefly describe some methods of
finding disjoint paths. In section 2, we describe the methods of finding node disjoint paths
provided by Jongh, Gendreau, and Labbe. In section 3, Find-Reassemble-Path algorithm
is proposed and discussed. In section 4, we show that Find-Reassemble-Path algorithm can
find a pair of node disjoint paths with lower cost if the remaining graph is connected. We
will also analyze the complexity of Find-Reassemble-Path algorithm. Finally, in section 5,

some conclusion remarks are discussed.

2 Backgrounds

Dijkstra’s algorithm is a famous algorithm for finding the shortest path. The Dijkstra’s
algorithm is a labeling process that records a tentative distance d(v) and a tentative pre-
decessor p(v) for each node v € G, where G is a network with one technology. Let s be
the source and ¢ be the sink in G. Each arc (i,j) € G has a cost ¢;;. Initially, d(s) = 0
and d(v) = oo if v # s, each node is unlabeled and p(v) is undefined for every node v. The

Dijkstra’s algorithm repeats the following step until there is no unlabeled node.

Labeling Step:
Choose an unlabeled vertex i with minimum distance d(i). Make ¢ labeled.

For each arc (7,7) € G, if d(i) + ¢;; < d(j), change d(j) to d(i) + ¢;; and p(j) to .

When the algorithm terminates, d(i) is the distance between node s and node i for
every node i reachable from s. And the set of arcs {(p(i),4)| ¢ # s with d(7) finite} defines

a shortest path directed tree rooted from s.

Consider a directed graph G = (V, A) with two transmission technologies, where V'
denotes the vertex set and A denotes the arc set. A is partitioned into two disjoint subsets
A; and Ay. Each one represents one transmission technology. Each arc (i,j) € G is
associated with a cost ¢;;, called the transmission cost. There may be two more positive
costs fi and f; (called the transition costs) with respect to each node i € G. The first
cost f;" occurs when a chosen path enters i on an arc (j,i) € A; and leaves i on an arc
(i,k) € Ay. Similarly, the second cost f;” occurs when a chosen path enters ¢ on an arc
(7,i) € Ay and leaves i on an arc (i,k) € A;. The problem we are interested is to find two
node disjoint paths from the source to the destination with minimum cost. This is a NP-
Complete problem [1]. Heuristic methods to solve this problem were provided by Jongh,
Gendreau, Labbe. We call the method JGL algorithm for convenience. JGL algorithm is
briefly described as follows. First, they find the first path and deleting nodes on the paths
as well as arcs incident to nodes on this path. If the remaining graph is connected, they
proceed to find the second path on the graph. If the remaining graph is not connected, they

transformed each node, except the source and the sink, to two nodes as shown in Figure

2. In the transformed network, arc disjoint paths are also node disjoint. They used the
procedure provided by Suurballe and Tarjan to find two arc disjoint path in the transformed

graph [6], then add transition cost to the solution when necessary.

Heuristic 1

Step 1. Transform each node of the network, except the source and the sink , as shown in

Figure 2.
Step 2. Find two minimum cost arc disjoint paths in this transformed network.

Step 3. Add the transition costs to the solution when necessary, i.e., each time the flow passes

from one technology to another in the solution of Step 2.

ori gi nal ‘hode transf or ned node
—— Arcsbelonging to A,

—— —» Arcs of cost O
————.--» Arcsbelonging to A,

Figure 2: Transformation of node i if the remaining graph is not connected.

Heuristic 2

Step 1. Transform each node of the network, except the source and the sink, as shown in

Figure 1.

Step 2. Determine a first minimum cost path from the source to the sink. (Ties are broken in
favor of the path with the smallest number of arcs and transitions. If ties still subsist,

a single technology path is chosen).

Step 3. Delete all of the intermediate nodes of this first path from the graph, as well as the

arcs incident to these nodes.

Step 4. If the remaining graph is connected (i.e., if there is at least one path from the source
to the sink), determine as second path a minimum cost path. (Ties are broken in
favor of the path with the smallest number of arcs and transitions. If ties still subsist,

a single technology path is chosen).

Heuristic 3

Step 1. Execute Steps 1 to 3 of Heuristic 2.

Step 2. If the remaining graph is not connected then go to Step 3, else determine as second

path a minimum cost path. Stop.

Step 3. Execute Heuristic 1.

—Arcs belong to the first technol ogy

----+Arcs belong to the second technol ogy

Figure 3: An example that the remaining graph is connected.

Consider the network in Figure 3, f; is 3 and f; is 4 at each node 1.

Transform the graph in Figure 3 into a new graph as shown in Figure 3a. Apply
Dijkstra’s algorithm to find the first shortest path P, =1—2; —3; —4; —T7.

Then remove all nodes on P; and all arcs incident to P;. The remaining graph is shown
in Figure 3b. Proceed to find P, =1—5; =55 —69 —6; —7. Thus we find a pair of node
disjoint paths, 1—-+2—3—4—7 and 1—-5—6—7, with cost 28. But 1-+2—3—7 and 1—-4—7

are better solution in the graph.

When JGL algorithm is executed, all nodes on the first path P; and arcs incident
to these nodes are removed. Therefore, if there exists two node disjoint paths that both
have common nodes with P, and these two paths have lower cost, the above heuristics are
impossible to find this pair of node disjoint paths. In other words, JGL algorithm finds a
pair of node disjoint paths still with higher cost.

Figure 3a: The transformed graph.

Figure 3b: The remaining graph.

When removing the nodes on P, and arcs incident to the nodes , the graph may become
disconnected. In this situation, each node except the source and the sink is transformed to
two nodes as shown in Figure 2. They ignore the transition costs and find two arc disjoint
path in the transformed graph. At last, they add transition costs when necessary. But
the addition of the transition costs may add some expensive costs, i.e., we may find a poor

solution.

—— Arcs belong to the first technol ogy

----- % Arcs belong to the second technol ogy

Figure 4: An example that the remaining graph is not connected.

Figure 4a: The transformed graph.

In the following network (see Figure 4), each arc has cost 1 and f;” =4, fif = f5 =

fe& = f = fs = 2. First, transform the graph in Figure 4 into the graph in Figure 4a. and

8

Figure 4b: Transformation of nodes when the remaining graph is not connected.

we’ll find the first path P, =1—2; —3; —4; —7. After deleting all nodes on P; and all
arcs incident to nodes on Py, the remaining graph is disconnected. Thus, we return to the
original graph, transform each node of the graph as shown in Figure 4b. Use the procedure
provided by Suurballe and Tarjan [6], we can find a pair of arc disjoint paths with minimum
cost in this graph, they are 1—2; =2 —7; =7, —9 and 1—+6; —65 —5; —5y —9. In
fact, two arc disjoint paths in Figure 4b are also node disjoint. Hence, two node disjoint
paths found are 1-+2—7—9 and 1—-6—5—9 and the total cost is 16. But the paths

1—-2—3—8—9 and 1—-6—5—9 are better solutions.

In the following sections, we will provide a new algorithm to find two node disjoint
paths. The major difference is that we reverse the directions of all arcs on P; instead of
removing the nodes and arcs incident to nodes on P;. We will prove that Find-Reassemble-
Path algorithm finds a pair of node disjoint paths with lower cost than the one using JGL

algorithm if the remaining graph is connected.

3 Find-Reassemble-Path Algorithm for Finding Two
Node Disjoint Paths

In this section, we provide a new algorithm, called Find-Reassemble-Path algorithm, for
finding two node disjoint paths. There are four major steps in this algorithm. The first
two steps are called the Find-Path and the last two steps are called the Reassemble-Path.
Find-Path

Step 1

(1.1) Transform each node of the network, except the source and the sink, as shown in

Figure 1.

(1.2) Use Dijkstra’s algorithm to determine the first minimum cost path, called P;, from

the source to the sink.

(1.3) Reverse all directions of arcs on P;.

Let G, be the graph obtained from G by reversing the arcs on P; is reversed. In the
network, s is the source and ¢ is the sink.
We define some symbols as follows.
cl: the cost of the shortest path among all paths from the source s to the node i with
the last arc belongs to the subset A;.
c?: the cost of the shortest path among all paths from the source s to the node 7 with
the last arc belongs to the subset A,.
p,;: the tentative predecessor of node ¢ in the shortest path among all paths from the
source s to the node ¢ with the last arc belongs to the subset Aj.
p;: the tentative predecessor of node ¢ in the shortest path among all paths from the
source s to the node ¢ with the last arc belongs to the subset A,.
g;: the tentative grandfather of node ¢ in the shortest path among all paths from the
source s to the node ¢ with the last arc belongs to the subset Aj.
g?: the tentative grandfather of node 7 in the shortest path among all paths from the

source s to the node ¢ with the last arc belongs to the subset A,.

10

Initially, for each node i # s, ¢} = oo, ¢ = oo, pi, p?, g}, and ¢? are undefined. For
each node, these data are kept and may further be recalculated. We also define C' = {c]1 lj €
VA{s}}U{clj € V\{s}}, where V' is the vertex set.

2 pl,p?, gl and ¢? in each node i, called labeling. Whether

79 1)

In Step 2, we’ll register ¢
a node can be labeled by 7 depends on the location of 7, and the parents of ¢. There are four
cases: (i) i ¢ Py, (it) i € Py and p; ¢ Py, (iii) i € P, and p; = s, (iv) i € P, and p; € P,
(p; # s). In the first case, i can label each node (i,j) € G,. In the second case and in the
third case, 7 can only label the vertex k& in front of ¢ on the first path P;. In the fourth case,
i can label (1) the vertex & just in front of i on the first path P;, (2) each vertex k ¢ Py
that (i, k) € G, (3) the sink t if (i,t) € G,.

Step 2
(2.1) Label each node i that (s,i) € G,,
if (s,1) € Ay then ¢} = ¢y, p} = s,
if (s,1) € Ay then ¢ = ¢y, p? = s.
(2.2) Find a node ¢ with minimum cost in C, and delete this cost from C.
If © = t, Stop.
(2.2.1) casel : The minimum cost is ¢},
(i) If i ¢ Py : Label each vertex j that (4,j) € G,,

1°If (4,7) € Ay,

1

-

if ¢; > ¢f + cij, then ¢j = ¢ + ¢y, p; =1, gj =P
2° 1f (i, §) € As,
if ¢ > min{c} + f;" +cij, ¢ + ¢}, then ¢ = min{c] + f;" + ¢y, ¢ + 5}, pf =i,
if ¢f + f; +cij < ¢ + cij, then g7 = p},
if ¢ + f;F + ¢ij > ¢ + ¢y, then gF = pf.
(it) If i € Py, p} ¢ Py, only label the vertex k
which is just in front of i on P; (k # s).

1° If (i, k) € A,

11

if ¢} > ¢} + ¢, then cf = ¢! + ¢y, ph =14, gi = pr-
2 I (i, k) € Ay,
if &2 > ¢} + fi" + cig, then ¢ = ¢} + fit + e, P} =1, g7 = p}.
(ii7) If i € Py, p} = s, only label the vertex k
which is just in front of i on P; (k # s).
1° I (i, k) € Ay,
if ¢} > ¢} + cik, then ¢, = ¢} + cix, Py =14, g4 = P}
2 I (i, k) € Ay,
if & > ct + fi" + ci, then 2 = ¢t + fit + e, P2 =14, g2 = p}.
(iv) If i € P, p} € Py (p} # s),
(1) label the vertex k& which is just in front of ¢ on Py,
1° I (i, k) € Ay,
if ¢} > ¢! + cig, then cp = ¢! + i, Pt =1, g1 = p;-
2 1 (i, k) € As,
if ¢ > ¢l + fi" + ci, then ¢ = ¢ + [+ e, D} = 1, g7 = D},
(2) label each vertex k ¢ P; that (i, k) € G,
1° I (i, k) € Ay,
if ¢} > ¢! + cig, then cp = ¢! + i, pt =1, g1 = p;-
2° If (1, k) € As,
if ¢ > ¢ + fi" + cig, then &2 = ¢} + fi" + ci, P} = 14,97 = p; .
(3) label the sink ¢ if (i,t) € G,
1° If (i,t) € Ay,
if ¢} > ¢! + ¢y, then ¢ = ¢} + ¢y, p; =i, g} = pl.
2° If (i,t) € As,

if 2 >cl+ f7+cy, then ¢ = ¢} + fit +cu, P =1, g7 = p;.

12

(2.2.2) case2 : The minimum cost is cZ,
(1) If i ¢ P, : Label each vertex j that j € G,.
1° T (i,) € Ay,
if ¢; > min{c} + fi +cij, ¢ +cijy, then ¢ = min{c; + f;” + ¢y, ¢ +ci5y, P = 4,
if ¢; + fi7 +cij < ¢ + ¢y, then gj = py,
if ¢ + fi + ¢ij > cf + cij, then gj = pj.
2 Tf (i, j) € Ay,
if ¢z > ¢ + cij, then ¢ = ¢ + ¢i5, p§ =1, g7 = p;.-
(i1) If i € Py, p? ¢ P, only label the vertex k
which is just in front of i on P; (k # s).
191 (i, k) € Ay,
if ¢ >+ f; + ci, then ¢}, = + fi + i, pp = 1, g = p.
2 If (i, k) € As,
if ¢ > ¢ + ci, then ¢ = ¢ + ¢y, pi =1, g7 = p.
(i17) If i € Py, p? = s, only label the vertex k
which is just in front of i on Py (k # s).
191 (i, k) € Ay,
if g >+ f7 + e, ¢ =+ [T+ ciw, P =1, g, = P2
2 If (i, k) € As,
if &2 > ¢+ e,y 64 = 3 + Cir, D2 =1, g = D7
(iv) If i € P, p? € P, (p? # 3),
(1) label the vertex k which is just in front of i on Py,
1°1F (i, k) € Ay,
if ¢ >+ fi + cig, then ¢}, = & + fi + ci, pp =14, g4 = P2

2° If (i, k) € A,

13

if &2 > ¢ + ci, then ¢ = ¢ + ¢y, pi =1, g2 = p3.

(2) label each vertex k ¢ P; that (i, k) € G,

1° 1f (i, k) € A,

if ¢l > 2+ f7 + ci, then ¢f = & + f7 + cig, pr = 1, g = P2.
2 If (i, k) € Ay,

if ¢ > ¢ + ci, then ¢ = ¢ + ¢, Pt =1, g7 = p2.

(3) label the sink ¢ if (i,) € G,,

1°If (i,t) € Ay,

if ¢} > c?+ f7 +cy, then ¢} =2+ f7 +cu, py =1, g} = p?.
2° 1f (i, 1) € Ao,

) 2 1 _ .2 1 1 .2
if C; > C; + Ci, then C; =C; + Cit, Dy =1, 9; = D;-

Example 3.1. Consider the network as shown in Figure 5, for every node 7 in the graph,

F=3and f; =4.

—Arcs belong to the first technol ogy

----+Arcs belong to the second technol ogy

Figure 5: An example executing Find-Reassemble-Path algorithm

When applying Find-Path, the first shortest pathis P, =1 — 2 — 3 — 4 — 7, then reverse
the directions of arcs on P; as shown in Figure 5a. If we continue to find the second path,

we will find P, =1 — 4 — 3 — 7. In this example, we can easily reassemble P; and P,

14

into two paths 1 -2 —+ 3 — 7and 1 — 4 — 7. Thus node disjoint paths with cost 19 is
found. At times it is not so obvious to reassemble P; and P, into two node disjoint paths,

we need a general method, as the Reassemble-Path, to reassemble node disjoint paths.

—Arcs belong to the first technol ogy

----+Arcs belong to the second technol ogy

Figure 5a: The graph that directions of arcs on the first path is reversed.

Example 3.2. Consider the graph as shown in Figure 6, each arc of the graph has cost 1,
and f)f =4, fy =3, [=2, fy =3, [=3, fy =3, [=3, f; =2, ff =2, f¢ =3,
=38 =2 [ff =3 f =2

——— Arcs belong to the first technol ogy

----- % Arcs belong to the second technol ogy

Figure 6: Another example executing Find-Reassemble-Path algorithm.

Applying the Find-Path, the first path P, =1—+2—3—4—5—9. Reverse the directions of

arcs on P; as shown in Figure 6a. We can find the second path P, =1—6—5—4—3—8—9.

15

P, and P, can be reassembles to two paths 1—6—5—9 and 1—+2—3—8—9 with cost 15.

—p Arcs belong to the first technol ogy

--------- ®Arcs belong to the second technol ogy

Figure 6a: The reversed graph.

Example 3.3 Consider a graph as shown in Figure 7. At each node 4, f;* = 10 and f;” = 5.
Transform the graph in Figure 7 into a new graph as shown in Figure 7a. In Figure 7a, the
cost of arc (iy,4) is f;" and the cost of arc (ia,4;) is f;. Apply Dijkstra’s algorithm we can

find P1 =5—21 —29 =39 —3; —>41 —>42 —59 =51 —6; —>71 —8; —t.

100

—-arcs belong to the first technol ogy

-—-sarcs belong to the second technol ogy

Figure 7: An example executing Reassemble-Path.

Delete the nodes on P; except s and ¢ and the arcs incident to these nodes, then the

remaining graph is shown in Figure 7b. Keep on applying Dijkstra’s algorithm, we can find

16

)

o o >

Figure 7a: The transformed graph.

Figure 7b: The remaining graph.

17

P, =1—13; —t. Hence we obtain a pair of node disjoint paths with cost 295. Now, use
Find-Path, the first path Pj=s—2—3—4—5—6—7—8—>t,

—arcs belong to the first technol ogy

-—-—sarcs belong to the second technol ogy

Figure 7c: The reversed graph.

and reverse the direction of each arc on P, the reversed graph is shown in Figure 7c. Pro-
ceeding on Step 2 of Find-Path, the second path P, =s—9—6—5—10—-8—7—12—4—3—11—t
is obtained. There are 3 overlapping parts of P; and P, and it is not so obvious to reassemble

the paths to two node disjoint paths. Thus, we provide Reassemble-Path as follows.

"
—Pl

———P

Figure 8: An illustration of paths with overlapping parts.

Let overlapping parts of P, and P, are called Oy, O,,... (in order of the distance to s from

near to far) and the endnode of O; closer to s is called [; and the endnode closer to t is

18

called r; for each node 7. And let v; be the node on P, that meet P, when we traverse P,

from [; for each node ¢ (Actually vy is r; for some j).

Step 3

(3.1) Build a tree routed form s. Add r;, the first node of P, that overlaps with P; (except

s), to the tree at s.

Figure 9a: Steps of building the tree.

(3.2) - Add [y, [y, ..., I; to the tree at r;. L ={ly, lo, ..., l;}
- Add v; to the tree at [;, vy to the tree at o, ..., v; to the tree at [;.
- If v, = t, stop building the tree.

- If vg is closer to s than r;, delete this branch (vy is said dead).

(3.3) - For each endnode v; (except dead one) on the tree, if there are m [}, called [;,,
liy, -y l;,,, between v and v, (v, is the grandfather of v on the tree),

for k=1;, Ly, s I, if I ¢ L,

im)

1) add [; to the tree at v;, and add vy to the tree at [j.

2) add [to L.

3) if v, = t, stop building the tree.

(1)
(2)
(3)
(4) If vy, is closer to s than v, delete this branch (v is said dead).

19

Figure 9b: Steps of building the tree.

(3.4) Repeat (3.3).

The branch reach ¢ on the tree can be reassembled into one pair of node disjoint paths.
These two paths both start from s. P, and P, appear alternately in the two paths. We will

show how to reassemble a pair of node disjoint paths in the following steps.

o Ln "
J1 riz is Ik
Figure 10: Steps of reassembling two node disjoint paths.

20

Step 4

For each branch as illustrated in Figure 10, do the following steps:

(4.1) - Add the part of P, between s and [;, to the first path.

- Add the part of P, between s and r;, to the second path.

(4.2) For n=2, 3, ..., k,

- Add the part of P, between r;,_, and [;, tor;,_,.

- Add the part of P, between [; _, and [; tol

In—1 Jn—1"

(4.3) - Add the part of P, between r;, and ¢ to r;,.

- Add the part of P, between [;, and t to [, .

Now, use Reassemble-Path to reassemble P; and P, in Example 3.3 to two node disjoint

paths.

Example 3.3.(Continue) The endnodes of each overlapping part of P, and P, are (3,4),
(5,6) and (7,8),s0 1 =3, 11 =4,lb,=5,r,=6,l3="7, 13 =8.

Build a tree according to these nodes (see Figure 11a). And the paths we find are Path2 =
§s—+9—6—>7—>8—tand Pathl =s -2 — 3 — 11 — ¢ (As shown in Figure 11b).
The total cost of these two paths is 110+135=245.

21

Figure 11a: Building a tree.

Figure 11b: Reassembled paths.

22

4 Validity of the Find-Reassemble-Path Algorithm and
the Complexity of the Algorithms

In this section, we will show that the Find-Reassemble-Path algorithm finds a pair of node
disjoint paths with lower cost than JGL algorithm if the remaining graph is connected. We

will also discuss the complexity of this algorithm.

Theorem 4.1. Find-Reassemble-Path algorithm finds two node disjoint paths with lower

cost if the remaining graph in JGL algorithm is connected.
Proof:

(¢) If the paths P, and P, found in Find-Path are node disjoint, it is trivial that
Find-Reassemble-Path algorithm finds two node disjoint paths with the same cost as JGL

algorithm.

Figure 12a.

(i7) According to the previous section, if P, and P, found in Find-Path are not node
disjoint, some segments of P; and P, will not be used to reassemble node disjoint paths,
thus transmission cost in the paths reassembled is lower than transmission cost in P; and

Ps.

Let the arc enters [; on P, be ay, and the arc leaves [; on P, be as. If a; and as belong to

the same technology, connecting a; and a, doesn’t have transition cost. If a; and ay belong

23

Figure 12b.

to different technologies, without loss of generality we assume that a; € A; and ay € A,.
Connecting a; and a, has transition cost fl:r. If the arc closest to [; in the overlapping part
between [; and r; belong to Ay, there will be transition cost flj in P, when we traverse Ps.
Similarly, if the arc closest to [; in the overlapping part between [; and r; belong to A,,
there will be transition cost flj in P; when we traverse P;. Hence, as we connect a; and

as, the transition cost won’t be increased.

Let the arc enters r; on P, be a3, and the arc leaves r; on P; be ay4. If a3 and a4 belong
to the same technology, connecting a3 and a4 doesn’t have transition cost. If a3 and ay
belong to different technologies, connecting as and a4 has transition cost f;~. Like a; and

as, transition cost will not be increase as we connect ag and ay.

Therefore, transition cost in the paths reassembled is lower than transition in P; and

Ps. UJ

If the remaining graph in JGL algorithm is not connected. Find-Reassemble-Path may
find two node disjoint paths with higher cost than the paths JGL algorithm finds. In the
following graph, node 1 is the source and node 8 is the sink and f;" = f7 = 1 at each
node 7. When using JGL algorithm, the first path P, =1—-+2—3—4—8. Node 1 and node
8 will be disconnected if we deleting P,. Then we transform each node as shown in Figure
13a, we can find two arc disjoint paths (also node disjoint),1—+2—5—8 and1—6—4—8,

with minimum cost in the transformed graph. Thus they find two node disjoint paths with

24

cost 16. But if we use Find-Reassemble-Path algorithm, we will find 1—+2—3—7—8 and

1—6—4—8 with cost 17.

Figure 13a: Transformed graph.

If the remaining graph in JGL algorithm is not connected, JGL algorithm finds a pair
of node disjoint paths without considering transition cost and add transition cost to these
paths if necessary. It is not certain if there will be transition cost at each node on these
paths, so sometimes JGL algorithm finds better paths, sometimes Find-Reassemble-Path

algorithm finds better paths. So if the remaining graph is not connected, we execute both

25

algorithms and choose the paths with lower cost. Thus, we can find a pair of node disjoint

paths with lower cost than JGL algorithm.

Now, we start to compute the complexity of the Find-Reassemble-Path algorithm.
Assume that there are n nodes in the graph. In Step 1.1, we transform each node except
the source s and the sink ¢ into two nodes. Therefore, there are N = 2n — 2 nodes in
the transformed network. Apply the Dijkstra’s algorithm, choose a node ¢ with minimum
distance d; and start labeling the node dominated by ¢. While labeling there are at most
N —1 comparisons about the distance. And at most all of the NV — 1 nodes could be chosen
as nodes with minimum distance while labeling. So the complexity of Dijkstra’s algorithm
is O(N?). In Step 1.3, reversing the direction of each arc in P, only needs linear steps.

Thus we know that the total number of steps needed in Step 1 is O(n?). In Step 2, we also
1

choose a node with minimum cost. Since we record two costs, ¢; and ¢?, in each node 1,
each node is chosen at most twice as a node with minimum cost. Thus when we choose a
node with minimum cost, there will be no more than 2n steps. Also each time when we
choose a node with minimum cost, the labeling step won’t exceed n comparisons of cost.

Thus Step 2 is also O(n?). Hence the complexity of Find-Path is O(n?).

In step 3,different [; link to different v; so no more than n [; will be add to the tree
before we reach ¢ because there is no more than n nodes in the network. Thus step 3 is
O(n). And using this branch to reassemble path in step 4 is O(n). Thus the complexity of
Reassemble-Path is O(n?).

5 Conclusions

In this paper, we provide an algorithm that can find a pair of node disjoint paths with lower
cost. The first path is the same as Jongh, Gendreau, and Labbe found. The difference is on
the second path, we find it using a Dijkstra-like calculation. In the process, we add some
constraints during the labeling process in order to construct node disjoint paths. Then

using Reassemble Path to reassemble these two paths into two node disjoint paths.

When JGL algorithm finds solutions of node disjoint paths, they deleted all nodes on
the first path and arcs incident to the nodes on the first path and find the second path if the

26

remaining graph is connected. We prove that Find-Reassemble-Path can find better paths
in this situation. If the remaining graph is not connected they ignore the transition costs.
They find a pair of two node disjoint paths without considering the transition cost, then they
add transition costs to the path when the paths pass from arcs of one technology to another
technology. It is not sure which algorithm finds better solution if the remaining graph is
disconnected. In this situation, we choose the better paths found from JGL algorithm and
Find-Reassemble-Path algorithm. Thus, we can always find a pair of node disjoint paths

with lower cost than JGL algorithm.

References

[1] De Jongh, Gendreau, and Labbe, "Finding disjoint routes in telecommunications net-

works with two technologies,” Operations Research 47, 81-92, 1999.

ven ., Ital A., Shamir A., "On the complexity of timetable and multi-commodity flow
2| E S., Itai A., Shamir A., "On th lexi f ti bl d 1ti dity fl
problems,” SIAM J. Computing 5, 691-703, 1976.

[3] Gould, Rould, "Graph Theory,” The Benjamin/Cummings Publishing Company, INC,
California, 1988.

[4] Li C. L., McCormick S. T., Simchi-Levi D., ” The complexity of finding two disjoint
paths with min-max objective function,” Discrete Applied Math 26, 105-115, 1990.

[5] Perl Y., Shiloach Y., "Finding two disjoint paths between two pairs of vertices in a
graph,” J. ACM 25, 1-9, 1978.

[6] Suurballe J. W., Tarjan R. E., "A quick method for finding shortest pairs of disjoint
paths,” Networks 14, 325-336, 1984.

27

