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Nomenclature

Symbol
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RTL

R

int Ri

N5 (1‘0)

B(0,9)

C =C([-r,0],R")
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continuously differentiable of order 1
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the interior of R%
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the Jacobian matrix of f
0 0

V-(Hf)= g(Hf)Jra—y
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1 Introduction

Predator-prey models have been studied for a long time. Many researchers
either have no concern with time delays or tend to ignore delays in their models.
But more realistic models should include some of the past states of the population
systems; that is, a real system should be modeled with time delays.

In the Lotka-Volterra Model, the carrying capacity of the predator population
is independent of the prey population, but in the Leslie-Gower Model, the carrying
capacity of the predator population is depends on the prey population. In this paper,
we consider the Leslie-Gower predator-prey system with a single discrete delay 7.
The system has a unique positive equilibrium point. It is well known that if 7 = 0,
then the unique positive equilibrium point is globally asymptotically stable. In [1]
and [2], to analyze the global stability of the system without delay by constructing
a Lyapunov functional or Comparison method, respectively.

The main purpose of this thesis is to establish global stability of the Leslie-
Gower predator-prey system. In chapter 2, we introduce some useful definitions
and theorems. In chapter 3, we analyze the global stability of the Leslie-Gower
predator-prey system without time delay by using Dulac’s Criterion plus Poincaré-
Bendixson Theorem, or stable limit cycle analysis. In chapter 4, we analyze the
global stability of the Leslie-Gower predator-prey system with a single delay by
constructing a Lyapunov functional. In chapter 5, we illustrate our results by some

examples.



2 Preliminaries

2.1 Nonlinear autonomous system

Consider the following general nonlinear autonomous system of differential e-

quation
z(t)=f(z), z€F (2.1)

where f € C'(F) and E is an open subset of R". In this thesis, we need the following

definitions and theorems.

Definition 2.1 [J]

(i) A point xy € F is called an equilibrium point or critical point of the system

(2.1) if f(x0) = 0.

(ii) An equilibrium point zg is called a hyperbolic equilibrium point of the system

(2.1) if none of the eigenvalues of the matrix D f(x) have zero real part.

(iii) An equilibrium point xq is called a saddle point of the system (2.1) if it is a
hyperbolic equilibrium point and D f(z,) has at least one eigenvalue with a

positive real part and one with a negative real part.

Definition 2.2 [5] Let F be an open subset of R" and let f € C*'(E). For xy € E,
let ¢(t, ) be the solution of the system (2.1) with the initial condition z(0) = z;
defined on its maximal interval of existence I(zq). Then for ¢ € I(xp), the set of

mappings ¢; defined by

Pr(20) = P(t, 20)

is called the flow of the system (2.1).



Definition 2.3 [5] Let ¢; denote the flow of the system (2.1) defined for all ¢t € R.
An equilibrium point z, of the system (2.1) is stable if for all £ > 0 there exists a

d > 0 such that for all z € Ns(zp) and ¢t > 0 we have

o) € Ne(x0)

The equilibrium point xq is unstable if it is not stable. And xy is asymptotically

stable if it is stable and if there exists a § > 0 such that for all x € Ns(z) we have

fi ) =

In order to analyze the behavior of the system (2.1) near its equilibrium points,
we can show that the local behavior of the nonlinear system (2.1) near a hyperbolic

equilibrium point x; is qualitatively determined by the behavior of the linear system
= Ax

where the Jacobian matrix A = Df(x). The linear function Az = Df(x)z is

called the linear part of f at zy.

Theorem 2.1 [5] (The Hartman-Grobman Theorem) Let E be an open subset of
R"™ containing the point zq, let f € C*(F), and let ¢; be the flow of the nonlinear
system (2.1). Suppose that f(zp) = 0 and that the matrix A = D f(xy) has no
eigenvalue with zero real part. Then there exists a homeomorphism H of an open
set U containing the origin onto an open set V' containing the origin such that for
each © € U, there is an open interval I(z) C R containing origin such that for all

z €U and t € I(z)

H o ¢y(z) = eMH(2)

Theorem 2.2 [5] Suppose that z; is an equilibrium point of the system (2.1) and
A = Df(xg). Let § = det(A) and 7 = trace(A).
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(i) If 6 < O then the system (2.1) has a saddle point at x.

(i) If 6 > 0 and 72 — 48 > 0 then the system (2.1) has a node at zg; it is stable if

7 < 0 and unstable if 7 > 0.

(iii) If § > 0, 72 — 46 < 0, and 7 # 0 then the system (2.1) has a focus at z; it is

stable if 7 < 0 and unstable if 7 > 0.

(iv) If § > 0 and 7 = 0 then the system (2.1) has a center at x.

In order to analyze the global stability of the system (2.1), it is necessary to
determine whether the closed orbit exists or not. Dulac’s Criteria has established

conditions under which the system (2.1) with z € R? has no closed orbit.

Definition 2.4 [5] A closed or periodic orbit of the system (2.1) is any closed solu-
tion curve of the system (2.1) which is not an equilibrium point of the system (2.1).
A periodic orbit T' is called stable if for each € > 0 there is a neighborhood U of T’
such that for allz € U, d(T'},T') < e; i.e., ifforallz € U and ¢t > 0, d(é(t, x),[') < e.
A periodic orbit I' is called unstable if it is not stable; and I is called asymptotically

stable it is stable and if for all points = in some neighborhood U of I'

lim d(¢(t,z),T) =0

t—o00

Definition 2.5 [5] A point p € E where E is an open subset of R" is an w-limit
point of the trajectory ¢(-,z) of the system (2.1) if there is a sequence t,, — oo such

that

lim ¢(t,,x) =p

n—o0

Similarly, if there is a sequence t,, — —oo such that

lim ¢(tn,$) =q

n—0o0



and the point ¢ € E, then the point ¢ is called an a-limit point of the trajectory
o(-, x) of the system (2.1). The set of all w-limit points of a trajectory I' is called
the w-limit set of T and it is denoted by w(I'). The set of all a-limit points of a
trajectory I is called the a-limit set of I and it is denoted by «(I'). The set of all
limit points of I', (") U w(T") is called the limit set of T.

Theorem 2.3 [5] The a and w-limit sets of a trajectory I' of the system (2.1), «(I")
and w(I'), are closed subsets of E and if I' is contained in a compact subset of R",

then a(T") and w(T'), are non-empty, connected, compact subsets of E.

Definition 2.6 [5] A limit cycle T’ of a planar system is a cycle of the system (2.1)
which is the a or w-limit set of some trajectory of the system (2.1) other than I'. If
a cycle I' is the w-limit set of every trajectory in some neighborhood of I', then I'
is called an w-limit cycle or stable limit cycle; if a cycle T" is the a-limit set of every
trajectory in some neighborhood of I', then I' is call an «a-limit cycle or unstable
limit cycle; and if [" is the w-limit set of one trajectory other than I' and the a-limit

set of another trajectory other than I', then I' is called a semi-stable limit cycle.

Theorem 2.4 [5] Let E be an open subset of R? and suppose that f € C'(E).
Let (t) be a periodic solution of the system (2.1) of period T. Then the periodic

solution 7(¢) is a stable limit cycle if

éTvaﬂ%ﬂﬁﬁ<0

and it is an unstable limit cycle if

ATVaﬂ%ﬂMﬁ>0



Theorem 2.5 [5] (Dulac’s Criteria) Let f € C''(E) where F is a simply connected
region in R% If there exists a function H € C'(F) such that V - (Hf) is not
identically zero and does not change sign in E, then the system (2.1) has no closed
orbit lying entirely in F. If A is an annular region contained in E on which V- (H f)

does not change sign, then there is at most one limit cycle of the system (2.1) in A.

Theorem 2.6 [5] (The Poincaré-Bendixson Theorem) Suppose that f € C(F)
where F is an open subset of R? and that the system (2.1) has a trajectory T' with
['* contained in a compact subset F' of E. Assume that the system (2.1) has only
a finite number of equilibrium points in F', then w(T') is either a equilibrium point
of the system (2.1), a periodic orbit of the system (2.1), or a graphic of the system
(2.1).

At last, we introduce the comparison method. Let’s consider the following

T = M(z,y)

(2.2)
y = Nl(xay)
T = My(z,y)

(2.3)
y = N2(l",y)

Theorem 2.7 [/] Suppose that two systems (2.2) and (2.3) have same unique e-
quilibrium point E*. If E* is a center or globally asymptotically stable focus with
respect to the system (2.3), then E* is globally asymptotically stable with respect
to the system (2.2) if and only if the following inequality holds

M (z,y) - Na(z,y) — Ma(x,y) - Ni(x,y) <0



2.2 Nonlinear autonomous system with delays

C = C([-7,0],R"), the Banach space of continuous functions mapping the
interval [—7,0] into R™ with the topology of uniform convergence; i.e., for ¢ € C,
the norm of ¢ is defined as ||¢|| = sup [¢()|, where |- | is any norm in R". Define

0e[—7,0]

zy € C as 24(0) = z(t + 60), 0 € [—7,0]. Consider the following general nonlinear

autonomous system of delay differential equation

(t) = f(x) (2.4)

where f : Q2 — R™ and () is a subset of C. In this thesis, we need the following

definitions, theorems and lemmas.

Definition 2.7 [5]

(i) The solution z = 0 of the system (2.4) is said to be stable if, for any o € R,
e > 0, there is a 0 = (¢, 0) such that ¢ € B(0,0) implies (0, ¢) € B(0,¢)

for ¢ > 0. Otherwise, we say = = 0 is unstable.

(ii)) The solution x = 0 of the system (2.4) is said to be asymptotically stable
if it is stable and there is a by = b(c) > 0 such that ¢ € B(0,by) implies

z(o,¢)(t) — 0 as t — oc.

(iii) The solution z = 0 of the system (2.4) is said to be uniformly stable if the

number ¢ in the definition of stable is independent of o.

(iv) The solution z = 0 of the system (2.4) is said to be uniformly asymptotically
stable if it is uniformly stable and there is a by > 0 such that, for every
n > 0, there is a ty(n) such that ¢ € B(0,by) implies z;(0, ¢) € B(0,n) for
t > o+ ty(n), for every o € R.



Definition 2.8 [6] System (2.4) is said to be uniformly persistent if there exists a
compact region D C int R%r such that every solution of the system (2.4) eventually

enters and remains in the region D.

Lemma 2.1 [3] Let u(-) and w(-) be nonnegative continuous scalar functions such
that u(0) = w(0) = 0; w(s) > 0 for s > 0, lim u(s) = +oo, and that V' : C' — R is
S§— 00

continuous and satisfies

V(e) = u(|6(0)]) , V(¢) < —w(|(0)]).

Then x = 0 is globally asymptotically stable. That is, every solution of the system
(2.4) approaches z = 0 as t — +o0.



3 The model without time delay

Consider the Leslie-Gower predator-prey system without time delay modelled

by

l‘l(t) = l'l(t)[Tl — bll'l(t) - all'g(t)]

(3.1)
- 75(t)
t) = t —
To(1) (1) {7“2 anl(t)]
with the initial condition
1‘1(0) > 0, IL'Q(O) > 0 (32)

where r1,79, a1, a2, and b; are positive constants, x; and x, denote the densities of

prey and predator population, respectively.

~

Clearly, E = (r1/b1,0) is an equilibrium point and E* = (7}, x3) is the unique
positive equilibrium point in the first quadrant for the system (3.1) with the initial

condition (3.2), where

rias rra

Ty =

= - 3.3
a1re + Clgbl ( )

= —
1 — )
airy + Clgbl

It follows from (3.3) that
ToT] = oxy , 1Ty 4+ bix] =1 (3.4)

Firstly, we discuss the local behavior of equilibrium points of the system (3.1)
with the initial condition (3.2) by the Hartman-Grobman Theorem. The Jacobian

matrix of the system (3.1) takes the form

1 — 20121 (t) — ayzo(t) —ayxq(2)
J = 2
a2x2_(t) ry 2a2x5(t)
i 1(t) 21(1)
The Jacobian matrix of the system (3.1) at E is
i ary
= W
0 Ty



Since det(J) = —ryrs < 0, the equilibrium point £ of (3.1) is a saddle point and

the stable manifold is

Flz{($1,$2)|l‘1>0,$2:0}

On the other hand, the Jacobian matrix of the system (3.1) at E* is

bz} —ayx]
J* =
0 r5)? s
(@7)>
Therefore,
(3)*

det(J*) = bla2x§ + a1a9

*
1

9T

*

1

trace(J*) = —bjx] —

Since det(J*) > 0 and trace(J*) < 0, the equilibrium point E* of (3.1) is locally

asymptotically stable.

Lemma 3.1 All solutions (x1(t), xo(t)) of the system (3.1) with the initial condition

(3.2) are positive and bounded.

Proof. Firstly, we want to show that all solutions (x;(t), x2(t)) of the system (3.1)
with the initial condition (3.2) are positive. That is, if (z1(0),22(0)) is in the first
quadrant, then (xq(t),z2(t)) is also in the first quadrant for all ¢ > 0. Let’s divide

the first quadrant into four regions I-IV which are defined below:

I = {(z1,m9) |1 — bizy — a129 > 0, 79w — agwy > 0,21 > 0,29 > 0}
II = {(z1,22)|r1 — b1z —arw2 < 0,721 — agwy > 0,21 > 0,29 > 0}
I = {(z1,29) |11 — biz1 — @122 < 0, 19wy — a9y < 0,27 > 0,29 > 0}
IV = {(x1,29) |r1 — bixy — a1xe > 0,792 — agxy < 0,21 > 0,29 > 0}

See Figure 3.1(a). Consider the following two cases:

10



(a) (z1(0),22(0)) is near the positive zj-axis;
(b) (x1(0),x4(0)) is near the positive xqo-axis;

In case (a), the initial point (x(0), z2(0)) will be in the region I or II. Since 5 is posi-
tive in the region I or II, the solution (x;(t), zo(t)) with the initial point (z1(0), 22(0))
will run away the positive x;-axis. In case (b), the initial point (z1(0),z2(0)) will be
in the region III or IV. Since  is positive in the region IV, the solution (z(t), z2(t))
with the initial point (z1(0), z2(0)) will run away the positive zo-axis. Now, we want
to show that if the initial point (z1(0),22(0)) starts in III, then the trajectory of
the solution (xy(t),z2(t)) will go into the region IV. That is, the trajectory of the
solution (z1(t),xz2(t)) will not stay in the region III or not go to zp-axis. Suppose
that the trajectory finally stays at some point (T;,Z2) in the region III, then (7, T5)
will be an equilibrium point of the system (3.1). It is contradictory. Therefore any
solution (z1(t), z2(t)) start in the region IIT won’t stay in it. On the other hand, if
the trajectory in the region III approaches to xo-axis, then ©; — 0 and 25 — —o0 as
1 — 0. Hence there is a t; > 0 such that (z1(t), z2(¢)) is in the region IV whenever
t > t1. Therefore, by above discussion, we know that all solutions (z;(t), z2(t)) are
positive.

Secondly, we want to show that all solutions (x(t),x2(t)) of the system (3.1)
with the initial condition (3.2) are bounded. We know #; < 0 for z; > ry/b; and
zy > 0. Hence solutions (z1(t), z2(t)) of the system (3.1) with the initial point
(1(0),22(0)) and z1(0) > r1/by, there exists a 77 > 0 such that x(t) < ry/b for
t > Tj. Suppose that xo > L = max{ri/ay, rire/asb} and x; < r1/b;. Now we
want to show that there exists a T, > 0 such that xz5(¢) < L for ¢ > T, whenever

z1(0) < r1/by and x2(0) > L. If L = ry/ay, then x5 > ry/a; > riry/asby and

. 29
To = T2 (T2 — "
1

rra

< @ 7”2——b ]
121



. {T2(b1$1 - 7"1)] <0

bixq
See Figure 3.1(a). On the other hand, if L = riry/asby, then xo > riry/ashy, and
then @9 < 0. See Figure 3.1(b). Hence, by above discussion, we know solutions
(z1(t), z2(t)) of the system (3.1) with the initial point (z1(0),22(0)) and z,(0) <
r1/b1, x2(0) > L, there exists a T, > 0 such that zo(t) < L for t > T,. So
z1(t) < /by and xo(t) < L for t > T = max{Ty,T>}. That is, all solutions
(x1(t), z2(t)) are bounded. |

12
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Figure 3.1 : Schematic diagram for the proof of Lemma 3.1
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Theorem 3.1 The unique positive equilibrium point E* of the system (3.1) is glob-
ally asymptotically stable.

Proof. Now, we want to use the following two methods to analyze the global stability

of the system (3.1) with the initial condition (3.2):
(i) Dulac’s Criterion plus Poincaré-Bendixson Theorem
(ii) Stable limit cycle analysis

Firstly, we use the method (i) to analyze the system (3.1). Consider

1
H(ZUI,ZUZ)— x1>0,29 >0
T1T9
Then
o 0
V-(Hf) = o1, {H [z (1 = bz — ax)]} + o— 02y {H {@ <T2 - @i—i)] }
X
— —2—1(7"1 —bixy — ayz2) + (11— 2b1z1 — a1202)
TiT2 T1T2
T T 1 2@21‘2
- D) ro —ao— | + Ty —
T1T5 1 T1T2 L1
. b1 a

Hence by the Dulac’s Criterion, there is no closed orbit in the first quadrant. From
above, we see that E* is locally asymptotically stable. By Lemma 3.1 and Poincaré-
Bendixson theorem, it suffices to show that the unique positive equilibrium point
E* is globally asymptotically stable in the first quadrant.

Secondly, we use the method (ii) to analyze the system (3.1). Now, we want to
show that the system (3.1) has no closed orbit in the first quadrant. If not, there is
a T-periodic orbit I' = { (z1(t),z2(¢)) |0 <t < T} in the first quadrant. Compute

, i) (t)
T (t)

/ (=L () (= by (8) — ayma(8))] + a%[@(t)(m a2y g

81'1

14



T (t)

l‘l(t)

B /o {[r1 = 2byx1(t) — a1 z2(t)] + [r2 — 2as I} dt

/T[x'l(t) by () + To(t) o xg(t)] "

xl(t) i) (t) T (t)

= In (le((g)) > +1n (Zz(g)) > - /0 ' {bm(t) + aQiiEg dt

[ st e

So all closed orbits of the system (3.1) in the first quadrant are orbitally stable. Since
every closed orbit is orbitally stable and then there is an unique stable limit cycle
in the first quadrant, £* is unstable. However, E* is locally asymptotically stable.
Thus there is no closed orbit in the first quadrant. By Lemma 3.1 and Poincaré-
Bendixson theorem, it suffices to show that the unique positive equilibrium point

E* is globally asymptotically stable in the first quadrant. [

Remark 3.1 In [2] the same result with Theorem 3.1 was obtained via the Lyapunov

functional

T ¥ axd To  Th
Vizy, o)==+ +—L(In=+=2
xq T (05}

Remark 3.2 Analyze the system (3.1) by using Comparison method is not covered

yet in this thesis.
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4 The model with time delay

Consider the Leslie-Gower predator-prey system with time delay 7 modelled by

l‘l(t) = l'l(t) [Tl — bl.'L'l(t - T) — all'z(t)]
(4.1)
; = ry—a 2(t)
alt) = a0 -]
with the initial conditions
1‘1(9) = d)(g) >0, 0 e [_Tv 0]7 ¢ € C([_Tv O]vR)
(4.2)

z1(0) > 0, x2(0) > 0

where 1,79, a1, as, b1, and 7 are positive constants, x; and x, denote the densities

of prey and predator population, respectively.

Lemma 4.1 FEvery solutions of the system (4.1) with the initial conditions (4.2)

exists in the interval [0, 00) and remains positive for all t > 0.

Proof. 1t is true because

21(t) = 21(0) exp { /0 t[rl — by (s — ) — a12a(s)] ds}

22(t) = 22(0) exp {/Ot [TQ - aQijg] ds}

and z;(0) > 0 for i = 1, 2.

Lemma 4.2 Let (x1(t), 22(t)) denote the solution of (4.1) with the initial condition
(4.2), then

16



eventually for all large t, where

M, = Lent (4.4)
by
)

M2 - —M1 (45)
az

Proof. Now, we want to show that there exists a 7" > 0 such that z;(t) < M for
t > T. By Lemma 4.1, we know that solutions of the system (4.1) with the initial

condition (4.2) are positive, and hence, by (4.1),
Il(t) = l’l(t) [Tl - bll'l(t - T) - all'z(t)]
S l’l(t) [Tl — bll'l(t - T)] (46)

Taking M{ = ri(14+k1)/b1, 0 < ky < ™™ —1. Suppose z;(t) is not oscillatory about
M. That is, there exists a Ty > 0 such that either

x(t) > My for t>1, (4.7)
or

x1(t) < My for t>T, (4.8)

If (4.8) holds, then for ¢ > Tj

1+k
x(t) < Mf = 77"1( k) < Menr — M,
by by
That is, (4.3) holds. Suppose (4.7) holds. Equation (4.6) implies that for ¢t > Ty + 7
l’l(t) S lUl(t)[Tl —bll'l(t—’r)]
< —klrlxl(t)

It follows that

t . t
/ -'L'I(S) ds < / —k17"1 ds = —kl’f'l(t — Tg — T)

To+T1 ZUl(S) To+7
Then 0 < 2, (t) < 2 (Ty +7) e Fr1=T0=7) 5 0 as t — co. That is, ltlim z1(t) = 0 by
— 00

the Squeeze Theorem. It contradicts to (4.7). Therefore, there must exist a 77 > Tj

17



such that x1(77) < My. If z1(t) < My for all t > Ti, then (4.3) follows. If not,
then there must exist a 7, > T} such that T, be the first time which z,(T3) > M.
Therefore, there exists a T3 > T3 such that T3 be the first time which z1(73) < M
by above discussion. By above, we know that x,(77) < M{, z1(Ty) > M, and
x1(T3) < M where Ty < Ty < T3. Then, by the Intermediate Value Theorem, there
exists 1, and T3 such that

v (Ty) =My , T' <Ty <T
1'1(T5):Mik, Ty <T5 <13

and x1(t) > My for T) < t < Ts. Hence there is a Tg € (T4, Ts) such that x;(Tg) is

an arbitrary local maximum, and hence it follows from (4.6) that
0= l’l(TG) S l’l(Tﬁ)[Tl — bll'l(Tﬁ — 7')]

and this implies

Integrating both sides of (4.6) on the interval [T — 7, T;], we have

e = g s e s

It follows that

=.

l‘l(Tﬁ) S l‘l(Tg - T) e’ S 26”7— = M1
1

Since x1(T%) is local maximum of xy(t) and x(T5) < My, x1(t) < M; where ¢ near
Ts. Since x1(Ts) is an arbitrary local maximum of z(¢), we can conclude that there

exists a 7" > 0 such that

x1(t) < My for t>T (4.9)

18



Suppose x(t) is oscillatory about M, for this case, the proof is similarly to above
one. Now, we want to show that z5(t) is bounded above by M, eventually for all

large ¢. By (4.9), it follows that for ¢t > T

) = w20
< ap(t)[rs — %xz(t)]
= romy(t)[1 — Tj\Zﬂ 2(t)]
= roxa(t)[l — Irj_]\(/[tl)]
Therefore, xo(t) < roMi/ay = M, for t > T. This2completes the proof. [ |

Lemma 4.3 Suppose that the system (4.1) satisfies
ri—aiMy >0 (4.10)

where My defined by (4.5). Then the system (4.1) is uniformly persistent. That is,
there exists my, my, and T* > 0 such that m; < x;(t) < M; fort > T*, i=1,2.

Proof. By Lemma 4.2, equation (4.1) follows that for ¢t > T + 7

Z1(t) > x1(t)[r1 — b1 My — ay My (4.11)
Integrating both sides of (4.11) on [t — 7,t], where ¢ > T + 7, then we have

x1(t) > x1(t — 7) e(r—biMi—a1 Mz)7
That is,

21(t —7) < 21 (t) e (MhiM—a M) (4.12)

19



It follows from (4.1) that for ¢t > T + 7

It follows that

and m; > 0 by (4.10).

Then

l‘l(t) = l'l(t)[Tl — bll'l(t — T) — all'z(t)]

v

l'l(t) [Tl — a1M2 — b1€_(rl_blM1_a1M2)T .'L'l(t)]

blef(rlfblleale)T

= (n—aiMy) ,(t) [1 - 1 (t)]

r — a1M2

(1) ]
7"1—1(71711\/[2 e(ri—biMi—ai M2)7
1

= (ri—aiMs) mi(t) [1 -

- ry — a M. b M —
lim inf 2, (t) > ————2 (r—tiMi—aiM2)r — g0

So, for large t, x1(t) > my/2 = m; > 0. It follows that

a2

To(t) > ma(t)[re — E@(t)]
= roxs(t)[1 — T::’lzh (1))
= a1 - 20

So, for large t, xo(t) > Mz/2 = my > 0. Let

D = {(xy,22) |y <2y < My, my <29 < M}

Then D is a bounded compact region in Ri that has positive distance from co-

ordinate hyperplanes.

Hence we obtain that there exists a 7" > 0 such that if

t > T*, then every positive solution of system (4.1) with the initial conditions (4.2)

eventually enters and remains in the region D, that is, system (4.1) is uniformly

persistent.

20



Theorem 4.1 If the delay T satisfy

ri—aiMy >0 (4.13)

by MiT < 2z} (4.14)

bymq M, (7"1 + bll'){)T < 2x’f(b1m1 — a1 My — al.'L;) (415)

where mq, My, and M, defined in Lemmas 4.2 and 4.3, then the unique positive

equilibrium E* of the system (4.1) is globally asymptotically stable.

Proof. Define y(t) = (y1(t), y2(t)) by

niy = DIy = 2O 20
From (4.1), 1 2
B0 = [+ Ol brin(t )~ aaiw@]  (416)
(1) = 1+ (] |21 = sl (4.17
Let
Vil00) = () = 1 0O} + - () = 1 (0]} (419

then we have from (4.16) and (4.17) that

1w (t)y1(t) L Y2 (t)1(1)

Vily(t) = axizy 14y (t)  maf 14+ ya(t)
— —ai);§ Y1)y (t—7) — %{yl ()y2(t) + x?[ll(i)ry;fzz)f)] B x}‘[ly—%l-(z ()]
o Y2 (£ (t) Y3 (t)
= a0l =) - e T T T+ ]
by |y2(8) 7 (£) AU
S o mnnlt = n) 4 e T T A @] -
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By Lemma 4.3, there exists a T* > 0 such that m; < z}[1 4 y;(¢)] = x;(t) < M; for
t>T* i=1,2. Then (4.19) implies that

R) < —n(Ont =) + Ol - 50
< (-0 + o (14 22) 0 - R0
= 0~ [ i s+ (1452 20 - 30

+af§v§ /t_ 14+ y1(s)][brx]|ya (D) yr (s — 7)| + a1 23]y (B)ya(s)]] ds (4.20)

Then for t > T* + 7 = T, we have from (4.20) that

I b1 M,

* ek

b1 Mg 1 2 1 2 b1M1 blaTTT 2
< - - — t) — —uys5(t t
< < " " )yl() MlyZ()+a1x’{x§ 5 yl()

/t_ ety (D)]lys (s — 7)| + avwz |y ()] ly2(s)] ds




_ _< by M, WMyt biMT 1> ) 1,

t) — —uy5(t
a Ty myxs 2a,7% 277 my yl() MlyZ()

b2M, ! by M
+-1 1*/ Y2 (s — ) ds + L 1/ ya(s) ds
t-r 207 Ji s

20175
Let
b2 M,
Vs = —7)dyd
2(y(t)) 2a1x2/”/5 yi(y — 1) dv ds
blMl/ /
) dy d
2" v5(7) dvy ds
then

. b2 M+t b2 M t
Wy) = ——uit—71) - 1/ yi(s —7) ds
t—r

20,75 20,75

by M M, [!
HTg - [ B ds
t—1

* *
2z7 2z

and then we have from (4.21) and (4.23) that for ¢ > T

. . bl M2 b%MlT blMlT 1
Vily(t Voly(t < — — — — -
l(y( ))+ Z(y( )) - <a1x§ myxs 20,75 277 m
1 blMlT 2
—— - t
<M1 27 )yQ()
+b%M1T 2(t )
-7
20175 o
Let
bZMlT ¢
Va(y(t)) = = 2(s) d
(00) = ot [ i) s
then
. bZM,T biM,T
3(y(1) 20z yi(t) Sz yi(t —7)

Now define a Lyapunov functional V' (y(t)) as

V(y(®) = Vily(t) + Valy (1)) + Va(y(t))

23

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)



then we have from (4.24) and (4.26) that for ¢ > T

V(y(t)) < _< b1 M2 . b%MlT_ blMlT_ 1 > 2

Y1 (t)

a1 T5  MyT 175 2z my

1 blMlT 2
- t
<M1 2t )yQ()

225 (bymy — ay My — ayxly) — bymy My (ry + b))

= - Y1 (t)

* ok
20,my Ty T}

225 — by MEr
= P 2
oo, 20

= —ayi(t) - By (4.28)
Then it follows from (4.14) and (4.15) that o > 0 and 8 > 0. Let w(s) = Ns?
where N = min{a, 8}, then w is nonnegative continuous on [0, 0], w(0) = 0, and
w(s) > 0 for s > 0. It follows from (4.28) that for t > T

V() < =N [ + 53(0)] = =N [y(0)* = —w(ly(0)]) (4.29)

Now, we want to find a function u such that V(y(t)) > u(|y(t)|). It follows from
(4.18), (4.22), and (4.25) that

V() 2 e ln(0) = {1+ (0]} + = (n(t) =01 +10(0]} (430)

By the Taylor Theorem, we have that

(0~ fl 4 (1) = 50 (431
O D TN AOE '
where 6;(t) € (0,y;(t)) or (y;(t),0) for i =1,2.
Casel : If 0 < 6;(t) < y;(t) for i = 1,2, then
2 2
y; (1) y; (1) 2
< < y:(t 4.32
T+u@F = T+op =% 4:32)
By Lemma 4.3, it follows that for ¢ > T*
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Then (4.32) implies that

(55) w0 < 200 <) L=z

It follows that (4.30), (4.31), and (4.34) that for ¢ > T*

1 yi(t) L /10)

Viy(t
(y(®)) 2a iy [1401(8)]2  2raxt [1 4 09(1)]?
1 Ty ? 2 1 Ty ? 2
> t t
= 2ay777% <M1> yl( )+ 2rox] <M2 yQ()
>

Il

=
<
—~

~
~—
T

Case2 : If —1 < y;(t) < 0;(t) < 0 for i = 1,2, then

U0,
1+ 60 = [T+ 5P

yi(t) <

By (4.33), (4.35) implies that

yi (t) < [yi < <x—;>2y§(t) L i=1,2

1 + gl(t)]Q - m;
It follows that (4.30), (4.31), and (4.36) that for ¢t > T*
1 yi(t) 1 Y3 (1)
V() > +
(W) > 2aztey L+ (O 20w [L+ 0: ()]
SO S [ p ey 103
20,7775 2rox]
1 x¥ 2 1 xs 2
> 1 2 t 2 2 t
= Sazias <M1> il )+27"2x’{ <M2> va ()
> N [yi(t) + ya(t)]

= N[y
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. 1 2 2
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(4.34)

(4.35)
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Case3 : If 0 < 0,(t) < y1(t) and —1 < ya(t) < () < 0, then it follows that (4.30),
(4.31), (4.34) and (4.36) that for ¢ > T*

I (R 1
2aixiay [1+01(¢)]2  2raxt [1 4 65(2)]?

V(y(t))

1 ] ’ 2 L
> t t
20,2775 <M1) vi(t) + 2rox] v (t)

1 i 2 1 x5 2
1 2 2 2
t) + t
2@11’?37; <1Ml) yl( ) 27"21'{ <1MZ) y2( )

N [yi () + 3 (0)]

v

v

= N[y
Cased : If —1 < yy(t) < 61(t) <0 and 0 < ,(t) < y2(t), then it follows that (4.30),
(4.31), (4.34) and (4.36) that for t > T*

L, 1 g
2a iz [1401(8)]2  2raxt [1 4 09(1)]?

Viy@®) =

1 1 2%\ 2
> 2t+—<2> 2(¢
y1() M, yz()

* a0k *
2017775 2rox]

1 25\ 1 25\
1 2 2 2
t)+ —— t
201775 <Ml) vi(t) 2ryxy <Mg) ya(t)

>
> N [y3(t) + y3(t)]

= N[y

Let u(s) = Ns2, then u is nonnegative continuous on [0, 00), u(0) = 0, u(s) > 0 for

s> 0, and lim u(s) = +o00. So, by casel ~ cased, we have
5—00
V(y() >ully®)])  for t>T~ (4.37)

So the equilibrium point E* of the system (4.1) is globally asymptotically stable by
Lemma 2.1. [
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5 Examples

We present, below two simple examples to illustrate the procedures of applying

our results.

Example 5.1 Consider the system

(5.1)

t) = t)|1—

) = =it [1- 5]

where 11 = 19 = 1, a1 = 1, ay = 2, by = 10, and E* = (2/21,1/21). Then
we conclude that the unique positive equilibrium point E* of the system (5.1) is

globally asymptotically stable by Theorem 3.1. The trajectory of the system (5.1)
is depicted in Figure 5.1.

x2(t)

0.01 I I I I I I I
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x1(t)

Figure 5.1 : The trajectory of the system (5.1)
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Example 5.2 Consider the system

ot) = ma(t) {1 - 25”2(”]

l‘l(t)

where 11 =ro =1, a1 =1, ag = 2, by = 10, and E* = (2/21,1/21). Then
r1 —ay My =0.9325 > 0
227 — by M7 = 0.1358 > 0
227 (bymy — ay My — ayxy) — bymy My (r + byz))T = 0.0239 > 0

whenever 7 = 0.3. Consequently, by Theorem 4.1, we conclude that the unique
positive equilibrium point E* of the system (5.2) is globally asymptotically stable.
The trajectory of the system (5.2) is depicted in Figure 5.2.

Il Il
0.05 0.1 0.15 0.2 0.25 0.3
X1(t)

Figure 5.2 : The trajectory of the system (5.2) with 7 = 0.3
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6 Conclusions

In this thesis, we obtain that a sufficient condition for the global stability of
the Leslie-Gower predator-prey system with time delay. We believe that the Leslie-
Gower predator-prey system with time delay as follows will be an important topic

for future study.

lUl(t) = lUl(t) [7"1 — bllb'l(t — T) — ale(t)]

(6.1)
x = x ro — @ 7332(75)
) = o) | =]
l'l(t) = l'l(t) [Tl — bl.'L'l(t — T1) — all'g(t — Tg)]
(6.2)
: B To(t — 7o)
lUg(t) = lUg(t) ro — agm
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