1. Introduction

In recent 10 years, support vector machines (SVMs) are more and more
Spectacular. Support vector machines are learning systems [11]. The learning
strategy was introduced first by Vapnik and his co-workers in 1979 [9]. An
SVM possesses an dgorithm, the learning agorithm. By feeding the
algorithm with a set of training data, it can determine a classifier or an
optimal hyper-plane. Then we use it to classify test data to observe the
classification accuracy. If the accuracy is over a threshold, we use the
classifier to classify the new-coming unknown data. Thisis the god of the
development of the SVMs.

The SVM is a principle and very powerful method. It has good
performance in a wide variety of applications such as text categorization,
image recognition, hand-written digit recognition, and the determination of
cancer cdll etc [4].

Unfortunately, not all data can be classfied by an SVM, since SVM
classify data by a linear classifier. To use SVM, we may need to map the
input space into a high dimensional feature space to realize the linearity of
the classifier. The high dimension of input space will decrease performance
of the support vector machine. Therefore, from an efficiency viewpoint, we
hope to classify test points based on fewer vector components (we call
features in section 3). Feature selection is away to achieve the god [2][8].

This paper consists of five sections. In section 2, we describe the

construction of the SVM with linear and non-linear cases. We also introduce



method to classify nonlinear separable case by SVM. In section 2, we
describe the construction of the SVM with linear and non-linear cases. And
we introduce another solution by mapping training data into a high
dimensional feature space for non-linear case. In section 3, we describe the
feature selection. We introduce the strategy proposed by L. Hermes and J. M.
Buhmann [6]. We call it the L-J method. The L-J method is used to select
features in the input space._In section 4, we propose a method to select
features in the feature space, and combine the method with the L-J method
to form a two-stage feature selection. An example is given to illustrate our

method. Finaly, in section 5, some conclusions are discussed.

2. Support Vector Machines (SVMs)

In a classic classification (or pattern recognition) problem, each data unit

is represented as a vector x=(x', %%, .., x)'T A" consisting of individual
components, which represent some properties of the data. First, consider a

classification problem with two classes. Suppose that there are . training
examples x =(x', x*, .., x’)'T A", each x is labeled by yi{# -1,

i=1 2 ..+ Vaouik constructed an SYM to separate the training data into

two classes, one class containing al the vectors with y =+1 and the other

containing al the vectorswith y, =-1.



The SVM separates these two classes by an optima hyper-plane
wxx+b =0, where "X means the inner product. W is perpendicular to the
hyper-plane. The function f(x)=wxx+b is caled the classfier. The

optimality of the decision hyper-plane is defined by maximizing the distance
of the nearest training example to the hyper-plane. The training of SVM isto

find the classifier f(x)=wxx+b S0 that we can useit to classfy data.
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Figure 1. A binary classification problem



In Figure 1, H; and H, are the hyper-planes containing training points

closest to the hyper-plane f(x)=0. There are no training points lying

between H, and H,. The distance between H, and H, is 2 The distanceis

[l
caled the margin [1]. The hyper-plane is better if the margin islarger.

Figure 2. A linearly separable example



Now, consider the two-classes linearly separable pattern problem as

shown in Figure 2, where xT A" ae labeded by y with yii}+l-]§,
|
2

i=1 2 ..+ We want to find the optima hyper-plane to maximize —

ul

Without loss of generality, we may assume that

{'Wxx +b3 +1 if y =+1,
|
%WXXi +bE-11if y =-1.
The two conditions can be combined into the following:
y.(wxx +b)-130, "i=1 2 .., +.
These are constraints to the maximizing margin problem.

Instead of maximizing ﬁ we minimize @ or equivaently to
W,

minimize @ Then the linearly programming problem is modeled as:

Minimize f(X) :%”\mﬂ2

(1)
subject to y.(wxx +b)-130"i=1 2 .., +
Now, we introduce non-negative Lagrange multipliers a, i=1, 2 .., +, and

get Lagrangian:

Minimize L, :%||V\4|2 : éaiyi (W +b)+i6°1;ai -

subject to &, 2 0"i=1 2 .. +

The optimization programming is called the primal form [1].



Since the solution of (2) satisfies %; =0 and %" =0, therefore

+
[}

W_a ai yixi ’
i=1

and é.aiinO'

i=1

Substituting them into L, , we obtain

- .9 lo
MaximizeL,:q & - Eaaiajyi Y X; %%
i i i

subject to @ 3 0,"i=1 2 .., 4 (3

aay =0

i=1

(3) isthe dual form of the problem [5].

Since the problem minimizes L, with respectto w, b and maximizes
L, with respect to a,, the optimization problem is equivalent to find the

saddle point of L, and L,. We cdl the points in the solution with a, >0

support vectors (or sv.). The support vectors lie on either H, or H,. Besides,

al other training points have zero vaue of a,, and lie on either H, or H,, or

on side of H, or H, [1]. In Figure 2, the points marked by or @ arethe
support vectors and the others not. Thus, we have

w= éai Y X =i§_aiyixi ,
and f(x):w><x+b:ﬁgaiyixi X +Db,

]

A

where |, = : j
|

X; is an sv.g.



Furthermore, the support vectors are the vectors that are closest to the

hyper-plane f(x)=0. |f(x)| can be viewed as the distance of vector x to

the optimal hyper-plane, and the classifier can be completely determined by

the support vectors.

Lagrange proposed in 1797 the Lagrangian theory to characterize the
solution of an optimization problem with no inequality constraints. Kuhn
and Tucker proposed extended the theorem to optimization problems with
inequality constraints. The theorem provides a necessary and sufficient
condition for the optima solution of the optimization problem. The
condition is known as the Karush-Kuhn-Tucker (KKT) conditions [4].
The theorem provides a way to solve an SVM problem. We list the theorem

here for reference.

Theorem (Kuhn-Tucker): Assuming that there is an optimization
problemwith convex domain L i A":

Minimize f(x), xI L,

subject to q(X)£0, i=1 2 .., K,

s;(x)=0, j=1 2, .., m,
with f1 C*convex and q;,s, affine, we can obtain the Lagrangian

function L(xa,b)= f(x)+§1kaiqi (x)+§n{ b,s;(x) . The necessary and

i=1 j

sufficient conditions for a normal point X to be an optimal solution



aretheexistenceof a”, b~ such that

IL(x,a ,b") —0,
X

IL(x,a",b") —0,
b

q(xX)£0, i=1 2 .. k,

a0 i=1 2 .., k,
aq(x)=0i=12 .. k.

These equations are called the KKT conditions. The last equation is

known as the KKT complementarity condition.

By the theorem, to solve an optimization SVM problem is equivalent to
find the solution (w', b’, a’) for the KKT conditions. For example,

consider the optimization problem (1), the KKT conditions are

w- aayx =0,

illg,,

- aay =0

i lgy,
y,(wx +b)-13Q"i=1 2 .., 4
az30"i=1 2 .., +
afyi(w +b)-=0"1=1 2 .., «
The last one is the KKT complementarity condition to the prima form.

Since w= dayx ,b can easly be solved from the KKT complementarity

il lgy.

condition by choosingany i for which a, >0.

Though we consider above only the linearly separable case. The concept



can also be extended to the linearly non-separable casg, i.e., when the linear
programming (1) has no feasible solution. Figure 3 shows a linearly
non-separable example. The cross indicates the point that is wrongly

classified.

Figure 3. A linearly non-separable example

For the linearly non-separable case, assume that the point x, is wrongly



classfied. Then x must violate the congtraint: vy (wxx +b)31. The

congtraint is changed to be y (wxx +b)3 1- x with x >0 so that x satisfies

it. We may introduce non-negative dack variables x 30, "i=1 2 .., +,In
the constraints of (1) [3]. Then the constraint of (1) is weakened to

y.(wxx +b)31-x, "i=1 2 .., +.
The objective function is rewritten to keep the constraint violation as small

as possible. In addition, the origina objective function is still required to
minimize @ Thus, we observe the new objective function for non-linear
case:

Minimize %||V\,1|2+C§Xi

subject to y, (Wxx +b)-1+x 30, i=1 2, .., + 4

x30 i=1 2 .., +

C isaparameter chosen by user to assign a penalty to errors. By introducing

two non-negative Lagrange multipliers a;, m for each i. The prima
Lagrangian changes to
Minimize L, :%||V\4|2 FCAX - Safy ws +b)- 1+x}- & nx

subject to O0fa £C, i=1 2 .., + (5)

The K.K.T. conditions for the optimization programming (4) are

10
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y (W +b)- 14% 30,1 =1, 2, .., -
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Cia30"i=1 2 .., +
m30"i=1 2 .., +

a{y(w +b)-1+x}=0"1=1 2 ..,
mx =0.
The last two equations are the KKT complementarity conditions for the

non-linear programming.

In 1992, Boser, Guyon and Vapnik applied the method for pattern
recognition learning proposed by Aizerman (1964) to solve the linearly
non-separable problem. First, they map the training examples to a higher
dimensonal space H, caled feature space, by amapping

F:A"® H.
H isoften referred to as a Hilbert space. The object of mapping into feature
gpace is to transform a non-linear problem in the input space to a linear one
in the feature space. Then we can linearly separate the points in the feature

space.

Note that f(x)= a,yxx+b for the linear case and

i sy,



f(x)= gayF(x)¥ (x)+b for the nonlinear case. The training vectors

il lgy.

never appear isolated but aways in the form of inner products between pairs
of vectors. Vapnik et a. defined a new function, the kernel function, to
replace the inner product for nortlinear pattern problem. Then one can
implicitly perform a non-linear mapping to a high dimensional feature space.
The kernel function offers an adternative way to increase the computational
power of the linear learning machines by projecting the data into a high

dimensiona feature space.

Definition (kernel function): Let Hbe a feature space. Given an
input space Si A", the kernd function K is defined by

K(x,2)=(F(X) ¥ (2)), "x zI S, i.e, the inner product on the feature

space, where F isa mapping from A" into H.

When we train the SVM with a set of training data {x,, x,, .., x}, the
kernel function is K(x,x;)=(F(x) > (x,)). Vapnik showed that the kernel

function K(x,x) should satisfy the following Mer cer’ s condition (Courant

and Hilbert, 1953) [9].

Mercer’ s condition: Let Sbe a finite input space (consisting of training

points and test points) and K(x,2) a symmetric function on S. Then K(x,2)
is a kernel function if and only if the matrix G = [K(x,x, )]:HT At

IS positive semi-definite, i.e.,

12



QSK(X, 2)g9(x)g(2)dxdz >0 if ng(x)dx<¥ (or gl L,(S)).

The Mercer's condition for function K is a necessary and sufficient condition
for K to be akernd function.

With the kernel function K, we can rewrite te classifier in the feature
space for the non-linear case:

f(F(X)=wx¥ (x)+b= gayFx)F(X)+b= §ayK(x,x)+b,

i sy, i sy,

where w= § a y.F(x). Figure 4 shows an example where the data cannot

i sy,

be separable by a linear hyper-plane, but can be linearly separable in the
feature space. Although the linearity is satisfied, the computation turns to be
more complex since the dimension of the input space increases. One way to
solve the problem is by feature selection. We will introduce the concept in

next section.

SVMs provide a new way for pattern recognition. Although the SVM
classifiers described above are binary classifier, they can be easily extended
to classify the multi-class. For an m-class problem, m support vector
machines are constructed. Each support vector machine is used to separate a

class from the others.

13
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Figure 4. A feature map can smplify the classification task

3. Feature Selection

Figure 5 shows the process to derive the decision rule to recognize
pattern. In the field of pattern recognition, the raw data describing the
physical system are referred to as the measurement space. The measurement
Space can be viewed as the mathematical model of the physica system.
Some pattern classification algorithm would be applied to the pattern space.
The pattern space may be the same as the measurement space. Feature
selection (or preprocessing) can be viewed as a transformation between the

measurement space and the pattern space [2] [8].

14
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E Feature Selection or Preprocessing
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ﬂ Feature Selection or Preprocessing

Reduced Pattern Space

ﬂ Pattern Classification

Decision Rule

Figure 5. Stages in the derivation of the decision rule

Feature sdlection is a process by which a sample in the measurement

space is described by a finite and usualy smaller set of numbers called

features, say x', x*, .., x". The features become components of the pattern

space. And the feature selection is regarded as a procedure to determine that
which variables (attributes) are to be measured first or last. Feature selection

may be a multistage process to enhance the accuracy or performance of

15



classfication.

The features selected should satisfy: (@) they properly describe the pattern,
(b) they are easily to handle, and (c) they are invariant to trandation and
rotation of the training examples. It is difficult to select features satisfy all
three requirements at the same time since each sample has its own particular
characteristics. The comparability (or similarity) of features among samples
can influence the process of feature selection.

Feature selection can reduce computational complexity. One way of
feature selection is to identify a smaller feature set that ill retains the
essentia information of the original attributes. There are some criteria [8]:

(1) low dimensonality,

(2) retention of sufficient information,

(3) enhancement of distance in pattern space as a measure of the similarity
of physical patterns, and

(4) consistency of feature throughout the samples.

In 2000, L. Hermes and J. M. Buhmann proposed a strategy to rank
individual components according to their influence on the decision
hyper-plane [6]. We cdl it the L-J method in this paper. The L-J method is
to select a suitable subset of features to replace the original one. When
mapping the input data into a feature space, the dimension of the feature
Space may be raised too high. This is known as the over-fitting problem.
Sometimes, feature selection can aso reduce the risk of over-fitting caused

by the proliferation of features.

16



Each component represents some information of the data, for instance,
the income, age, ID, and the weight etc of a customer. In view of efficiency,
the classification should avoid any unnecessary computation by reducing the
input dimension as few as possible. But dminishing the input dimension
will confront the danger of descending the classification accuracy. Thus, we
should know which component is relevant to a given classification model.
Note that replace the origina set of features without significant loss of
classification accuracy. Thus, data components discarded should be limited
to those ones that do not carry any information about the classifier. The L-J
method proposed an approach to evaluate the importance of a feature to the
classfier.

The L-J method is a selection approach that defines scores for the
available features at training. The strategy ranks the features according to

their influence on the decision hyper-plane. The influence of the jth feature

is evaluated by the angle between Kf (x) and e, . In brief, the L-J method is

base on the idea that: if feature x' is not important to the distance of x to

the classfier f(x), then the angle between RNf(x) and e should

approximate to aright angle.

At first, with agiven training set they train the support vector machine by

using complete data components. After constructing the classfier f(x),

they estimated the importance of separate feature componentsto f (x). Note

17



that |f(x)| can be viewed as the distance from x to the hyper-plane. The
gradient of f(x) a point x, Nf(x), is perpendicular to the optimal
hyper-plane. If the projection of the unit vector e, on Nf (x) is smal, the

jth component of x has little influence on the distance from x to the

decision hyper-plane. They calculate the angles f(x)between Nf(x) and

the unit vectors €, i=1 2 .., + and j=1 2 .., n by

Nf (x) >,

f,09 = min {bp+(- 1) »arccos( 0o il [0,92].
Moreover,

Nf ()= da,yN K(x,x)
snce f(x)= da yK(x,x)+b. (6)

il lgy.

If £ (x» %, the feature x' has only weak influence on the assignment

f(x) of x. Smaler f, (x) corresponds to more influential feature. L.

Hermes and J. M. Buhmann added the number of points in order to permit

some error on support vectors. They included al vectors withina d-region

around the support vectors, that is, they chose the points x satisfies
|f(x)-1<d.Let 1, betheindices set of al training vectors which match

the condition and curtail f (x) by f, . To consider the influence of the jth

component of al support vectors, L. Hermes and J. M. Buhmann average the

angles f, over 1, for each j. Then normalize the average to a value

18



f,1[01. They defined f 1[0 as:

[]

ar
fo=1- .

|Id| P

f, can be used to measure the importance of the jth features. If f is

large, x' is ranked first. After ranking the features, we choose the

components that have smaler £ if we have to drop some ones.

4. Our Results

In the L-J method, the criterion for ranking features depends on the value
of f~j. The L-J method is used to sdlect features in the input space. We

extend the concept of the L-J method to derive a new approach for feature
selection in the feature space. Our result can avoid the situation that the L-J
method cannot decide the desertion feature. Moreover, we combine the L-J

method and our result to form a two-stage feature selection approach.

We describe the two-stage strategy as following:
Phase 1 (L-J method):

Step 1. Construct a classifier from atraining set.

Step 2: Calculate the angles f;, j=1 2 .., n between Nf(x) and e,

19



for i=1 2 ..., +.

Step 3 Normdize f,, "i=1 2 .., +, to get the score of the jth feature

f for j=1, 2 .. n.

J

Step 4. Rank the features in the input space according to f~j :

j=1 2, .., n.
After dropping the unnecessary features, we map the input data into a

feature space. Then we enter the Phase 2.

Phase 2:

Step 1 We measure g, the angles between the weight vector W and

the unit vectors e;:
W xe, Wj - p .
q. = arccos—| = arccogq—|1 [0,=], j=1, 2, .., m )
| % W %M‘ 2

Step 2: Rank features in the feature space according to ;.
Step 3. Dropping features in the feature space according to g, if

necessary.

As mentioned in the L-J method, if € isroughly orthogonal to W, then

the festure X does not has a great effect on the dstance to the decision

hyper-plane. The difference to the L-J method isthat the smaller vaue of

20



indicates more important feature X' . We can use q to score the
importance of the jth-component to the classifier f(x).
Wecdl Nf(x) the distance vector of x in this paper since it is aong

the direction perpendicular to the decision hyper-plane. We compare the

distance vector of X;, Nf(x,), with w. In the linear case, Nf(x) Is
pardlel to w. Therefore, dl f (x) ae the same "i=1 2 .., +, and soO

q; =f;(x) for al i. In the linearly non-separable case, assume that the

origina training data are le Xy, oo x%‘l A", and map these data into an m
|

dimensional featurespace H , m>n.

A"3,88® H .

The training data |F(x), F(x,). ... F(xggi H can be linearly separable by
|

the hyper-plane f (F (x)) =w>F (x)+b=0 in the feature space We view the
non-linear case as anew linearly separable problem in the feature space.

The smaller q;, the larger the estimated importance of the feature is.

Then features are ranked according to q; . Once we decide to dispense with
some component, we replace the component by suitable value (depends on
theformof F(x)) to insure that the test processes still perform in the feature

space. In the following example, we will see the weakness of the L-J method.

We show that how does our result supplement the L-J method.

21



Example.

Suppose that there are six training examples in the input space A?:
= -9, %=0 2", =2 0, x=(-3 0, x=(1 -9, x=(0 2" with y,=+1,

y2:+11 y3:_1! y4:'11 y5:+1! yez'l'

Figure 6. The non-linearly separable graph for example 1

From Figure 6, this is a non-linear model. We map the training data to
A® by F(x)=(x?, J2x'x2, x¥°)", where x=(x!, x*)". Then the kernd

function is K(x,x,)=(xx=x,)*, i, jT{1 2 .., 6. The training data in the
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feature space are F(x)=@ -+/2,1)", F(x,)=(0, 0, )", F(x;)=(4 0, 0)T,
F(x,)=(, 0,07, F(x)=( /2, )", F(x,)=(0, 0, 4", as shown in Figure

7. F(x), F(x,),and F(x,) aeundertheplane L : x+z-3=0.

Z

/ _4\%& 6) (0,0,4)
F
,! ﬁﬁz(lvﬂvl) 3 f}’
e | 7
1 -
X+/4=3
©00DF6) 84 .7
(1,-/2,1) 1 / (1L,J2,1)

* &(21)———4_/_'+* F(x3)

SV 2 ) I
|

’

/ o Ean
4 (4,0,0)

Ty
- O - ' - -
iy

|2" F(x4)

= 9,00
X

Figure 7. The training data in the feature space

Let us see along the y-axis, that is, project the graph onto the X-Z plane.

We can obsarve a classifier from the geometric graph (Figure 8). The
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classification hyper-plane is x+z-3=0, i.e, w=(@ 0, )" or (-1, ,0, -1
and b=-3. Now, we want to explain the classfier is the optimd

hyper-plane. From figure 8, the plane H, : x+z=2 contains F(x,), F(xs),
and H, : x+z=4 contains F(x,), F(x,). The distance between H, and
H, is +/2. The two classes separated by L are two convex sets, C, and
C,. C, ishbdow H, and C, isabove H,.Wecdl the segment connecting
F(x) and F(x;)) by s, and the segment connecting F(x,) and F(x,)

S .

Figure 8. The X-Z plane of Figure 7
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In this case, s, is on the bounderary of C,. Similarly, s, is on the

bounderary of C,. So, the distance of the two convex setsis /2. Note that

the distance of any two other convex sets is never larger than /2 if one

contains s, and the other contains s,, respectively. Thus, there is no other

classifier has margin more than 2. L : x+z-3=0 is the optimal
hyper-plane in the example.

Since the a, of vectors not on the margin are 0. We only need to

consider the vectors on the plane, i.e, F(x), F(x,), F(x;) and F(x,).

Solve the problem:
i
i aay =0,

i=1

fw= 4 ayFX).

i=1

—_

We will obtain that a1:a3:a5:a6:% and a, =a, =0. Subsiituting those
a, Into equation (6), we get Nf(x)=(-2 2" , Nf(x,)=(-4, 07" ,

Nf (x)=(2, 2", and Nf(x,)=(0, -4" . By the L-J method, we have

f, =f,= % In this model, we cannot rank the features in the input space by

the L-J method.
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With our approach, we get q =g, :% and q, :%. This means that the

2nd component does not influence the classfier (the phenomenon aso can
be observed from Figure 8). We can reduce the computation complexity by

dropping the 2nd component in the feature space. o

With various distributions of data, there are sometimes some noises
hiding behind the data. The feature selection is one way to filter out the
noises. After selecting features in the input space by the L-J method, some
noises still remain in the feature space. Our approach can get rid of the noise
in the feature space. So the two-stage feature selection can filter out both the

noises in the input space and in the feature space.

5. Conclusions

With a set of training data, we construct an SVM for the input space.
When we use the SVM to test a new set of input vectors (i.e. test data), we
observe the classification accuracy. When the accuracy is over a threshold,
we keep on using the SVM to classify the sustained coming test data. There
are two mgor problems in the development of SVM. One is the suitable
choice of the kernel functions. The other is how to reduce the computation
complexity caused by larger amount of features. The former not yet has a
good conclusion. The later is often solved by feature selection.

In this paper, we propose a new feature selection to rank features in the
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feature space. The L-J method offers an approach to select features in the
input space. In the non-linear case, we combine our result with the L-J
method to form a two-stage feature selection. We first select features in the
input space by the L-J method. After mapping into the feature space, we then
use our result to drop the unnecessary components in the feature space. By
the two-stage feature selection, we can reduce the risk of over-fitting and
drop noises both in the input space and the feature space. We supplement the
weakness of the L-J method.

There is one weakness on our result. When the dimension of the feature
space is infinite, we cannot really get w. A. Webb proposed iterative
feature selection schemes [12]. Further improvements may be probably
achieved by combining our approach with the iterative feature selection

schemes.
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