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1. Introduction 
 

In recent 10 years, support vector machines (SVMs) are more and more 

spectacular. Support vector machines are learning systems [11]. The learning 

strategy was introduced first by Vapnik and his co-workers in 1979 [9]. An 

SVM possesses an algorithm, the learning algorithm. By feeding the 

algorithm with a set of training data, it can determine a classifier or an 

optimal hyper-plane. Then we use it to classify test data to observe the 

classification accuracy. If the accuracy is over a threshold, we use the 

classifier to classify the new-coming unknown data. This is the goal of the 

development of the SVMs. 

The SVM is a principle and very powerful method. It has good 

performance in a wide variety of applications such as text categorization, 

image recognition, hand-written digit recognition, and the determination of 

cancer cell etc [4]. 

Unfortunately, not all data can be classified by an SVM, since SVM 

classify data by a linear classifier. To use SVM, we may need to map the 

input space into a high dimensional feature space to realize the linearity of 

the classifier. The high dimension of input space will decrease performance 

of the support vector machine. Therefore, from an efficiency viewpoint, we 

hope to classify test points based on fewer vector components (we call 

features in section 3). Feature selection is a way to achieve the goal [2][8]. 

This paper consists of five sections. In section 2, we describe the 

construction of the SVM with linear and non-linear cases. We also introduce 
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method to classify non-linear separable case by SVM. In section 2, we 

describe the construction of the SVM with linear and non-linear cases. And 

we introduce another solution by mapping training data into a high 

dimensional feature space for non-linear case. In section 3, we describe the 

feature selection. We introduce the strategy proposed by L. Hermes and J. M. 

Buhmann [6]. We call it the L-J method. The L-J method is used to select 

features in the input space. In section 4, we propose a method to select 

features in the feature space, and combine the method with the L-J method 

to form a two-stage feature selection. An example is given to illustrate our 

method. Finally, in section 5, some conclusions are discussed. 

 

 

2. Support Vector Machines (SVMs) 
 

In a classic classification (or pattern recognition) problem, each data unit 

is represented as a vector nTnxxxx ℜ∈= )...,,,( 21  consisting of individual 

components, which represent some properties of the data. First, consider a 

classification problem with two classes. Suppose that there are l  training 

examples nTn
iiii xxxx ℜ∈= )...,,,( 21 , each ix  is labeled by }1,1{ −+∈iy , 

l...,,2,1=i . Vapnik constructed an SVM to separate the training data into 

two classes, one class containing all the vectors with 1+=iy  and the other 

containing all the vectors with 1−=iy . 
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The SVM separates these two classes by an optimal hyper-plane 

productinnerthemeanswherebxw "",0 ⋅=+⋅ . w  is perpendicular to the 

hyper-plane. The function bxwxf +⋅=)(  is called the classifier. The 

optimality of the decision hyper-plane is defined by maximizing the distance 

of the nearest training example to the hyper-plane. The training of SVM is to 

find the classifier bxwxf +⋅=)(  so that we can use it to classify data. 

 

 

 

 

Figure 1. A binary classification problem 
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In Figure 1, H1 and H2 are the hyper-planes containing training points 

closest to the hyper-plane 0)( =xf . There are no training points lying 

between H1 and H2. The distance between H1 and H2 is w

2 . The distance is 

called the margin [1]. The hyper-plane is better if the margin is larger.  

 

 

 

 

Figure 2. A linearly separable example 
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Now, consider the two-classes linearly separable pattern problem as 

shown in Figure 2, where n
ix ℜ∈  are labeled by iy  with 







 −+∈ 1,1iy , 

l...,,2,1=i . We want to find the optimal hyper-plane to maximize 
w

2 . 

Without loss of generality, we may assume that 







−=−≤+⋅

+=+≥+⋅

.11

,11

ii

ii

yifbxw

yifbxw
 

The two conditions can be combined into the following: 

      l...,,2,1,01)( =∀≥−+⋅ ibxwy ii . 

These are constraints to the maximizing margin problem.  

Instead of maximizing 
w

2 , we minimize 
2

w , or equivalently to 

minimize 
2

2
w . Then the linearly programming problem is modeled as: 

      
....,,2,1,01)(

2
1

)( 2

l=∀≥−+⋅

=

ibxwytosubject

wxfMinimize

ii

                (1) 

Now, we introduce non-negative Lagrange multipliers l...,,2,1, =iiα , and 

get Lagrangian: 

      

....,,2,1,0

)(
2
1
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11
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,

l

ll
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++⋅− ∑∑
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itosubject
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i
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α

αα
               (2) 

The optimization programming is called the primal form [1]. 
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Since the solution of (2) satisfies 0=
∂
∂

w

LP  and 0=
∂

∂
b

LP , therefore 

      ∑
=

=
l

1i
iii xyw α , 

and   0
1

=∑
=

l

i
ii yα . 

Substituting them into PL , we obtain 
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,...,,2,1,0

2
1
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∑

∑∑
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l
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y
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i

α

α

ααα
α

                    (3) 

(3) is the dual form of the problem [5]. 

 

Since the problem minimizes PL  with respect to w , b  and maximizes 

DL  with respect to iα , the optimization problem is equivalent to find the 

saddle point of PL  and DL . We call the points in the solution with 0>iα  

support vectors (or s.v.). The support vectors lie on either H1 or H2. Besides, 

all other training points have zero value of iα , and lie on either H1 or H2, or 

on side of H1 or H2 [1]. In Figure 2, the points marked by ◎ or � are the 

support vectors and the others not. Thus, we have 

      ∑∑
∈=

==
..1 vsIi

iii
i

iii xyxyw αα
l

, 

and   bxxybxwxf
vsIi

iii +⋅=+⋅= ∑
∈ ..

)( α , 

where 








= .... vsanisxjI jvs . 
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Furthermore, the support vectors are the vectors that are closest to the 

hyper-plane 0)( =xf . )(xf  can be viewed as the distance of vector x  to 

the optimal hyper-plane, and the classifier can be completely determined by 

the support vectors. 

 

Lagrange proposed in 1797 the Lagrangian theory to characterize the 

solution of an optimization problem with no inequality constraints. Kuhn 

and Tucker proposed extended the theorem to optimization problems with 

inequality constraints.  The theorem provides a necessary and sufficient 

condition for the optimal solution of the optimization problem. The 

condition is known as the Karush-Kuhn-Tucker (KKT) conditions [4].  

The theorem provides a way to solve an SVM problem. We list the theorem 

here for reference. 

 

Theorem (Kuhn-Tucker): Assuming that there is an optimization 

problem with convex domain nℜ⊆Λ : 

    

,...,,2,1,0)(

,...,,2,1,0)(

,),(

mjxs

kixqtosubject

xxfMinimize

j

i

==

=≤

Λ∈

 

with 1Cf ∈ convex and ji sq ,  affine, we can obtain the Lagrangian 

function ∑∑
==

++=
m

j
jj

k

i
ii xsxqxfxL

11

)()()(),,( βαβα . The necessary and 

sufficient conditions for a normal point ∗x  to be an optimal solution 
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are the existence of ∗∗ βα ,  such that 
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These equations are called the KKT conditions. The last equation is 

known as the KKT complementarity condition. 

 

By the theorem, to solve an optimization SVM problem is equivalent to 

find the solution ),,( *** αbw  for the KKT conditions. For example, 

consider the optimization problem (1), the KKT conditions are 
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The last one is the KKT complementarity condition to the primal form. 

Since ∑
∈

=
..vsIi

iii xyw α ,b  can easily be solved from the KKT complementarity 

condition by choosing any i  for which 0>iα . 

 

Though we consider above only the linearly separable case. The concept 
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can also be extended to the linearly non-separable case, i.e., when the linear 

programming (1) has no feasible solution. Figure 3 shows a linearly 

non-separable example. The cross indicates the point that is wrongly 

classified. 

 

 

 

 

Figure 3. A linearly non-separable example 

 

 

For the linearly non-separable case, assume that the point ix  is wrongly 
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classified. Then ix  must violate the constraint: 1)( ≥+⋅ bxwy ii . The 

constraint is changed to be 01)( >−≥+⋅ iiii withbxwy ξξ  so that ix  satisfies 

it. We may introduce non-negative slack variables l...,,2,1,0 =∀≥ iiξ , in 

the constraints of (1) [3]. Then the constraint of (1) is weakened to 

    l...,,2,1,1)( =∀−≥+⋅ ibxwy iii ξ . 

The objective function is rewritten to keep the constraint violation as small 

as possible. In addition, the original objective function is still required to 

minimize 
2

2
w . Thus, we observe the new objective function for non-linear 

case: 

      

....,,2,1,0

,...,,2,1,01)(
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1

2
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i
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i
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i

ξ

ξ
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                (4) 

C is a parameter chosen by user to assign a penalty to errors. By introducing 

two non-negative Lagrange multipliers ii µα ,  for each i . The primal 

Lagrangian changes to 
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,...,,2,1,0
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  (5) 

The K.K.T. conditions for the optimization programming (4) are 
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The last two equations are the KKT complementarity conditions for the 

non-linear programming. 

 

In 1992, Boser, Guyon and Vapnik applied the method for pattern 

recognition learning proposed by Aizerman (1964) to solve the linearly 

non-separable problem. First, they map the training examples to a higher 

dimensional space H , called feature space, by a mapping  

Hn →ℜΦ : . 

H  is often referred to as a Hilbert space. The object of mapping into feature 

space is to transform a non-linear problem in the input space to a linear one 

in the feature space. Then we can linearly separate the points in the feature 

space. 

Note that bxxyxf
vsIi

iii +⋅= ∑
∈ ..

)( α  for the linear case and 
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bxxyxf
vsIi

iii +Φ⋅Φ= ∑
∈ ..

)()()( α  for the non-linear case. The training vectors 

never appear isolated but always in the form of inner products between pairs 

of vectors. Vapnik et al. defined a new function, the kernel function, to 

replace the inner product for non-linear pattern problem. Then one can 

implicitly perform a non-linear mapping to a high dimensional feature space. 

The kernel function offers an alternative way to increase the computational 

power of the linear learning machines by projecting the data into a high 

dimensional feature space. 

 

Definition (kernel function): Let H be a feature space. Given an 
input space nS ℜ⊂ , the kernel function K is defined by 

SzxzxzxK ∈∀Φ⋅Φ= ,)),()((),( , i.e., the inner product on the feature 

space, where Φ  is a mapping from nℜ  into H . 

 

When we train the SVM with a set of training data }...,,,{ 21 lxxx , the 

kernel function is ))()((),( jiji xxxxK Φ⋅Φ= . Vapnik showed that the kernel 

function ),( xxK i  should satisfy the following Mercer’s condition (Courant 

and Hilbert, 1953) [9]. 

 

Mercer’s condition: Let S be a finite input space (consisting of training 

points and test points) and K(x,z) a symmetric function on S. Then K(x,z) 

is a kernel function if and only if the matrix [ ] lll ×
=

ℜ∈=
1,

),(
jiji xxKG  

is  positive semi-definite, i.e., 
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   ))(()(0)()(),( 2
2 SLgordxxgifdxdzzgxgzxK

SSS
∈∞<> ∫∫ ×

. 

 

The Mercer's condition for function K is a necessary and sufficient condition 

for K to be a kernel function. 

With the kernel function K, we can rewrite the classifier in the feature 

space for the non-linear case: 

      bxxKybxxybxwxf
vsvs Ii

iii
Ii

iii +=+Φ⋅Φ=+Φ⋅=Φ ∑∑
∈∈ ....

),()()()())(( αα , 

where ∑
∈

Φ=
..

)(
vsIi

iii xyw α . Figure 4 shows an example where the data cannot 

be separable by a linear hyper-plane, but can be linearly separable in the 

feature space. Although the linearity is satisfied, the computation turns to be 

more complex since the dimension of the input space increases. One way to 

solve the problem is by feature selection. We will introduce the concept in 

next section. 

 

SVMs provide a new way for pattern recognition. Although the SVM 

classifiers described above are binary classifier, they can be easily extended 

to classify the multi-class. For an m-class problem, m support vector 

machines are constructed. Each support vector machine is used to separate a 

class from the others. 
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Figure 4. A feature map can simplify the classification task 

 

 

3. Feature Selection 
 

Figure 5 shows the process to derive the decision rule to recognize 

pattern. In the field of pattern recognition, the raw data describing the 

physical system are referred to as the measurement space. The measurement 

space can be viewed as the mathematical model of the physical system. 

Some pattern classification algorithm would be applied to the pattern space. 

The pattern space may be the same as the measurement space. Feature 

selection (or preprocessing) can be viewed as a transformation between the 

measurement space and the pattern space [2] [8]. 
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Figure 5. Stages in the derivation of the decision rule 

 

 

Feature selection is a process by which a sample in the measurement 

space is described by a finite and usually smaller set of numbers called 

features, say nxxx ...,,, 21 . The features become components of the pattern 

space. And the feature selection is regarded as a procedure to determine that 

which variables (attributes) are to be measured first or last. Feature selection 

may be a multistage process to enhance the accuracy or performance of 
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classification. 

The features selected should satisfy: (a) they properly describe the pattern, 

(b) they are easily to handle, and (c) they are invariant to translation and 

rotation of the training examples. It is difficult to select features satisfy all 

three requirements at the same time since each sample has its own particular 

characteristics. The comparability (or similarity) of features among samples 

can influence the process of feature selection. 

Feature selection can reduce computational complexity. One way of 

feature selection is to identify a smaller feature set that still retains the 

essential information of the original attributes. There are some criteria [8]: 

(1) low dimensionality,  

(2) retention of sufficient information, 

(3) enhancement of distance in pattern space as a measure of the similarity 

of physical patterns, and  

(4) consistency of feature throughout the samples. 

 

In 2000, L. Hermes and J. M. Buhmann proposed a strategy to rank 

individual components according to their influence on the decision 

hyper-plane [6]. We call it the L-J method in this paper. The L-J method is 

to select a suitable subset of features to replace the original one. When 

mapping the input data into a feature space, the dimension of the feature 

space may be raised too high. This is known as the over-fitting problem. 

Sometimes, feature selection can also reduce the risk of over-fitting caused 

by the proliferation of features. 



 17

Each component represents some information of the data, for instance, 

the income, age, ID, and the weight etc of a customer. In view of efficiency, 

the classification should avoid any unnecessary computation by reducing the 

input dimension as few as possible. But diminishing the input dimension 

will confront the danger of descending the classification accuracy. Thus, we 

should know which component is relevant to a given classification model. 

Note that replace the original set of features without significant loss of 

classification accuracy. Thus, data components discarded should be limited 

to those ones that do not carry any information about the classifier.  The L-J 

method proposed an approach to evaluate the importance of a feature to the 

classifier. 

The L-J method is a selection approach that defines scores for the 

available features at training. The strategy ranks the features according to 

their influence on the decision hyper-plane. The influence of the jth feature 

is evaluated by the angle between )(xf∇  and je . In brief, the L-J method is 

base on the idea that: if feature ix  is not important to the distance of x  to 

the classifier )(xf , then the angle between )(xf∇  and je  should 

approximate to a right angle. 

 

At first, with a given training set they train the support vector machine by 

using complete data components. After constructing the classifier )(xf , 

they estimated the importance of separate feature components to )(xf . Note 
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that )(xf  can be viewed as the distance from x  to the hyper-plane. The 

gradient of )(xf  at point x , )(xf∇ , is perpendicular to the optimal 

hyper-plane. If the projection of the unit vector je  on )(xf∇  is small, the 

jth component of x  has little influence on the distance from x  to the 

decision hyper-plane. They calculate the angles )( ij xφ between )( ixf∇  and 

the unit vectors njandiej ...,,2,1,...,,2,1, == l  by  

     ]
2

,0[)}
)(

)(
arccos()1({min)(

}1,0{

π
βπφ β

β
∈

∇

⋅∇
⋅−+=

∈ xf

exf
x j

j . 

Moreover,  

      ∑
∈

∇=∇
..

),()(
vsIi

ixii xxKyxf α   

since  bxxKyxf
vsIi

iii += ∑
∈ ..

),()( α .     (6) 

If 
2

)(
π

φ ≈xj
, the feature jx  has only weak influence on the assignment 

)(xf  of x . Smaller )(xjφ  corresponds to more influential feature. L. 

Hermes and J. M. Buhmann added the number of points in order to permit 

some error on support vectors. They included all vectors within a δ -region 

around the support vectors, that is, they chose the points ix  satisfies 

δ<−1)( ixf . Let δI  be the indices set of all training vectors which match 

the condition and curtail )( ij xφ  by ijφ . To consider the influence of the jth 

component of all support vectors, L. Hermes and J. M. Buhmann average the 

angles ijφ  over δI  for each j. Then normalize the average to a value 
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]1,0[
~

∈jφ . They defined ]1,0[
~

∈jφ  as: 

     
π

φ

φ
δ

δ 2
1

~
⋅−=

∑
∈

I
Ii

ij

j . 

 

jφ
~  can be used to measure the importance of the jth features. If jφ

~  is 

large, jx  is ranked first. After ranking the features, we choose the 

components that have smaller jφ
~  if we have to drop some ones. 

 

 

4. Our Results 
 

In the L-J method, the criterion for ranking features depends on the value 

of jφ
~ . The L-J method is used to select features in the input space. We 

extend the concept of the L-J method to derive a new approach for feature 

selection in the feature space. Our result can avoid the situation that the L-J 

method cannot decide the desertion feature. Moreover, we combine the L-J 

method and our result to form a two-stage feature selection approach. 

 

We describe the two-stage strategy as following: 

Phase 1 (L-J method): 

Step 1: Construct a classifier from a training set. 

Step 2: Calculate the angles njij ...,,2,1, =φ  between )(xf∇  and je  
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for l...,,2,1=i . 

Step 3: Normalize l...,,2,1, =∀iijφ , to get the score of the jth feature 

jφ
~  for nj ...,,2,1= . 

Step 4: Rank the features in the input space according to jφ
~ , 

nj ...,,2,1= . 

After dropping the unnecessary features, we map the input data into a 

feature space. Then we enter the Phase 2. 

 

Phase 2: 

Step 1: We measure jθ , the angles between the weight vector w  and 

the unit vectors je : 

      mj
w

w
w

ew j
j

j ...,,2,1],
2

,0[arccosarccos =∈=
⋅

= πθ      (5) 

Step 2: Rank features in the feature space according to jθ . 

Step 3: Dropping features in the feature space according to jθ  if 

necessary. 

 

As mentioned in the L-J method, if ie  is roughly orthogonal to w , then 

the feature ix  does not has a great effect on the distance to the decision 

hyper-plane. The difference to the L-J method is that the smaller value of jθ  
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indicates more important feature jx . We can use jθ  to score the 

importance of the jth-component to the classifier )(xf . 

We call )(xf∇  the distance vector of x  in this paper since it is along 

the direction perpendicular to the decision hyper-plane. We compare the 

distance vector of jx , )( jxf∇ , with w . In the linear case, )( ixf∇  is 

parallel to w . Therefore, all )( ij xφ  are the same l...,,2,1=∀i , and so 

iallforxijj )(φθ = . In the linearly non-separable case, assume that the 

original training data are nxxx ℜ⊂








l...,,, 21 , and map these data into an m 

dimensional feature space H , m > n. 

HXn  →ℜ Φ )(
. 

The training data Hxxx ⊂








ΦΦΦ )(...,),(),( 21 l  can be linearly separable by 

the hyper-plane 0)())(( =+Φ⋅=Φ bxwxf  in the feature space. We view the 

non-linear case as a new linearly separable problem in the feature space. 

The smaller jθ , the larger the estimated importance of the feature is. 

Then features are ranked according to jθ . Once we decide to dispense with 

some component, we replace the component by suitable value (depends on 

the form of )(xΦ ) to insure that the test processes still perform in the feature 

space. In the following example, we will see the weakness of the L-J method. 

We show that how does our result supplement the L-J method. 
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Example. 

Suppose that there are six training examples in the input space 2ℜ : 

TTTTTT xxxxxx )2,0(,)1,1(,)0,3(,)0,2(,)1,0(,)1,1( 654321 =−−=−===−= with 11 +=y , 

12 +=y , 13 −=y , 14 −=y , 15 +=y , 16 −=y . 

 

 

 

Figure 6. The non-linearly separable graph for example 1 

 

 

From Figure 6, this is a non-linear model. We map the training data to 

3ℜ  by Txxxxx ),2,()(
222121=Φ , where Txxx ),( 21= . Then the kernel 

function is 2)(),( jiji xxxxK ⋅= , }6...,,2,1{, ∈ji . The training data in the 
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feature space are Tx )1,2,1()( 1 −=Φ , Tx )1,0,0()( 2 =Φ , Tx )0,0,4()( 3 =Φ , 

Tx )0,0,9()( 4 =Φ , Tx )1,2,1()( 5 =Φ , Tx )4,0,0()( 6 =Φ , as shown in Figure 

7. )( 1xΦ , )( 2xΦ , and )( 5xΦ  are under the plane 03: =−+ zxL . 

 

 

 

Figure 7. The training data in the feature space 

 

 

Let us see along the y-axis, that is, project the graph onto the X-Z plane. 

We can observe a classifier from the geometric graph (Figure 8). The 
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classification hyper-plane is 03 =−+ zx , i.e., TT orw )1,0,,1()1,0,1( −−=  

and 3−=b . Now, we want to explain the classifier is the optimal 

hyper-plane. From figure 8, the plane 2:1 =+ zxH  contains )(),( 51 xx ΦΦ , 

and 4:2 =+ zxH  contains )(),( 63 xx ΦΦ . The distance between 1H  and 

2H  is 2 . The two classes separated by L  are two convex sets, 1C  and 

2C . 1C  is below 1H  and 2C  is above 2H . We call the segment connecting 

)( 1xΦ  and )( 5xΦ  by 1s , and the segment connecting )( 3xΦ  and )( 6xΦ  

2s . 

 

 
 

Figure 8. The X-Z plane of Figure 7 
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In this case, 1s  is on the bounderary of 1C . Similarly, 2s  is on the 

bounderary of 2C . So, the distance of the two convex sets is 2 . Note that 

the distance of any two other convex sets is never larger than 2  if one 

contains 1s  and the other contains 2s , respectively. Thus, there is no other 

classifier has margin more than 2 . 03: =−+ zxL  is the optimal 

hyper-plane in the example. 

Since the iα  of vectors not on the margin are 0. We only need to 

consider the vectors on the plane, i.e., )(),(),( 531 xxx ΦΦΦ  and )( 6xΦ . 

Solve the problem: 
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We will obtain that 
2
1

6531 ==== αααα  and 042 ==αα . Substituting those 

iα  into equation (6), we get Txf )2,2()( 1 −=∇ , Txf )0,4()( 3 −=∇ , 

Txf )2,2()( 5 =∇ , and Txf )4,0()( 6 −=∇ . By the L-J method, we have 

2
1~~

21 ==φφ . In this model, we cannot rank the features in the input space by 

the L-J method. 
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With our approach, we get 
431

π
θθ ==  and 

22

π
θ = . This means that the 

2nd component does not influence the classifier (the phenomenon also can 

be observed from Figure 8). We can reduce the computation complexity by 

dropping the 2nd component in the feature space.                  ð 

 

With various distributions of data, there are sometimes some noises 

hiding behind the data. The feature selection is one way to filter out the 

noises. After selecting features in the input space by the L-J method, some 

noises still remain in the feature space. Our approach can get rid of the noise 

in the feature space. So the two-stage feature selection can filter out both the 

noises in the input space and in the feature space. 

 

5. Conclusions 
 

With a set of training data, we construct an SVM for the input space. 

When we use the SVM to test a new set of input vectors (i.e. test data), we 

observe the classification accuracy. When the accuracy is over a threshold, 

we keep on using the SVM to classify the sustained coming test data. There 

are two major problems in the development of SVM. One is the suitable 

choice of the kernel functions. The other is how to reduce the computation 

complexity caused by larger amount of features. The former not yet has a 

good conclusion. The later is often solved by feature selection. 

In this paper, we propose a new feature selection to rank features in the 
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feature space. The L-J method offers an approach to select features in the 

input space. In the non-linear case, we combine our result with the L-J 

method to form a two-stage feature selection. We first select features in the 

input space by the L-J method. After mapping into the feature space, we then 

use our result to drop the unnecessary components in the feature space. By 

the two-stage feature selection, we can reduce the risk of over-fitting and 

drop noises both in the input space and the feature space. We supplement the 

weakness of the L-J method. 

There is one weakness on our result. When the dimension of the feature 

space is infinite, we cannot really get w . A. Webb proposed iterative 

feature selection schemes [12]. Further improvements may be probably 

achieved by combining our approach with the iterative feature selection 

schemes. 
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