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Abstract

This study aims at optimally coordinating inventory among all the
partners in a supply chain system with a central warehouse and multiple
local retailers so as to minimize the average total costs. After reviewing
the literature, we found no study proposes an efficient solution approach
that guarantees to secure an optimal solution for the one-warehouse
multi-retailer lot-sizing problem. The solution approaches in the literature
share a common problem, namely, they do not have insights into the
optimality structure of the problem. Therefore, this study first focuses on
performing a full theoretical analysis on the optimality structure. Then, by
utilizing our theoretical results, we derive an effective search algorithm
that is able to obtain an optimal solution for the one-warehouse
multi-retailer lot-sizing problem under stationary-nested policy. Based on
our random experiments, we demonstrate that our search algorithm

out-performs the other heuristics.

Keywords: Deterministic inventory, Lot Size, Stationary-Nested,

Optimality structure, Search algorithm.
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GLOSSARY OF NOTATION

f replenishment frequency

F the set of optimal multipliers

T a basic period in the production planning horizon

T The length of time for retailern, i.e., 7, =T

k, a set-up cost for the warehouse

k, a set-up cost for the retailer n

h" the unit holding cost rate per unit time for product »

h the unit holding cost rate per unit time at retailer n

d, the demand rate per unit time at each retailer n

7C (T) the minimum cost function with respect to 7 for the
retailer n

1C, the minimum cost value of 7C (f.,T)

2,(1) the minimum basic period of TC,(f,,T)

A, (f,,T) the difference function between TC (f,/f, +1,T) and
TC,(f,.T)

o,(/f,) the junction point that one should choose f, for
T<5,(/f)

the local minimum for £, =1 and {f, =1}",

o, the (1/;)" junction point of retailer n

C | the total average cost for the objective function

7 the retailer index for the retailer n

T, the current value of T

FE.0/2) | FE0L)AFE LD 4]

T(F ; ) the local minimum for the 7C (7)) function

S the upper bound

T, the last-revised upper bound, i.e., T, = min{T, B}

(F T ) the global optimal solution for the OWMR under
stationary-nested policy

TC (F T ) the global optimal total average cost solution

B the max of three lower bounds

P the lowest average cost

a the measure of the closeness of P to optimality
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Chapter 1 INTRODUCTION

1.1 The Motivation to Study the Lot-sizing for the One-warehouse

Multi-retailer System

The coordination of inventory among the partners is one of the key
factors that determine the performance of supply chains. Especially, the
managers in multi-echelon supply chains address lots of their efforts to
determine the optimal replenishment cycles of raw materials, the optimal
production cycles of work-in-process, and the optimal batch quantities
and distribution frequencies of finished products. The decision-makers
are eager for a solution approach that brings an optimal lot-sizing strategy
to improve the performance of the whole supply chain. Importantly, such
an optimal lot-sizing strategy not only coordinate the logistics of the
suppliers, the distribution centers and the retailers in unison, but also,
reduce the order processing costs, the inventory holding costs and the
distribution (or, the transportation) costs throughout the supply chain
system.

This study aims to derive an effective search algorithm that
efficiently secures an optimal lot-sizing strategy for a supply chain with
one central warehouse and multiple local retailers so as to minimize the
total average costs. Such a supply chain is known as a one warehouse

multi-retailer (OWMR) system in the literature.

1.2 Statement of Scope and Purpose

The one warehouse multi-retailer (OWMR) lot-sizing problem is
concerned with the determination of lot sizes and schedule of » retailers
replenished from the central warehouse. In the OWMR lot-sizing problem,
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the warehouse holds inventory of all products and can replenish each
retailer instantaneously. By applying the concept of the OWMR lot-sizing
problem, the decision makers could effectively determine the
replenishment schedule in the warehouse and lot sizes delivered from the
warehouse to local retailers so as to minimize the total average costs.

In this study, we focus on obtaining the optimal lot-sizing strategy
under stationary-nested policy in the OWMR system where
stationary-nested policy assumes that the replenishment cycle of each
retailer, denoted by 7,, must be an integer-ratio fraction of the

replenishment cycle of the warehouse (denoted by 7). Thatis, 7 = f. T

and f € 1lll for all n.
234

1.3 Background and Problem Description

In this section, we first introduce the decision-making scenario in the
OWMR lot-sizing problem. The warehouse receives finished products (of
a single kind) from its up-stream supplier and distributes the finished
products to the local retailers in the OWMR system. The objective of the
OWMR problem is to minimize the total costs incurred per unit time.
Most of assumptions in our study are the same as that defined in
Schwarz’s (1973) paper. Namely, no backlogging, lost sale, or
transshipment is permitted anywhere in the system. Initial inventory is
assumed to be zero. Customer demand occurs at each retailer at a
constant rate. A holding cost is incurred for each unit of finished product
per unit time stored and a setup cost is charged for each order placed at
the warehouse and at each retailer. The demand rates, holding cost rates
and setup costs are stationary for the warehouse and each retailer. The

replenishment of orders is assumed to be instantaneous (though this
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assumption can be relaxed by adding lead times to the orders). In the

OWMR system, set-up costs k, and k, are incurred at the warehouse

and at each retailer n, respectively, for every order placed.

Though we have only one kind of product in the OWMR system, it
may be easier for the readers to consider the finished products stored at
different retailers as different kinds of products (which are stored

exclusively in their locations). We denote d, as the demand rate per unit

time at retailer n. And, let 4, and A" be the holding cost rates at

retailer n and the warehouse, respectively. Then, the echelon holding cost

rate at retailer n shallbe h =h —h" >0. (See Roundy’s, 1985 paper.)
Under stationary-nested policy, our assumption of 7, <7 facilitates

us to employ the echelon method to conveniently compute the holding
costs in the OWMR system. (Please refer to Clark and Scarf’s, 1960 paper
for the details.) The system inventory of product n is the sum of the
inventory of product » at the warehouse and the inventory at retailer n. It
is well known that the system inventory follows the familiar saw-tooth
inventory pattern with an order interval of T (see Graves and Schwarz,
1977 and Roundy, 1985). The average holding cost of product 7 is the
sum of the following two terms: (1) the product of the average system
inventory of product #n and its holding cost rate at the warehouse, and (2)
the product of the average inventory at retailer n and its echelon holding

cost rate. Therefore, the average holding cost of product » is given by

ﬂhnTn +ﬂh”T.
2 2

Assume that there are N local retailers in the OWMR system. We
define a cost function 7C,(f,,T) for product n as

n

TCn(f;l,T):&‘l‘dnhnT; = k +dnhnf;T
T 2 AT 2

n

(1)
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where T =fT, f, e{l, ,} and n =1, ..., N. (We note that the

1
"4

N | —
W | —

total average costs for product z is given by d”g d +TC,(f,,T).) Then,

we may formulate the OWMR lot-sizing problem as follows.

Minimize TCM({fn},T)E ky +ZN_1 d.nT +TCn(fn,T) (a)
2 ]FOT n= 2
111 ?
bject t L—,—,—,...0 f, =1 b
subject to fne{234}fo (®)

The rest of thesis is organized as follows. In Chapter 2, we review
the research works on the OWMR lot-sizing problem in the literature. In
order to solve the OWMR lot-sizing problem, we first perform full
theoretical analysis on the optimality structure of the optimal cost curve
in Chapter 3. Then, in Chapter 4, we employ our theoretical results to
derive a search algorithm that obtains the global optimal solution for the
OWMR lot-sizing problem under stationary-nested policy. The first part
of Chapter 5 presents a numerical example to demonstrate our global
optimal search algorithm. Also, based on our random experiments, we
demonstrate that our search algorithm out-performs the other heuristic
solutions in the second part of Chapter 5. Finally, we address our

concluding remarks in Chapter 6.



Chapter 2 LITERATURE SURVEY

Many researchers have been addressing their efforts to solve the optimal

solution for the one-warehouse multi-retailer (OWMR) lot-sizing problem.

Under a particular set B of “basic” policy, Schwarz (1973) derived an

optimal policy for the stationary, continuous-time OWMR lot-sizing

problem (with an infinite planning horizon). A basic policy is any feasible

policy with the following properties:

1. Deliveries are made to the warehouse only when the warehouse has
zero inventory, and at least one retailer has zero inventory.

2. Deliveries are made to any given retailer only when that retailer has
zero inventory.

3. All deliveries made to any given retailer between successive
deliveries to the warehouse are of equal size.

Roundy (1985) gave three terms for these important properties as
follows:

1. Zero-Inventory Ordering: Each facility orders only when its
inventory 1s zero.

2. Last-Minute Ordering: The warehouse orders only when at least one
retailer orders.

3. Stationarity-Between-Orders: At each retailer all orders placed
between two successive orders at the warehouse are of equal size.

On the other hand, the zero-inventory-ordering property also applies
for a single facility (Wagner and Whitin, 1958) and for many facilities
(Zangwill, 1966 and Veinott, 1969) for the finite-horizon discrete-time
cases.

A policy is called stationary if each facility orders at equally-spaced
points in time and in equal amounts. A policy is nested if each facility

orders every time any of its immediate suppliers does, and perhaps at
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other times as well. Policies that are both stationary and nested are called
stationary-nested or single-cycle. (One may refer to Roundy’s, 1985
paper for the definitions.) Several researchers restricted their attentions to
stationary-nested policy. Schwarz (1973) derived the necessary conditions
for an optimal policy and some analytical bounds under stationary-nested
policy. He also proposed a heuristic that usually solves a near-optimal
solution for the OWMR lot-sizing problem. Schwarz and Schrage (1975)
focused on solving the optimal lot sizes of a single product in
multi-echelon assembly systems under stationary-nested policy. Graves
and Schwarz (1977) investigated the characteristics of optimal continuous
review policies for arborescent systems under stationary-nested policy.
Maxwell and Muckstadt (1985) proposed a heuristic for complex
multi-stage, multi-product systems under stationary nested policy.

Graves (1979) showed that the Joint Replenishment Problem which
may be viewed as a special case of the OWMR lot-sizing problem. Many
researchers proposed solution approaches for the Joint Replenishment
Problem. One may refer to the following papers: Goyal (1974), Silver
(1976), Goyal and Belton (1979), Kaspi and Rosenblatt (1983, 1991),
Jackson et al. (1985), and Lee and Yao (2003).

Furthermore, Roundy (1985), and Lu and Posner (1994) solved the
OWMR lot-sizing problem under so-called integer-ratio policy which
restricts each retailer orders at an integer or reciprocal of an integer
multiple of the warehouse order interval. Mitchell (1987) extended
Roundy’s (1985) results to allow backlogging and introduce a class of
policies, called nearly-integer-ratio policies which is different from the
class of integer-ratio policies by not requiring stationarity of orders
placed by retailers. Anily and Federgruen (1990, 1991), and Hall (1991)
added the vehicle routing costs in the OWMR systems.

After reviewing the literature, we found a problem that commonly

6



shares among the solution approaches for the OWMR lot-sizing problem
under stationary-nested policy. Namely, they do not have insights into the
optimality structure of the problem. Therefore, this study focuses on
performing a full theoretical analysis on the optimality structure of the
OWMR lot-sizing problem under stationary-nested policy. Our theoretical
results in this paper will lay important foundation for deriving an
effective search algorithm that is able to obtain an optimal solution within

a very short run time.



Chapter 3
THEORETICAL ANALYSIS
ON THE OPTIMAL COST FUNCTION

In this chapter, we present some theoretical results that provide insights
into the optimality structure of the OWMR lot-sizing problem under
stationary-nested policy. Let TC, (T) be the optimal cost function of

the OWMR problem with respect to 7. Later, we will introduce the

“Junction points” on the curve of the TC, (7)) function, and also discuss

some interesting properties of those junction points. These junction points
assist us in securing the set of optimal multipliers for each given value of
T, and they facilitate the design of the search algorithm presented in
Chapter 4.

3.1 Some Insights into the Optimal Cost Function

Recall that TC (f,T) is given by TC,(f,,T)= ;‘T +d"h"2f"T where
111 : : :
f. :{I,E,E,Z,”},n =1,...,N. The following theoretical results provide

us some insights into the 7C, (7)) function.

For a given T, one may obtain the optimal multiplier f so as to
minimize TC (f,,T). We denote it as TC,(T), the minimum cost
function with respect to T for retailer n, i.e.,

TC,(T)= min {TC,(f,.T)} (3).

1
"~ e—,peN"
Ja P

Then, the following lemma holds for each retailer n.

8



145

140 -
TC
n

135 -

130 -
[2K d_h ]"2

R R

120 1 1 1 1 1 1 1 1 ]
0 5 10 15 20 25 30 35 40 45
T

Figure 1: The Piece-wise Convex Curve for TC,(T)

Lemma 1 7C, (T ) is a piece-wise convex function with respect to T in
Figure 1. Also, for each f,, one can secure the local minima for TC ,,(T )

at

1 [2k
_ L |2k, 4
ﬂ/n (f;l ) f;l dnhn ( )

with the minimum cost of TC (T)=./2k,d h, (Schwarz, 1973).

The following proposition shows the optimality structure of the

OWMR problem.
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Figure 2: The Piece-wise Convex Curve for the Optimal-cost Function.

Proposition 1 The TC, (T) function is piece-wise convex with respect
toT
Proof. At a given 7, the optimal value T7C,  (T) is given by

rC, ({f,.T)=k,/T+Y. (W'T+TC,(f,.T)) where "7 and Y 4T

are convex functions and each TC,(T) function is piece-wise convex

with respect to 7' by Lemma 1. Since TC, (T) is the sum of convex

functions and a piece-wise convex function, it is surely a piece-wise

convex function. m
3.2 The Junction Points

Next, we introduce the “junction points” on the curve of the TC,  (T)

function. Recall that the TC,(T) function is piece-wise convex. We

define a junction point for the 7C n(T ) function as a particular value of T

10



where two consecutive convex curves concatenate. These junction points
determine at ‘what value of T’ where one should change the multiplier of

retailer n from f to f, /(f,+1) so as to secure the minimum value for
the 7C,(T) function.

We first derive a closed-form for the location of the junction points

for retailer n as follows. We define the difference function A (f,,T) by

2 fo oo _k, _dnT( f; 5).
An(f,,aT)—TCn(f +1’T) C.(f,.T)= P 5 [f,ﬂrlj (5)

We note that A (f,,T) is the cost difference between using f and

n

f./ f, +1 as its multiplier for 7C, (-,T). Since the function A (f,T) is

an increasing function with respect to 7. Suppose that the search
algorithm proceeds from a lower bound toward larger values of 7, we

evaluate A (f,,T) from positive values, to zero and finally, to negative
values. Let @ be the point where A (f,,T) reaches zero. Assume that
f. 1s the optimal multiplier for retailer n for 7 <@ . This scheme implies
that one should keep using f until it meets ®. From the point @
onwards, the value of 7C,(-T) can be improved by using £, /(f, +1) as

its optimal multiplier. We note that @ 1s the point where two
neighboring convex curves 7C,(f,,7) and TC,(f,/(f,+1)T) meet.
Importantly, such a junction point @ provides us with the information
not only on “which retailer n” to modify, but also on “where on the
T-axis” to replace f with £, /(f, +1). By eq. (5), we identify a junction

point for retailer n by

5/ f)= /I;Zf" /j];" (6).

11



More specifically, & (1/f, =1/j) is the (1/;)" junction point of

retailer n where l‘e N*. Therefore, the junction point & (1/;) provides

J

us the information that one should choose f =; for T<¢5 (1/5) and
choose f =j/(j+1), vice versa, to obtain the lowest value for the
7C,(T) function.

The following theoretical results on the junction points provide

strengthen foundation for such a search scheme.

Lemma 2 Suppose that f“ and ", respectively, are the optimal

multipliers of the left-side and right-side convex curves with regard to a

()
Jjunction point of the TC ,,(T ) function. Then, f* = f(fL) T
+

Proposition 2 All the junction points for each individual retailer n, will

be inherited by the TC,, (T) curve.

Proof. The proof is presented in Appendix A.1. m
In other words, Proposition 2 asserts that if a junction point @

shows on one piece-wise convex curve IC, (7T), then, @ must also
show on the piece-wise convex curve of the TC , (T) function as a
junction point. Let F(7) be the set of optimal multipliers at a given 7, i.e.,
F(T)= { 1 (T)} The following theorem is an immediate result of Lemma 2

and Proposition 2.

Theorem 1 Suppose that F“' = {f©} and F™ ={f"}, respectively, are

the set of optimal multipliers for the left-side and right-side convex curves

with regard to a junction point in the plot of the TC , (T ) function. Then,

F'" is secured from F“ by changing at least one of its optimal

12



f(L)
JARED! '

Usually, only one f changes at a junction point except for some

multiplier by ' =

extreme cases in which two retailers share the same junction point.
The following corollary is also a by-product of Lemma 2 and

Proposition 2, and it provides an easier way to secure each f"(T')e F(T).

Corollary 1 For any given T, one can secure each f'(T)e F(T) by

1, T<2 /dk;z
m. /1—2m 2k, T < /1+;n 2k,
m- \d h, m- \'d h,

The following corollary is important for the design of the proposed

£, (T)=

search algorithm.

Corollary 2 Let w, and @, be two neighboring junction points for the

Sunction TC (T), and o, <w,. Then, the set of optimal multipliers for
theTC, (T) function is invariant in (0,,0,).
Proof. It is obvious by Theorem 1. We know that F is secured from

(ar)
F'’ by changing at least one of its optimal multiplier by £ = ﬁ
, +

Thus, the set of optimal multipliers for the7C,,(7) function is invariant

n (a)l,a)z). [

13



Chapter 4
A GLOBAL OPTIMAL SEARCH ALGORITHM

In this Chapter, we present a search scheme, which secures a global
optimal solution for the OWMR problem under stationary-nested policy.

Recall that we assert that the 7C, (7)) function is piece-wise

convex with respect to 7 in Chapter 3. Also, some interesting properties

on the junction points reveal the optimality structure of the 7C,  (T)

function. These theoretical results encourage us to solve the OWMR
problem by searching along the 7T-axis.

To design such a search algorithm, we first need to define the search
range by a lower and an upper bound on the 7-axis, which are denoted by

T, and T,, respectively. We note that the bounds 7, and T, are
derived by asserting that the best local minimum in [7,,7,] must be no

worst than any solution outside of [T,,T,]. Naively, one can secure a

global optimal solution for the OWMR problem by a small-step search

algorithm which enumerates 7T e[T,,7,] and using a vary small step-size
AT — 0. But, this is neither efficient nor accurate, since the step-size
determines its performance. Also, the run time of the search algorithm

may be extremely long if the search range [7,,7T,] is wide.

In order to propose an efficient search algorithm, we must utilize our
theoretical results on the optimality structure, especially, the properties of

the junction points on the 7C (T) function. By Lemma 2 and

Proposition 2, we can easily secure all of the junction points within any

search range [I},T,] by eq. (6). Corollary 2 asserts that the set of optimal

multipliers for 7C,  (T) is invariant in any convex interval between two

neighboring junction points. These theoretical results lead us to the

14



following idea: if we are able to obtain all of the local minima for each

convex curve in [T,,T,], we surely can secure a global optimal solution

by picking the one with the lowest objective value.

In the following sections, we first derive a lower bound on the
search range. Then, we demonstrate how to use the junction points to
proceed with the search. Also, we propose an approach to secure and
revise the upper bound on the search range. Finally, we summarize our

proposed search algorithm.

4.1 A Lower Bound

In this section, we derive a lower bound on the search range by the
Common Cycle (CC) approach in which it requires that f,=1 and f, = 1
for all n, i.e., all the retailers share the same replenishment cycle.

Denote as T the optimal replenishment cycle for the CC approach.

Then, one may easily secure 7 by the following expression.

EE S
£ J ACET ®

Proposition 3 asserts that the search scheme may skip the range

(oo,T;). Consequently, we may set 7 in eq. (8) as a lower bound of the

search range.

Proposition 3 For the TC, (T) function, there exist no local minima for
T<T..
Proof. Proposition 1 asserts that 7C,  (T) function is piece-wise

convex. It implies that the global optimal solution must be one of its local

15



minima. The local minimum for any set of { ff el, Pe N*} 1s
n n P

expressed in eq. (10). By eq. (10), it is obvious that 7({f })>T ' since

f. <1 for all n. Therefore, there exists no local minima for 7<7. . m
Proposition 3 also implies that we may employ 7 as an initial

point for the search algorithm to start the search from 7 toward higher

values of 7 (until it meets an upper bound 7).

4.2 Proceeding with the Search by Junction Points

By utilizing the theoretical properties of the junction points, we show

how to proceed with the search from our initial point 7' 1in this

subchapter.

Before proceeding with the search, we first secure F(Tj), i.e., the

set of optimal multipliers at 7° by Corollary 1.
Next, we show how to proceed with the search by utilizing a
sequence of (sorted) junction points. By Lemma 2 and Proposition 2,

each junction point {5 (1/f )} provides the information that one should

change the optimal multiplier of retailer n from f to g

f, +1
5,(1/f,) to secure the optimal value for the 7C, (T) function.

Therefore, during the search, we need to keep an n-dimensional array

{6,(/ f)n=1,.,N} in which each value of & (1/f,) indicates the

location of the next junction point of each retailer » where the optimal
multiplier of retailer » should be changed. Since the algorithm searches
toward higher values of 7, one shall change the multiplier for the

particular retailer n with the smallest value of & (1/f) to correctly

16



update the set of optimal multipliers. Let 7. be the current value of T

where the search algorithm reaches. Denote as = the retailer index for

the retailer n with the smallest value of 6§(/f) , ie,
7z =argmin {5 (1/f)>T}. To proceed with the search form 7., by
Theorem 1, we need to update the set of optimal multipliers at & (1/ 1))
by

FG.(/ £ )=F@ )L DOL 1 +1} 9)
where ‘\’ denotes set subtraction.

Let {a)]} be the sequence of the points that the algorithm reaches.
A

Also, by the definition, we have ©,=T_. From another point of view, the

algorithm searches along {o, {, a (sorted) sequence of junction points

from 7, where o, >w,,j=0, 1, 2,.... Note that this array is sorted on

the location of the junction points in ascending order except that the
initial point 77 may not be a junction point. Importantly, Corollary 2
asserts that the set of optimal multipliers for the TC, (7)) function is
invariant between o,, and o,. Therefore, F(w,) is the set of optimal
multipliers for the 7C  (T) function in the interval (a)j+l,a)jJ. Denote as
T(F(e,)) the minimum for the set of multipliers 7(F(w, )). The following
proposition indicates the existing condition and the location of a local

minimum for the 7C, (7)) function.

Proposition 4 Let

2(ko+zn>17kn—)]
0 )= S @, 10
Fo )\ ainrio) (10

~3(
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T (F (a)j )) is a local minimum for the TC, (T) function if
T (F (a)j )) € (a)j+1 ,a)_l,] where f’ (a)j e F (a)j. ) vn.
Proof. For any given set of {f }, one may secure its local minimum,

T({f,}), by securing the derivative of the TC,  (T) function with respect

to 7, and equating it to zero. By Corollary 2, T({f,}) becomes a local

minimum for the 7TC, (T) function when T(F(w]. ))e (a)M,a)j ] |

4.3 Secure and Revise the Upper Bound

Recall that in order to secure a global optimal solution, the search scheme

needs to secure all the local minima in [7”,7,]. Therefore, we derive an
upper bound 7, in this section. Also, in order to shorten the search range,

we revise the best-on-hand upper bound during the search process.
Let 7" and F be the best-on-hand local minimum and its

corresponding set of optimal multipliers, respectively. After obtaining a
new local minimum T, we first check if it secures an objective value
lower than the best-on-hand solution. If 7 C(F (T ),f )< T\ C(F T *), we
should revise the best-on-hand solution by 7' =T, and F' =F (T’ )
Meanwhile, one should try to revise the best-on-hand (i.e.,

smallest-valued) upper bound, denoted by 7,, to shorten the search

range.

We derive another upper bound £ in Lemma 3. We note that our

upper bound f is derived by asserting that there exists no any solution

which secures a lower objective value than 7C (F (T" lf ) for T<p.
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Lemma 3 At a local minimum T, one may secure an upper bound J

on the search range by

(kf+2¢n +T2dnh”]+\/(kf+z¢n +T2dnh"J —2k0(2dnh"j
_ T N>1 2 N>1 T n>l1 2 n>1 n>1 (11)
- X
where

AT e, 7(r)=1

L. |T 2
2.1, (7)7)= ) (12).
J2kd h, H /s ]—1} r(r)<1
2\ J1+f,

Proof. The proof is presented in Appendix A.6. m
We summarize the revision of 7, at the newly-obtained,

best-on-hand local minimum in the following proposition.

Proposition S After securing a new local minimum T , if
TC(F(T),T)< TC(F*,T*), then one should revise T, by T, = min{T;,,B}
where [ is obtained from eq. (11).

4.4 The Algorithm

We are now ready to enunciate the proposed search algorithm. Recall that

the algorithm searches form 7, toward higher values of 7 until it meets
the last-revised upper bound 7, . In the search process, we use a

sequence of (sorted) junction points as the backbone and secure all the
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local minima of the TC, (T) function between [7°,77]. Denote as T°

and F~ the value of T and the corresponding set of optimal multipliers
for the global optimal solution. We summarize the step-by-step procedure

of the proposed search algorithm as follows.

Step 1: The Initialization.
(a) Utilize 7. in eq. (8) as an initial point and let lower bound

T =co.

A

(b) Calculate and sort all the junction points in eq. (6) and
w,=6,(/f,) by m=argmin {5,(1/f,)>T.} whereT, =T,
respectively.

(c) Use Corollary 1 to obtain F (T )

(d)Check by Proposition 4: if T(F(T"))e[r ,w,) , set
T"=T(F(T")) and F" =F(T’), calculate TC(F',T"), and
calculate the best-on-hand upper bound 7 by Proposition 5;
otherwise, let 7, =oo and TC(F',T")=o.

(e)Setj=land T =w,.

Step 2: The Search Procedure.
(a)Obtain F(w,) by Flw, )=(F(C)\{f.)ol{f,/f, +1} and
w,=6,(/f,) by x=argmin {5,(1/f,)>T.}.
(b) Check by Proposition 4; if T(F(w ))e[w,w.,), calculate
7C(F(w, ) T(F(w,)) and try to revise the best-on-hand upper
bound 7, by Proposition 5.

©1f TC(F(w JT(F(w,))<TC(F",T"), set T =T(F(w,)) and
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F =F(w,).

Step 3: The Termination Condition of the Search Algorithm.
(@If w,>T,, output T°,F", TC(F*,T*) and the algorithm

will terminate.

(b) Otherwise, setj =j+/ and T, =w,. Go to Step 2.
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Chapter S
NUMERICAL EXPERIMENTS

In this chapter, we first present a numerical example to demonstrate the
implementation of the proposed search algorithm. In the second part of
this chapter, we will compare the solutions solved the proposed search
algorithm with Schwarz’s (1973) lower bound and the solutions by
Schwarz’s (1973) heuristic.

5.1 A Demonstrative Example

The numerical example presented in this section demonstrates the
implementation of the proposed search algorithm. Table 1 presents the set

of parameters used in this numerical example.

The search process is summarized as follows.

1. We first secure 7. =0.0541, and let 7, =7.. Also, we secure the

*

set of optimal multipliers at 7T, , ie, F(T*) , by

cc cc

{1/3,1/2,1/7,1/2,1,1/2,1,1,1,1/2}.

Table 1: The Set of Parameters Used in the Demonstrative Example.

Retailer 1 2 3 4 5 6 7 8 9 10

Setup cost| 15 50 2 32 38 | 48 46 42 12 | 20

Holding cost| 1.3 | 1.57 | 1.65 | 1.62 | 0.52 | 1.85 | 0.3 | 0.21 | 0.56 | 0.6

Demand rate|95200(49550{48500{45500(93550(42500({44500{35500{18850{60000

Warehouse

Setup cost 500

Holding cost| 0.13 [0.157]0.165]0.162 [0.052{0.185| 0.03 |0.021{0.056| 0.06
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2. We obtain w, =05,/ f,=7)=0.0558 by

ﬂ:argminn{é‘n(l/ £)>T }:3. By Proposition 4, we have local

minimum 7(F(7")) by 0.0823; but, obviously, T(F(T))e[I",m,).,
weset T, =0 and TC(F',T")=co.

3. Next, we move to @, and obtain the set of optimal multipliers
F(w,) by F(w,)=F(T)\{f,=1/7}U{f,=1/8}, which is given
by {1/3,1/2,1/8,1/2,1,1/2,1,1,1,1/2}. Then, we let T =, and
secure @, =0,(1/ f =3)=0.057 by w=argmin {5 (1/f)>T }=1.
We obtain the local minimum 7(F(@,)) by 0.0826. Therefore,

T(F(w))¢[w,o,). Next, we move to @, and get the set of
optimal multipliers by F(w,)=F(o )\{f =1/3}U{f =1/4} ,
which is given by {1/4,1/2,1/8,1/2,1,1/2,1,1,1,1/2}.

4. We continue the search, but find no local minimum in [TC j,a)ﬂ). The

first local minimum 1s secured n the interval

[o,,,0,,)=[0.1155,0.1217) : We have
F' =F(w,)=1{1/7,1/3,1/16,1/4,1/3,1/3,1,1,1/2,1/3} ,
T' =T(F(»,))=0.1197 and TC(F',T")=2247531. Also, we
secure the first upper bound 7, =0.1718 by proposition 5.

5. For the entire search process, we secure totally 6 local minima for
this example. All of the local minima, their corresponding set of
optimal multipliers, objective values and their revised upper bound
are summarized in Table 2.

6. When the search algorithm secured the second local minimum
T=0.123, it tried to revise the best-on-hand upper bound
T, =min{T,, #}=min{0.1718,0.1703}=0.1703 by Lemma 3 and

Proposition 5. Until we obtain the sixth local minimum 7 =0.1453,
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and revise the best-on-hand upper bound 7, =0.1612. Therefore,

the search algorithm stops when it encounters the smallest junction

point that is larger than T, that is @

40

=0.1647. In this example,

before the search algorithm terminates, it visits totally 40 junction

points.

. The global optimal solution and the set of optimal multipliers are

given by 7 =0.1417 (i, the forth local minimum) and
F ={1/9,1/4,1/19,1/5,1/3,1/4,1/2,1,1/3,1/4}, respectively. The

optimal average total cost is $22,422.18.

Table 2: The Local Minima Secured in the Search Process of the Global

Optimum Search Algorithm.

|,,0,,,)| [0.1155,  [0.1229, | [0.1309, | [0.1393, | [0.1443, | [0.1455,
0.1217) | 0.1231) | 0.1378) | 0.1443) | 0.1453) | 0.1527)
/i 1/7 1/8 1/8 1/9 1/9 1/9
/s 1/3 1/3 1/4 1/4 1/4 1/4
/i 1/16 1/17 1/18 1/19 1/19 1/20
/s 1/4 1/4 1/4 1/5 1/5 1/5
Js 1/3 1/3 1/3 1/3 1/4 1/4
e 1/3 1/3 1/4 1/4 1/4 1/4
/i 1 1 12 1/2 1/2 12
S 1 1 1 1 1 1
/s 12 12 1/3 1/3 1/3 1/3
S 1/3 1/4 1/4 1/4 1/4 1/4
T, 0.1197 | 0.123 | 0.1373 | 0.1417 | 0.1451 | 0.1453
7C,,(T,) | 22475 31|22479.84 | 22424.99 [22422.18"| 22425 55| 2242556
B 0.1718 | 0.1703 | 0.1612 | 0.1622 | 0.1631 | 0.1632
T, 0.1718 | 0.1703 | 0.1612 | 0.1612 | 0.1612 | 0.1612
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5.2 Random Examples

In this section, we present our random experiments to show the proposed
search algorithm out-performs Schwarz’s heuristic.

The experimental settings are the same as that shown in van Eij’s
(1993) paper excepted holing cost rate for the warehouse. The annual

demand rate d_, the holding cost rate for the retailers 4, and the setup
cost for the retailers &k, were randomly generated from uniform
distributions  UNIF[100-100,000], UNIF[0.2-2], and UNIF[1-51],
respectively. And, the holding cost rate A" for the warehouse were
selected at random from (A"/h =0.2,0.4,0.6,0.8) using a uniform

probability distribution. We tested four levels of the number of retailers
(n=5, 10, 20, 100) and eight levels of setup cost for the warehouse (k,=1,
5, 10, 50, 100, 300, 500, 1000). For each combination of n and k,, we
generated 1,000 examples and solved each of them by the proposed
search algorithm and Schwarz’s heuristic solutions. We summarize the
comparison of two solution approaches in Table 3.

In Schwarz’s (1973) paper, he also derived three analytical lower
bounds. Let P~ be the objective value obtained by either of the solution
approaches. Also, denote B~ as the best of three lower bounds, i.e., B
= max [Boundl, Bound2, Bound3]. Let & = 100[( P —B")/B"] which is

an error measure of P. And, «_  is the maximum error, ¢ is the

minimum error and « is the average error.

In Table 3, we can obtain some information. First, when »n is
increasing (i.e., n = 100), it is shown that the proposed search algorithm is
more efficient in its run time than Schwarz’ heuristic. Second, the error

decreases as k, increases. Third, the values of a (ie., a o, or a)

max 2
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of proposed search algorithm are less than (or equal to) the solution by

Schwarz’ heuristic.

Based on our random experiments, we conclude that the proposed

search algorithm out-performs Schwarz’s heuristic.

Table 3: The Comparison between Wang et al.’s and Schwarz’s heuristic.

Average run time Schwarz' heuristic Wang et al.'s search algorithm
n=5 Schwarz Wang et al. & & o oy o o
k=1 Q023547 0008016 | 83.80% 0.16% 11.75%  8045% 0.16% 11.21%

k,=5 0022703 0010344 | 68.18% 0.11% 9.52% 65.19% 0.11% 9.37%
k, =10 002275 | 0010312 5R9% 0.12% 5.40% 56.86% 0.12% 5.07%
k, =350 001875 | 0.010453 | 31.33% 0.12% 4.97% 3l.32% 0.09% 4.86%
k, =100 0015813 0.010546 2082% 0.03% 3.75% 20.82% 0.02% 365%
k, =300 Q.01 0.01086 5.84% 0.02% 1.49% 8.79% 0.02% 1.44%
k, =300 0007281 0.011109 5.08% 0.00% 0.75% 507% 0.00% 0.73%
k,=1000 000425 0011485 261% 0.00% 0.29% 2.58% 0.00% 0.28%

Average run time Schwarz' heuristic Wang et al.'s search algorithm

n=10 Schwarz 'Wang et al. & & o o oL o
k, = 0045891 | 0016547 | 4388% 1.20% 12.55% | 4388% 1.20% 12.05%
k= 0043850 | 0016594 | 41.63% 1.08% 11.31% | 4163% 1.08% 10.65%

k, =10 0.0445828 | 0016594 | 3947% 0.98% 10.36% | 3947% 0.98% 9.98%
k, =30 0.040406  0.01675 31.40% 0.92% 792% 31.37% 0.92% 7.81%
k, =100  0.036484 0017015  28.04% 0.56% 6.85% 28.01% 0.55% 6.77%
k,=300 0027438 0017407 18.93% 0.24% 366% 18.93% 0.24% 3.61%
k,=300 (021984 0017906 1206% 0.09% 2.02% 12.06% 0.09% 1.99%
k,=1000 0014766 0.018344 547% 0.05% 0.79% 547% 0.05% 0.78%

Average run time Schwarz' heuristic Wang et al.'s search algorithm
n=20 Schwarz Wang et al. o & a o o a
k=1 0091157 0030047 | 3283% 2.64% 13.10% @ 3283% 2.52% 1265%

k, =3 0090875 0.03036 30.98% 2.49% 12.33% | 30.93% 2.36% | 1189%
k, =10 0000375 0031704 | 20.34% 2.38% 11.75%  29.30% 223% | 11.35%
k, =30 0085844 | 0030282 2471% 2.33% 1031% | 2467% 212% | 10.10%
k, =100 0080234 0030781 23.92% 1.85% 9.50% 2389% 1.83% 9.42%
k,=300 (064531 0032688 20.32% 0.66% 6.66% 20.31% 0.68% 6.61%
k,=300 0057562 0032031  15.29% 0.32% 462% 15.29% 0.31% 4 60%
k,=1000 0043859 0.03329 7.57% 0.13% 2.09% 7.57% 0.13% 2.07%

Average run time Schwarz' heuristic Wang et al.'s search algorithm

n=100  Schwarz Wangetal & o a o o, a
k=1 0.455125 0.179 24.98% 7.88% 13.55%  24.97% 7.58% | 13.15%
k, = 0452391 0.17836 24.63% 7.73% 13.34% | 24.62% TA49% | 1294%
k, =10 0.452 0178656 | 24.33% 7.66% 13.19%  24.32% T43% | 12.79%

k, =350 0448406 | 017936 | 23.37% TE2% l281% | 2337% TA2% | 1245%
k, =100  0.443453 0.180515 23.12% 7.52% 1263% | 23.12% T08% | 12.33%
k=300 | 0421453 0181875 2264% £.15% 11.52% @ 2263% 599% | L1137%
k,=300 0400297 0.184325 21.50% 4.40% 10.36% | 21.49% 431% | 1029%
k,=1000 | 0361297 0190031  19.53% 2.25% 8.31% 19.53% 223% | 8.29%
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Chapter 6
CONCLUDING REMARKS

This study fills two research gaps in the literature of the One-warehouse
Multi-retailers (OWMR) problem under stationary-nested policy. First,
our study presents several important theoretical results on the optimality
structure of the OWMR problem under stationary-nested policy. For

instance, Proposition 1 asserts that 7 Copt(T ) function is a piece-wise

convex function of 7. Also, we have thorough discussion on the

properties of the junction points on the 7C_, (T ) function in Chapter 3.

Second, by utilizing these theoretical results, we propose an efficient
search algorithm that always secures the global optimal solution for the
OWMR problem under stationary-nested policy in Chapter 4. In our
search algorithm, we employ tight bounds that significantly shorten the
search range and our search algorithm effectively gets global optimum in
a very short run time. Based on our random experiments in Chapter 5, we
demonstrate that our search algorithm out-perform Schwarz’s heuristic.
The proposed search algorithm is the first solution approach in literature
that always secures the global optimal solution for the OWMR under
stationary-nested policy. Our theoretical results in this study shall
establish an important foundation for other lot sizing and scheduling

problems.
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APPENDIX

A.1 Proof for Proposition 2
Proof. Recall that TC, (T)=k,/T+Y. (n"T +TC (T)) is separable.

Assume that @ is a junction point for retailer n, but not for the
other (n-1) retailers. Then, there must exist &£ >0 such that
1. the curve for k,/T+Y h'T+Y. TC (T) is convex in the interval
of [w—&,0+¢] since each one of TC (T) where j#n is convex
in [w-¢0+¢],and
2. TC,(T) is convex in the intervals of [w,w + &].

Except at the junction point 0] ,

TC, (T)= k_; +> h'T+ Z,#E,-(T)Jr > TC,(T) is still convex in the

intervals o —&,w] and [w,® + ¢|. Therefore, @ becomes a junction

point of 7C , (T). m

A.2 Proof for Lemma 3

Proof. We note that the function ¢, (fn* (T ),T ) indicates the maximum

magnitude of decrement in TC (f,T) from T to any value of T >T

for retailer n. Recall that Lemma 1 asserts that the function TC (f,T) is
bounded from below by /2k d h . 1f the optimal multiplier for retailer n

is 1 (f ):1, then the maximum magnitude of decrement in 7C (f.,T)

_ _ k, dnT
from T to any value of T >T is bounded by T + ”2” -2k d h, .

If 7(7)<1 , then

31



TCn(f[(vlT)SmaX{TCn[ﬁ(flé(%;@nia(ﬁ(f)ﬁn(l/ﬁ(f)))}

fA\T

by the piece-wise convexity of the 7C, ( f (T" ),T ) function. In fact,
TC, ( f (T" ),T" )S TC, ( fr (f ), 0, (1/ f (T" ))), since one can easily prove that
rc, (1, (T)s, (1, (T))>1C, [f,f (7)o, (1 J}fff)j] . By plugging eq. (6),

n

we have the following concise expression for 7C, ( f (T" ), 0, ( f (T ))) after

some simplification.

TCn(ﬁ(f)ﬁn(l/fi(f))Fmll( J_f;j] (13)

2

In other words, if f (f )<1, the maximum magnitude of decrement in

TC (f,,T) from T to any value of T>T is bounded by

l 2+ f, B
1/Zlcnalnhnlz[\/ﬁJ 1

k _ _
decrease from 7" to ?0 from T toanyvalueof 7>T.

. Also, a set-up cost k, at warehouse would

On the other hand, the sum of holding cost for product n at the

TS dh  TY.dh" )
warehouse would increase from ”>12 to ”>12 from 7T toany

valueof T>T.

The upper bound is derived by asserting that for 7>, the

increment in the sum of holding cost for product » at the warehouse, i.e.,

>dhr T>dh

”>12 - ">12 , must exceed the maximum magnitude of
k k * [y et
decrement, ie., 70 — ?" +>' 0, ( f (T ),T ) ; or,
n>1
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> 9, (fn*(f ),T ), which gives exactly eq. (11).
n>l1
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