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摘要 

 

企業在快速交貨的時間壓縮下，企業與伙伴間的關係變得更加密切，

使得供應鏈或運籌管理有日益盛行的趨勢。配銷倉儲與區域零售商的

存貨政策，攸關整體供應鏈的營運績效。故本篇論文的目的是探討：

在穩定-巢狀存貨政策下，如何協調集中倉儲對多個區域零售商的產

品補貨時程及制定倉儲的配送批量，使供應鏈整體的平均總成本達到

最小。目前，在此研究領域，尚未有學者提出一有效的解法，其能保

證求得該問題的全面最佳解。因此，本研究針對此問題，剖析其最佳

成本函數的最佳解結構。本研究並利用此最佳成本曲線結構的特性，

推導出許多重要的理論結果，並依此理論結果設計一套有效率的最佳

解搜尋演算法。再以隨機產生的實驗數據驗證之後，證實本研究的搜

尋演算法不僅比文獻中其他的解法更迅速有效率，而且可以保證求得

該問題的全域最佳解。 

 

關鍵字: 確定性存貨， 批量，穩定-巢狀政策，最佳解結構，搜尋演

算法 
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Abstract 

 

This study aims at optimally coordinating inventory among all the 

partners in a supply chain system with a central warehouse and multiple 

local retailers so as to minimize the average total costs. After reviewing 

the literature, we found no study proposes an efficient solution approach 

that guarantees to secure an optimal solution for the one-warehouse 

multi-retailer lot-sizing problem. The solution approaches in the literature 

share a common problem, namely, they do not have insights into the 

optimality structure of the problem. Therefore, this study first focuses on 

performing a full theoretical analysis on the optimality structure. Then, by 

utilizing our theoretical results, we derive an effective search algorithm 

that is able to obtain an optimal solution for the one-warehouse 

multi-retailer lot-sizing problem under stationary-nested policy. Based on 

our random experiments, we demonstrate that our search algorithm 

out-performs the other heuristics. 

 

Keywords: Deterministic inventory, Lot Size, Stationary-Nested, 

Optimality structure, Search algorithm. 
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GLOSSARY OF NOTATION 
 

nf  replenishment frequency 
F the set of optimal multipliers 
T a basic period in the production planning horizon 

nT  The length of time for retailer n, i.e.,  TfT nn =

0k  a set-up cost for the warehouse 

nk  a set-up cost for the retailer n 
nh  the unit holding cost rate per unit time for product n 
'
nh  the unit holding cost rate per unit time at retailer n 

nd  the demand rate per unit time at each retailer n 
( )TTCn  the minimum cost function with respect to T for the 

retailer n 

nTC  the minimum cost value of  ( )TfTC nn ,
( )nn fλ  the minimum basic period of  ( )TfTC nn ,

),( Tfnn∆  the difference function between TC  and 
 

),1/( Tff nnn +

),( TfTC nn

)/1( nn fδ  the junction point that one should choose  for 
 

nf
)/1( nn fT δ<

*
ccT  the local minimum for  and { }  10 =f N

nnf 11 ==

jω  the  junction point of retailer n ( )thj/1

optTC  the total average cost for the objective function 
π  the retailer index for the retailer n 

cT  the current value of T 
( )( )ππδ fF /1  ( )( ) ( ) { }( ) { 1/\/1 +∪=

∆

ππππδ fffTFfF nc } 
( )( )jFT ω

(
 the local minimum for the  function )(TTCopt

β  the upper bound 
*
λT  the last-revised upper bound, i.e., { }βλλ ,min ** TT =  
( )** ,TF  the global optimal solution for the OWMR under 

stationary-nested policy 
( )** ,TFTC  the global optimal total average cost solution 

*B  the max of three lower bounds 
P* the lowest average cost 
α  the measure of the closeness of P* to optimality 
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Chapter 1  INTRODUCTION 
 

1.1 The Motivation to Study the Lot-sizing for the One-warehouse 

Multi-retailer System 

 

The coordination of inventory among the partners is one of the key 

factors that determine the performance of supply chains. Especially, the 

managers in multi-echelon supply chains address lots of their efforts to 

determine the optimal replenishment cycles of raw materials, the optimal 

production cycles of work-in-process, and the optimal batch quantities 

and distribution frequencies of finished products. The decision-makers 

are eager for a solution approach that brings an optimal lot-sizing strategy 

to improve the performance of the whole supply chain. Importantly, such 

an optimal lot-sizing strategy not only coordinate the logistics of the 

suppliers, the distribution centers and the retailers in unison, but also, 

reduce the order processing costs, the inventory holding costs and the 

distribution (or, the transportation) costs throughout the supply chain 

system.  

This study aims to derive an effective search algorithm that 

efficiently secures an optimal lot-sizing strategy for a supply chain with 

one central warehouse and multiple local retailers so as to minimize the 

total average costs. Such a supply chain is known as a one warehouse 

multi-retailer (OWMR) system in the literature. 

 

1.2 Statement of Scope and Purpose 

 

The one warehouse multi-retailer (OWMR) lot-sizing problem is 

concerned with the determination of lot sizes and schedule of n retailers 

replenished from the central warehouse. In the OWMR lot-sizing problem, 
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the warehouse holds inventory of all products and can replenish each 

retailer instantaneously. By applying the concept of the OWMR lot-sizing 

problem, the decision makers could effectively determine the 

replenishment schedule in the warehouse and lot sizes delivered from the 

warehouse to local retailers so as to minimize the total average costs.  

In this study, we focus on obtaining the optimal lot-sizing strategy 

under stationary-nested policy in the OWMR system where 

stationary-nested policy assumes that the replenishment cycle of each 

retailer, denoted by Tn, must be an integer-ratio fraction of the 

replenishment cycle of the warehouse (denoted by T). That is,  

and 

TfT nn =







∈ ,...,,,f n 4

1
3
1

2
11  for all n.  

 

1.3 Background and Problem Description 

 

In this section, we first introduce the decision-making scenario in the 

OWMR lot-sizing problem. The warehouse receives finished products (of 

a single kind) from its up-stream supplier and distributes the finished 

products to the local retailers in the OWMR system. The objective of the 

OWMR problem is to minimize the total costs incurred per unit time.  

Most of assumptions in our study are the same as that defined in 

Schwarz’s (1973) paper. Namely, no backlogging, lost sale, or 

transshipment is permitted anywhere in the system. Initial inventory is 

assumed to be zero. Customer demand occurs at each retailer at a 

constant rate. A holding cost is incurred for each unit of finished product 

per unit time stored and a setup cost is charged for each order placed at 

the warehouse and at each retailer. The demand rates, holding cost rates 

and setup costs are stationary for the warehouse and each retailer. The 

replenishment of orders is assumed to be instantaneous (though this 
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assumption can be relaxed by adding lead times to the orders). In the 

OWMR system, set-up costs  and  are incurred at the warehouse 

and at each retailer n, respectively, for every order placed.  

0k nk

Though we have only one kind of product in the OWMR system, it 

may be easier for the readers to consider the finished products stored at 

different retailers as different kinds of products (which are stored 

exclusively in their locations). We denote  as the demand rate per unit 

time at retailer n. And, let h  and  be the holding cost rates at 

retailer n and the warehouse, respectively. Then, the echelon holding cost 

rate at retailer n shall be . (See Roundy’s, 1985 paper.) 

nd

'
n

'
nh

nh

0>−≡ n
n hh

Under stationary-nested policy, our assumption of  facilitates 

us to employ the echelon method to conveniently compute the holding 

costs in the OWMR system. (Please refer to Clark and Scarf’s, 1960 paper 

for the details.) The system inventory of product n is the sum of the 

inventory of product n at the warehouse and the inventory at retailer n. It 

is well known that the system inventory follows the familiar saw-tooth 

inventory pattern with an order interval of T (see Graves and Schwarz, 

1977 and Roundy, 1985). The average holding cost of product n is the 

sum of the following two terms: (1) the product of the average system 

inventory of product n and its holding cost rate at the warehouse, and (2) 

the product of the average inventory at retailer n and its echelon holding 

cost rate. Therefore, the average holding cost of product n is given by 

TTn ≤

ThdThd nn
nn

n

22
+ .  

Assume that there are N local retailers in the OWMR system. We 

define a cost function  for product n as ( TfTC nn , )

   ( )
22

, Tfhd
Tf

kThd
T
kTf nnn

n

nnnn

n

n
nn +=+=TC     (1) 
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where , TfT nn =






∈ ,...

4
1,

3
1,

2
1,1nf  and n = 1, …, N. (We note that the 

total average costs for product n is given by ( TfTCThd
nn

n
n ,
2

+ ).) Then, 

we may formulate the OWMR lot-sizing problem as follows. 

 

{ }( ) ( )

)(                                1 ,,...
4
1,

3
1,

2
1,1             

)(     ,
2

,  

0

1
0

0

bfftosubject

aTfTCThd
Tf

kTfTCMinimize

n

N

n nn

n
n

nopt

=






∈









++≡ ∑ =

 (2) 

 

The rest of thesis is organized as follows. In Chapter 2, we review 

the research works on the OWMR lot-sizing problem in the literature. In 

order to solve the OWMR lot-sizing problem, we first perform full 

theoretical analysis on the optimality structure of the optimal cost curve 

in Chapter 3. Then, in Chapter 4, we employ our theoretical results to 

derive a search algorithm that obtains the global optimal solution for the 

OWMR lot-sizing problem under stationary-nested policy. The first part 

of Chapter 5 presents a numerical example to demonstrate our global 

optimal search algorithm. Also, based on our random experiments, we 

demonstrate that our search algorithm out-performs the other heuristic 

solutions in the second part of Chapter 5. Finally, we address our 

concluding remarks in Chapter 6. 
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Chapter 2  LITERATURE SURVEY 

 
Many researchers have been addressing their efforts to solve the optimal 

solution for the one-warehouse multi-retailer (OWMR) lot-sizing problem. 

Under a particular set B of “basic” policy, Schwarz (1973) derived an 

optimal policy for the stationary, continuous-time OWMR lot-sizing 

problem (with an infinite planning horizon). A basic policy is any feasible 

policy with the following properties: 

1. Deliveries are made to the warehouse only when the warehouse has 

zero inventory, and at least one retailer has zero inventory. 

2. Deliveries are made to any given retailer only when that retailer has 

zero inventory. 

3. All deliveries made to any given retailer between successive 

deliveries to the warehouse are of equal size. 

Roundy (1985) gave three terms for these important properties as 

follows:  

1. Zero-Inventory Ordering: Each facility orders only when its 

inventory is zero. 

2. Last-Minute Ordering: The warehouse orders only when at least one 

retailer orders. 

3. Stationarity-Between-Orders: At each retailer all orders placed 

between two successive orders at the warehouse are of equal size. 

On the other hand, the zero-inventory-ordering property also applies 

for a single facility (Wagner and Whitin, 1958) and for many facilities 

(Zangwill, 1966 and Veinott, 1969) for the finite-horizon discrete-time 

cases.  

A policy is called stationary if each facility orders at equally-spaced 

points in time and in equal amounts. A policy is nested if each facility 

orders every time any of its immediate suppliers does, and perhaps at 

 5 



other times as well. Policies that are both stationary and nested are called 

stationary-nested or single-cycle. (One may refer to Roundy’s, 1985 

paper for the definitions.) Several researchers restricted their attentions to 

stationary-nested policy. Schwarz (1973) derived the necessary conditions 

for an optimal policy and some analytical bounds under stationary-nested 

policy. He also proposed a heuristic that usually solves a near-optimal 

solution for the OWMR lot-sizing problem. Schwarz and Schrage (1975) 

focused on solving the optimal lot sizes of a single product in 

multi-echelon assembly systems under stationary-nested policy. Graves 

and Schwarz (1977) investigated the characteristics of optimal continuous 

review policies for arborescent systems under stationary-nested policy. 

Maxwell and Muckstadt (1985) proposed a heuristic for complex 

multi-stage, multi-product systems under stationary nested policy. 

Graves (1979) showed that the Joint Replenishment Problem which 

may be viewed as a special case of the OWMR lot-sizing problem. Many 

researchers proposed solution approaches for the Joint Replenishment 

Problem. One may refer to the following papers: Goyal (1974), Silver 

(1976), Goyal and Belton (1979), Kaspi and Rosenblatt (1983, 1991), 

Jackson et al. (1985), and Lee and Yao (2003). 

Furthermore, Roundy (1985), and Lu and Posner (1994) solved the 

OWMR lot-sizing problem under so-called integer-ratio policy which 

restricts each retailer orders at an integer or reciprocal of an integer 

multiple of the warehouse order interval. Mitchell (1987) extended 

Roundy’s (1985) results to allow backlogging and introduce a class of 

policies, called nearly-integer-ratio policies which is different from the 

class of integer-ratio policies by not requiring stationarity of orders 

placed by retailers. Anily and Federgruen (1990, 1991), and Hall (1991) 

added the vehicle routing costs in the OWMR systems. 

After reviewing the literature, we found a problem that commonly 
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shares among the solution approaches for the OWMR lot-sizing problem 

under stationary-nested policy. Namely, they do not have insights into the 

optimality structure of the problem. Therefore, this study focuses on 

performing a full theoretical analysis on the optimality structure of the 

OWMR lot-sizing problem under stationary-nested policy. Our theoretical 

results in this paper will lay important foundation for deriving an 

effective search algorithm that is able to obtain an optimal solution within 

a very short run time. 
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Chapter 3   

THEORETICAL ANALYSIS  

ON THE OPTIMAL COST FUNCTION 
 

In this chapter, we present some theoretical results that provide insights 

into the optimality structure of the OWMR lot-sizing problem under 

stationary-nested policy. Let TC  be the optimal cost function of 

the OWMR problem with respect to T. Later, we will introduce the 

“junction points” on the curve of the  function, and also discuss 

some interesting properties of those junction points. These junction points 

assist us in securing the set of optimal multipliers for each given value of 

T, and they facilitate the design of the search algorithm presented in 

Chapter 4. 

)(Topt

TC )(Topt

 

3.1 Some Insights into the Optimal Cost Function 

 

Recall that TC  is given by ( Tfnn , ) ( )
2

, Tfhd
Tf

kTf nnn

n

n
nn +=TC  where 

Nfn ,...,
3
1,

2
1,1



=

TCopt

n 1 ,,...
4
1, =



 . The following theoretical results provide 

us some insights into the  function. )(T

For a given T, one may obtain the optimal multiplier nf  so as to 

minimize . We denote it as ( TfTC nn , ) ( )TnTC , the minimum cost 

function with respect to T for retailer n, i.e., 

 

( ) ({ TfTCTTC nn
Np

P
f

n
n

,min
,1 +∈∈

= )}               (3). 

Then, the following lemma holds for each retailer n. 
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Figure 1: The Piece-wise Convex Curve for ( )TTC n  

 

Lemma 1 ( )TTC n  is a piece-wise convex function with respect to T in 

Figure 1. Also, for each , one can secure the local minima for nf ( )TTC n  

at 

 

( )
nn

n

n
nn hd

k
f

f
21

=λ                      (4) 

with the minimum cost of ( ) nnnn hdkTTC 2=  (Schwarz, 1973). 

 

The following proposition shows the optimality structure of the 

OWMR problem. 

 

 9 



6 6.5 7 7.5 8 8.5 9
1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

T 

TCopt(T) 

 
Figure 2: The Piece-wise Convex Curve for the Optimal-cost Function. 

 

Proposition 1 The  function is piece-wise convex with respect 

to T. 

)(TTCopt

Proof. At a given T, the optimal value TC  is given by )(Topt

{ }( ) ( )( )∑ >
++≡ 10 ,/, n nn

n
nopt TfTCThTkTfTC  where 

T
k0  and  

are convex functions and each 

∑ >1n
nTh

( )Tn

TCopt

TC  function is piece-wise convex 

with respect to T by Lemma 1. Since  is the sum of convex 

functions and a piece-wise convex function, it is surely a piece-wise 

convex function. ■ 

)(T

 

3.2 The Junction Points 

 

Next, we introduce the “junction points” on the curve of the  

function. Recall that the 

)(TTCopt

( )TnTC  function is piece-wise convex. We 

define a junction point for the ( )TTC n  function as a particular value of T 
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where two consecutive convex curves concatenate. These junction points 

determine at ‘what value of T’ where one should change the multiplier of 

retailer n from  to  so as to secure the minimum value for 

the 

nf ( 1/ +nn ff )

( )TTC n  function. 

−
+

),
1

n TCTf

)T

TC

n

TC

nf

T ,

( )TTCn  ,⋅

/nf

We first derive a closed-form for the location of the junction points 

for retailer n as follows. We define the difference function  by ( Tfnn  ,∆ )
 









+

−==∆
∆

12
),((),(

2

n

nnnn
nn

n
nnn f

fThd
T
kTf

f
Tf         (5).         

We note that ∆  is the cost difference between using ( fn  , nf  and 

 as its multiplier for 1/ +nn ff ( Tn  ,⋅

n∆

. Since the function  is 

an increasing function with respect to T. Suppose that the search 

algorithm proceeds from a lower bound toward larger values of T, we 

evaluate  from positive values, to zero and finally, to negative 

values. Let  be the point where  reaches zero. Assume that 

 is the optimal multiplier for retailer n for . This scheme implies 

that one should keep using  until it meets . From the point  

onwards, the value of 

( )fn∆ Tn  ,

( )nfn∆

ω ( Tfn  ,

nf ω<T

ω ω

 can be improved by using  as 

its optimal multiplier. We note that  is the point where two 

neighboring convex curves TC  and  meet. 

Importantly, such a junction point  provides us with the information 

not only on “which retailer n” to modify, but also on “where on the 

T-axis” to replace  with . By eq. (5), we identify a junction 

point for retailer n by 

( 1+ )/ nn ff

)( )T,1

ω

( )Tfn ,

ω

)1+

n

( nf

( ff nn /TCn +

nf

)

)

 

nn

n

n

n
nn hd

k
f

ff 21)/1(
2

+
=δ                (6).        
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More specifically,  is the  junction point of 

retailer n where 

)/1/1( jf nn =δ ( )thj/1

+∈N
j
1

( )1+

. Therefore, the junction point  provides 

us the information that one should choose  for T  and 

choose , vice versa, to obtain the lowest value for the 

)/1( jnδ

(nδ<jn =f )/1 j

/= jjf n

(TTC n ) function. 

The following theoretical results on the junction points provide 

strengthen foundation for such a search scheme. 

 

Lemma 2 Suppose that  and , respectively, are the optimal 

multipliers of the left-side and right-side convex curves with regard to a 

junction point of the 

( )L
nf ( )R

nf

( )TTC n  function. Then, ( )
( )

( ) 1+
=

L
n

L
nR

n f
f

f . 

 

Proposition 2 All the junction points for each individual retailer n, will 

be inherited by the  curve.  ( )TTCopt

Proof. The proof is presented in Appendix A.1. ■ 

In other words, Proposition 2 asserts that if a junction point  

shows on one piece-wise convex curve 

ω

)(TnTC , then,  must also 

show on the piece-wise convex curve of the TC  function as a 

junction point. Let F(T) be the set of optimal multipliers at a given T, i.e., 

ω

( )Topt

( ) ( ){ }TfTF n
*= . The following theorem is an immediate result of Lemma 2 

and Proposition 2. 

 

Theorem 1 Suppose that ( ) ( ){ }L
n

L fF =  and ( ) ( ){ }R
n

R fF =

(TTCopt

, respectively, are 

the set of optimal multipliers for the left-side and right-side convex curves 

with regard to a junction point in the plot of the  function. Then, 

 is secured from  by changing at least one of its optimal 

)
)( RF )( LF
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multiplier by ( )
( )

( ) 1+
=

L
n

L
nR

n f
f

f

nf

( )

. 

Usually, only one  changes at a junction point except for some 

extreme cases in which two retailers share the same junction point. 

    The following corollary is also a by-product of Lemma 2 and 

Proposition 2, and it provides an easier way to secure each . ( ) ( )TFTf n ∈*

 

Corollary 1 For any given T, one can secure each  by ( ) ( )TFTfn ∈*

 

























+
≤<

−

<

=

nn

n

nn

n

nn

n

n

hd
k

m
mT

hd
k

m
mm

hd
kT

Tf
2121   ,  

2                                ,1  

22

*            (7). 

The following corollary is important for the design of the proposed 

search algorithm. 

 

Corollary 2 Let  and  be two neighboring junction points for the 

function , and . Then, the set of optimal multipliers for 

theTC  function is invariant in . 

1ω

)

2ω

1 <(TTCopt

)T

2ωω

(opt ( )21,ωω

Proof. It is obvious by Theorem 1. We know that )  is secured from 

 by changing at least one of its optimal multiplier by 

( 2ωF

)( 1ωF ( )
( )

( ) 11

1

2

+
=

ω

ω
ω

n

n
n f

f
f . 

Thus, the set of optimal multipliers for theTC  function is invariant 

in . ■ 

)(Topt

( )21,ωω
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Chapter 4 

A GLOBAL OPTIMAL SEARCH ALGORITHM 
 

In this Chapter, we present a search scheme, which secures a global 

optimal solution for the OWMR problem under stationary-nested policy. 

Recall that we assert that the TC  function is piece-wise 

convex with respect to T in Chapter 3. Also, some interesting properties 

on the junction points reveal the optimality structure of the TC  

function. These theoretical results encourage us to solve the OWMR 

problem by searching along the T-axis. 

)(Topt

)(Topt

To design such a search algorithm, we first need to define the search 

range by a lower and an upper bound on the T-axis, which are denoted by 

 and , respectively. We note that the bounds T  and  are 

derived by asserting that the best local minimum in  must be no 

worst than any solution outside of [ . Naively, one can secure a 

global optimal solution for the OWMR problem by a small-step search 

algorithm which enumerates  and using a vary small step-size 

. But, this is neither efficient nor accurate, since the step-size 

determines its performance. Also, the run time of the search algorithm 

may be extremely long if the search range  is wide. 

LT

∆T

λT L

[ λT,

λT

]

]

]

]

TL

λTTL ,

]λT

T

[TT L ,∈

0→

[ λTL ,

In order to propose an efficient search algorithm, we must utilize our 

theoretical results on the optimality structure, especially, the properties of 

the junction points on the TC  function. By Lemma 2 and 

Proposition 2, we can easily secure all of the junction points within any 

search range  by eq. (6). Corollary 2 asserts that the set of optimal 

multipliers for  is invariant in any convex interval between two 

neighboring junction points. These theoretical results lead us to the 

)(Topt

[ λTTL ,

TCopt )(T
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following idea: if we are able to obtain all of the local minima for each 

convex curve in , we surely can secure a global optimal solution 

by picking the one with the lowest objective value. 

[ λTTL ,

*
cc

T

]

)

In the following sections, we first derive a lower bound on the 

search range. Then, we demonstrate how to use the junction points to 

proceed with the search. Also, we propose an approach to secure and 

revise the upper bound on the search range. Finally, we summarize our 

proposed search algorithm. 

 

4.1 A Lower Bound 

 

In this section, we derive a lower bound on the search range by the 

Common Cycle (CC) approach in which it requires that f0 = 1 and fn = 1 

for all n, i.e., all the retailers share the same replenishment cycle. 

Denote as  the optimal replenishment cycle for the CC approach. 

Then, one may easily secure  by the following expression. 

T

*
ccT

 

( )
(∑
∑

>

>

+
+

=
1

10* 2

n n
n

n

n n
cc hhd

kk                      (8) 

Proposition 3 asserts that the search scheme may skip the range 

( )*, ccT∞ . Consequently, we may set  in eq. (8) as a lower bound of the 

search range. 

*
ccT

 

Proposition 3 For the  function, there exist no local minima for 

. 

)(TTCopt

*
ccTT <

Proof. Proposition 1 asserts that TC  function is piece-wise 

convex. It implies that the global optimal solution must be one of its local 

)(Topt
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minima. The local minimum for any set of 






 ∈∈ +NP

P
ff nn ,1:

{ }( ) *
ccn TfT ≥

(

*
ccTT <

*
cc

*
ccT

*
cc

 is 

expressed in eq. (10). By eq. (10), it is obvious that  since 

 for all n. Therefore, there exists no local minima for . ■ 1≤nf

( )*
ccTF

nf
1+n

n

f
f

)(Topt(n f/1δ

{ n /1δ )nf

Proposition 3 also implies that we may employ T  as an initial 

point for the search algorithm to start the search from  toward higher 

values of T (until it meets an upper bound ). λT

 

4.2 Proceeding with the Search by Junction Points 

 

By utilizing the theoretical properties of the junction points, we show 

how to proceed with the search from our initial point T  in this 

subchapter. 

Before proceeding with the search, we first secure , i.e., the 

set of optimal multipliers at  by Corollary 1. *
ccT

    Next, we show how to proceed with the search by utilizing a 

sequence of (sorted) junction points. By Lemma 2 and Proposition 2, 

each junction point  provides the information that one should 

change the optimal multiplier of retailer n from  to 

({ nn f/1δ

 at 

 to secure the optimal value for the TC  function. 

Therefore, during the search, we need to keep an n-dimensional array 

n

( ) }Nn ,...,1=f n  in which each value of  indicates the 

location of the next junction point of each retailer n where the optimal 

multiplier of retailer n should be changed. Since the algorithm searches 

toward higher values of T, one shall change the multiplier for the 

particular retailer n with the smallest value of  to correctly 

( /

)1

n 1δ

nδ ( nf/

)}

)

 16



update the set of optimal multipliers. Let  be the current value of T 

where the search algorithm reaches. Denote as  the retailer index for 

the retailer n with the smallest value of , i.e., 

. To proceed with the search form T

cT

} f

π

{ πf

( )nn f/1δ

}

( ){ cnnn Tf >= /1minarg δπ

/1πδF

} c, by 

Theorem 1, we need to update the set of optimal multipliers at  

by 

( )nn f/1δ

{ }jω

*
ccT jj ωω ≥+1

*
ccT

1+jω

)(Topt

)jF

(TTCopt ]jj ω,1+

))( )( )jFT ω
(

)(TTCopt

T
(

( )
([ ]






*

*
n

n

f
k

jFT ω
(

 

( )( ) ( ) {( ) 1/\ +∪=
∆

ππ fTFf nc              (9) 

where ‘\’ denotes set subtraction. 

Let  be the sequence of the points that the algorithm reaches. 

Also, by the definition, we have . From another point of view, the 

algorithm searches along 

*
0 ccT

∆

=ω

{ }jω

jω

, a (sorted) sequence of junction points 

from , where , j=0, 1, 2,…. Note that this array is sorted on 

the location of the junction points in ascending order except that the 

initial point  may not be a junction point. Importantly, Corollary 2 

asserts that the set of optimal multipliers for the  function is 

invariant between  and . Therefore, 

TC

(ω  is the set of optimal 

multipliers for the  function in the interval ) (ω
(( jF ω

. Denote as 

 the minimum for the set of multipliers . The following 

proposition indicates the existing condition and the location of a local 

minimum for the  function. 

 

Proposition 4 Let 

( )( ) )∑

∑

>

>

+






+

=
1

102

n jnn
n

n

n
j

fhhd

k

ω

ω               (10) 
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( )( jFT ω
(

( )( )jFT ω
(

)  is a local minimum for the TC  function if 

 where 

)(Topt

( ]jj ωω ,1+∈ ( ) ( ) n., Ff jj
*

n ∀∈ ωω  

 

    Proof. For any given set of , one may secure its local minimum, 

, by securing the derivative of the  function with respect 

to T, and equating it to zero. By Corollary 2,  becomes a local 

minimum for the  function when T . ■ 

{ }nf

{ }( nfT
( )

)

)(TTCopt

T
(

( )( )jwF
(

{ }( nf

ω∈)(TTCopt ( ]jj ω,1+

 

4.3 Secure and Revise the Upper Bound 

 

Recall that in order to secure a global optimal solution, the search scheme 

needs to secure all the local minima in [ ]λTTcc ,* . Therefore, we derive an 

upper bound  in this section. Also, in order to shorten the search range, 

we revise the best-on-hand upper bound during the search process. 

λT

Let T* and F* be the best-on-hand local minimum and its 

corresponding set of optimal multipliers, respectively. After obtaining a 

new local minimum , we first check if it secures an objective value 

lower than the best-on-hand solution. If 

T
(

( )( ) ( ** ,, TFTCTTF <
((

T
(

=*

)TC , we 

should revise the best-on-hand solution by T , and ( )T
(

FF =*

*
λ

. 

Meanwhile, one should try to revise the best-on-hand (i.e., 

smallest-valued) upper bound, denoted by T , to shorten the search 

range.  

We derive another upper bound  in Lemma 3. We note that our 

upper bound  is derived by asserting that there exists no any solution 

which secures a lower objective value than 

β

β

( )( )TTFTC
((

,  for T . β<
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Lemma 3 At a local minimum , one may secure an upper bound  

on the search range by 

T
(

β

 

∑

∑∑∑∑∑
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>>>>>

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n

n
n
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( )( )
( )

( )
























<











−











+
+

=−+

=
1     ,1

1
2

2
12

1            ,2
2

,
*

*

*

Tf
f
f

hdk

Tfhdk
Thd

T
k

TTf
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nnn
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(
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Proof. The proof is presented in Appendix A.6. ■ 

We summarize the revision of T  at the newly-obtained, 

best-on-hand local minimum in the following proposition. 

*
λ

 

Proposition 5 After securing a new local minimum T , if 
(

( )( ) ( ** ,, TFTCTTFTC <
(( ), then one should revise  by *

λT { }βλλ ,min ** = TT  

where  is obtained from eq. (11). β

 

4.4 The Algorithm 

 

We are now ready to enunciate the proposed search algorithm. Recall that 

the algorithm searches form  toward higher values of T until it meets 

the last-revised upper bound T . In the search process, we use a 

sequence of (sorted) junction points as the backbone and secure all the 

*
ccT

*
λ
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local minima of the  function between ( )TTCopt [ ]** , λTTcc

( ){ }cn Tf >

. Denote as  

and  the value of T and the corresponding set of optimal multipliers 

for the global optimal solution. We summarize the step-by-step procedure 

of the proposed search algorithm as follows. 

*T

*
ccT

*F

)πf

( )( )*TF cc ∈

( ))*
ccT

*
λT

=*
λT ∞=

c wT =

( )jw { }( )∪fπ

( ){ }cn Tf >

)( ) [ ,∈ jw

}

( )πf/

(( jwFT
(

 

Step 1: The Initialization. 

(a) Utilize  in eq. (8) as an initial point and let lower bound 

. 

*
ccT

∞=*
λT

(b) Calculate and sort all the junction points in eq. (6) and 

 by  where , 

respectively.  

(πδw /11 = nn= /1minarg δπ cT =

(c) Use Corollary 1 to obtain ( )*
ccTF . 

(d) Check by Proposition 4: if T , set 

 and 

[ )1
* ,wTcc

(

(* FTT
(

= ( )**
ccTFF = , calculate ( )** ,TFTC , and 

calculate the best-on-hand upper bound  by Proposition 5; 

otherwise, let  and ∞ ( )** ,TFTC . 

(e) Set j = 1 and . j

 

Step 2: The Search Procedure. 

(a) Obtain F  by ( ) ( ) { 1/\ +≡ nncj ffTFwF

nn= /1minarg δπ

 and 

 by . πδwj 1 =+ 1

(b) Check by Proposition 4; if T , calculate ( )1+jj wwF
(

( ) ))( )jwFTC ,

*
λT

 and try to revise the best-on-hand upper 

bound  by Proposition 5. 

(c) If ( ) ( )( )( ) ( ** ,, TFTCwFTwFTC jj <
( ) ), set T  and ( )( jwFT

(
=*
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( )jwFF =*

*
1 λTwj >+

. 

 

Step 3: The Termination Condition of the Search Algorithm. 

(a) If , output T , ** , F ( )** ,TFTC  and the algorithm 

will terminate. 

(b) Otherwise, set j = j+1 and . Go to Step 2. jc wT =
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Chapter 5   

NUMERICAL EXPERIMENTS 
 

In this chapter, we first present a numerical example to demonstrate the 

implementation of the proposed search algorithm. In the second part of 

this chapter, we will compare the solutions solved the proposed search 

algorithm with Schwarz’s (1973) lower bound and the solutions by 

Schwarz’s (1973) heuristic.  

 

5.1 A Demonstrative Example 

 

The numerical example presented in this section demonstrates the 

implementation of the proposed search algorithm. Table 1 presents the set 

of parameters used in this numerical example. 

 

The search process is summarized as follows. 

1. We first secure , and let . Also, we secure the 

set of optimal multipliers at T , i.e., 

0541.0* =ccT *
ccc TT =

*
cc ( )*

ccTF , by 

 { }2/1 /1 ,7/1 ,2/1 ,3/1 .,1 ,1 ,1 ,2/1 ,1 ,2

 

Table 1: The Set of Parameters Used in the Demonstrative Example. 

 
Retailer 1 2 3 4 5 6 7 8 9 10 

Setup cost 15 50 2 32 38 48 46 42 12 20 

Holding cost 1.3 1.57 1.65 1.62 0.52 1.85 0.3 0.21 0.56 0.6 

Demand rate 95200 49550 48500 45500 93550 42500 44500 35500 18850 60000 

Warehouse           

Setup cost 500 

Holding cost 0.13 0.157 0.165 0.162 0.052 0.185 0.03 0.021 0.056 0.06 
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2. We obtain  by 

. By Proposition 4, we have local 

minimum 

( ) 0558.07/1 331 === fδω

} 3( ){ /1minarg =>= cnnn Tfδπ

( )( )*
ccTFT

(

∞=*
λT

 by 0.0823; but, obviously, , 

we set  and 

( )( ) [ )1
* ,ωccT∉*

ccTFT
(

( ) ∞=*T* ,FTC . 

3. Next, we move to  and obtain the set of optimal multipliers 

 by 

1ω

( 1ωF ) ( ) ( ) { } { 8/17/1\ 33
*

1 =∪=≡ ffF ccω

{ }2/1 ,1 ,1 ,1 ,2/1/1 ,8/1 ,2

057.0/1 11 == fδ minarg= nπ

( )( )1ωF
(

[ )21,ωω 2ω

( ) ( ) { 1\ 112 =≡ fFF ωω

1 ,1 ,1 ,1 ,2/1 ,1 ,2/1 ,8/1 ,2/1 

}TF

 ,1 ,2

( )3=

,4/

, which is given 

by . Then, we let T  and 

secure  by . 

We obtain the local minimum T  by 0.0826. Therefore, 

. Next, we move to  and get the set of 

optimal multipliers by , 

which is given by  

/1 ,3

2ω

( )( )1 ∉

/1

ωFT
(

1ω=c

( )/ > cn Tf

{ /11 =f

{ } 11 =nδ

} }43/ ∪

{ }2/1 .

4. We continue the search, but find no local minimum in [ )21
* ,ωccT

}

. The 

first local minimum is secured in the interval 

. We have 

, 

 and 

[ ) [ )1217.0 ,1155.0, 2221 =ωω

( ) { 16/1 ,3/1 ,7/121
* == ωFF

( )( ) 1197.021
* == ωFTT

(

3/1 ,2/1 ,1 ,1 ,3/1 ,3/1 ,4/1 ,

( ) 31.22475, ** =TFTC

1718.0* =λT

. Also, we 

secure the first upper bound  by proposition 5. 

5. For the entire search process, we secure totally 6 local minima for 

this example. All of the local minima, their corresponding set of 

optimal multipliers, objective values and their revised upper bound 

are summarized in Table 2.  

6. When the search algorithm secured the second local minimum 

, it tried to revise the best-on-hand upper bound 123.0=T
(

{ } { } 1703.01703.0 ,1718.0min,* ==βλmin* =λ TT  by Lemma 3 and 

Proposition 5. Until we obtain the sixth local minimum , 1453.0=T
(
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and revise the best-on-hand upper bound . Therefore, 

the search algorithm stops when it encounters the smallest junction 

point that is larger than , that is . In this example, 

before the search algorithm terminates, it visits totally 40 junction 

points.  

1612.0* =λT

1647.0

{ }4/1 

*
λT

,3/1

40 =ω

,3/1 ,1 ,

[
0

[
1443.0
1393.0

)
, [

)1453.0
,1443.0

7. The global optimal solution and the set of optimal multipliers are 

given by T  (i.e., the forth local minimum) and 

, respectively. The 

optimal average total cost is $22,422.18.  

1417.0* =

 ,5/1 ,19/1 ,4/ 2/1 ,4/1 1 ,9/1* =F

 

Table 2: The Local Minima Secured in the Search Process of the Global 

Optimum Search Algorithm. 

 

[ )1, +jj ωω  [
)1217.0
,1155.0
 
[

)1231.0
,1229.0
 )1378.

,1309.0
   

[
)1527.0
,1455.0
 

1f  1/7 1/8 1/8 1/9 1/9 1/9 

2f  1/3 1/3 1/4 1/4 1/4 1/4 

3f  1/16 1/17 1/18 1/19 1/19 1/20 

4f  1/4 1/4 1/4 1/5 1/5 1/5 

5f  1/3 1/3 1/3 1/3 1/4 1/4 

6f  1/3 1/3 1/4 1/4 1/4 1/4 

7f  1 1 1/2 1/2 1/2 1/2 

8f  1 1 1 1 1 1 

9f  1/2 1/2 1/3 1/3 1/3 1/3 

10f  1/3 1/4 1/4 1/4 1/4 1/4 
jT
(

 0.1197 0.123 0.1373 0.1417 0.1451 0.1453 
( )jopt TTC
(

 22475.31 22479.84 22424.99 22422.18* 22425.55 22425.56 
β  0.1718 0.1703 0.1612 0.1622 0.1631 0.1632 

*
λT  0.1718 0.1703 0.1612 0.1612 0.1612 0.1612 
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5.2 Random Examples 

 
In this section, we present our random experiments to show the proposed 

search algorithm out-performs Schwarz’s heuristic.  

The experimental settings are the same as that shown in van Eij’s 

(1993) paper excepted holing cost rate for the warehouse. The annual 

demand rate , the holding cost rate for the retailers , and the setup 

cost for the retailers  were randomly generated from uniform 

distributions UNIF[100-100,000], UNIF[0.2-2], and UNIF[1-51], 

respectively. And, the holding cost rate  for the warehouse were 

selected at random from ( ) using a uniform 

probability distribution. We tested four levels of the number of retailers 

(n=5, 10, 20, 100) and eight levels of setup cost for the warehouse ( =1, 

5, 10, 50, 100, 300, 500, 1000). For each combination of n and , we 

generated 1,000 examples and solved each of them by the proposed 

search algorithm and Schwarz’s heuristic solutions. We summarize the 

comparison of two solution approaches in Table 3. 

nd '
nh

nk

nh

0 ,4 8.0 ,6..0 ,2.0/ ' =n
n hh

0k

0k

In Schwarz’s (1973) paper, he also derived three analytical lower 

bounds. Let  be the objective value obtained by either of the solution 

approaches. Also, denote  as the best of three lower bounds, i.e.,  

= max [Bound1, Bound2, Bound3]. Let  = 100[( – )/ ] which is 

an error measure of . And,  is the maximum error,  is the 

minimum error and 

*P
*B *B

α *P *B *B

α*P maxα min

α  is the average error.  

In Table 3, we can obtain some information. First, when n is 

increasing (i.e., n = 100), it is shown that the proposed search algorithm is 

more efficient in its run time than Schwarz’ heuristic. Second, the error 

decreases as  increases. Third, the values of  (i.e., , or 0k α maxα minα α ) 
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of proposed search algorithm are less than (or equal to) the solution by 

Schwarz’ heuristic. 
 

Based on our random experiments, we conclude that the proposed 

search algorithm out-performs Schwarz’s heuristic. 
 

Table 3: The Comparison between Wang et al.’s and Schwarz’s heuristic. 
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Chapter 6   

CONCLUDING REMARKS 
 

This study fills two research gaps in the literature of the One-warehouse 

Multi-retailers (OWMR) problem under stationary-nested policy. First, 

our study presents several important theoretical results on the optimality 

structure of the OWMR problem under stationary-nested policy. For 

instance, Proposition 1 asserts that TC  function is a piece-wise 

convex function of T. Also, we have thorough discussion on the 

properties of the junction points on the  function in Chapter 3. 

( )Topt

TTCopt ( )

Second, by utilizing these theoretical results, we propose an efficient 

search algorithm that always secures the global optimal solution for the 

OWMR problem under stationary-nested policy in Chapter 4. In our 

search algorithm, we employ tight bounds that significantly shorten the 

search range and our search algorithm effectively gets global optimum in 

a very short run time. Based on our random experiments in Chapter 5, we 

demonstrate that our search algorithm out-perform Schwarz’s heuristic. 

The proposed search algorithm is the first solution approach in literature 

that always secures the global optimal solution for the OWMR under 

stationary-nested policy. Our theoretical results in this study shall 

establish an important foundation for other lot sizing and scheduling 

problems. 
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APPENDIX 
 

A.1 Proof for Proposition 2 

Proof. Recall that ( ) ( )( )∑ >
++≡ 10 / n n

n
opt TTCThTkTTC  is separable. 

Assume that  is a junction point for retailer n, but not for the 

other (n-1) retailers. Then, there must exist  such that 

ω

0>ε

1. the curve for ( )∑∑ ≠>
++ nj jn

n TTCThTk 10 /

]ε

 is convex in the interval 

of  since each one of [ ωεω +− , (TTC j

[ ]ε
) where  is convex 

in , and  

nj ≠

ωεω +− ,

2. ( )TTC n  is convex in the intervals of  [ ]εωω +, .

Except at the junction point , ω

( ) ( ) ( )∑∑∑ +++=
≠> n nnj jn

n
opt TTCTTCTh

T
kTTC 1

0

[ ]ωεω ,− [ ]εωω +, ω

( )TTCopt

 is still convex in the 

intervals  and . Therefore,  becomes a junction 

point of . ■ 

 

A.2 Proof for Lemma 3 

Proof. We note that the function ( )( )TTfnn

((
,*φ

( )T,
(

 indicates the maximum 

magnitude of decrement in  from T  to any value of  

for retailer n. Recall that Lemma 1 asserts that the function  is 

bounded from below by 

fTC nn TT
(

>

)T,( fTC nn

nnn hdk2 . If the optimal multiplier for retailer n 

is ( ) 1* =Tfn

(

T
(

, then the maximum magnitude of decrement in  

from  to any value of  is bounded by 

( )Tfn ,TCn

T
(

>T nnn hdnnn Thd
T
k

2
−+

(

( k2 . 

If ( ) 1* Tfn <
(

, then 
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( )( ) ( ) ( )
( ) ( ) ( )( )( )








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

















 +
≤ TfTfTC

Tf
TfTfTCTTfTC nnnn

n

n
nnnnn

((
(

(
(((

**
*

*
** /1,,1,max, δδ  

by the piece-wise convexity of the ( )( )TTfnn

((
,*TC  function. In fact, 

( )( ) ( ) ( )( )( )TfTfTCTTfTC nnnnnn

((((
*** /1,, δ≤

( ) ( )( )( ) ( ) ( )
( )

, since one can easily prove that 









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





 +
>

Tf
TfTfTCTfTfTC

n

n
nnnnnnn (

(
(((

*

*
*** 1,/1, δδ . By plugging eq. (6), 

we have the following concise expression for ( ) ( )( )( )TfTfTC nnnn

((
** ,δ

( ) ( )( )( )

 after 

some simplification. 



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       (13). 

In other words, if , the maximum magnitude of decrement in 

 from  to any value of T  is bounded by 

. Also, a set-up cost k0 at warehouse would 

decrease from  to  from T  to any value of . 

On the other hand, the sum of holding cost for product n at the 

warehouse would increase from  to  from T  to any 

value of . 

The upper bound is derived by asserting that for T , the 

increment in the sum of holding cost for product n at the warehouse, i.e., 

, must exceed the maximum magnitude of 

decrement, i.e., ( )(∑
>

+−
1

*00 ,
n

nn TTf
T
k

T
k ((
( φ ) ; or, 

 32



( ) ( )(∑
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*001 ,
2 n

nn
n

nn

TTf
T
k

T
kTT

hd ((
(

(
φ ), which gives exactly eq. (11). 
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