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THE NPMLE AS AN

INVERSE-PROBABILITY-WEIGHTED

AVERAGE

ABSTRACT

For randomly censored data, Satten and Datta (2001) showed that the Kaplan-Meier

estimator (known as a nonparametric maximum likelihood estimate (NPMLE)) can be

expressed as an inverse-probability-weighted average. In this article, we consider the

other two NPMLEs: the truncation NPMLE and the censoring-truncation NPMLE.

For the data subject to left-truncation or both left-trucation and right-censoring, it

is shown that these two NPMLEs can be expressed as inverse-probability-weighted

averages.

Keywords: NPMLE; Inverse-probability-weighted average.
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Chapter 1. INTRODUCTION

The Kaplan-Meier estimator (product-limit estimator (PLE)) for the survival

function of randomly censored time-to-event data (Kaplan and Meier (1)) is often

introduced as the maximizer of a nonparametric maximum likelihood (see Kalbfleisch

and Prentice (2); Wang (3) ). In a series of papers, Robins and coworkers proposed

a class of estimators using a data-reweighting scheme (Robins and Rotnitzky (4);

Robins (5); Robins and Finkelstein (6)). An outcome of their approach applied to

survival analysis is an inverse-probability-of-censoring representation of the Kaplan-

Meier estimator. Satten and Datta (7) give two demonstrations of this representation.

In this article, we consider the other two PLEs: the truncation PLE and the censoring-

truncation PLE. These two PLEs were introduced by Lynden-Bell (8) and Cox and

Oakes (9), respectively, and their large sample properties were studied by Woodroofe

(10), Wang et al. (11) and Tsai et al. (12). In Section 2 and 3, it will be shown

that for the data subject to left-truncation or both left-trucation and right-censoring,

these two PLEs can be expressed as inverse-probability-weighted averages.
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Chapter 2. LEFT-TRUNCATED DATA

Let U∗ and V ∗ be the target and truncation variables with distribution functions

F and G respectively. Assume that U∗ and V ∗ are independent. For left-truncated

data, both U∗ and V ∗ are observable only when U∗ ≥ V ∗. Let (U1, V1), . . . , (Un, Vn)

denote the truncated sample. Hence, H(u, v) = P (Ui ≤ u, Vi ≤ v) = P (U∗ ≤

u, V ∗ ≤ v|U∗ ≥ V ∗). Let I[A] be the indicator function of the event A. Let NF (u) =∑n
i=1 I[Ui≤u], NG(v) =

∑n
i=1 I[Vi≤v], and Rn(u) = NG(u)−NF (u−) =

∑n
i=1 I[Vi≤u≤Ui].

The truncation PLEs of F and G can be viewed as a nonparametric method for dealing

with delayed entry of uncensored life table data, as well as truncated astronomy data

(see Woodroofe (10); Wang et al. (11); He and Yang (13)). The follwing examples

describes situtations where the models of left truncation are appropriate.

Example 1 (retirement data):

Channing House is a retirement center located in Palo Alto, California. Data on ages

at death of 462 individuals (97 males and 365 females), who were in residence during

the period January 1964 to July 1975, has been reported by Hyde (1980). The life

lengths in this data set are left-truncated because an individual must survive to a

sufficient age to enter the retirement community. The truncation variable V ∗, is then

the potential patient’s age at entry, and the target variable U∗, is the patient’s age

at death. Obviously we can only observe (U∗, V ∗) if U∗ ≥ V ∗.

Example 2 (AIDS blood-transfusion data):

The blood transfusion related AIDS data given by Kalbfleisch and Lawless (1989).

They gives infection times V ∗, in months with 1 representing January 1978, incubation

times T in months, and age in years for 34 ‘children’ aged 0 to 4 years, 120 ‘adults’ aged

5 to 59 years, and 141 ‘elderly’ aged 60 and over, who were infected by contaminated
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blood transfusions and developed AIDS by 1 July 1986. Let U∗ = 102 − T . The

truncation effect comes from the fact that we only observed over the period (0, 102].

An individual is observed if and only if T + V ∗ ≤ 102 or V ∗ ≤ U∗.

Let U(1) < U(2) < · · · < U(r) denote the distinct ordered statistics of the sample

U ′
is. Let di = NF (U(i))−NF (U(i)−) denote the number of failure times at U(i) for i =

1, . . . , r. Similarly, let V(1) < V(2) < · · · < V(q) be the distinct order statistics of sample

V1, V2, . . . , Vn, and ej = NG(V(j))−NG(V(j)−) denote the number of truncation times

at V(j). A necessary and sufficient condition for the existence of the nonparametric

maximum likelihood estimate (NPMLE) of F (x) is Rn(U(i)) > di for i = 1, . . . , r, for

the existence of the NPMLE of G(x) is Rn(V(j)) > ej for j = 1, . . . , q − 1 (see Wang

et al. (11)). Under these regularity conditions, the NPMLEs of F (x) and G(x) are

uniquely determined and given by

F̂n(x) = 1−
∏
u≤x

[
1− dNF (u)

Rn(u)

]
,

and

Ĝn(x) =
∏
v>x

[
1− dNG(v)

Rn(v)

]
,

where dNF (u) = NF (u)−NF (u−) and dNG(v) = NG(v)−NG(v−).

Under the semiparametric model, V ∗ is assumed to have distribution function

G(y; θ), where G is specified, θ ∈ Θ and θ can be a vector. For the semiparametric

model, the MLE of F (x), derived by Wang (14), is

(∑
i

1/G(Ui; θ̂)
)−1

∑
i

I[Ui≤x]

G(Ui; θ̂)
(2.1)

where θ̂ is the MLE of the conditional likelihood function Ui’s given Vi’s. Note that

when θ is known, the weighted average (2.1) is actually the MLE described by Vardi

(15), with G a weight function. Please refer to Vardi (15) for selection-bias models

with known weights.
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We shall give two demonstrations of the equivalence of the inverse-probability-

of-truncation weighted estimate and the Lynden-Bell’s (8) estimator. The first, sub-

stitution of Ĝn(Ui) for G(Ui; θ) in (2.1) leads to an inverse-probability-of-truncation

weighted estimator

F̂w(x) =
(∑

i

1/Ĝn(Ui)
)−1

∑
i

I[Ui≤x]

Ĝn(Ui)
.

The following theorem shows the equivalence of F̂w and F̂n.

Theorem 2.1. F̂w = F̂n

Proof:

Note that both F̂w and F̂n are step right-continuous functions. Thus, F̂w and F̂n are

the same if the magnitudes of the jumps in the two functions are equal. The jump in

F̂w at time U(i) is given by

F̂w(U(i))− F̂w(U(i−1)) =
di/Ĝn(U(i))∑r

j=1 dj/Ĝn(U(j))
.

Now, by Corollary 2.4 of He and Yang (13), we have

di/Ĝn(U(i))∑r
j=1 dj/Ĝn(U(j))

=
di[1− F̂n(U(i−1))]/Rn(U(i))∑r

j=1 dj[1− F̂n(U(j−1))]/Rn(U(j))
.

Since
r∑

j=1

dj[1− F̂n(U(j−1))]

Rn(U(j))
=

r∑
j=1

j−1∏
k=1

(Rn(U(k))− dk

Rn(U(k))

)( dj

Rn(U(j))

)

=
r∑

j=1

j−1∏
k=1

(Rn(U(k))− dk

Rn(U(k))

)[
1−

Rn(U(j))− dj

Rn(U(j))

]
=

r∑
j=1

[F̂n(U(j))− F̂n(U(j−1))] = 1,

we have

F̂w(U(i))− F̂w(U(i−1)) =
di[1− F̂n(U(i−1))]

Rn(U(i))
= F̂n(U(i))− F̂n(U(i−1)).
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Thus, F̂w and F̂n are the same.

Next, we introduce an inverse-probability-of-truncation weighted estimator of

F (x) that makes no reference to Ĝn. We then show that this estimator is identical to

the Lynden-Bell’s (8) product-limit estimate. We simultaneously estimate F (x) and

G(y) using coupled inverse-prbability-of-truncation weighted estimators. Let F̂c(x)

and Ĝc(x) be given by

F̂c(x) =
( n∑

i=1

1/Ĝc(Ui)
)−1

n∑
i=1

I[Ui≤x]

Ĝc(Ui)
,

and

Ĝc(x) =
( n∑

i=1

1/[1− F̂c(Vi−)]
)−1

n∑
i=1

I[Vi≤x]

[1− F̂c(Vi−)]
.

We shall show that F̂c and F̂n are equivalent.

Theorem 2.2. F̂c = F̂n

Proof:

Note that

F̂c(U(i)) =
( r∑

s=1

ds/Ĝc(U(s))
)−1

i∑
s=1

ds

Ĝc(U(s))
, (2.2)

and

Ĝc(V(j)) =
( q∑

t=1

et/[1− F̂c(V(t)−)]
)−1

j∑
t=1

et

[1− F̂c(V(t)−)]
. (2.3)

Denote the jump in F̂c(U(i)) and Ĝc(V(j)) by fi and gj, respectively. By (2.2) and

(2.3), we have

fi =
di/

∑
V
(i
′
)
≤U(i)

gi
′∑r

s=1 ds/
∑

V
(s
′
)
≤U(s)

gs′
, (2.4)

and

gj =
ej/

∑
U

(j
′
)
≥V(j)

fj′∑q
t=1 et/

∑
U

(t
′
)
≥V(t)

ft′
. (2.5)
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By (2.4) and (2.5), we have

fi =
di∑

V
(i
′
)
≤U(i)

e
i
′∑

U
(i
′′

)
≥V

(i
′
)
f

i
′′

[
r∑

s=1

ds∑
V
(i
′
)
≤U(s)

e
i
′∑

U
(i
′′

)
≥V

(i
′
)
f

i
′′

]−1

.

The masses in the F̂n are the maximizers of the following likelihood (see Wang (3)):

L =
n∏

i=1

f(Ui)∑
U

i
′′≥Vi

f(Ui
′′ )

=
r∏

s=1

fds
s

q∏
t=1

[ ∑
U

(i
′′

)
≥V(t)

fi′′

]−et

.

Following Turnbull (16), note that {fi, 1 ≤ i ≤ r} solves this maximization problem

if

Di =
∂lnL

∂fi

−
r∑

s=1

fs
∂lnL

∂fs

= 0,

and
∑r

i=1 fi = 1.

First,
r∑

s=1

fs
∂lnL

∂fs

=
r∑

i=1

di −
r∑

s=1

fs

∑
V
(i
′
)
≤U(s)

ei′∑
U

(i
′′

)
≥V

(i
′
)

fi′′

=
r∑

i=1

di −
q∑

t=1

et

∑
U

(i
′
)
≥V(t)

fi′∑
U

(i
′′

)
≥V(t)

fi′′
=

r∑
i=1

di −
q∑

t=1

et = 0.

Next,
∂lnL

∂fi

=
r∑

i=1

fi

di

−
∑

V
(i
′
)
≤U(i)

ei
′∑

U
(i
′′

)
≥V

(i
′
)

fi′′
.

Hence, for i = 1, . . . , r, ∂lnL/∂fi = 0 implies that

fi =
di∑

V
(i
′
)
≤U(i)

e
i
′∑

U
(i
′′

)
≥V

(i
′
)
f

i
′′

. (2.6)

Notice that (2.6) stays the same if fi (i = 1, . . . , r) is multiplied by any positive

constant. The constraint
∑r

s=1 fs = 1 establishes the equivalence of F̂c and F̂n

The proof of the equivalence of Ĝc and Ĝn is similar to that of F̂c and F̂n, and is

omitted. In certain cases, there are possibilities of a right truncation and the relevent
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cases are well described by Wang (14). The approach for right-truncated data is easily

dealt by reversing the roles of target and truncation variables.
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Chapter 3. LEFT-TRUNCATED AND RIGHT-CENSORED DATA

Let (U∗
i , Ci, V

∗
i ) be i.i.d. random vectors such that (Ci, V

∗
i ) is independent of U∗

i .

It will be assumed throughout this section that Ci ≥ V ∗
i . Let F , Q and G denote

the common distribution function of U∗
i , Ci and V ∗

i , respectively. For left-truncated

and right-censored data, one can observe nothing if U∗
i < V ∗

i and observe (X∗
i , δ∗i ),

with X∗
i = min(U∗

i , Ci) and δ∗i = I[U∗
i ≤Ci], if U∗

i ≥ V ∗
i . Data of this kind often

arise in epidemiology and individual follow-up study (see Wang (17)). An example

of left-truncated and right-censored data is given as follows.

Example:

Let the initiating event correspond to the onset of a certain disease, and let the

terminating event correspond to the death of an individual. Suppose that the disease

population in a certain city is a representative sample from a large disease population.

The target interest of a research project is to study the natural history of the disease

for individuals who developed the disease during the calender time period (τ1, τ2),

τ1 < τ2. Consider the sampling under which all of the individuals in the city who

have developed the disease between τ1 and τ2 and survived past the calender time τ

(τ2 < τ) are recruited at the time τ for a prospective follow-up study. Suppose that

the researchers are able to identify the calendar times of disease onset and death for

those in the city who have developed the disease between τ1 and τ2 and died before

τ from, for example, information provided by health department. Let U∗
i denote

the time from onset of disease to death, V ∗
i corrspond to the time from the onset of

disease to τ , and C∗
i correspond to the time from the onset of disease to censoring.

Clearly, the calender time of the potential censoring point must be greater than τ ,

since only those individuals in the follow-up study might be observed subject to right

censoring. Therefore, P (V ∗
i < C∗

i ) = 1, and we observe (X∗
i , δ∗i ) if U∗

i ≥ V ∗
i .
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Notation

Let (X1, δ1, V1), . . . , (Xn, δn, Vn) denote the left-truncated and right-censored sample.

Let U(1) < U(2) < · · · < U(r) be the distinct ordered failure times and ds be the

number of failure times at U(s) for s = 1, . . . , r.

Similarly, let V(1) < V(2) < · · · < V(q) be the distinct ordered truncation times and et

be the number of truncation times at V(t) for t = 1, . . . , q.

Let C(1) < C(2) < · · · < C(h) be the distinct ordered censoring times and cl be the

number of censoring times at C(l) for l = 1, . . . , h.

For each V(t) (t = 1, . . . , q), let C(1(t)) < C(2(t)) < · · · < C(h(t)) be the distinct ordered

censoring times and cl(t) be the number of censoring times at C(l(t)) for l = 1, . . . , h(t).

For each V(t) (t = 1, . . . , q), let U(1(t)) < U(2(t)) < · · · < U(r(t)) be the distinct ordered

failure times and ds(t) be the number of censoring times at U(s(t)) for s = 1, . . . , r(t).

Let Q(x|v) = P (Ci ≤ x|V ∗
i = v) denote the conditional distribution function of Ci

given V ∗
i = v.

Let dF (x) = F (x)− F (x−), dG(x) = G(x)−G(x−), dQ(x|v) = Q(x|v)−Q(x− |v)

and p = P (U∗
i ≥ V ∗

i ).

The likelihood function L can be decompose into three factors (see Wang (17),

Gross and Lai (18)), yielding

L =
n∏

i=1

{
dF (Xi)dG(Vi)[1−Q(Xi−|Vi)/p

}δi

×
n∏

i=1

{
dQ(Xi|Vi)dG(Vi)[1−F (Xi)]/p

}1−δi

=
n∏

i=1

{
[dF (Xi)]

δi [1− F (Xi)]
1−δi

1− F (Vi−)

}
×

{
q∏

t=1

[
dG(V(t))[1− F (V(t)−)]

p

]et
}
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×

{
q∏

t=1

[ ∏
Vi=V(t)

[1−Q(Xi − |V(t))]
δi [dQ(Xi|V(t))]

1−δi

]}
= L1L2L3,

where L1, L2, and L3 represent the likelihoods in the first, second, and third brace,

respectively. Note that L1, L2, and L3 can be written as

L1 =
r∏

s=1

fds
s

h∏
l=1

[ ∑
U

(i
′′

)
≥C(l)

fi′′

]cl q∏
t=1

[ ∑
U

(i
′
)
≥V(t)

fi′

]−et

,

L2 =

q∏
t=1

[
gt

∑
U

(i
′
)
≥V(t)

fi
′

]et
[

q∑
t=1

gt

∑
U

(i
′
)
≥V(t)

fi
′

]−n

,

and

L3 =

q∏
t=1

{
h(t)∏

l(t)=1

q
cl(t)

l(t)

r(t)∏
s(t)=1

[ ∑
C

(l
′
(t))

≥U(s(t))

ql
′
(t)

]ds(t)
}et

,

where fs (s = 1, . . . , r) and gt (t = 1, . . . , q) denote the jump in F̃n(U(s)) and G̃n(V(t))

respectively, and ql(t) (l = 1, . . . , h; t = 1 . . . , q) denote the jump in Q̃(C(l)|V(t)).

Let R̃n(u) =
∑n

i=1 I[Vi≤u≤Xi] and ÑF (u) =
∑n

i=1 I[Xi≤u,δi=1]. A necessary and suf-

ficient condition for the existence of the NPMLE of L1 is R̃n(U(s)) > ds = ÑF (U(s))−

ÑF (U(s)−) for s = 1, . . . , r. Under this regularity condition, the NPMLE of F (x)

from L1 is uniquely determined and given by

F̃n(x) = 1−
∏
u≤x

[
1− dÑF (u)

R̃n(u)

]
,

where dÑF (u) = ÑF (u)− ÑF (u−).

Wang (3) showed that F̃n(x) is also the unique NPMLE of the full likelihood L. Based

on L2, the NPMLE of G(x) is uniquely determined and given by

G̃n(y) =

[
q∑

t=1

et

1− F̃n(V(t)−)

]−1 q∑
t=1

etI[V(t)≤y]

1− F̃n(V(t)−)
.

Next, let R̃t
n(u) =

∑n
i=1 I[Vi≤u≤Xi,Vi=V(t)] and Ñ t

Q(u) =
∑n

i=1 I[Xi≤u,δi=0Vi=V(t)]. For each

V(t), a necessary and sufficient condition for the existence of the NPMLE of Q(x|V(t))



13

is R̃t
n(C(l(t))) > cl(t) = Ñ t

Q(Cl(t))−Ñ t
Q(Cl(t)−) for l = 1, . . . , h(t). Under this regularity

condition, the NPMLE of Q(x|V(t)) from L3 is uniquely determined and given by

Q̃n(x|V(t)) = 1−
∏
u≤x

[
1−

dÑ t
Q(u)

R̃t
n(u)

]
where dÑ t

Q(u) = N t
Q(u)−N t

Q(u−).

When Q̃n(x|V(t)) exists for all V(t)’s, the nonparametric MLE of Q (denoted by Q̃n)

can be written as

Q̃n(x) =

q∑
t=1

Q̃n(x|V(t))[G̃n(V(t))− G̃n(V(t−1))].

Next, we will show that F̃n can also be expressed as inverse-probability-weighted

average. Due to the presence of censoring, the first procedure used in Theorem 2.1

is not feasible for left-truncated and right-censored data. However, we can consider

the inverse-probability-weighted estimators by simultaneously estimating F , G and

Q. Let F̂e(x), Ĝe(x) and Q̂e(x) be given by

F̂e(x) =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1 n∑
i=1

δiI[Xi≤x]

Ĝe(Xi)− Q̂e(Xi−)
,

Ĝe(x) =

[
n∑

i=1

1

1− F̂e(Vi−)

]−1 n∑
i=1

I[Vi≤x]

1− F̂e(Vi−)
,

and

Q̂e(x) =

[
n∑

i=1

1

1− F̂e(Vi−)

]−1 n∑
i=1

(1− δi)I[Xi≤x]

1− F̂e(Xi−)
.

Thus, we have

F̂e(U(i)) =

[
r∑

s=1

ds

Ĝe(U(s))− Q̂e(U(s)−)

]−1 i∑
s=1

ds

Ĝe(U(s))− Q̂e(U(s)−)
, (3.1)

Ĝe(V(j)) =

[
q∑

t=1

et

1− F̂e(V(t)−)

]−1 j∑
t=1

et

1− F̂e(V(t)−)
, (3.2)
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Q̂e(C(k)) =

[
q∑

t=1

et

1− F̂e(V(t)−)

]−1 k∑
l=1

cl

1− F̂e(C(l)−)
. (3.3)

Similar to Theorem 2.2, the following theorem shows the equivalence of F̃n and F̂e.

Theorem 3.1. F̂e = F̃n

Proof:

Note that the masses in the estimator F̃n are the maximizers of the the likelihood L1

subject to
∑r

s=1 fs = 1. Hence,

∂lnL1

∂fi

−
r∑

s=1

fs
∂lnL1

∂fs

= 0.

First,

r∑
s=1

fs
∂lnL

∂fs

=
r∑

i=1

di −
r∑

s=1

fs

∑
V
(i
′
)
≤U(s)

ei′∑
U

(i
′′

)
≥V

(i
′
)

fi′′
+

r∑
s=1

fs

∑
C

(l
′
)
≤U(s)

gl′∑
U

(i
′′

)
≥C

(l
′
)

fi′′

=
r∑

i=1

di −
q∑

t=1

et

∑
U

(i
′
)
≥V(t)

fi
′∑

U
(i
′′

)
≥V(t)

fi′′
+

h∑
l=1

ql

∑
U

(i
′
)
≥C(l)

fi′∑
U

(i
′′

)
≥C(l)

fi′′

=
r∑

i=1

di −
q∑

t=1

et +
h∑

l=1

ql = 0.

Next,

∂lnL1

∂fi

=
r∑

i=1

fi

di

−
∑

V
(i
′
)
≤U(i)

ei
′∑

U
(i
′′

)
≥V

(i
′
)

fi
′′

+
∑

C
(l
′
)
≤U(i)

gl
′∑

U
(i
′′

)
≥C

(l
′
)

fi
′′
.

Hence, for i = 1, . . . , r, ∂lnL1/∂fi = 0 implies that

fi =
di∑

V
(i
′
)
≤U(i)

e
i
′∑

U
(i
′′

)
≥V

(i
′
)
f

i
′′
−

∑
C

(l
′
)
≤U(i)

q
l
′∑

U
(i
′′

)
≥C

(l
′
)
f

i
′′

.

By (3.1), (3.2), (3.3) and the constraint
∑r

s=1 fs = 1, it follows that fi is also the

jump in F̂e(U(i)), and F̂e and F̃n are equivalent.
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By Theorem 3.1 and (3.2), it follows that Ĝe and G̃n are equivalent.

Now, the question left is ‘Does the equivalence of Q̂e and Q̃n hold ?’. First, for each

t, let h(t) denote the number of the distinct censoring times. Note that {ql(t), 1 ≤ l ≤

h(t)} solves this maximization problem if

Dlt =
∂lnL3

∂ql(t)

−
h(t)∑
l=1

ql(t)
∂lnL3

∂ql(t)

= 0,

and
∑h(t)

l=1 ql(t) = 1. Some algebra shows that

ql(t) =
cl(t)

et −
∑

U
(l
′
)
≤C(l)

d
l
′
(t)

>0

d
l
′
(t)∑

C
(l
′′

)
≥U

(l
′
)

c
l
′′

(t)
>0

q
l
′′

(t)

.

Hence, the jump in Q̃n(C(l)) (denoted by q̃l) can be written as

q̃l =

[
q∑

t=1

et

1− F̂e(V(t)−)

]−1 q∑
t=1

ql(t)
et

1− F̂e(V(t)−)

=

[
q∑

t=1

et

1− F̂e(V(t)−)

]−1 q∑
t=1

cl(t)

S̃n(C(l)|V(t)−)[1− F̂e(V(t)−)]
, (3.4)

where

S̃n(C(l)|V(t)−) = 1− e−1
t

∑
U

(l
′
)
≤C(l)

d
l
′ (t)>0

dl′ (t)∑
C

(l
′′

)
≥U

(l
′
)

c
l
′′

(t)
>0

ql′′ (t)

.

By Satten and Datta (7), S̃n(C(l)|V(t)−) is an inverse-probability-of-censoring weighted

estimator of the conditional survival function P (U∗
i > C(l)|U∗

i ≥ V(t)). Hence,

S̃n(C(l)|V(t)−)[1− F̂e(V(t)−)] actually estimates 1− F (C(l)).

Now, the jump in Q̂e(C(l)) (denoted by q̂l) can be written as

q̂l =

[
q∑

t=1

et

1− F̂e(V(t)−)

]−1 q∑
t=1

cl(t)

1− F̂e(C(l))
. (3.5)
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By the expression of (3.4) and (3.5), we see that the equivalence of Q̂e and Q̃n

does not hold. When the bivariate distribution of (Ci, V
∗
i ) is continuous, no more

than one censored C(l) can be associated with each V ∗
(t) and therefore the NPMLE of

Q(z|V(t)) does not exist (i.e. R̃t
n(C(l)) − cl(t) = 0). To circumvent this difficulty, as

discussed by Gross and Lai (18), one way is to assume independence between V ∗
i and

Ci − V ∗
i . Under this assumption, the likelihood L3 is reduced to (see Wang (17))

n∏
i=1

[1−W (Xi)]
δi [dW (Xi)]

1−δi ,

where W (x) denotes the distribution function of Ci−V ∗
i and dW (x) = W (x)−W (x−).

It follows that the NPMLE of W (x) is (see Wang (17), Gross and Lai (18))

W̃n(x) = 1−
∏
u≤x

[
1− dÑw(u)

R̃w(u)

]
,

where dÑw(u) =
∑n

i=1 I[Xi−Vi=u,δi=0] and R̃w(u) =
∑n

i=1 I[Xi−Vi≥u].

Another apporach is to impose suitable smoothness assumptions (see Gross and

Lai (18)) on the bivariate distribution of V ∗
i and Ci so that Q(x|v) is well approx-

imated by P (Ci ≤ x|G(v) − ∆n ≤ G(V ∗
i ) ≤ G(v) + ∆n) which can be consistenly

estimated when ∆n approaches 0 at a certain rate depending on the sample size n as

n →∞.
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Chapter 4. DISCUSSION

Following recent work by Satten and Datta (7), this article extends the weighted-

average form of the PLEs to the data subject to left-truncation or both left-trucation

and right-censoring. In survival analysis, the weighted-average approach can lead

to useful generalizations, primarily to more general censoring or truncated models

where censoring or truncation need not be identically distributed. Also, as seen in

literature of censoring models, one application of the inverse-probability-weighting is

to handle informative censoring in collection of survival data (see Robins (5), Robins

and Finkelstein (6), Satten, Datta and Robins (19)). The weighted-average approach

can be extended to the situations when the independent censoring or truncation

assumption is violated. For example, assume for the ith person, data is available

on time dependent covariates Zij(x), 1 ≤ j ≤ J that may affect both failure and

censoring times. Let Z̄i(x) denote the information on all values of Zij(x) between

0 and x. Assume that the ith person’s hazard of being censored at time x does not

depend on U∗
i given Z̄i(x) and X∗

i ≥ x. Let

Qi(x) =
∏
s≤x

[
1− dΛc[s|Z̄i(s)]

]
,

where Λc[s|Z̄i(s)] denotes the cumlative hazard function of censoring times. For

right-censored data, Λc[s|Z̄i(s)] can be estimated using proportional hazard model

or Aalen’s additive hazard model. Based on Aalen’s additive model, Satten, Datta

and Robins (19) proposed a product-limit type estimator using a data-reweighting

scheme. However, for left-truncated and right-censored data, further investigation is

needed in estimating Λc[s|Z̄i(s)]. Suppose that there exists a reasonable estimator

Λ̂c[s|Z̄i(s)] for left-truncated and right-censored data, an inverse-probability-weighted

estimator can be given by

F̂d(x) =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂i(Xi−)

]−1 n∑
i=1

δiI[Xi≤x]

Ĝe(Xi)− Q̂i(Xi−)
, (4.1)
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where

Q̂i(x) = 1−
∏
s≤x

[
1− dΛ̂c[s|Z̄i(s)]

]
.

For the right-censored data, (4.1) is reduced to

F̂d(x) =

[
n∑

i=1

δi

1− Q̂i(Xi−)

]−1 n∑
i=1

δiI[Xi≤x]

1− Q̂i(Xi−)
. (4.2)

It can be shown that (4.2) is different from the product-limit type estimator proposed

by Satten, Datta and Robins (19). The comparison between these two estimators

requires further investigation.
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