
-i-

一個應用在異質型個人電腦叢集系統的

平行迴圈排程方法

研究生：張順奇 指導教授：楊朝棟博士

東 海 大 學

資 訊 工 程 與 科 學 系

摘要

具可擴充性的計算叢集(Scalable computing clusters)正快速變成高效能與大規模

計算的標準平台。這是由於叢集系統具有低價、高效能等特質，並具備可使用現

有硬體元件的高可用性。然而，目前似乎沒有為叢集系統量身訂做的排程方法。

現有的 self-scheduling方法其實是建立在 SMP系統的，雖然也可以在叢集系統使

用，但我們發現，在部分異質型叢集系統中，可能會有一些問題發生。在這篇論

文中，我們提出一個可以在任何異質型叢集系統中，在規律性迴圈的情況下，得

以有效率的運行。我們的方法是：把迴圈中 iteration數目的 a%根據叢集系統工

作電腦的處理器時脈來分配工作，剩下的(100-a)%再根據已知的 self-scheduling

方法來排程。在我們所架設的極度異質型環境中，a=75 時，使用我們的方法能

比傳統的 self-scheduling方法減少 13-61%的執行時間。

-ii-

A Parallel Loop Self-Scheduling for
Heterogeneous PC Clusters

Student: Shun-Chyi Chang Advisor: Dr. Chao-Tung Yang

Department of Computer Science and Information Engineering
Tunghai University

Taichung, 407, Taiwan, Republic of China

Abstract

Scalable computing clusters are rapidly becoming a standard platform for high

performance and large-scale computing. This is due to their low cost, high

performance, high availability of off-the-shelf hardware components and freely

accessible software tools that can be used for developing applications. However, there

is few scheduling scheme designed for cluster. Known scheduling schemes are based

on SMP architecture. Although these schemes are function on cluster system also,

there are some problems might happen in heterogeneous cluster system.
In this thesis, we revise known loop self-scheduling schemes to fit all

heterogeneous PC clusters environment when loop is regular. We propose an approach
to partition loop iterations and achieve good performance in any heterogeneous
environment: partition a% of workload according to their performance weighted by
CPU clock and the rest (100-a)% of workload according to known self-scheduling.
Many various a values are applied to the matrix multiplication and a best performance
is obtained with a=75. We also apply our schemes on both simulated increasing and
decreasing workload loops and get obviously performance improvement. Therefore,
our approach is suitable in all applications with regular loops.

-iii-

Acknowledgement

I would like to thank all the people who have made writing this thesis a more pleasant

task. In particular, I’d like to thank my principal advisor, Dr. Chao-Tung Yang, who

introduced me to this topic and gave me broad support and guidance throughout my

time at Tunghai. I’d kike to thank Professor Wuu Yang, Professor Nai-Wei Lin and

Professor Yi-Min Wang for their valuable comments and advice given while serving

on my reading committee.

There are many other people whom I would to thank. The administrator of

Taichung Office Bureau of Consular Affairs Ministry of Foreign Affairs, Henrich Lin,

allowed me to pursue further education in Tunghai. Many colleagues encouraged and

supported me on studying. For them, I can make writing this thesis with no fear of

disturbance in the rear.

Last, but certainly not the last, I’d like to thank my family and all my friends

whose unconditional support made this thesis possible.

-iv-

Content
Abstract (in Chinese) .. i
Abstract (in English) ...ii
Acknowledgement ...iii
Content...iv
Tables... v
Figures ...vi
Figures ...vi
Chapter 1 Introduction... 1

1.1 Cluster Computing... 1
1.2 Performance Evaluation... 3
1.3 Motivation.. 5
1.4 Thesis Organization... 7

Chapter 2 Background ... 8
2.1 Loop Scheduling .. 8

2.1.1 Static Scheduling .. 9
2.1.2 Dynamic Scheduling... 11

Chapter 3 Our Approach and System Description... 15
3.1 The Extreme Heterogeneous Environment .. 15
3.2 Our Approach... 16

3.2.1 Uniform Workload .. 20
3.2.2 Increasing and Decreasing Workload ... 21

3.3 System Description and Experimental Design .. 25
3.3.1 System Description... 25
3.3.2 Experimental Design .. 28

3.4 An Example ... 28
Chapter 4 Experimental Results and Discussion... 36

4.1 Extreme Heterogeneous System.. 36
4.2 Moderate Heterogeneous System.. 42

Chapter 5 Conclusion and Future Work... 48
Reference ... 49

-v-

Tables
Table 2.1 A table of partition size using various approaches....................................... 10
Table 2.2 Sample partition sizes when I=1000 and p=4 .. 14
Table 3.1 The result performance of number of slaves in extreme heterogeneous
environment ... 16
Table 3.2 Sample partition size of Example 3.1 .. 18
Table 3.3: Characteristics of extreme heterogeneous environment in experiment
cluster... 26
Table 3.4: Characteristics of experimental cluster ... 27
Table 4.1 Execution time for 2048*2048 matrix multiplication by various approaches
in extreme heterogeneous environment ... 37
Table 4.2 Execution time of 2048*2048 matrix multiplication by various
self-scheduling approaches when a=75 in extreme heterogeneous environment 39
Table 4.3 Execution time of different problem size by various self-scheduling
approach when a=75 in extreme heterogeneous environment 40
Table 4.4 Execution time of simulated increasing/decreasing workload loop by
various self-scheduling approach when a=75 in extreme heterogeneous environment
... 41
Table 4.5 Execution time for 2048*2048 matrix multiplication by various approaches
in moderate heterogeneous environment ... 43
Table 4.6 Execution time of 2048*2048 matrix multiplication by various
self-scheduling approaches when a=75 in moderate heterogeneous environment 45
Table 4.7 Execution time of different problem size by various self-scheduling
approach when a=75 in moderate heterogeneous environment 46
Table 4.8 Execution time of simulated increasing/decreasing workload loop by
various self-scheduling approach when a=75 ... 47

-vi-

Figures
Figure 1.1 The structure of a typical SMP with four processors 2
Figure 1.2 A typical cluster system with eight processors .. 2
Figure 1.3 Parallelizing sequential problem-Amdahl’s law.. 4
Figure 1.4(a) A suitable scheduling illustration .. 6
Figure 1.4(b) A unsuitable scheduling illustration.. 6
Figure 2.1 A master/slave model... 11
Figure 3.1 Four kinds of loops... 17
Figure 3.2 A uniform workload loop ... 20
Figure 3.3 An increasing workload loop ... 23
Figure 3.4 A decreasing workload loop... 24
Figure 3.5 Our extreme heterogeneous cluster .. 26
Figure 3.6 Our moderate heterogeneous cluster .. 27
Figure 4.1(a) A chart of execution time of 2048*2048 matrix multiplication by GSS
group approach in extreme heterogeneous environment ... 37
Figure 4.1(b) A chart of execution time of 2048*2048 matrix multiplication by FSS
group approach in extreme heterogeneous environment ... 38
Figure 4.1(c) A chart of execution time of 2048*2048 matrix multiplication by TSS
group approach in extreme heterogeneous environment ... 38
Figure 4.2 A chart of execution time of 2048*2048 matrix multiplication by various
self-scheduling approaches when a=75 in extreme heterogeneous environment 39
Figure 4.3 A chart of execution time of different problem size by various
self-scheduling approach when a=75 in extreme heterogeneous environment 40
Figure 4.4 A chart of execution time of simulated increasing/decreasing workload
loop by various self-scheduling approach when a=75 in extreme heterogeneous
environment ... 41
Figure 4.5(a) A chart of execution time of 2048*2048 matrix multiplication by GSS
group approach in moderate heterogeneous environment ... 43
Figure 4.5(b) A chart of execution time of 2048*2048 matrix multiplication by FSS
group approach in moderate heterogeneous environment ... 44
Figure 4.5(c) A chart of execution time of 2048*2048 matrix multiplication by TSS
group approach in moderate heterogeneous environment ... 44
Figure 4.6 A chart of execution time of 2048*2048 matrix multiplication by various
self-scheduling approaches when a=75 in moderate heterogeneous environment 45
Figure 4.7 A chart of execution time of different problem size by various

-vii-

self-scheduling approach when a=75 in moderate heterogeneous environment 46
Figure 4.8 A chart of execution time of simulated increasing/decreasing workload
loop by various self-scheduling approach when a=75 .. 47

-1-

Chapter 1

Introduction

1.1 Cluster Computing

To use supercomputer for high-performance computing has been growing. Parallel

processing has been a most important technology in modern computing for several

decades. Many powerful multiprocessor hardware systems have been developed to

exploit parallelism for concurrent execution. Supercomputers that are single big

expensive machines with a shared memory and one or more processors meet the

professional need. A large-scale processing and storage system that provides high

bandwidth at low cost is expected.

The use of loosely coupled, powerful and low-cost commodity components (PCs

or workstations, typically) connected by high-speed network has resulted in the

widespread usage of a technology popularly called cluster computing. Scalable

computing clusters, ranging from a cluster of (homogeneous or heterogeneous) PCs or

workstations, to SMPs (Symmetric MultiProcessors), as shown in Figure 1.1, are

rapidly becoming the standard platforms for high-performance and large-scale

computing.

A cluster, as shown in Figure 1.2, is a group of independent computer systems

and thus forms a loosely coupled multiprocessor system. Usually, a cluster node

contains its own disk and equipped with a complete operating systems, and therefore,

it also can handle interactive jobs. Each node can function only as an individual

resource while a cluster system presents itself as a single system to the user. A

network is used to provide inter-processor communications. Applications that are

distributed across the processors of the cluster use either message passing or network

shared memory for communication. Cluster nodes work collectively as a single

computing resource and fill the conventional role of using each node as an

independent machine. [16, 17, 20]

-2-

System Bus

Shared Memory

Network
Device

Storage
Device

I/O Bus

4-node
SMP

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Figure 1.1 The structure of a typical SMP with four processors

Cache

CPU

Cache

CPU

System Bus

Shared
Memory

Storage
Device

Network
Device

Cache

CPU

Cache

CPU

System Bus

Shared
Memory

Storage
Device

Network
Device

Cache

CPU

Cache

CPU

System Bus

Shared
Memory

Storage
Device

Network
Device

Cache

CPU

Cache

CPU

System Bus

Shared
Memory

Storage
Device

Network
Device

Hi
gh

 S
pe

ed
 N

et
wo

rk

Figure 1.2 A typical cluster system with eight processors

-3-

Cluster computers can offer a number of specific benefits:

n Cost-effective: One of the main benefits of a cluster is its cost-effectiveness.

Clusters are built from relatively inexpensive commodity components that are

widely available.

n Keeps pace with technologies: Since Clusters only use mass-market

components; it is easy to employ the latest technologies to maintain the cluster as

a state-of-the-art system.

n Flexible configuration: Users can tailor a configuration that is feasible to them

and allocate the budget wisely to meet the performance requirements of their

applications. For example, a fine-grain parallel application (which exchange

small messages frequently among processors) may motivate users to allocate a

larger portion of their budget to high-speed interconnects.

n Scalability: When the processing power requirement increases, the performance

and size of a cluster can be easily scaled up by adding more compute nodes.

n High availability: Each compute node of a cluster is an individual machine. The

failure of a compute node will not affect other nodes or the availability of the

entire cluster.

n Compatibility and portability: Due to the standardization and wide availability

of message passing interface, such as MPI[18] and PVM[19], the majority of

parallel applications use these standard middleware. A parallel application using

MPI or PVM can be easily ported to a cluster. This is why clusters are rapidly

replacing these expensive parallel computers in the low-end to midrange HPC

market.

1.2 Performance Evaluation

Since cluster computer can work collectively as a single computing resource, how to
evaluate the performance of cluster computer is an important issue. A measure of
relative performance between a multiprocessor system and a single processor system
is the speedup factor, S(n), define as

Execution time using one processor (single processor system) ts
 Execution time using a multiprocessor with n processors tp

S(n) = =

-4-

Where ts is the execution time on a single processor and tp is the execution time on a
multiprocessor. S(n) gives the increase in speed in using a multiprocessor.

Amdahl’s law [14] gives another heuristic pointer. Assuming there will be some
parts are only executed on one processor, the ideal situation would be for all the
available processors to operate simultaneously for the other times. If the fraction of
the computation that cannot be divided into concurrent tasks is f, and no overhead
incurs when the computation is divided into concurrent parts, the time to perform the
computation with n processors is given by () ntfft ss /1−+ , as illustrated in Figure

1.3 [10]. Illustrated is the case with a single serial part at the beginning of the
computation, but the serial part could be distributed throughout the computation.
Hence, the speedup factor is given by

() () fn
n

ntfft
t

nS
ss

s

11/1
)(

−+
=

−+
=

It is clearly that the less fraction of the computation that cannot be divided into

concurrent tasks, the more speedup can be got.

Figure 1.3 Parallelizing sequential problem-Amdahl’s law

-5-

1.3 Motivation

To exploit the potential computing power of cluster computers, a key point is how to

assign tasks to computers so that the computer loads are well balanced. That is how to

assign the different parts of a parallel application to the computing resources to

minimize the overall computing time and to efficiently use the resource.

Ideally, we want all the processors to be operating continuously on tasks that

would lead to the minimum execution time. Achieving this goal by spreading the tasks

evenly across the processors is called load balancing. Figure 1.4 is an illustration of

load balancing on which the execution time of the program will be very different in (a)

and (b).

Using a suitable scheduling approach is very important in the cluster computing

system. Unfortunately, there are few schemes designed for cluster system. Known

scheduling schemes are based on SMP architecture. Although these schemes are

function on cluster system also, there are some problems might happen in

heterogeneous cluster system.

On the other hand, parallel computers are becoming increasingly widespread,

nowadays many of these parallel computers are no longer shared-memory

multiprocessors, but rather follow the distributed memory model for scalable. These

systems may consist of homogeneous workstations, where all the workstations have

processors, memory and caches with exactly the identical specifications. However,

more and more systems are now composed of a number of heterogeneous

workstations clustered together, where each workstation may have different CPU

performance capabilities, different amounts of memory and caches, and even different

architectures and operating systems.

Moreover, scalability should be an important character of cluster. An additional

PC might not help the performance if we use a wrong scheduling approach. We want

to propose a heuristic scheduling approach which is suitable on heterogeneous

environment and is scalability.

-6-

Figure 1.4(a) A suitable scheduling illustration

Figure 1.4(b) A unsuitable scheduling illustration

-7-

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, a brief overview of

self-scheduling is given. It provides the background necessary to understand this

thesis effort. Chapter 3 states our approach and describes our system architecture. The

experiments which are according to our approach will be shown in Chapter 4. We will

also discuss the result and propose our suggestion at the same time. Chapter 5 has our

conclusion remarks and future work.

Notation:

The following are common notations used throughout the whole paper:

n PE is a processor in the parallel or distributed system;

n I is the total number of iterations of a parallel loop;

n p is the number of PEs in the parallel or distributed system;

n A chunk is a collection of consecutive iterations. Ci is the chunk-size at the i-th

scheduling step (where i=1, 2, 3, …);

n Wi is the workload of Ci;

n ∑= iWW , the total workload in a loop;

n N is the number of scheduling steps;

n Pi is the CPU clock of processors i.

n ∑= iPP , the sum of all CPU clock value in our cluster system.

n Ai is the Actual computing performance.

n
i

AA ∑= , the total computing performance in our cluster system.

-8-

Chapter 2

Background

2.1 Loop Scheduling

Loops often comprise a large portion of a program’s parallelism. An efficient

approach to extract potential parallelism is to concentrate on the parallelism available

in the loops. However, loops are not always easy to be paralleled. Data dependence is

an obstacle. Data dependence is said to exist between two statements S1 and S2 if

there is an execution path from S1 to S2, if both statements access the same memory

location and if at least one of the two statements writes the memory location. There

are three types of data dependences: True (flow) dependence occurs when S1 writes a

memory location that S2 later reads. Anti-dependence occurs when S1 reads a memory

location that S2 later writes. Output dependence occurs when S1 writes a memory

location that S2 later writes [11]. There are many researches [12, 13] focus on how to

deal with DOACROSS loop but we just concentrate on DOALL loop.

A loop is called a DOALL loop if there is no cross-iteration dependence in the

loop; i.e., all the iterations of the loop can be executed in parallel. If all the iterations

of a DOALL loop are distributed among different processors evenly, a high degree of

parallelism can be exploited. Parallel loop scheduling is a method that attempts to

evenly schedule a DOALL loop on multiprocessor systems.

In homogeneous environment, workload can be partitioned equally to each

working computer, but in heterogeneous environment, this method will not work.

Some researches were proposed to solve parallel loop scheduling problems on

heterogeneous cluster environments by using self-scheduling schemes. However,

these self-scheduling schemes might not in some situation.

-9-

In a parallel processing system, two kinds of parallel loop scheduling decisions

can be made either statically at compile-time or dynamically at run-time.

Static scheduling is usually applied to uniformly distributed iterations on

processors [6]. It has the drawback of creating load imbalances when the loop style is

not uniformly distributed; when the loop bounds cannot be known at compile-time;

when system is heterogeneous; or when locality management cannot be exercised. In

contrast, dynamic scheduling is more appropriate for load balancing; however, the

runtime overhead must be taken into consideration. In general, parallelizing compilers

distribute loop iterations by using only one kind of scheduling algorithm, either static

or dynamic.

2.1.1 Static Scheduling

Theoretically, workload can be partitioned according to their computer performance.

Unfortunately, in heterogeneous system, it is difficult to evaluate each computer

performance. Intuitively, CPU clock speed may be a good evaluation value. But it

seems not enough. Many factors affect computer performance, such as the

performance capability of the CPU, the amount of memory available, the cost of

memory access, the communication medium between processors… etc [5].

Bohn and Lamont try to evaluate the performance of computer in compiler-time

[4]. In their experiment, HINT is a good benchmark. It evaluates processor and

memory performance for any data type and returns a single value, "QUIPS". Bohn

and Lamont declared "QUIPS" can present the computer performance. It has the

advantage of all computers being working computer - no control computer is needed.

But, HINT requires hours to execute. It means this way will not be scaling well. It

takes a long time to add one more computer and if we want to change the peripheral,

for example to replace RAM from PC100 to PC133, we might have to rerun HINT.

Traditional static scheduling [6] is applied when each loop iteration takes

roughly the same amount of time, and the compiler knows how many iterations will

be run and how many processors are available for use at compile-time. It has the

advantage of incurring the minimum scheduling overhead, but load imbalances may

occur. These static scheduling schemes including Block Scheduling, Cyclic

Scheduling, Block-D Scheduling, Cyclic-D Scheduling… etc [6].

-10-

n Block Scheduling

In block scheduling, I iterations are divided into I/p round. Each round consists

of consecutive iterations and is assigned to one processor. This is only suitable

for uniformly distributed loop iterations.

n Cyclic Scheduling

Instead of assigning a processor a consecutive block of iterations, iterations are

assigned to different processors in a cyclic fashion, i.e., iteration i is assigned to

processor (i mod p). This method may produce a more balanced schedule than

block scheduling for some non-uniformly distributed parallel loops.

n Block cyclic scheduling

It is a compromise between block scheduling and cyclic scheduling. This

algorithm assigns blocks of a fixed size to processors in a round robin fashion. If

the block size is equal to one, then it degenerates to cyclic scheduling. If the

block size is I/p then it is same as block scheduling. Hence, block cyclic

scheduling forms a continuum between block and cyclic scheduling algorithms.

An example shown the different between these approaches are given in Table 2.1.

Nevertheless, these scheduling schemes were unsuitable in heterogeneous

environment.

Approach CPU Partition Size

Block 1
2
3
4

1, 2, 3, … , 250
251, 252, 253, … , 500
501, 502, 503, … , 750
751, 752, 753, … , 1000

Cyclic 1
2
3
4

1, 5, 9, 13, …
2, 6, 10, 14, …
3, 7, 11, 15, …
4, 8, 12, 16, …

Block cyclic 1
2
3
4

1, 2, 3, 4, 17, 18, 19, 20, …
5, 6, 7, 8, 21, 22, 23, 24, …
9, 10, 11, 12, 25, 26, 27, 28, …
13, 14, 15, 16, 29, 30, 31, 32, …

Table 2.1 A table of partition size using various approaches

-11-

2.1.2 Dynamic Scheduling

Dynamic scheduling adjusts the schedule during execution and is especially suitable

whenever the number of iterations is uncertain or each iteration may take a different

amount of time. Although it is more suitable for load balancing between processors,

runtime overhead is the cost.

We use master/slave computation patterns to model problems, i.e., the master

coordinate data distribution to the slaves, which perform computations and transmit

the results back to the master. The master is not responsible for workload, the idle

slave requests to the master for new loop iterations, and no communication occurs

between slaves. How many iterations that a slave should be assigned is a critical issue.

Improper assignment will cause bad system performance.

Self-scheduling is a large class of adaptive/dynamic centralized loop scheduling

schemes. In a common self-scheduling scheme, p denotes the number of processors, I

denotes the total iteration and f() is a function to produce the chunk-size at each step.

At the i-th scheduling step, the master computes the chunk-size Ci and the remaining

number of tasks Ri,

R0=N, Ci=f(i,p), Ri=Ri-1-Ci

where f() possibly has more parameters than just i and p, such as Ri-1. The master

assigns Ci tasks to an idle slave and the load imbalancing will depend on the

execution time gap between tj, for j=1,… ,p [7, 15].

Master

Slave 1
(Busy)

Slave 2
(Busy)

Slave p
(Idle)

Request
another subtask

Assign another
subtask

⋯

Figure 2.1 A master/slave model

-12-

Different ways to compute Ci have given rise to different scheduling schemes.

The most notable examples are as following:

n Pure Self-Scheduling (PSS)

Formula: 1=iC

This is the easiest and most straightforward dynamic loop scheduling algorithm

[8]. Whenever a processor is idle, one iteration is assigned to it. This algorithm

achieves good load balancing but also induces excessive overhead.

n Chunk Self-Scheduling (CSS)

Formula: kCi = , where 1≥k (known as chunk size is chosen by the user).

Instead of assigning one iteration to an idle processor as in self-scheduling, CSS

assigns k iterations each time, where k, called the chunk size, is fixed and must

be specified by either the programmer or the compiler [8]. When the chunk size

is one, this scheme is pure self-scheduling, as discussed above. If the chunk size

is set to the bound of the parallel loop equally divided by the number of

processors, the scheme becomes static scheduling. A large chunk size will cause

load imbalancing while a small chunk is likely to produce too much scheduling

overhead. For different partitioning schemes, we adopted CSS(k), which is a

modified version of CSS, where k means the size of chunks.

n Guided Self-Scheduling (GSS)

Formula: pRC ii /1−=

This algorithm can dynamically change the number of iterations assigned to each

processor [2]. More specifically, the next chunk size is determined by dividing

the number of remaining iterations of a parallel loop by the number of available

processors. The property of decreasing chunk size implies an effort is made to

achieve load balancing and to reduce the scheduling overhead. By assigning

large chunks at the beginning of a parallel loop, one can reduce the frequency of

communication between master and slaves. The small chunks at the end of a loop

partition serve to balance the workload across all the working processors.

n Factoring (FSS)

Formula: pRC ii α/1−= , where the parameter α is computed by a probability

distribution or is suboptimally chosen 2=α .

In some cases, GSS might assign too much work to the first few processors, so

that the remaining iterations are not time-consuming enough to balance the

-13-

workload. This situation arises when the initial iterations in a loop are much

more time-consuming than the later iterations. The Factoring algorithm addresses

this problem [1]. The assignment of loop iterations to working processors

proceeds in phases. During each phase, only a subset of the remaining loop

iterations (usually half) is divided equally among the available processors.

Because Factoring assigns a subset of the remaining iterations in each phase, it

balances loads better than GSS does when the computation times of loop

iterations vary substantially. In addition, the synchronization overhead of

Factoring is not significantly larger than that of GSS.

n Trapezoid Self-Scheduling (TSS)

Formula: DCC ii −= −1 , with trunk size: ())1/(−−= NLFD , where the first and

last chunk-size(F, L) are proposed that pIF 2/= , 1=L ,)/()2(LFIN += .

This approach tries to reduce the need for synchronization while still maintaining

a reasonable load balance [3]. This algorithm allocates large chunks of iterations

to the first few processors and successively smaller chunks to the last few

processors. The difference in the size of successive chunks is always a constant

in TSS whereas it is a decreasing function in GSS and in Factoring.

n Intelligent Parallel Loop Scheduling (IPLS)

Fann, Yang, Tseng and Tsai propose a knowledge-based approach to solving

loop-scheduling problems [9]. A rule-based system, called IPLS, is developed by

combining a repertory grid and an attribute ordering table to construct a

knowledge base. IPLS chooses an appropriate scheduling algorithm by inferring

some features of loops and assigning parallel loops to multiprocessors to achieve

significant speedup. However, this system is based on UMA architecture and not

suitable on cluster architecture yet.

Table 2.2 shows the different chunk sizes for a problem with the number of

iteration I=1000 and the number of processor p=4.

-14-

Scheme Partition size
PSS 1, 1, 1, 1, 1, 1, 1…
CSS(125) 125, 125, 125, 125, 125, 125, 125, 125
GSS 250, 188, 141, 106, 79, 59, 45, 33, 25, 19, 14, 11, 8, 6, 4, 3, 3, 2, 1, 1,

1,1
FSS 125, 125, 125, 125, 63, 63, 63, 63, 31, 31, 31, 31, 16, 16, 16, 16, 8, 8, 8,

8, 4, 4, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1
TSS 125, 117, 109, 101, 93, 85, 77, 69, 61, 53, 45, 37, 28
IPLS Auto detect loop attributes and decide the loop partition strategy

Table 2.2 Sample partition sizes when I=1000 and p=4

-15-

Chapter 3

Our Approach and System Description

3.1 The Extreme Heterogeneous Environment

Known self-scheduling schemes according to formula to partition size of loop

iteration. Unfortunately, if the ratio Wi/W is greater than the Ai/A in some slave

computer, load imbalance happens. We call this slave computer “the dominate

computer”. If there exists a dominate computer in a cluster, we called this cluster in

“the extreme heterogeneous environment”. For example, there are two slaves. In FSS,

every slave will get I/4 iterations at first step. If the performance difference between

the fastest computer and the slowest computer is larger than 3, load imbalance

happens.

In this condition, an additional slave computer may not lead to a better

performance by these known self-scheduling schemes since they partition size of loop

iteration according to formula instead of computer performance.

A combination of different machine types is used to test the behavior of these

approaches in a heterogeneous computing environment, and the matrix multiplication

is chosen as the test application to get a heuristic result due to its regular behavior.

This experiment included four computers. One of them is assigned as master using

some self-scheduling approach to partition size of loop iteration. The master is a PC

with 300 MHz CPU speed and 208MB physical memory. Three slaves are PCs,

respectively, with 1.6GHz CPU speed and 256MB physical memory, 233 MHz CPU

speed and 96MB physical memory, and 200MHz CPU speed and 64MB physical

memory. The slaves are added into the system sequentially in this order. We

respectively use GSS, FSS and TSS approach to test matrix multiplication with

different problem sizes from 512*512, 1024*1024 to 2048*2048 by floating point

operations.

-16-

Execution time(TSS) Execution time(FSS) No. of
slaves 512*512 1024*1024 2048*2048 512*512 1024*1024 2048*2048

1 0'12''066 1'44''357 17'12''483 0'12''136 1'44''688 17'11''402

2 0'17''520 2'49''652 19'34''016 0'18''371 3'16''561 23'48''723

3 0'13''339 1'53''202 16'30''651 0'14''543 2'00''491 16'36''007

Table 3.1 The result performance of number of slaves in extreme heterogeneous

environment

Table 3.1 shows our experiment result. Note that just one slave in Table 3.1

means that all work is done by the fastest computer only. It shows the system having

two slave computers gets worse performance than having only one slave computer. An

additional PC does not help the performance.

According to Moore’s law, CPU clock will double in 18 months. As the law still

works today, to build clusters consisting of extreme different computer performance

becomes demanding.

3.2 Our Approach

For the programs with regular loops, intuitively, we may want to partition problem

size according to their CPU clock in heterogeneous environment. However, the CPU

clock is not the only factor which affects computer performance. Many other factors

also have dramatic influences in this aspect, such as the amount of memory available,

the cost of memory accesses, and the communication medium between processors…

etc[5]. Using this intuitive approach, the result will be degraded if the performance

prediction is inaccurate. A computer with largest inaccurate prediction will be the last

one to finish the assigned job.

Loops can be roughly divided into four kinds, as shown in Figure 1: uniform

workload, increasing workload, decreasing workload, and random workload loops.

They are the most common ones in programs, and should cover most case. These four

kinds can be classified two types: regular and irregular. The first three kinds are

regular and the last one is irregular.

-17-

Different loops may need to be handled in different ways in order to get the best

performance. Since workload is predictable in regular loops, it is not necessary to

process load balancing at beginning.

We propose to partition problem size in two stages. At first stage, partition the

a% of total workload according to their performance weighted by CPU clock. In the

way, the communication between master and slaves can be reduced efficiently. At

second stage, partition following (100-a)% of total workload according to known

self-scheduling scheme. In the way, load balancing can be archived. This approach

can be suitable for all regular loops.

W

or
kl

oa
d

Time
2. Increasing workload

W
or

kl
oa

d

Time
4. Random workload

W
or

kl
oa

d

Time
1. Uniform workload

W
or

kl
oa

d

Time
3. Decreasing workload

Figure 3.1 Four kinds of loops

-18-

With this approach, we don’t need to know the real computer performance. The

computer finishing its job early gets another larger job. The parameter a should not be

too small or too big. In former case, the dominate computer will not finish its work. In

the latter case, the dynamic scheduling strategy is rigid. In both cases, good

performance can not be attained. An appropriate a value will lead to good

performance.

Furthermore, dynamic load balancing approach should not be aware of the

run-time behavior of the applications before execution. But in GSS and TSS, to

achieve good performance, computer performance of each computer in the cluster has

to be in order in extreme heterogeneous environment, which is not very applicable.

With our schemes, this trouble will not exist.

In this thesis, the terminology "FSS-80" stand for "a=80, and remainder

iterations use FSS to partition" and so on.

Example 3.1:

There is a cluster consist of five of the slaves. They are PCs respectively, with 200

MHz, 200 MHz, 233 MHz, 533MHz, and 1.5GHz CPU-clock. Table 3.2 shows the

different chunk sizes for a problem with the number of iteration I=2048 in this cluster.

The number of scheduling steps is parenthesized.

GSS 410, 328, 262, 210, 168, 134, 108, 86, 69, 55, 44, 35, 28, 23, 18, 14, 12, 9,

7, 6, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1(N=30)
GSS-80 923, 328, 144, 123, 121,

82, 66, 53, 42, 34, 27, 21, 17, 14, 11, 9, 7, 6, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1
(N=28)

FSS 205, 205, 205, 205, 205, 103, 103, 103, 103, 103, 51, 51, 51, 51, 51, 26,
26, 26, 26, 26, 13, 13, 13, 13, 13, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1,
1, 1 (N=43)

FSS-80 923, 328, 144, 123, 121
41, 41, 41, 41, 41, 21, 21, 21, 21, 21, 10, 10, 10, 10, 10, 5, 5, 5, 5, 5, 3, 3,
3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 (N=39)

TSS 204, 194, 184, 174, 164, 154, 144, 134, 124, 114, 104, 94, 84, 74, 64, 38
(N=16)

TSS-80 923, 328, 144, 123, 121
40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 1 (N=23)

Table 3.2 Sample partition size of Example 3.1

-19-

To model our approach, we use following terminology:

n T is the total workload of all iterations in a loop.

n W is the a% of total workload.

n b is the fewest workload in an increasing/decreasing workload loop. It can be the

workload of the first iteration (in an increasing workload loop) or the workload

of the last iteration (in a decreasing workload loop).

n h is the different of workload between consequence iterations. h is a positive

integer.

n x is the iteration number on which the a % accumulating workload is reached. x

is positive real.

n Due to iteration is unpartitionable, we need a suitable integer to measure x. Let it

be m. For achieving load balancing, we want m>x if possible.

Next, we will induce m in different types of regular loops.

-20-

3.2.1 Uniform Workload

The workload of each iteration is uniform in this loop type. h=0. Figure 3.2 is an
illustration.

Assertion 1: In uniform workload loops, %α×= Im .

Proof:
IbT ×=

xbTW ×=×= %α
%α×= Ix

 %α×= Im

It is trivial. ?

Iteration

W
or

kl
oa

d

b

I
Figure 3.2 A uniform workload loop

-21-

3.2.2 Increasing and Decreasing Workload

The workload of each iteration increases (decreases) h units in this loop type. h is
constant. Figure 3.3, 3.4 are illustrations.

Assertion 2: In increasing workload loops,

 ++−
=

h
hWbb

m
22

.

Proof:

2
])1([IhIbb

T
−++

=

2
])1(2[

%
2

))1(2(xhxbIhIb
W

−+
=×

 −+

= α (1)

Let 1−= xy

2
]2[

2
]2[xxhb

W
yyhb +

<<
+

 (2)

By first two items of (2), we can get

0222 <−+ Wbyhy

h
hWbb

y
2

842
1

2 ++−
<<−

That is

1
2

0
2

+
++−

<<
h

hWbb
x (3)

By last two items of (2), we can get

0222 >−+ Wbxhx
Since x is a positive real,

h
hWbb

x
2

842 2 ++−
>

h
hWbb

x
22 ++−

> (4)

Conclude (3) and (4), we can get

1
22 22

+
++−

<<
++−

h
hWbb

x
h

hWbb
 (5)

Since Ν∈m

-22-

 ++−
=

h
hWbb

m
22

 ?

Assertion 3: In decreasing workload loops,

 ++−
−=

h
hWbb

Im
'22

, where

WTW −=' .
Proof:

Since we just focus on the DOALL loop, the increasing and decreasing workload

loops are equivalence. The increasing workload loop done reversely will become the

decreasing workload loop done.

Let WTW −=' , and we want to get xIx −=' .

According to inequality (5) of Assertion 2:

1
'2'2 22

+
++−

<<
++−

h
hWbb

x
h

hWbb

+

++−
−>−>

++−
− 1

'2'2 22

h
hWbb

IxI
h

hWbb
I

Since Ν∈m

 ++−
−=

h
hWbb

Im
'22

 ?

-23-

Iteration

W
or

kl
oa

d

b

h

I

Figure 3.3 An increasing workload loop

-24-

Iteration

W
or

kl
oa

d

b

h

I

Figure 3.4 A decreasing workload loop

-25-

3.3 System Description and Experimental

Design

3.3.1 System Description

The approach is applied in an extreme heterogeneous environment which

includes six computers, shown as Table 3.3. All computers in this cluster run the

RedHat Linux 7.1 operating system (Kernel 2.4.2-2). Program is developed using C

language and LAM 6.5.1. The fastest computer is 7.5 times faster than the slowest

ones in CPU-clock. HPC2 is assigned as the master and the other five computers are

slaves. The host-name in ‘lamhost’ file is ordered by decreasing CPU-clock except the

master computer. The master computer always is the first host-name in ‘lamhost’ file.

Those computers may own various NIC and cost of memory access, regarding as part

of computer performance. SWAP may occur in some computers. If SWAP does not

occur often, this will not affect the result.

Another cluster is set up to show our proposed approach will still function well

on moderate heterogeneous environment. Table 3.4 shows the characteristics of the

experimental cluster. All computers in this cluster run the RedHat Linux 7.3 operating

system (Kernel 2.4.18-3). The LAM/MPI Version is LAM 6.5.7. The difference of

CPU time-clock between the fastest and the lowest computer is not obvious. We let

HPC3 be the master and the other computer being the slaves.

-26-

Node Processor Memory Operating System/MPI Library

HPC1 200MHz, Intel Pentium 96 MB Linux Kernel 2.4.2-2/ LAM 6.5.1

HPC2 300MHz, Cyrix M2 208 MB Linux Kernel 2.4.2-2/ LAM 6.5.1
HPC3 233MHz, Pentium 96 MB Linux Kernel 2.4.2-2/ LAM 6.5.1

HPC4 600MHz, Intel Pentium II 192 MB Linux Kernel 2.4.2-2/ LAM 6.5.1

HPC5 1.5GHz, Intel Pentium IV 128 MB Linux Kernel 2.4.2-2/ LAM 6.5.1

Table 3.3: Characteristics of extreme heterogeneous environment in experiment

cluster

Figure 3.5 Our extreme heterogeneous cluster

-27-

Figure 3.6 Our moderate heterogeneous cluster

Node Processor Memory Operating System/MPI Library
HPC1 1.6G, AMD Athlon MP 1 GB Linux Kernel 2.4.18-3/ LAM 6.5.7

HPC2 1.6G, AMD Athlon MP 512 MB Linux Kernel 2.4.18-3/ LAM 6.5.7

HPC3 1.5G, AMD Athlon MP 512 MB Linux Kernel 2.4.18-3/ LAM 6.5.7
HPC4 1.5G, AMD Athlon MP 512 MB Linux Kernel 2.4.18-3/ LAM 6.5.7

HPC5 1.5G, AMD Athlon MP 512 MB Linux Kernel 2.4.18-3/ LAM 6.5.7

Table 3.4: Characteristics of experimental cluster

-28-

3.3.2 Experimental Design

The matrix multiplication is chosen as the experimental application to get a heuristic

result due to its regular behavior. The various a values are tested in 2048*2048

problem size to get the best performance. Then we use this value to evaluate

performance in different problem size and different loop types.

Matrix multiplication is a program with typically uniform workload loop. For

increasing workload, we simulate the behavior as following pseudo code.

For (i=1, i<=n,i=i+h)

 For (j=0, j<i, j++)
 donothing(msize);

donothing is a procedure to compute msize*msize matrix multiplex. We

simulate the decreasing workload loop by reversing the performing order of the

increasing ones. The main parameters are following: b=1, h=1, I=360, and msize=50

in extreme heterogeneous environment and b=1, h=1, I=360, and msize=100 in

moderate heterogeneous environment.

All experiments will be tested in extreme heterogeneous environment and

moderate heterogeneous environment.

3.4 An Example

An example of matrix multiplex using our approach with GSS is as followed:

#include <stdio.h>
#include <mpi.h>
#include <math.h>
#include <string.h>

struct ss
 {

-29-

 float cs;
 struct ss *ptrnext;
 };
struct ss *ptrfirst, *ptrthis, *ptrnew, *ptrsent;

int SIZE;
int prs;
float *cpuinfo;
void master(int);
void slave(void);
float get_cpu_clock_speed(void);
void wss(float, int);
void gss(float, int);

int main(int argc, char** argv)
{
 int myrank, numprocs;
 float cpuinfo_l;

 SIZE = atoi(argv[1]);
 prs = atoi(argv[2]);
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 cpuinfo = (float*)malloc(numprocs*sizeof(float));

 /* gather cpu information here */
 cpuinfo_l = get_cpu_clock_speed();
 MPI_Gather(&cpuinfo_l, 1, MPI_FLOAT, cpuinfo, 1,
 MPI_FLOAT, 0, MPI_COMM_WORLD);

 if (myrank == 0)
 master(numprocs);
 else
 slave();
 MPI_Finalize();
 return 0;

-30-

}

void master(int numprocs)
{
float *a, *buf;
int i, j, rowc, r, source, tag, count, r1, r2, recsource;
MPI_Status status;

/* get every trunk size */
ptrfirst=(struct ss *)NULL;
r1 = (SIZE*prs)/100;
r2 = SIZE - r1;
wss((float)r1, numprocs-1);

/* initial matrix */
a = (float*)malloc(SIZE*SIZE*sizeof(float));
for (i=0; i<SIZE; i++)
 for (j=0; j<SIZE; j++)
 a[i*SIZE+j]=2.0;

rowc=1; /* how many data be sent */
r=0;
ptrsent=ptrfirst;

for (i = 1; i < numprocs; i++) {
 MPI_Send(&a[(rowc-1)*SIZE], SIZE*(ptrsent->cs),
 MPI_FLOAT, i, rowc, MPI_COMM_WORLD);
 rowc = rowc + ptrsent->cs;
 ptrsent = ptrsent->ptrnext;
 r++;
 }

gss((float)r2, numprocs-1);

do {
 /* receive data from client */
 MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,

-31-

 &status);
 source = status.MPI_SOURCE;
 tag = status.MPI_TAG;
 MPI_Get_count(&status, MPI_FLOAT, &count);
 buf = (float*)malloc(count*sizeof(float));
 MPI_Recv(&a[(tag-1)*SIZE], count, MPI_FLOAT, source, tag,
 MPI_COMM_WORLD, &status);
 r--;

 free(buf);

 /* sent another size to client */

 if (ptrsent!=(struct ss *)NULL) {
 MPI_Send(&a[(rowc-1)*SIZE], SIZE*(ptrsent->cs),
 MPI_FLOAT, source,
 rowc, MPI_COMM_WORLD);
 rowc = rowc + ptrsent->cs;
 ptrsent = ptrsent->ptrnext;
 r++;
 }
 else {
 MPI_Send(MPI_BOTTOM, 0, MPI_FLOAT, source, 0,
 MPI_COMM_WORLD);
 }

} while (r > 0);
}

void slave(void)
{
float *buf, *b, *c;
int i, j, k, l, f, row, myrank, count, tag, source;
MPI_Status status;
MPI_Request request;

/* initialize matrix */

-32-

b = (float*)malloc(SIZE*SIZE*sizeof(float));
for (i=0; i<SIZE; i++)
 for (j=0; j<SIZE; j++)
 b[i*SIZE+j]=1.0;

/* receive data from master at first time */

MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
source = status.MPI_SOURCE;
tag = status.MPI_TAG;
MPI_Get_count(&status, MPI_FLOAT, &count);
buf = (float*)malloc(count*sizeof(float));
c = (float*)malloc(count*sizeof(float));
MPI_Recv(buf, count, MPI_FLOAT, source, tag,
 MPI_COMM_WORLD, &status);

f=0;

while (status.MPI_TAG >0) {

for (i=0; i<(count/SIZE); i++)
 for (j=0; j<SIZE; j++)
 c[i*SIZE+j]=0.0;

 /* computing */
 for (i=0; i<(count/SIZE); i++)
 for (j=0; j<SIZE; j++)
 for (k=0; k<SIZE; k++)
 c[i*SIZE+j] += buf[i*SIZE+k]*b[k*SIZE+j];

 /* sent result*/

 MPI_Send(c, count, MPI_FLOAT, 0, tag, MPI_COMM_WORLD);
 free(buf);
 free(c);

 /* get another size */

-33-

 MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
 source = status.MPI_SOURCE;
 tag = status.MPI_TAG;
 MPI_Get_count(&status, MPI_FLOAT, &count);
 buf = (float*)malloc(count*sizeof(float));
 c = (float*)malloc(count*sizeof(float));
 MPI_Recv(buf, count, MPI_FLOAT, 0, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);
 }
}

/***/
/*This procedure refer to */
/* Advanced Linux Programming. */
/***/
float get_cpu_clock_speed(void)
{
 FILE* fp;
 char buffer[1024];
 size_t bytes_read;
 char* match;
 float clock_speed;

 fp=fopen("/proc/cpuinfo", "r");
 bytes_read=fread(buffer, 1, sizeof(buffer), fp);
 fclose (fp);

 if (bytes_read==0 || bytes_read == sizeof(buffer))
 return 0;
 buffer[bytes_read]='\0';
 match=strstr(buffer, "cpu MHz");
 if (match==NULL)
 return 0;
 sscanf(match, "cpu MHz : %f", &clock_speed);
 return clock_speed;
}

-34-

void wss(float r, int n)
{
float c, b;
float cpu_total=0;
int i;
c=0;
b=r;
for (i=1; i<=n; i++)
 cpu_total = cpu_total + cpuinfo[i];

ptrfirst=(struct ss *)NULL;
for (i=1; i<=n; i++){

c=ceil((r*cpuinfo[i])/cpu_total);
 ptrnew=(struct ss *) malloc(sizeof(struct ss));
 if (ptrfirst == (struct ss *)NULL)
 ptrfirst=ptrthis=ptrnew;
 else
 {
 ptrthis->ptrnext=ptrnew;
 ptrthis=ptrnew;
 }
 if (b<c)
 c=b;
 ptrthis->cs=c;
 ptrthis->ptrnext=(struct ss *)NULL;
 b=b-c;
}
}

void gss(float r, int numprocs)
{
float c;
int j;
c=0;
j=0;
 while (r != 0)

-35-

/*for (i=1;i<=10;i++)*/
 {
 c=ceil(r/numprocs);
 ptrnew=(struct ss *) malloc(sizeof(struct ss));
 if (ptrfirst == (struct ss *)NULL)
 ptrfirst=ptrthis=ptrnew;
 else
 {
 ptrthis->ptrnext=ptrnew;
 ptrthis=ptrnew;
 if (j==0) ptrsent=ptrthis;
 j++;
 }
 ptrthis->cs=c;
/* numsent=numsent+1;*/
 ptrthis->ptrnext=(struct ss *)NULL;
 r=r-c;
 printf("Size\t%f\n",c);
 }
}

-36-

Chapter 4

Experimental Results and Discussion

4.1 Extreme Heterogeneous System

Many a values are applied to the experiments with different self-scheduling strategies,

shown as Table 4.1 and Figure 4.1, and a=75 result in the best performance in all

situations. Note that the column named “a=0” means the usage of known

self-scheduling approaches.

Table 4.2 and Figure 4.2 show the result in a=75 with different self-scheduling

strategies. The column name "None" stands for "none load-balancing" and workload

be partitioned just by CPU clock. Note that in extreme heterogeneous environment,

FSS and GSS get worse performance than scheme partitioning workload merely

according to the CPU clock. Using our approach in 2048*2048 matrix multiplication

will reduce 26.8%, 39.6% and 23.5% execution time than GSS, FSS and TSS

respectively.

The a value should depend on system architecture. Different system architecture

will have different a value. Using every a value from 60 to 90 will achieve a better

performance than just using the known self-scheduling schemes in our system.

Applying a=75 to smaller problem size, 1024*1024 matrix multiplication, or

larger problem size, 3072*3072 matrix multiplication, the result was shown in Table

4.3 and Figure 4.3. In 1024*1024 and 3072*3072 matrix multiplication, our approach

will reduce execution time 19.5% and 13.1% than GSS, 31.1% and 27.8% than FSS,

14.9% and 23.7% in TSS, respectively.

The result of a=75 in simulated decreasing/increasing workload loop was shown

in Table 4.4 and Figure 4.4. In decreasing case, 29.9% in GSS, 61.1% in FSS and

54.2% in TSS, execution time is reduced. Using our approach in simulated increasing

workload loop will reduce 59.4%, 48.6.1%, 30.1% execution time than GSS, FSS and

TSS respectively.

-37-

 a=0 a=60 a=65 a=70 a=75 a=80 a=85 a=90

GSS 853.1 731.1 719.0 681.4 624.1 650.4 690.7 731.5

FSS 1010.5 663.6 658.6 630.2 609.6 650.3 690.4 730.8

TSS 809.6 719.0 697.2 639.3 619.1 650.3 690.1 730.8

Table 4.1 Execution time for 2048*2048 matrix multiplication by various

approaches in extreme heterogeneous environment

Figure 4.1(a) A chart of execution time of 2048*2048 matrix multiplication by

GSS group approach in extreme heterogeneous environment

-38-

Figure 4.1(b) A chart of execution time of 2048*2048 matrix multiplication by

FSS group approach in extreme heterogeneous environment

Figure 4.1(c) A chart of execution time of 2048*2048 matrix multiplication by

TSS group approach in extreme heterogeneous environment

-39-

 None GSS GSS-75 FSS FSS-75 TSS TSS-75
Execution

time 813.3 853.1 624.1 1010.5 609.6 809.6 619.1

Table 4.2 Execution time of 2048*2048 matrix multiplication by various

self-scheduling approaches when a=75 in extreme heterogeneous environment

Figure 4.2 A chart of execution time of 2048*2048 matrix multiplication by

various self-scheduling approaches when a=75 in extreme heterogeneous

environment

-40-

 None GSS GSS-75 FSS FSS-75 TSS TSS-75

1024*1024 113.8 107.3 86.4 125.6 86.6 100.1 85.2

3072*3072 2730.9 2651.2 2305.8 3040.8 2311.7 2849.5 2313.6

Table 4.3 Execution time of different problem size by various self-scheduling

approach when a=75 in extreme heterogeneous environment

Figure 4.3 A chart of execution time of different problem size by various

self-scheduling approach when a=75 in extreme heterogeneous environment

-41-

 GSS GSS-75 FSS FSS-75 TSS TSS-75

Decreasing 336.6 244.7 610.3 244.7 552.4 244.7

Increasing 580.2 264.6 475.1 264.6 388.5 264.5

Table 4.4 Execution time of simulated increasing/decreasing workload loop by

various self-scheduling approach when a=75 in extreme heterogeneous

environment

Figure 4.4 A chart of execution time of simulated increasing/decreasing workload

loop by various self-scheduling approach when a=75 in extreme heterogeneous

environment

-42-

4.2 Moderate Heterogeneous System

We want to prove our approach will function in moderate heterogeneous system also.

Many a values are applied to the experiments with different self-scheduling strategies

in 2048*2048 matrix multiplication, shown as Table 4.5 and Figure 4.5. Table 4.6 and

Figure 4.6 show the result in a=75 with different self-scheduling strategies. The

difference of system performance using various a value and various self-scheduling

approaches is not obvious.

Applying a=75 to smaller problem size, 1024*1024 matrix multiplication, or

larger problem size, 3072*3072 matrix multiplication, the result was shown in Table

4.7 and Figure 4.7. There is not obvious difference between various self-scheduling

schemes.

The result of a=75 in simulated decreasing/increasing workload loop was shown

in Table 4.8 and Figure 4.8. The execution time in decreasing loop and increasing

loop should be same in theory, but there is obvious difference by GSS and FSS. That

is because that the remainder 25% workload is processed by known self-scheduling

get load imbalancing. Decreasing loop get better performance than increasing one due

to getting smaller workload.

-43-

 a=0 a=60 a=65 a=70 a=75 a=80 a=85 a=90

GSS 485.6 478.9 479.6 480.6 483.5 479.5 479.4 481.1

FSS 479.1 474.3 475.7 476.3 478.2 474.5 476.8 474.4

TSS 489.3 495.6 492.6 490.4 486.8 494.6 495.2 491.2

Table 4.5 Execution time for 2048*2048 matrix multiplication by various

approaches in moderate heterogeneous environment

Figure 4.5(a) A chart of execution time of 2048*2048 matrix multiplication by

GSS group approach in moderate heterogeneous environment

-44-

Figure 4.5(b) A chart of execution time of 2048*2048 matrix multiplication by

FSS group approach in moderate heterogeneous environment

Figure 4.5(c) A chart of execution time of 2048*2048 matrix multiplication by

TSS group approach in moderate heterogeneous environment

-45-

 None GSS GSS-75 FSS FSS-75 TSS TSS-75
Execution

time 506.3 485.6 483.5 479.1 478.2 489.3 486.8

Table 4.6 Execution time of 2048*2048 matrix multiplication by various

self-scheduling approaches when a=75 in moderate heterogeneous environment

Figure 4.6 A chart of execution time of 2048*2048 matrix multiplication by

various self-scheduling approaches when a=75 in moderate heterogeneous

environment

-46-

 None GSS GSS-75 FSS FSS-75 TSS TSS-75

1024*1024 62.7 60.2 57.7 56.7 56.6 60.9 54.5

3072*3072 1726.2 1658.0 1643.2 1638.7 1632.7 1700.4 1657.3

Table 4.7 Execution time of different problem size by various self-scheduling

approach when a=75 in moderate heterogeneous environment

Figure 4.7 A chart of execution time of different problem size by various

self-scheduling approach when a=75 in moderate heterogeneous environment

-47-

 GSS GSS-75 FSS FSS-75 TSS TSS-75

Decreasing 495.1 347.0 252.8 280.3 304.3 254.4

Increasing 255.1 255.1 264.4 260.5 304.3 256.1

Table 4.8 Execution time of simulated increasing/decreasing workload loop by

various self-scheduling approach when a=75

Figure 4.8 A chart of execution time of simulated increasing/decreasing workload

loop by various self-scheduling approach when a=75

-48-

Chapter 5

Conclusion and Future Work

In this paper, we show that known self-scheduling schemes cannot achieve good load

balancing in some situations. We propose an approach to partition loop iterations and

achieve good performance in any heterogeneous environment: partition a% of

workload according to their performance weighted by CPU clock and the rest

(100-a)% of workload according to known self-scheduling. Many various a values are

applied to the matrix multiplication and a best performance is obtained with a=75. We

also applied our schemes on two simulated increasing/decreasing workload loops and

get obviously performance improvement. Therefore, our approach is suitable in all

applications with regular loops.

Our idea is just suitable for the regular workload loop. However, the irregular

workload loop, such as displaying the Mandelbrot set problem, is more common loop

type. We want to solve parallel loop scheduling problems with unpredictable loops on

heterogeneous PC clusters. Furthermore, our approach is just ranged on DOALL loop;

we want to expend our research field to DOACROSS loop and runtime scheduling.

Fann, Yang, Tseng and Tsai propose a knowledge-based approach to solving

loop-scheduling problems [9]. A rule-based system, called IPLS, is developed by

combining a repertory grid and an attribute ordering table to construct a knowledge

base. IPLS chooses an appropriate scheduling algorithm by inferring some features of

loops and assigning parallel loops to multiprocessors to achieve significant speedup.

However, this system is based on UMA architecture. In near future, we will migrate

IPLS to cluster architecture. Also, we will solve parallel loop scheduling problems

with unpredictable loops on extreme heterogeneous PC clusters and integrate our

approach into the new IPLS.

-49-

 Reference

1. S. F. Hummel, E. Schonberg, L. E. Flynn, "Factoring, a Scheme for Scheduling

Parallel Loops," Communications of the ACM, Vol 35, No 8, Aug. 1992.

2. C. D. Polychronopoulos and D. Kuck, "Guided Self-Scheduling: a Practical

Scheduling Scheme for Parallel Supercomputers," IEEE Trans. on Computers, Vol

36, Dec. 1987, pp 1425 - 1439.

3. T. H. Tzen and L.M. Ni, "Trapezoid Self-Scheduling: A Practical Scheduling

Scheme for Parallel Compilers," IEEE Trans. on Parallel and Distributed Systems,

Vol 4, No 1, Jan. 1993, pp 87 - 98.

4. Christopher A. Bohn, Gary B. Lamont, "Load Balancing for Heterogeneous

Clusters of PCs," Future Generation Computer Systems 18 (2002) 389–400.

5. E. Post, H. A. Goosen, "Evaluating the Parallel Performance of a Heterogeneous

System," in the Proceedings of HPCAsia2001.

6. H. Li, S. Tandri, M. Stumm and K. C. Sevcik, "Locality and Loop Scheduling on

NUMA Multiprocessors," in Proceedings of the 1993 International Conference on

Parallel Processing, Vol. II, 1993, pp. 140-147.

7. A. T. Chronopoulos, R. Andonie, M. Benche and D.Grosu, "A Class of Loop

Self-Scheduling for Heterogeneous Clusters," in Proceedings of the 2001 IEEE

International Conference on Cluster Computing, pp. 282-291

8. P. Tang and P. C. Yew, "Processor self-scheduling for multiple-nested parallel

loops," in Proceedings of the 1986 International Conference on Parallel

Processing , 1986, pp. 528-535.

9. Yun-Woei Fann, Chao-Tung Yang, Shian-Shyong Tseng, and Chang-Jiun Tsai, "An

intelligent parallel loop scheduling for multiprocessor systems," Journal of Info.

Science and Engineering - Special Issue on Parallel and Distributed Computing,

vol. 16, no. 2, pp. 169-200, March 2000.

10. Barry Wilkinson and Michael Allen, Parallel Programming, Prentice Hall PTR,

1999.

11. Michael Wolfe, High Performance Compilers for Parallel Computing,

Addison-Wesley PTR, 1996.

-50-

12. Yung-Lin Liu and Chung-Ta King, "EXPLORER: Supporting run-time

parallelization of DOACROSS loops on general networks of workstations"

Parallel Computing 26 (2000), pp.355-375

13. S. Chen, J. Xue, "Partitioning and scheduling loops on NOWs", Computer

Communications 22 (1999), pp. 1017–1033

14. Amdahl, G. "Validity of the single processor approach to achieving large-scale

computing capabilities", In Proceedings of the AFIPS Conference (1967), pp.

483-485

15. Jianhua Xu and A. T. Chronopoulos, "Distributed Self-Scheduling for

Heterogeneous Workstation Clusters", Proceedings of 12th International

Conference on Parallel and Distributed Computing Systems, Fort Lauderdale, FL,

Aug. 18-20, 1999, pp. 211-217.

16. R. Buyya, High Performance Cluster Computing: System and Architectures, Vol.

1, Prentice Hall PTR, NJ, 1999.

17. Jose C. Cunha, Peter Kacsuk and Stephen C. Winter, Parallel Program

Development for Cluster Computing, Nova Science Publishers, NY, 2001

18. http://www.mpi-forum.org/, Message Passing Interface Forum.

19. http://www.epm.ornl.gov/pvm/, PVM – Parallel Virtual Machine.

20. T. L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese, How to Build a

Beowulf: A Guide to the Implementation and Application of PC Clusters, 2nd

Printing, MIT Press, Cambridge, Massachusetts, USA, 1999.

