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Abstract

Scalable computing clusters are rapidly becoming a standard platform for high
performance and large-scale computing. This is due to their low cost, high
performance, high availability of off-the-shelf hardware components and freely
accessible software tools that can be used for developing applications. However, there
is few scheduling scheme designed for cluster. Known scheduling schemes are based
on SMP architecture. Although these schemes are function on cluster system also,
there are some problems might happen in heterogeneous cluster system.

In this thess, we revise known loop self-scheduling schemes to fit al
heterogeneous PC clusters environment when loop is regular. We propose an approach
to partition loop iterations and achieve good performance in any heterogeneous
environment: partition a% of workload according to their performance weighted by
CPU clock and the rest (100-a)% of workload according to known self-scheduling.
Many various a values are applied to the matrix multiplication and a best performance
is obtained with a=75. We aso apply our schemes on both simulated increasing and
decreasing workload loops and get obviously performance improvement. Therefore,
our gpproach is suitable in al gpplications with regular loops.
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Chapter 1

| ntroduction

1.1 Cluster Computing

To use supercomputer for high-performance computing has been growing. Parallel
processing has been a most important technology in modern computing for several
decades. Many powerful multiprocessor hardware systems have been developed to
exploit paralelism for concurrent execution Supercomputers that are single big
expensive machines with a shared memory and one or more processors meet the
professiona need. A large-scale processing and storage system that provides high
bandwidth at low cogt is expected.

The use of loosely coupled, powerful and low-cost commodity components (PCs
or workstations, typically) connected by high-speed network has resulted in the
widespread usage of a technology popularly called cluster computing. Scalable
computing clusters, ranging from a cluster of (homogeneous or heterogeneous) PCs or
workstations, to SMPs (Symmetric MultiProcessors), as shown in Figure 1.1, are
rapidly becoming the standard platforms for high-performance and large-scde
computing.

A cluster, as shown in Figure 1.2, is a group of independent computer systens
and thus forms a loosely coupled multiprocessor system Usually, a cluster node
contains its own disk and equipped with a complete operating systems, and therefore,
it dso can handle interactive jobs. Each node can function only as an individual
resource while a cluster system presents itself as a single system to the user. A
network is used to provide inter-processor communications. Applications that are
distributed across the processors of the cluster use either message passing or network
shared memory for communication Cluster nodes work collectively as a single
computing resource and fill the conventional role of using each node as an
independent machine. [16, 17, 20]
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Clusgter computers can offer anumber of specific benefits

B Cost-effective: One of the main benefits of a cluster is its cost-effectiveness.
Clusters are built from relatively inexpensive commodity components that are
widdy available,

B Keeps pace with technologies: Since Clusters only use massmarket
components; it is easy to employ the latest technologies to maintain the cluster as
a dtate-of-the-art system.

B Flexible configuration: Users can tailor a configuration that is feasible to them
and allocate the budget wisely to meet the performance requirements of their
applications. For example, a fine-grain paralel application (which exchange
small messages frequently among processors) may motivate users to alocate a
larger portion of their budget to high-speed interconnects.

B Scalability: When the processing power requirement increases, the performance
and sze of aclugter can be easily scaled up by adding more compute nodes.

B High availability: Each compute node of a cluster is an individual machine. The
failure of a compute node will not affect other nodes or the availability of the
entire cluster.

B Compatibility and portability: Due to the standardization and wide availability
of message passing interface, such as MPI[18] and PVM[19], the mgjority of
paralel applications use these standard middleware. A parallel application using
MPI or PVM can be easily ported to a cluster. This is why clusters are rapidly
replacing these expensive parallel computers in the low-end to midrange HPC
market.

1.2 Performance Evaluation

Since cluster computer can work collectively as a single computing resource, how to
evaluate the performance of cluster computer is an important issue. A measure of
relative performance between a multiprocessor system and a single processor system
is the speedup factor, (n), define as

Execution time using one processor (single processor system) ts
n) = —— . . . =
S0 Execution time using a multiprocessor with n processors tp

-3



Where ts is the execution time on a single processor and t, is the execution time on a
multiprocessor. §(n) gives the increase in speed in using a multiprocessor.

Amdahl’ s law [14] gives another heuristic pointer. Assuming there will be some
parts are only executed on one processor, the ideal situation would be for all the
available processors to operate simultaneously for the other times. If the fraction of
the computation that cannot be divided into concurrent tasks is f, and no overhead
incurs when the computation is divided into concurrent parts, the time to perform the
computation with n processors is given by ft, +(1- f)ts/ n, as illustrated in Figure
1.3 [10]. Ilustrated is the case with a single seria part at the beginning of the
computation, but the serial part could be distributed throughout the computation
Hence, the speedup factor is given by

—_ tS —_ n
Cft,+(1- fit./n 1+(n-)f

S(n)

It is clearly that the less fraction of the computation that cannot be divided into
concurrent tasks, the more speedup can be got.
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Figure 1.3 Paralldizing sequential problemAmdahl’ slaw



1.3 Motivation

To exploit the potential computing power of cluster computers, akey point is how to
assign tasks to computers so that the computer |oads are well balanced. That is how to
assign the different parts of a parallel application to the computing resources to
minimize the overal computing time and to efficiently use the resource.

Ideally, we want al the processors to be operating continuously on tasks that
would lead to the minimum execution time. Achieving this goa by spreading the tasks
evenly across the processors is called load balancing. Figure 1.4 is an illustration of
load balancing on which the execution time of the program will be very different in (a)
and (b).

Using a suitable scheduling approach is very important in the cluster computing
system Unfortunately, there are few schemes designed for duster system Known
scheduling schemes are based on SMP architecture. Although these schemes are
function on cluster system also, there are some problems might happen in
heterogeneous cluster system.

On the other hand, parallel computers are becoming increasingly widespread,
nowadays many of these paralel computers are no longer shared- memory
multiprocessors, but rather follow the distributed memory model for scalable. These
systems may consist of homogeneous workstations, where al the workstations have
processors, memory and caches with exactly the identical specifications. However,
more and more systems are now composed of a number of heterogeneous
workstations clustered together, where each workstation may have different CPU
performance capabilities, different amounts of memory and caches, and even different
architectures and operating systems.

Moreover, scalability should be an important character of cluster. An additional
PC might not help the performance if we use a wrong scheduling approach We want
to propose a heuristic scheduling approach which is suitable on heterogeneous
environment and is scalability.
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1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, a brief overview of
self-scheduling is given It provides the background necessary to understand this
thesis effort. Chapter 3 states our approach and describes our system architecture. The
experiments which are according to our approach will be shown in Chapter 4. We will
also discuss the result and propose our suggestion at the same time. Chapter 5 has our

conclusion remarks and future work.

Notation:

The following are common notations used throughout the whole paper:

B PEisaprocessor in the parald or digtributed system,

| isthe total number of iterations of a parale loop;

p isthe number of PEsin the pardld or distributed system;

A chunk is a collection of consecutive iterations. C; is the chunk-size at the i-th

scheduling step (wherei=1, 2, 3, ...);

W istheworkload of Cj;

W= éV\/i , the totd workload in aloop;

N is the number of scheduling steps,

P; isthe CPU clock of processorsi.

P= é P , the sum of al CPU clock vauein our cluster system.
A isthe Actuad computing performance.

A= é A , thetotd computing performancein our cluster system.



Chapter 2

Background

2.1 Loop Scheduling

Loops often comprise a large portion of a program’ s paralelism. An efficient
approach to extract potential parallelism is to concentrate on the parallelism available
in the loops. However, loops are not always easy to be paralleled. Data dependence is
an obstacle. Data dependence is said to exist between two statements § and S if
there is an execution path from S, to S, if both statements access the same memory
location and if at least one of the two statements writes the memory location There
are three types of data dependences: True (flow) dependence occurs when S writes a
memory location that S, later reads A nti-dependence occurs when S; reads a memory
location that S later writes. Output dependence occurs when § writes a memory
location that S later writes [11]. There are many researches [12, 13] focus on how to
ded with DOACROSS loop but we just concentrate on DOALL loop.

A loop is caled a DOALL loop if there is no crossiteration dependence in the
loop; i.e., al the iterations of the loop can be executed in paralel. If al the iterations
of a DOALL loop are distributed among different processors evenly, a high degree of
paralelism can be exploited. Parallel loop scheduling is a method that attempts to
evenly schedule a DOALL loop on multiprocessor systems.

In homogeneous environment, workload can be partitioned equally to each
working computer, but in heterogeneous environment, this method will not work.
Some researches were proposed to solve parallel loop scheduling problems on
heterogeneous cluster environments by using self-scheduling schemes. However,
these salf-scheduling schemes might not in some Situation.



In a parallel processing system, two kinds of parallel loop scheduling decisions
can be made ether gaticadly a compile-time or dynamicaly a run-time.

Static scheduling is usualy applied to uniformly distributed iterations on
processors [6]. It has the drawback of creating load imbalances when the loop style is
not uniformly distributed; when the loop bounds cannot be known at compile-time;
when system is heterogeneous; or when locality management cannot be exercised. In
contrast, dynamic scheduling is more appropriate for load balancing; however, the
runtime overhead must be taken into consideration. In general, parallelizing compilers
distribute loop iterations by using only one kind of scheduling agorithm, either static

or dynamic.

2.1.1 Static Scheduling

Theoretically, workload can be partitioned according to their computer performance.
Unfortunately, in heterogeneous system, it is difficult to evaluate each computer
performance. Intuitively, CPU clock speed may be a good evaluation vaue. But it
seems not enough. Many factors affect computer performance, such as the
performance capability of the CPU, the amount of memory available, the cost of
memory access, the communication medium between processors... etc [5].

Bohn and Lamont try to evaluate the performance of computer in compiler-time
[4]. In their experiment, HINT is a good benchmark. It evaluates processor and
memory performance for any data type and returns a single value, "QUIPS'. Bohn
and Lamont declared "QUIPS" can present the computer performance. It has the
advantage of al computers being working computer - no control computer is needed.
But, HINT requires hours to execute. It means this way will not be scaling well. It
takes a long time to add one more computer and if we want to change the peripheral,
for example to replace RAM from PC100 to PC133, we might have to rerun HINT.

Traditional static scheduling [6] is applied when each loop iteration takes
roughly the same amount of time, and the compiler knows how many iterations will
be run and how many processors are available for use at compile-time. It has the
advantage of incurring the minimum scheduling overhead, but load imbalances may
occur. These static scheduling schemes including Block Scheduling, Cyclic
Scheduling, Block-D Scheduling, Cyclic-D Scheduling... etc [6].



B Block Scheduling
In block scheduling, | iterations are divided into |/p round. Each round consists
of consecutive iterations and is assigned to one processor. This is only suitable
for uniformly distributed loop iterations.

B Cyclic Scheduling
Instead of assigning a processor a consecutive block of iterations, iterations are
assigned to different processors in a cyclic fashion, i.e., iteration i is assigned to
processor (i mod p). This method may produce a more balanced schedule than
block scheduling for some non-uniformly distributed pardld loops.

B Block cyclic scheduling
It is a compromise between block scheduling and cyclic scheduling. This
algorithm assigns blocks of afixed size to processors in a round robin fashion If
the block size is equal to one, then it degenerates to cyclic scheduling. If the
block size is I/p then it is same as block scheduling. Hence, block cyclic
scheduling forms a continuum between block and cyclic scheduling agorithms,

An example shown the different between these approaches are given in Table 2.1.

Nevertheless, these scheduling schemes were unsuitable in heterogeneous

environmen.
Approach | CPU Partition Sze
Block 1 11,23, ...,250
2 | 251, 252, 253, ..., 500
3 | 501,502,503, ..., 750
4 | 751,752,753, ..., 1000
Cydic 1 |1,509,13
2 | 26,10, 14,
3 |3,7,11,15
4 4,812 16, ...
Block cyclic 1 1,2, 34,17, 18, 19, 20, ...
2 |56,7,8,21,22,23, 24, ...
3 910,11, 12, 25, 26, 27, 28, ...
4 |13, 14,15, 16, 29, 30, 31, 32, ...

Table 2.1 A table of partition Sze using various appr oaches
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2.1.2 Dynamic Scheduling

Dynamic scheduling adjusts the schedule during execution and is especially suitable
whenever the number of iterations is uncertain or each iteration may take a different
amount of time. Although it is more suitable for load balancing between processors,
runtime overheed is the cost.

We use master/dave computation patterns to model problems, i.e., the master
coordinate data distribution to the slaves, which perform computations and transmit
the results back to the master. The master is not responsible for workload, the idle
dave requests to the master for new loop iterations, and no communication occurs
between daves. How many iterations that a slave should be assigned is a critical issue.
Improper assignment will cause bad system performance.

Self-scheduling is a large class of adaptive/dynamic centralized loop scheduling
schemes. In a common self-scheduling scheme, p denotes the number of processors, |
denotes the total iteration and f() is a function to produce the chunk-size at each step.
At the i-th scheduling step, the master computes the chunk-size C; and the remaining
number of tasks R,

Ro=N, Ci=f(i,p), R=R.1-Ci
where f() possibly has more parameters than just | and p, such as R.1. The master
assigns C; tasks to an idle dave and the load imbalancing will depend on the
execution time gap between tj, for j=1,...,p [7, 15].

Mast elr

Assign another
subt ask

(Busy) (Busy)

Sl avel 1 S| avel 2 S|
(

Figure2.1 A master/save model
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Different ways to compute C; have given rise to different scheduling schemes.
The mogt notable examples are as following:

B Pure Sdf-Scheduling (PSS)

Formula C, =1
This is the easiest and most straightforward dynamic loop scheduling algorithm
[8]. Whenever a processor isidle, one iteration is assigned to it. This algorithm
achieves good load balancing but also induces excessive overhead.

B Chunk Sdf-Scheduling (CSS)

Formulas C, =k, where k2 1 (known as chunk size is chosen by the user).
Instead of assigning one iteration to an idle processor as in salf-scheduling, CSS
assigns k iterations each time, where k, called the chunk size, is fixed and must
be specified by either the programmer or the compiler [8]. When the chunk size
is one, this scheme is pure self-scheduling, as discussed above. If the chunk size
is set to the bound of the paralel loop equally divided by the number of
processors, the scheme becomes static scheduling. A large chunk size will cause
load imbalancing while a small chunk is likely to produce too much scheduling
overhead. For different partitioning schemes, we adopted CSS(k), which is a
modified verson of CSS, where k means the sze of chunks.

B Guided Sdf-Scheduling (GSS)

Formula C =éR_,/ pu
This agorithm can dynamically change the number of iterations assigned to each
processor [2]. More specificaly, the next chunk size is determined by dividing
the number of remaining iterations of a parallel loop by the number of available
processors The property of decreasing chunk size implies an effort is made to
achieve load balancing and to reduce the scheduling overhead. By assigning
large chunks at the beginning of a parallel loop, one can reduce the frequency of
communication between master and slaves. The small chunks at the end of aloop
partition serve to balance the workload across al the working processors.

B Factoring (FSS)

Formula: C, =éR_,/apy, where the parametera is computed by a probability

digtribution or is suboptimally chosen a = 2.
In some cases, GSS might assign too much work to the first few processors, so

that the remaining iterations are not time-consuming enough to balance the

-12-



workload. This situation arises when the initia iterations in a loop are much
more time-consuming than the later iterations. The Factoring algorithm addresses
this problem [1]. The assignment of loop iterations to working processors
proceeds in phases. During each phase, only a subset of the remaining loop
iterations (usualy half) is divided equally among the available processors.
Because Factoring assigns a subset of the remaining iterations in each phase, it
balances loads better than GSS does when the computation times of loop
iterations vary substantially. In addition, the synchronization overhead of
Factoring is not sgnificantly larger then that of GSS.

B Trapezoid Sdf-Scheduling (TSS)

Formulax C, =C,_,- D, withtrunk size: D =gF - L)/(N - 1), where the first and

last chunk-sze(F, L) areproposed that F = d /2p(}, L=1, N =421 )/(F +L).
This approach tries to reduce the need for synchronization while still maintaining
a reasonable load balance [3]. This algorithm allocates large chunks of iterations
to the first few processors and successively smaller chunks to the last few
processors The difference in the size of successive chunks is aways a constant
in TSSwheressit isadecreasing function in GSS and in Factoring.

B [Inteligent Parallel Loop Scheduling (IPLS)
Fann, Yang, Tseng and Tsa propose a knowledge-based approach to solving
loop-scheduling problems [9]. A rule-based system, called IPLS is developed by
combining a repertory grid and an attribute ordering table to construct a
knowledge base. IPLS chooses an appropriate scheduling algorithm by inferring
some features of loops and assigning parallel loops to multiprocessors to achieve
significant speedup. However, this system is based on UMA architecture and not
suitable on cluster architecture yet.

Table 2.2 shows the different chunk sizes for a problem with the number of

iteration 1=1000 and the number of processor p=4.
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Scheme Patition Sze

PSS 1,1,1,1,1,1,1...

CSS(125) (125, 125, 125, 125, 125, 125, 125, 125

GSS 250, 188, 141, 106, 79, 59, 45, 33, 25, 19, 14,11, 8,6, 4, 3, 3, 2, 1, 1,
1,1

FSS 125, 125, 125, 125, 63, 63, 63, 63, 31, 31, 31, 31, 16, 16, 16, 16, 8, 8, 8,
8,4,4,4,4,2,2,2,2,1,1,1,1

TSS 125, 117, 109, 101, 93, 85, 77, 69, 61, 53, 45, 37, 28

IPLS Auto detect |oop attributes and decide the loop partition strategy

Table 2.2 Sample partition szeswhen 1=1000 and p=4

14



Chapter 3

Our Approach and System Description

3.1 The Extreme Heter ogeneous Environment

Known sdlf-scheduling schemes according to formula to partition size of loop
iteration Unfortunately, if the ratio W{/W is greater than the A/A in some dave
computer, load imbalance happens. We call this slave computer “the dominate
computer”. If there exists a dominate computer in a cluster, we called this cluster in
“the extreme heterogeneous environment”. For example, there are two daves. In FSS,
every slave will get 1/4 iterations at first step. If the performance difference between
the fastest computer and the slowest computer is larger than 3, load imbalance
happens.

In this condition, an additiona dlave computer may not lead to a better
performance by these known self-scheduling schemes since they partition size of loop
iteration according to formulaingtead of computer performance.

A combination of different machine types is used to test the behavior of these
approaches in a heterogeneous computing environment, and the matrix multiplication
is chosen as the test application to get a heuristic result due to its regular behavior.
This experiment included four computers. One of them is assigned as master using
some self-scheduling approach to partition size of loop iteration The master isa PC
with 300 MHz CPU speed and 208MB physical memory. Three daves are PCs,
respectively, with 1.6GHz CPU speed and 256MB physical memory, 233 MHz CPU
speed and 96MB physical memory, and 20MHz CPU speed and 64MB physical
memory. The daves are added into the system sequentialy in this order. We
respectively use GSS FSS and TSS approach to test matrix multiplication with
different problem sizes from 512*512, 1024*1024 to 2048*2048 by floating point
operations.
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No. of Execution time(TSS) Execution time(FSS)
daves | 512*512 |1024*1024(2048*2048| 512*512 |1024*1024|2048*2048
1 012"066 | 1'44"357 | 17'12"483| 012"136 | 1'44"688 | 17'11"402
2 0'17"520 | 2'49"652 | 19'34"016 | 0'18"371 | 3'16"561 | 23'48"723
3 0'13"339 | 1'53"202 | 16'30"651 | 0'14"543 | 2'00"491 | 16'36"007

Table 3.1 The result performance of number of davesin extreme heterogeneous
environment

Table 3.1 shows our experiment result. Note that just one dave in Table 3.1
means that al work is done by the fastest computer only. It shows the system having
two slave computers gets worse performance than having only one slave computer. An
additional PC does not help the performance.

According to Moore s law, CPU clock will double in 18 months. As the law still
works today, to build clusters consisting of extreme different computer performance
becomes demanding.

3.2 Our Approach

For the programs with regular loops, intuitively, we may want to partition problem
size according to their CPU clock in heterogeneous environment. However, the CPU
clock is not the only factor which affects computer performance. Many other factors
also have dramatic influences in this aspect, such as the amount of memory available,
the cost of memory accesses, and the communication medium between processors...
etc[5]. Using this intuitive approach, the result will be degraded if the performance
prediction is inaccurate. A computer with largest inaccurate prediction will be the last
one to finish the assigned job.

Loops can be roughly divided into four kinds, as shown in Figure 1: uniform
workload, increasing workload, decreasing workload, and random workload loops.
They are the most common ones in programs, and should cover most case. These four
kinds can be classified two types: regular and irregular. The first three kinds are

regular and the last oneisirregular.
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Different loops may need to be handled in different ways in order to get the best
performance. Since workload is predictable in regular loops, it is not necessary to
process load baancing a beginning.

We propose to partition problem size in two stages. At first stage, partition the
a% of total workload according to their performance weighted by CPU clock. In the
way, the communication between master and slaves can be reduced efficiently. At
second stage, partition following (100-a)% of total workload according to known
self-scheduling scheme. In the way, load balancing can be archived. This approach
can be suitable for al regular loops.

. Workload
Workload

Time ~ Time
1. Uniform workload 2. Increasing workload

[

_ Worklgad
Workload

Time - Time
3. Decreasing workload 4. Random workload

Figure 3.1 Four kinds of loops
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With this approach, we don’ t need to know the real computer performance. The
computer finishing its job early gets another larger job. The parameter a should not be
too small or too big. In former case, the dominate computer will not finish its work. In
the latter case, the dynamic scheduling strategy is rigid. In both cases, good
performance can not be attained. An appropriate a value will lead to good
performance.

Furthermore, dynamic load balancing approach should not be aware of the
run-time behavior of the applications before execution. But in GSS and TSS to
achieve good performance, computer performance of each computer in the cluster has
to be in order in extreme heterogeneous environment, which is not very applicable.
With our schemes, this trouble will not exis.

In this thesis, the terminology "FSS-80" stand for "a=80, and remainder

iterations use FSSto partition” and so on.

Example 3.1:

There is a cluster consist of five of the daves. They are PCs respectively, with 200
MHz, 200 MHz, 233 MHz, 533MHz, and 1.5GHz CPU-clock. Table 3.2 shows the
different chunk sizes for a problem with the number of iteration 1=2048 in this cluster.
The number of scheduling stepsiis parenthesized.

GSS 410, 328, 262, 210, 168, 134, 108, 86, 69, 55, 44, 35, 28, 23, 18, 14, 12, 9,
7,6,54,3,2,2,2,1,1,1, 1(N=30)

GSS-80 | 923, 328, 144, 123, 121,
82, 66, 53, 42, 34, 27, 21, 17, 14,11,9,7,6,4,4,3,2,2,1,1, 1, 1, 1
(N=28)

FSS | 205, 205, 205, 205, 205, 103, 103, 103, 103, 103, 51, 51, 51, 51, 51, 26,
26, 26, 26, 26, 13, 13, 13, 13, 13, 6, 6,6, 6,6, 3, 3,3, 3,3, 2, 2, 2, 2, 2, 1,
1, 1 (N=43)

FSS80 | 923, 328, 144, 123, 121
41,41, 41,41, 41, 21, 21, 21, 21, 21, 10, 10, 10, 10, 10, 5, 5, 5, 5, 5, 3, 3,
3,331111,11,11,1(N=39)

TSS | 204, 194, 184, 174, 164, 154, 144, 134, 124, 114, 104, 94, 84, 74, 64, 38
(N=16)

TSS80 | 923, 328, 144, 123, 121
40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 1 (N=23)

Table 3.2 Sample partition size of Example 3.1
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To model our approach, we use following terminology:

T isthe totd workload of dl iterationsin aloop.

W isthe a% of total workload.

b is the fewest workload in an increasing/decreasing workload loop. It can be the
workload of the first iteration (in an increasing workload loop) or the workload
of the last iteration (in adecreasing workload |oop).

h is the different of workload between consequence iterations. h is a positive
integer.

X is the iteration number on which the a % accumulating workload is reached. x
ispogtiveredl.

Due to iteration is unpartitionable, we need a suitable integer to measure X. Let it
be m. For achieving load balancing, we want m>x if possible.

Next, we will induce m in different types of regular loops.
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3.2.1 Uniform Workload

The workload of each iteration is uniform in this loop type. h=0. Figure 3.2 is an
illugtration

Assertion 1: In uniform workload loops, m=d ~ a %(.
Pr oof:
T=b" |
W=T"a%=b" x
x=1"a%
m=d " a%(
Itistrivid. ?

»
>

Workload

>
|

Iteration

<l
-

Figure 3.2 A uniform workload loop



3.2.2 Increasing and Decreasing Wor kload

The workload of each iteration increases (decreases) h units in this loop type. h is
congtant. Figure 3.3, 34 areillustrations.

7

Assertion 2: Inincreasing workload loops, m =

b+x/b2+2hW[J,J

h ¢
Pr oof:

@ @ ®

T _[b+b+ (- Dh]I
2
W :§(2b+(|2- Dh)l E 006 = [2b+(>;- Dh]x 1)

Let y=x-1
[2b +2yh] Y e < [2b + xh]x %)
By firg two itemsof (2), we can get
hy? +2by - 2W <0

- 2b++/4b?% + 8hwW
rl<ys< 2h

Thais

2
0<x<? b+«/bh +2hwW ‘1
By lagt two itemsof (2), we can get

hx? + 2bx- 2W >0
Sincex isapodgtive red,
. 2b ++/4b” + 8hw
2h
. b++/b? +2hw
h
Conclude (3) and (4), we can get

3

(4)

- b +4/b? + 2hwW - b++/b? +2hw
. <x< . +1 ()

Since ml N
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_€ p++b?+2nw U
m=é a ?
é h 4

Assertion 3: In decreasing workload loops, m= gl b+ b®+ ZhW'H, where
é h g

W'=T-W.

Proof:

Since we just focus on the DOALL loop, the increasing and decreasing workload
loops are equivalence. The increasing workload loop done reversely will become the
decreasing workload loop done.

L W'=T-W,andwewanttoget x'=1 - X.

According to inequdity (5) of Assertion 2:

- b +4/b? + 2hw' cx<: b++/b? + 2hW" N

1
h h
obrdba2hw o @ beyb?+2hw 0
h ¢ N 5
Since mi N
A ; -
m:gl_-bh/b +2hW3 -
& h b



Workload

Iteration

A
Y

Figure 3.3 An increasing workload loop
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Workload

Iteration
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Figure 3.4 A decreasing workload loop



3.3 System Description and Experimental

Design

3.3.1 System Description

The approach is applied in an extreme heterogeneous environment which
includes six computers shown as Table 3.3. All computers in this cluster run the
RedHat Linux 7.1 operating system (Kernel 2.4.2-2). Program is developed using C
language and LAM 6.5.1. The fastest computer is 7.5 times faster than the slowest
ones in CPU-clock. HPC2 is assigned as the master and the other five computers are
daves. The host-name in ‘lamhost’ file is ordered by decreasing CPU-clock except the
master computer. The master computer always is the first host-name in ‘lamhost’ file.
Those computers may own various NIC and cost of memory access, regarding as part
of computer performance. SWAP may occur in some computers. If SWAP does not
occur often, thiswill not affect the result.

Another cluster is set up to show our proposed approach will still function well
on moderate heterogeneous environment. Table 3.4 shows the characteristics of the
experimental cluster. All computers in this cluster run the RedHat Linux 7.3 operating
system (Kernel 2.4.18-3). The LAM/MPI Version is LAM 6.5.7. The difference of
CPU time-clock between the fastest and the lowest computer is not obvious. We let
HPC3 be the master and the other computer being the daves.
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Node Processor Memory Operating System/MPI Library
HPC1 | 200MHz, Intd Pentium 96 MB | Linux Kernd 2.4.2-2/ LAM 6.5.1
HPC2 | 300MHz, Cyrix M2 208 MB | Linux Kernd 2.4.2-2/ LAM 6.5.1
HPC3 | 233MHz, Pentium 96 MB | Linux Kernel 2.4.2-2/ LAM 6.5.1
HPC4 | 600MHz, Intd Pentium |1 192 MB | Linux Kernd 2.4.2-2/ LAM 6.5.1
HPC5 | 1.5GHz, Intd Pentium IV 128 MB | Linux Kernel 2.4.2-2/ LAM 6.5.1

Table 3.3: Characteristics of extreme heterogeneous environment in experiment

cluster

Figure 3.5 Our extreme heter ogeneous cluster
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Figure 3.6 Our moder ate heter ogeneous cluster

Node Processor Memory Operating System/MP! Library
HPC1 | 1.6G, AMD Athlon MP 1GB | Linux Kernd 24.18-3/ LAM 6.5.7
HPC2 | 1.6G, AMD Athlon MP 512 MB | Linux Kernel 2.4.18-3/ LAM 6.5.7
HPC3 | 1.5G, AMD Athlon MP 512 MB | Linux Kernel 2.4.18-3/ LAM 6.5.7
HPC4 | 1.5G, AMD Athlon MP 512 MB | Linux Kernel 2.4.18-3/ LAM 6.5.7
HPC5 | 1.5G, AMD Athlon MP 512 MB | Linux Kernel 2.4.18-3/ LAM 6.5.7

Table 3.4: Characteristics of experimental cluster
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3.3.2 Experimental Design

The matrix multiplication is chosen as the experimental application to get a heuristic
result due to its regular behavior. The various a vaues are tested in 2048*2048
problem size to get the best performance. Then we use this value to evaluate
performance in different problem size and different loop types.

Matrix multiplication is a program with typicaly uniform workload loop. For
increasng workload, we smulate the behavior as following pseudo code.

For (i=1, i<=n,i=i+h)
For (j=0, j<i, j++)
donot hi ng( nsi ze) ;

donot hi ng is a procedure to compute msize*msize matrix multiplex. We
simulate the decreasing workload loop by reversing the performing order of the
increasing ones. The main parameters are following: b=1, h=1, =360, and msize=50
in extreme heterogeneous environment and b=1, h=1, 1=360, and msize=100 in
moderate heterogeneous environment.

All experiments will be tested in extreme heterogeneous environment and

moderate heterogeneous environment.

3.4 An Example

An example of matrix multiplex usng our approachwith GSSis as followed:

#i ncl ude <stdi o. h>
#i ncl ude <npi. h>
#i ncl ude <mat h. h>
#i ncl ude <string. h>

struct ss

{
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float cs;
struct ss *ptrnext;
3

struct ss *ptrfirst, *ptrthis, *ptrnew, *ptrsent;

i nt Sl ZE;

int prs;

fl oat *cpuinfo;

void master(int);

voi d sl ave(void);

float get cpu_cl ock_speed(void);
void wss(float, int);

void gss(float, int);

int main(int argc, char** argv)
{

i nt myrank, nunprocs;

float cpuinfo_l;

SI ZE = atoi (argv[1]);

prs = atoi (argv[2]);

MPI I nit(&argc, &argv);

MPI _Comm si ze( MPI _COVM WORLD, &nunprocs);
MPI _Comm r ank( MPI _COVM WORLD, &nyrank);

cpuinfo = (float*) mall oc(nunprocs*si zeof (float));

/* gather cpu information here */

cpuinfo | = get _cpu_clock _speed();

MPI _Gat her (&cpuinfo_ |, 1, MPI _FLOAT, cpuinfo,
MPI _FLOAT, 0, MPI_COVM WORLD) ;

if (myrank == 0)
mast er ( nunpr ocs) ;
el se

sl ave();

MPI _Finalize();
return O,
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void master(int nunprocs)

{

float *a, *buf;

int i, j, row, r, source, tag, count, rl, r2, recsource;
MPI _St atus st at us;

/* get every trunk size */
ptrfirst=(struct ss *)NULL;
rl = (SIZE*prs)/ 100;

rz = SIZE - r1,
wss((float)rl, nunprocs-1);

[* initial matrix */
a = (float*)mal |l oc(SlIZE*SI ZE*si zeof (fl oat)) ;
for (i=0; i<SIZE; i++)

for (j=0; j<SIZE;, j++)

ali*Sl ZE+j ] =2. 0;

rowc=1; /* how many data be sent */
r=0;
ptrsent=ptrfirst;

for (i = 1; i < nunprocs; i++) {
MPI _Send( &a[ (rowc-1)*SI ZE], SIZE*(ptrsent->cs),
MPI _FLOAT, i, rowc, MPI_COVM WORLD)

rowc = rowc + ptrsent->cs;
ptrsent = ptrsent->ptrnext;
r++:

}

gss((float)r2, nunprocs-1),;

do {
/* receive data fromclient */
MPI _Probe(MPI _ANY_SOURCE, MPI ANY TAG MPI _COVM WORLD.
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&st at us) ;

source = status. VPl _SOURCE;

tag = status. MPlI _TAG

MPI _Get count (&status, MPI _FLOAT, &count);

buf = (float*)mall oc(count*sizeof (float));

MPI Recv(&a[ (tag-1)*SIZE], count, MPI _FLOAT, source, tag,
MPI _COVM WORLD, &status);

r--;

free(buf);

/* sent another size to client */

if (ptrsent!=(struct ss *)NULL) {

MPI _Send( &a[ (rowc-1)*SI ZE], SIZE*(ptrsent->cs),
MPI _FLOAT, source,
rowc, MPI _COVM WORLD) ;

rowc = rowc + ptrsent->cs;

ptrsent = ptrsent->ptrnext;

r++:

}

el se {

MPI _Send(MPI _BOTTOM 0, MPI _FLOAT, source, O,
MPI _COVM WORLD)

}
} while (r > 0);
}
voi d sl ave(voi d)
{
float *buf, *b, *c;
int i, j, k, I, f, row, nyrank, count, tag, source,;

MPI _St atus st at us;
MPI _Request request;

[* initialize matrix */
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b = (float*)mall oc(SIZE*SI ZE*si zeof (fl oat));
for (i=0; i<SIZE; i++)
for (j=0; j<SIZE, j++)
b[i*SI ZE+j ] =1. O;

/* receive data fromnmaster at first tinme */

MPI _Probe(0, MPI _ANY_TAG MPI _COWM WORLD, &status);
source = status. MPI _SOURCE
tag = status. MPI _TAG,
MPI _Get count (&status, MPI _FLOAT, &count);
buf = (float*)mall oc(count*sizeof(float));
c = (float*)mal |l oc(count*sizeof (float));
MPI _Recv(buf, count, MPI_FLOAT, source, tag
MPI _COVM WORLD, &status);

f =0;

while (status. MPI _TAG >0) {

for (1=0; i<(count/SlIZE); i++)
for (j=0; j<SIZE; j++)
c[i*Sl ZE+j ] =0. 0;

/* conputing */
for (i=0; i<(count/SlIZE); i++)
for (j=0; j<SIZE; j++)
for (k=0; Kk<SIZE; k++)
c[i*SI ZE+] ] += buf[i*SI ZE+k] *b[ k* SI ZE+j ] ;

/* sent result*/
MPlI _Send(c, count, MPI _FLOAT, 0, tag, MPI_COVWM WORLD)
free(buf);

free(c);

/* get another size */
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MPI _Probe(0, MPI _ANY_TAG MPI _COWMM WORLD, &status);
source = status. VPl _SOURCE;
tag = status. MPlI _TAG
MPI _Get count (&status, MPI _FLOAT, &count);
buf = (float*)mall oc(count*sizeof (float));
c = (float*)mal |l oc(count*sizeof (float));
MPI _Recv(buf, count, MPI _FLOAT, 0, MPI _ANY_TAG,
MPI _COVM WORLD, &status);

/*~k***~k***~k***~k***~k***~k***~k***~k***********************/
[*This procedure refer to */
/* Advanced Linux Programm ng. */

/*~k***~k***~k***~k***~k***~k***~k***~k***********************/
float get cpu_cl ock_speed(void)
{

FI LE* fp;

char buffer[1024];

Size_t bytes read,

char* mat ch;

float cl ock _speed,;

f p=f open("/ proc/cpuinfo", "r");
bytes read=fread(buffer, 1, sizeof(buffer), fp);
fclose (fp);

if (bytes_read==0 || bytes_read == sizeof (buffer))
return O;

buffer[bytes_read]="\0";

mat ch=strstr(buffer, "cpu MHz");

i f (mat ch==NULL)

return O;

sscanf (match, "cpu MHz : %", &cl ock _speed);
return cl ock_speed;



void wss(float r, int n)
{
float c, b;
float cpu_total =0;
int i;
c=0;
b=r;
for (i=1;, i<=n; i++4)
cpu_total = cpu_total + cpuinfo[i];

ptrfirst=(struct ss *)NULL;
for (i=1; i<=n; i++){

c=ceil ((r*cpuinfo[i])/cpu_total);
ptrnew=(struct ss *) malloc(sizeof (struct ss));
if (ptrfirst == (struct ss *)NULL)
ptrfirst=ptrthis=ptrnew,
el se
{
ptrthis->ptrnext=ptrnew,
ptrthi s=ptrnew,
}
I f (b<c)
c=b;
ptrthis->cs=c;
ptrthis->ptrnext=(struct ss *)NULL;
b=b- c;

void gss(float r, int nunprocs)
{
float c;
int j;
c=0;
j =0;
while (r !'=0)



[*for (i=1;i<=10;i++)*/

/*

{
c=ceil (r/ nunprocs);
ptrnew=(struct ss *) mall oc(sizeof (struct
I f (ptrfirst == (struct ss *)NULL)
ptrfirst=ptrthis=ptrnew,

el se

{
ptrthis->ptrnext=ptrnew,
ptrthi s=ptrnew,
if (j==0) ptrsent=ptrthis;
] ++;

}

ptrthis->cs=c;

numsent =nunsent +1; */
ptrthis->ptrnext=(struct ss *)NULL;
r=r-c;

printf("Size\t%\n",c);

}

ss));



Chapter 4

Experimental Results and Discussion

4.1 Extreme Heter ogeneous System

Many a values are applied to the experiments with different self- scheduling strategies,
shown as Table 4.1 and Figure 4.1, and a=75 result in the best performance in all
gtuations. Note that the column named “a=0" means the usage of known
sdf-scheduling approaches.

Table 4.2 and Figure 4.2 show the result in a=75 with different self-scheduling
strategies. The column name "None" stands for "none load-balancing” and workload
be partitioned just by CPU clock. Note that in extreme heterogeneous environment,
FSS and GSS get worse performance than scheme partitioning workload merely
according to the CPU clock. Using our approach in 2048* 2048 matrix multiplication
will reduce 26.8%, 39.6% and 23.5% execution time than GSS, FSS and TSS
respectively.

The a value should depend on system architecture. Different system architecture
will have different a value. Using every a value from 60 to 90 will achieve a better
performance than just using the known sdlf-scheduling schemes in our system.

Applying a=75 to smaller problem size, 1024*1024 matrix multiplication, or
larger problem size, 3072* 3072 matrix multiplication, the result was shown in Table
4.3 and Figure 4.3. In 1024* 1024 and 3072* 3072 matrix multiplication, our approach
will reduce execution time 19.5% and 13.1% than GSS, 31.1% and 27.8% than FSS,
14.9% and 23.7% in TSS, respectively.

The result of a=75 in simulated decreasing/increasing workload loop was shown
in Table 4.4 and Figure 4.4. In decreasing case, 29.9% in GSS, 61.1% in FSS and
54.2% in TSS, execution time is reduced. Using our approach in ssimulated increasing
workload loop will reduce 59.4%, 48.6.1%, 30.1% execution time than GSS, FSS and

TSS respectively.



a=0 a=60 a=65 a=70 a=75 a=80 a=85 a=90

GSS 853.1| 731.1| 719.0| 6814| 6241| 6504| 690.7| 7315

FSS 1010.5| 663.6| 6586| 630.2| 609.6| 650.3| 6904| 730.8

TSS 809.6| 7190| 697.2| 6393| 6191 650.3| 690.1| 730.8

Table 4.1 Execution time for 2048*2048 matrix multiplication by various
approaches in extreme heter ogeneous environment
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Figure 4.1(a) A chart of execution time of 2048*2048 matrix multiplication by

GSS group approach in extreme heter ogeneous environment
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Figure 4.1(b) A chart of execution time of 2048*2048 matrix multiplication by
FSS group approach in extreme heter ogeneous environment
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Figure 4.1(c) A chart of execution time of 2048*2048 matrix multiplication by
TSS group approach in extreme heter ogeneous environment



None GSS | GSS75( FSS | FSS75| TSS | TSS75

Execution

fime 813.3 853.1 624.1| 1010.5 609.6 809.6 619.1

Table 4.2 Execution time of 2048*2048 matrix multiplication by various

self-scheduling approaches when a=75 in extreme heter ogeneous environment
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Figure 4.2 A chart of execution time of 2048*2048 matrix multiplication by

various self-scheduling approaches when a=75 in extreme heterogeneous
environment



None GSS | GSS75| FSS | FSS75| TSS | TSS75

1024* 1024 1138 107.3 86.4 125.6 86.6 100.1 85.2

3072*3072 | 2730.9 | 2651.2| 2305.8| 3040.8| 2311.7| 2849.5| 2313.6

Table 4.3 Execution time of different problem size by various self-scheduling
approach whena=75 in extreme heter ogeneous environment
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Figure 4.3 A chart of execution time of different problem size by various
self-scheduling approach when a=75 in extreme heter ogeneous environment



GSS GSS-75 FSS FSS-75 TSS TSS-75

Decreasing

336.6 2447 610.3 2447 552.4 2447

Increasing

580.2 264.6 475.1 264.6 388.5 264.5

Table 4.4 Execution time of simulated increasing/decreasing workload loop by

various self-scheduling approach when a=75 in extreme heterogeneous

environment
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Figure4.4 A chart of execution time of simulated increasing/decr easing wor kload

loop by various self-scheduling approach when a=75 in extreme heterogeneous

environment
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4.2 Moderate Heter ogeneous System

We want to prove our approach will function in moderate heterogeneous system also.
Many avalues are applied to the experiments with differert self-scheduling strategies
in 2048* 2048 matrix multiplication shown as Table 4.5 and Figure 4.5. Table 4.6 and
Figure 4.6 show the result in a=75 with different self-scheduling strategies. The
difference of system performance using various a value and \arious self-scheduling
approachesis not obvious.

Applying a=75 to smaller problem size, 1024*1024 matrix multiplication, or
larger problem size, 3072* 3072 matrix multiplication, the result was shown in Table
4.7 and Figure 4.7. There is not obvious difference between various self-scheduling
schemes.

The result of a=75 in simulated decreasing/increasing workload loop was shown
in Table 4.8 and Figure 4.8. The execution time in decreasing loop and increasing
loop should be same in theory, but there is obvious difference by GSS and FSS. That
is because that the remainder 25% workload is processed by known self-scheduling
get load imbalancing. Decreasing loop get better performance than increasing one due
to getting smaller workload.
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a=0 a=60 a=65 a=70 a=75 a=80 a=85 a=90
GSS 485.6| 4789| 479.6| 480.6| 4835| 4795| 4794 | 4811
FSS 479.1| 4743| 475.7| 476.3| 4782 4745 476.8| 4744
TSS 489.3| 495.6| 492.6| 490.4| 486.8| 494.6| 4952 491.2

Table 4.5 Execution time for 2048*2048 matrix multiplication by various
approaches in moder ate heter ogeneous environment
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Figure 4.5(a) A chart of execution time of 2048*2048 matrix multiplication by

GSS group approachin moder ate heter ogeneous environment
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Figure 4.5(b) A chart of execution time of 2048*2048 matrix multiplication by
FSS group approach in moder ate heter ogeneous environment
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Figure 4.5(c) A chart of execution time of 2048*2048 matrix multiplication by
TSS group approach in moder ate heter ogeneous environment



None GSS | GSS75( FSS | FSS75| TSS | TSS75

Execution

fime 506.3 485.6 4835| 4791 478.2 489.3| 486.8

Table 4.6 Execution time of 2048*2048 matrix multiplication by various

self-scheduling approaches when a=75 in moder ate heter ogeneous envir onment
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Figure 4.6 A chart of execution time of 2048*2048 matrix multiplication by

various self-scheduling approaches when a=75 in moderate heterogeneous
environment



None GSS | GSS75| FSS | FSS75| TSS | TSS75

1024* 1024 62.7 60.2 57.7 56.7 56.6 60.9 94.5

3072*3072 | 1726.2 | 1658.0| 1643.2| 1638.7 | 1632.7| 1700.4| 1657.3

Table 4.7 Execution time of different problem size by various self-scheduling
approach when a=75 in moder ate heter ogeneous environment
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Figure 4.7 A chart of execution time of different problem size by various

self-scheduling appr oach when a=75 in moder ate heter ogeneous environment



GSS GSS-75 FSS FSS-75 TSS TSS-75
Decreasing 495.1 347.0 252.8 280.3 304.3 254.4
Increasing 255.1 255.1 264.4 260.5 304.3 256.1

Table 4.8 Execution time of simulated increasing/decreasing workload loop by

various self-scheduling approach when a=75
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Figure 4.8 A chart of execution time of simulated increasing/decr easing wor kload

loop by various sdlf-scheduling approach when a=75
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Chapter 5

Conclusion and FutureWork

In this paper, we show that known self- scheduling schemes cannot achieve good load
balancing in some situations. We propose an approach to partition loop iterations and
achieve good performance in any heterogeneous environment: partition a% of
workload according to their performance weighted by CPU clock and the rest
(100-a)% of workload according to known self- scheduling. Many various a values are
applied to the matrix multiplication and a best performance is obtained with a=75. We
also applied our schemes on two simulated increasing/decreasing workload loops and
get obviously performance improvement. Therefore, our approach is suitable in al
aoplicationswith regular loops.

Our idea is just suitable for the regular workload loop. However, the irregular
workload loop, such as displaying the Mandelbrot set problem, is more common lbop
type. We want to solve parallel loop scheduling problems with unpredictable loops on
heterogeneous PC clusters. Furthermore, our approach isjust ranged on DOALL loop;
we want to expend our research field to DOACROSS loop and runtime scheduling.

Fann, Yang, Tseng and Tsal propose a knowledge-based approach to solving
loop-scheduling problems [9]. A rule-based system, called IPLS, is developed by
combining a repertory grid and an attribute ordering table to construct a knowledge
base. IPLS chooses an appropriate scheduling algorithm by inferring some features of
loops and assigning parallel loops to multiprocessors to achieve significant speedup.
However, this system is based on UMA architecture. In near future, we will migrate
IPLS to cluster architecture. Also, we will solve parallel loop scheduling problems
with unpredictable loops on extreme heterogeneous PC clusters and integrate our
approach into the new IPLS.
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