
在對稱式多處理器系統上運用 OpenMP 以

降低負載提昇執行效率於不同型式之資料

傳送模式

研究生：陳獻昌 指導教授: 楊朝棟 博士
私立東海大學理學院資訊工程與科學系

摘要

本篇論文主要是探討在對稱式多處理器系統上於不同型式的資料傳

送模式下，如何降低負載來提昇執行效率。運用 OpenMP 的多執行緒

功能在 SUN Fire 6800 對稱式多處理器電腦環境下，針對兩種不同型

式的資料傳送模式，進行負載與效能提昇的分析。第一種為資料獨立

模式(Independent Model)，是資料各自獨立處理相互間不會有交換或

更新；例如雙質數(Twin Primes)及矩陣相乘之計算。第二種為相鄰資

料交換模式(Nearest Neighbor Model)是相鄰資料間相互會有交換或更

新；例如 Laplace 方程式計算。其他重要的分析考量因素尚有：計算

式的邏輯模式、記憶體的可用狀態、與資料的切割等，皆為提昇執行

效率的重要影響因素。

i

Minimize Overhead to Improve
Performance of Different Data

Communication Styles by OpenMP on SMP

Student: Shien-Chang Chen Advisor: Dr. Chao-Tung Yang
Department of Computer Science and Information Engineering

Tunghai University
Taichung, 407, Taiwan, Republic of China

Abstract

In this thesis, we study the execution overhead of loop iterations by using OpenMP

with multithreads programming on SMP (Symmetric Multiprocessors) systems. To

analyze the speedup and improvement the performance, two data communication

styles are used: Independent model and Nearest Neighbor model [1]. Two distinct

models based on the span of the data stencil used to update the next point. For

Independent model the update algorithm requires the data only from the previous time

step or initial conditions and the general algorithm, i.e. Twin Primes and Matrix

Multiplication computing. But Nearest Neighbor model the update algorithm is

similar to the method of approximating derivatives, which used central differences.

First derivatives calculated using central differences only use values from neighboring

points. The method can be used to solve several classes of equations, such as

Laplace’s Equation computing. As we analyze the overhead, some important factors

need to be taken into account, which include computation algorithm, available

memory of the system and the data decomposition or partition method.

ii

Acknowledgements

I would like to thank all the people who have made writing this thesis a more pleasant

task. In particular, I’d like to thank my principal advisor, Dr. Chao-Tung Yang, who

introduced me to this topic and gave me broad support and guidance throughout my

time as Tunghai. I’d like to thank Professor Wuu Yang, Professor Nai-Wei Lin and

Professor Yi-Min Wang for their valuable comments and advice given while serving

on my reading committee.

There are many other people whom I would like to thank. Especially to My wife,

without her encourages and supports that I can’t pursue further education in Tunghai.

Many colleagues encouraged and supported me on studying. For them, I can make

writing this thesis with no fear of disturbance in the rear.

Last, but certainly not the last, I’d like to make my family and all my friends

whose unconditional support made this thesis possible.

iii

Contents

Abstract (in Chinese)... i

Abstract (in English)... ii

Acknowledgements ..iii

Contents.. iv

List of Tables .. vi

List of Figures .. ix

 Introduction.. 1 1

2

1.1 Threading in a Multiprocessor Systems...1

1.2 Parallel Programming Concepts and Terminology........................2

1.2.1 Parallel Programming Paradigms ..2

1.2.2 Parallelization Constructs ..3

1.2.3 OpenMP Directive Language...4

1.3 Motivation..6

1.4 Contributions..6

1.5 Structure of This Thesis ...7

 Background .. 8

2.1 Overhead Analysis ...8

2.1.1 Communication Styles ...9

2.1.2 Static Scheduling and Dynamic Scheduling12

2.2 A Methodology for Optimization...12

iv

 Programming Environment and Applications 13 3

4

5

6

3.1 OpenMP Overview...13

3.1.1 Platforms of OpenMP ..13

3.1.2 Framework of Omni OpenMP Compiler System14

3.2 Sun Fire 6800 Server ...15

3.3 System Description and Experimental Setup16

3.3.1 System Description ..16

3.3.2 Experimental Setup ..16

 Experimental Results and Discussion 18

4.1 Twin Primes ...18

4.2 Matrix Multiplication...26

4.3 Laplace’s Equation...34

4.4 Experimental of Twin Primes by Pthread Code...........................40

4.5 Experimental of Matrix Multiplication by Pthread Code............43

4.6 Experimental of Laprice's Eauation by Pthread Code46

4.7 Experimental OpenMP vs. Pthread..48

 Conclusion and Future Work ... 54

 References... 56

v

List of Tables

Table 4.1: The elapsed time (seconds) of Twin Primes by dynamic

schedule with difference upper bound..19

Table 4.2: The efficiency of Twin Primes by dynamic schedule in each
upper bound ..19

Table 4.3: The overhead of Twin Primes by dynamic schedule in each
upper bound ..20

Table 4.4: The elapsed time of Twin Primes by static schedule in each
upper bound ..21

Table 4.5: The efficiency of Twin Primes by static schedule in each upper
bound...22

Table 4.6: The overhead of Twin Primes by static schedule in each upper
bound...23

Table 4.7: The efficiency ratio of Twin Primes by dynamic vs. static
schedule...24

Table 4.8: The overhead ratio of Twin Primes by dynamic vs. static
schedule...25

Table 4.9: The elapsed time of Matrix Multiplication by dynamic
schedule...26

Table 4.10: The efficiency of Matrix Multiplication by dynamic schedule
...27

Table 4.11: The overhead of Matrix Multiplication by dynamic schedule
...28

Table 4.12: The elapsed time of Matrix Multiplication by static schedule
...29

Table 4.13: The efficiency of Matrix Multiplication by static schedule...29

vi

Table 4.14: The overhead of Matrix Multiplication by static schedule....30

Table 4.15: The efficiency ratio of Matrix Multiplication by dynamic vs.
static schedule ...31

Table 4.16: The overhead of Matrix Multiplication by dynamic vs. static
schedule...32

Table 4.17: The elapsed time of Laplace’s Equation by dynamic schedule
...34

Table 4.18: The efficiency of Laplace’s Equation by dynamic schedule .35

Table 4.19: The overhead of Laplace’s Equation by dynamic schedule ..35

Table 4.20: The elapsed time of Laplace’s Equation by static schedule ..36

Table 4.21: The efficiency of Laplace’s Equation by static schedule.......36

Table 4.22: The overhead of Laplace’s Equation by static schedule........37

Table 4.23: The efficiency ratio of Laplace’s Equation by dynamic vs.
static schedule ...38

Table 4.24: The overhead ratio of Laplace’s Equation by dynamic vs.
static schedule ...38

Table 4.25: The elapsed time (seconds) of Twin Primes by Pthread code
in each upper bound..40

Table 4.26: The efficiency of Twin Primes by Pthread in each upper
bound...40

Table 4.27: The overhead of Twin Primes by Pthread in each upper bound
...41

Table 4.28: The elapsed time of Matrix Multiplication by Pthread..........43

Table 4.29: The efficiency of Matrix Multiplication by Pthread..............43

Table 4.30: The overhead of Matrix Multiplication by Pthread44

Table 4.31: The elapsed time of Laplace’s Equation by Pthread..............46

Table 4.32: The efficiency of Laplace’s Equation by Pthread..................46

Table 4.33: The overhead of Laplace’s Equation by Pthread47

Table 4.34: The efficiency ratio of Twin Primes by Pthread vs. static
schedule...48

vii

Table 4.35: The overhead ratio of Twin Primes by Pthread vs. static
schedule...49

Table 4.36: The efficiency ratio of Matrix Multiplication by Pthread vs.
static schedule ...50

Table 4.37: The overhead of Matrix Multiplication by Pthread vs. static
schedule...50

Table 4.38: The efficiency ratio of Laplace’s Equation by Pthread vs.
static schedule ...51

Table 4.39: The overhead ratio of Laplace’s Equation by Pthread vs. static
schedule...52

viii

List of Figures

Figure 1.1: The memory unit ..2

Figure 2.1: Independent point update methodology.................................10

Figure 2.2: Nearest Neighbor point updated methodology10

Figure 2.3: Quasi-Global point updated methodology11

Figure 2.4: Global point updated methodology..11

Figure 3.1: Omni OpenMP compiler system..14

Figure 4.1: The efficiency of Twin Primes with different upper bound by
dynamic schedule..20

Figure 4.2: The overhead of Twin Primes with different upper bound by
dynamic schedule..21

Figure 4.3: The efficiency of Twin Primes with different upper bound by
static schedule ...22

Figure 4.4: The overhead of Twin Primes with different upper bound by
static schedule ...23

Figure 4.5: The efficiency ratio of Twin Primes by dynamic vs. static
schedule...24

Figure 4.6: The overhead ratio of Twin Primes by dynamic vs. static
schedule...25

Figure 4.7: The efficiency of Matrix Multiplication by dynamic schedule
...27

Figure 4.8: The overhead of Matrix Multiplication by dynamic schedule
...28

Figure 4.9: The efficiency of Matrix Multiplication by static schedule...30

Figure 4.10: The overhead of Matrix Multiplication by static schedule ..31

ix

Figure 4.11: The efficiency ratio of Matrix Multiplication by dynamic vs.
static schedule ...32

Figure 4.12: The overhead of Matrix Multiplication by dynamic vs. static
schedule...33

Figure 4.13: The efficiency of Laplace’s Equation by dynamic schedule35

Figure 4.14: The efficiency ratio of Laplace’s Equation by dynamic vs.
static schedule ...36

Figure 4.15: The efficiency ratio of Laplace’s Equation by dynamic vs.
static schedule ...37

Figure 4.16: The overhead of Laplace’s Equation by static schedule37

Figure 4.17: The efficiency ratio of Laplace’s Equation by dynamic vs.
static schedule ...38

Figure 4.18: The overhead ratio of Laplace’s Equation by dynamic vs.
static schedule ...39

Figure 4.19: The efficiency of Twin Primes with different upper bound by
Pthread ..41

Figure 4.20: The overhead of Twin Primes with different upper bound by
Pthread ..42

Figure 4.21: The efficiency of Matrix Multiplication by Pthread44

Figure 4.22: The overhead of Matrix Multiplication by Pthread45

Figure 4.23: The efficiency of Laplace’s Equation by Pthread47

Figure 4.24: The overhead of Laplace’s Equation by Pthread47

Figure 4.25: The efficiency ratio of Twin Primes by Pthread vs. static
schedule...48

Figure 4.26: The overhead ratio of Twin Primes by Pthread vs. static
schedule...49

Figure 4.27: The efficiency ratio of Matrix Multiplication by Pthread vs.
static schedule ...50

Figure 4.28: The overhead of Matrix Multiplication by Pthread vs. static
schedule...51

x

Figure 4.29: The efficiency ratio of Laplace’s Equation by Pthread vs.
static schedule ...52

Figure 4.30: The overhead ratio of Laplace’s Equation by Pthread vs.
static schedule ...53

xi

Chapter 1

 Introduction

1.1 Threading in a Multiprocessor Systems

For multiprocessor system a CPU could not write directly to memory simply by

wiggling the voltages on a few wires that connected the CPU chip to the memory chip.

All was well with the world. In multithreaded systems, only one path to memory

existed reads and writes to memory. It is always occurred whenever the CPU executed

the associated machine instruction. The introduction of memory caches didn't

fundamentally change that model (once they got the cache-coherency bugs worked

out). Indeed, the cache is transparent to the program if it's implemented correctly. That

simple memory model -- the CPU issues an instruction that modifies memory with an

immediate effect -- remains in most programmers' minds.

Somebody had the bright idea that two or more processors could run in the same

box at the same time, sharing a common memory store (Suddenly, the world became

much more complicated). In that situation, a given CPU can no longer access memory

directly because another CPU might be using the memory at the same time. To solve

the problem, along came a traffic-cop chip, called a memory unit. Each CPU was

paired with its own memory unit, and the various memory units coordinated with each

other to safely access the shared memory. Under that model, a CPU doesn't write

directly to memory but requests a read or write operation from its paired memory unit,

which updates the main memory store when it can get access, as seen in Figure 1.1.

1

Figure 1.1: The memory unit

To solve memory coherency the bright engineer noticed some method to

optimize memory operations with the hardware or operation system such as relaxed

memory, synchronize. The visibility of a memory modification is guaranteed only

when the modifying thread releases a lock that is subsequently acquired by the

examining thread.

For the threading, it’s depends on the number of CPU within SMP (Symmetric

Multiprocessor). Some compiler can run with over threading, such as POSIX thread,

while the Omni OpenMP the number of threading is limited to the number of CPU in

SMP.

1.2 Parallel Programming Concepts and

Terminology

1.2.1 Parallel Programming Paradigms

The term “parallel programming” refers to writing a program that takes advantage of

parallel processing, in which multiple processors take part in executing a single

program. From programmers’ point of view, there are two major paradigms in doing

so. The shared-memory programming model loosely targets a shared memory

architecture, in which multiple processors share single memory space. The

communication between processors takes place through reading and writing in this

2

memory space. The notion of “shared” and “private” data becomes important. Shared

data are visible to all processors participating in parallel execution. Communication

between processors takes place in the form of reading and writing to share data.

Private data, on the other hand, is local to each processor and cannot be accessed by

other processors.

The other form of parallel processing targets message-passing architecture.

Processors do not share memory; instead, they explicitly send and receive messages.

All data are private, and the only way to acquire the data that are not in the local

memory is to request and receive them from the processor that has them. This thesis

assumes a shared-memory programming paradigm. Note, that this paradigm is viewed

from a software perspective. At the architecture level a shared-memory software

paradigm can be implemented with distributed-memory architecture, as long as there

are hardware or system software mechanisms that enable the program to access shared

data as if it were placed in a common memory. In this case, the “only” effect noticed

by the program is that access to some memory is faster than to other memory. We will

describe software techniques that deal with such non-uniform memory access

behavior.

1.2.2 Parallelization Constructs

In order to tell the underlying machine that a program should be executed in parallel,

we need some form of programming language constructs. These constructs control

data sharing, synchronization, and so on. The two paradigms offer different sets of

parallel constructs to achieve this.

In our shared memory model, a programmer inserts “directives” into the code.

These directives do not affect the program semantics. They dictate how the parallel

processors shall share work and data.

The directives usually target program sections with repetitive execution pattern,

mainly loops. A programmer, who wants certain loops to be executed in parallel,

inserts appropriate directives before these sections. The machine code generating

3

compilers generate parallel executable code based on these directives. An alternative

way of expressing programs in the shared-memory model is to use threads. In this

scheme the programmer packages program sections that can execute concurrently into

subroutines and spawns these subroutines as parallel activities, called threads. In the

view of this document, threads parallelism is at a lower level than directive

parallelism. In fact, the compiler will translate a directive-parallel program into a

thread-parallel program as an intermediate compilation step. Advanced parallel

programmers sometimes prefer threads parallelism because it can offer more direct

control over the parallel program execution. Usually, this comes at the cost of a higher

programming effort, however.

In the message-passing model, the constructs typically come in the form

of library of functions. The library includes functions for sending and receiving

messages, synchronizing execution, and so on. The Message Passing Interface (MPI)

is an important standard that is implemented in the form of such libraries. The parallel

programmer's task in the message-passing model is to incorporate these functions into

the algorithm. Programmers need to devise ways to split data, communicate, and

synchronize, and write or modify the program based on the idea.

1.2.3 OpenMP Directive Language

In the past there have been many different sets of directives. They have recently been

standardized in the form of the OpenMP directive language, which is supported by

most manufacturers of shared-memory multiprocessors. All application code in this

thesis are written in OpenMP. OpenMP is the result of an industry-wide effort to

resolve compatibility issue in the shared memory-programming model. It embraces

many existing directive languages and adds a few new concepts for more

expressiveness. What follows is an example of OpenMP directives applied to a code

section that computes PI.

4

/* calculate the interval size */

 w=1.0/n;

 sum=0.0;

#pragma omp parallel private (x) shared(w,sum)

{

#pragma omp for

 for (i=1;i<=n;i++)

 {

 x=w*((double)i-0.5);

#pragma omp critical

{

 sum=sum+f(x);

}

 }

}

 pi=w*sum;

Lines starting with #pragma omp indicates directives. Directive parallel

indicates that the loop has no loop-carried dependencies and may be executed in

parallel. Directives private and shared tell the compiler that the following variables in

the parenthesis are private or shared, respectively. Directive reduction(+: sum)

indicates that the variable Sum is a summation reduction variable (refer to the

reduction technique section)[], and requires a special care for parallel execution.

5

Examining the details of OpenMP is beyond the scope of this guideline and readers

should refer to the OpenMP group for more information.

1.3

1.4

Motivation

How to reduce overhead and to improve performance, parallel computing is necessary.

For the powerful analysis and making fast and right decision, parallel computing will

give a very significant support. But timing is the most important thing for parallel

computing. To develop a good parallel implementation requires understanding of

where run-time is spent and comparing this to some realistic best possible time. The

overhead analysis is a way of comparing achieved performance with achievable

performance. In the parallel programming models message passing (MPI, PVM) and

threading (POSIX thread, OpenMP), we select the OpenMP Application Program

Interface (API) as my application parallel language. Why using OpenMP? The

reasons are stated as follows:

z Good for loop parallelization.

z Parallelization mainly compiler directives.

z Portable and scalable model for C/C++ and FORTRAN.

z New Standardized for jointly defined and endorsed by a group of major
computer hardware and software vendors

z Easy to translate from sequential program into parallel program.

Contributions

By using OpenMP with multithreads programming on SMP (Symmetric

Multiprocessors) systems to analyze the speedup and improvement the performance,

two data communication styles are used: Independent model and Nearest Neighbor

6

model [1]. Two distinct models based on the span of the data stencil used to update

the next point. For Independent model the update algorithm requires the data only

from the previous time step or initial conditions and the general algorithm, i.e. Twin

Primes and Matrix Multiplication computing. But Nearest Neighbor model the update

algorithm is similar to the method of approximating derivatives, which used central

differences. First derivatives calculated using central differences only use values from

neighboring points. The method can be used to solve several classes of equations,

such as Laplace’s Equation computing. As we analyze the overhead, some important

factors need to be taken into account, which include computation algorithm, available

memory of the system and the data decomposition or partition method. As the

experiment results show that the super linear speed up is possible. Many vendors

develop their machine with huge numbers of CPUs and build in large memory in the

SMP system. Therefore the trend is clear and the influence will make the super high

performance computing comes true.

1.5 Structure of This Thesis

This thesis starts with the brief introduction of threading in Multiprocessor; parallel

programming concepts and OpenMP directive language. Chapter 2 gives a short

definition of the parallel terminology, overhead and efficiency notation. It will support

a deeper analysis later in this thesis. Chapter 3 is described the parallel programming

environments and the framework of Omni OpenMP compiler system. In chapter 4 we

implement three programs for evaluation the overhead in two data communication

styles. Also we discussion the out come between the static and dynamic scheduling

methods. Finally we make a brief conclusion and future work in chapter 5.

7

Chapter 2

 Background

2.1 Overhead Analysis

Overhead analysis [2] [3] is a technique to provide developers with more information

about the execution of their code, specifically to help determine the maximum

performance possible. It is an extended view of Amdahl’s Law, as we now explain.

Assume Ts is the time spent by a serial implementation of a given algorithm and Tp is

the time spent by a parallel implementation of the same algorithm on p threads. Then

for perfect parallelization we would have Tp = Ts /p. Amdahl’s Law introduces as a

measure of the fraction of parallelized code in the parallel implementation, and states

that as below:

p
αα)(1 s

sp
T

TT +−=

Thus, the best time for a parallel implementation is restricted by the fraction

(1-) of the unparalleled code. Let use to rearrange above equation to give new

equation:

α

s
s

p T
p

p
p

TT)1(1 α−
−

+=

The first term is the time for an ideal parallel implementation. The second term

can be considered as an overhead or degradation of the performance. In this case it is

an overhead due to unparallel code. However, this model is too simplistic in that it

8

takes no account of any of the various factors affecting performance, such as how well

the parallelized code has been implemented.

Let us therefore consider equation to be a specific form as follow.

∑+=
i

i
s

p op
TT

The Oi is an overhead for each possible overhead. The efficiency we defined as

below:

p

s

p Tp

T
E

×
=

In order to calculate the overhead our function noted as below:

p
TTO s

pp −=

In this thesis we will use above definition to evaluate the efficiency between

different communication styles.

2.1.1 Communication Styles

As mentioned in “Beowulf Cluster Design for Scientific PDE Models” [1], B.

McGarvey and other authors classified four styles of point update methodology:

Independent, Nearest Neighbor, Quasi-Global and Global. That will take most

influence of the communication behavior among processors.

Independent: in Figure 2.1 the update algorithm requires the data only from the

previous time step or initial conditions and the general algorithm, i.e. co-located

models.

9

Figure 2.1: Independent point update methodology

Nearest Neighbor: in Figure 2.2 a method of approximating derivatives is to use

central differences. First derivatives calculated using central differences only use

values from neighboring points. This method can be used to solve several classes of

equations, such as Maxwell’s electromagnetic equations and Laplace’s Equation.

Figure 2.2: Nearest Neighbor point updated methodology

Quasi-Global: in Figure 2.3 a method for discrimination result in the need for more
than just the adjacent points, the scheme determines the number of points required
from the original point. One such scheme is the Battle-LeMarie Multi-Resolution
Time-Domain (MRTD) method [13].

10

Figure 2.3: Quasi-Global point updated methodology

Global: in Figure 2.4 the global basis function requires that all the data points in

the space be know to update any single point, This is generally the limiting case of

data interaction; update any point depends on the data from every point on the grid

[13]. Matrix inversion loosely fits into this Category.

Figure 2.4: Global point updated methodology

11

2.1.2 Static Scheduling and Dynamic Scheduling

In the Omni OpenMP compiler, the default loop scheduling is static schedule with

block scheduling. It means the scheduling with chunk size N, which may cause load

imbalance when the execution time of each remote call is changed. Altering the

schedule of the parallel DO loop from A simple to an interleaved distribution (by

giving the SCHEDULE clause argument (STATIC, 1), meaning cyclic scheduling

with chunk size 1. It should give more satisfactory load balance in the loop [2].

Dynamic scheduling adjusts the schedule during execution and is especially

suitable whenever the number of iterations is uncertain or iteration may take a

different amount of time. Although it is more suitable for load balancing between

processors, runtime overhead is the cost. In the experiment we compare the dynamic

and static scheduling only the Matrix Multiplication get best performance. Because

we create the matrix by dynamic allocate memory.

2.2 A Methodology for Optimization

In order to porting and tuning the performance of these three application programs to

a parallel machine. We start by identifying the most time-consuming code section of

the program, optimize its performance using several recipes, and then repeat this

process with the next most important code section. The most important program

sections for parallel execution in our programming paradigm are loops. Hence we

profile the program execution time on a loop-by-loop basis. We do this by inserting

the program code with calls to timer functions. The timing profile not only allows us

to identify the most important code sections, but also to monitor the program's

performance improvements as we convert it from a serial to a parallel program. If we

are not satisfied with the resulting performance we will modify the parallel code by

hand again.

12

Chapter 3

 Programming Environment and
Applications

3.1 OpenMP Overview

3.1.1 Platforms of OpenMP

There are many vendors and groups implement their machine to support OpenMP,

such as Compaq, Fujitsu, HP, IBM, Intel, KAI (KAI Software Lab is part of the Intel

team of technology leaders), SGI, Sun and RWCP (Real Word Computing Partnership

in Japan). These vendors or groups support the platforms of OpenMP not only for

UNIX system but also in Windows NT/2000 platforms. Reference list as below:

z Sun Solaris 5.6 (SPARC and x86).

z Linux 2.2.7 (redhat-6.0, x86 SMP or above version) with Linux-threads

z IRIX 6.5 (Origin 2000) with POSIX threads

z IBM AIX with POSIX threads

z HPUX with POSIX threads

z KAP/Pro with POSIX threads.

13

3.1.2 Framework of Omni OpenMP Compiler System

In this thesis we select Omni OpenMP [5] to setup the compiler system, which is

developed at RWCP (Real World Computing Partnership) [6]. So far it is available on

many SMP (shared memory processor) platforms such as Sun Solaris, Red Hat Linux

and IRIX 6.5 (Origin 2000). The SMP cluster version is under development. But it is

available on SCASH [11] to implement the cluster-enabled Omni OpenMP under

Score Cluster System Software for software distributed shared memory system.

Regarding to grid computing there is A Grid RPC Facility for Cluster and Global

Computing in OpenMP [12].

The framework of Omni OpenMP compiler system [7] shown in Figure 3.1

Figure 3.1: Omni OpenMP compiler system

14

3.2 Sun Fire 6800 Server

Sun Fire[tm] 6800 server is a powerful, highly available solution. Scaling up to 24

processors and featuring the redundantly configurable Sun[tm] Fire plane interconnect;

this server delivers impressive total system performance. Fully hardware redundancy

and a variety of advanced mainframe-class availability features, such as hot CPU

upgrades and Dynamic Reconfiguration, provide maximum uptime. With Solaris

Resource Manager[tm] software and Dynamic System Domains, this system has the

flexibility to accommodate changing resource requirements where continuous uptime

and availability are the key technologies. By using Dynamic Reconfiguration (DR),

we can perform the following functions:

z Configure CPU/Memory boards into a running domain.
z Install new CPU/Memory boards in a domain.
z Hot-Swap CPU/Memory boards.
z Hot-Swap an I/O Assembly.
z Hot-Swap a PCI Card.
z Move a CPU/Memory board between Dynamic System Domains.
z Initiate parallel DR operations

15

http://www.sun.com/servers/midrange/dr_sunfire/index.html

3.3 System Description and Experimental Setup

3.3.1 System Description

In our study system we configure On the Sun Fire[tm] 6800 as a domain which

with 8 CPU, 8GB main memory and setup by Solaris 8 (5.8) operation system. This

NUMA machine built from 4-processor building blocks (“quads”) interconnected with

a fast switch that delivers 9.6GB/sec. In each quad it is a UMA SMP. The Omni

OpenMP is used for programs compiler system.

This studies we have chosen two styles of data communication code, the Twin

Primes number problem which is called for independent style, Matrix Multiplication

also for Independent style but we create matrix size by dynamic memory allocate, and

Laplace’s Equation for the Nearest Neighbor update style.

These three programs are modified by manual from sequential code to parallel

codes. In order to calculate the execution time some special codes were added. Such

as time function, parallel begin and parallel loop end.

To compare the overhead and performance between different schedule type, we

modified each program into parallel dynamic schedule and parallel static schedule

model. In next section the result will point out the behavior between these two

models.

3.3.2 Experimental Setup

According to the Omni OpenMP installation guideline [10] we setup the experimental

system step by step. First, we download the Omni distribution, “Omni-1.4.tar.gz”,

second, we download yacc to make the parser, third, we download Java Development

Kit (JDK version 1.3.1) and finally we use Solaris thread as the thread library.

16

 Since the Java development Kit (JDK) is preinstalled and the GNU bison or

yacc also preinstalled too. On the Sun Fire[tm] 6800 system Omni OpenMP can be

installed easily and safety without any modification. Following are our installed step

and running commands.

• Get the Omni distribution,"Omni-1.4.tar.gz"
• Prepare following software to install and use the Omni compiler:

o GNU bison or yacc to make the parser.
o Java Development Kit, JDK (later than 1.1.3, 1.2.2 prefferred) or Kaffe

(1.0.5 or later). (If you have no JDK, or don't want to use JDK, you can
install using 'jexc'. See the Omni OpenMP Compiler Installation
Notes.)

o Thread library, Solaris thread or POSIX thread library, On SGI IRIX,
sproc is also used.

• Unpack the distribution file.
• gzip -dc Omni-1.4.tar.gz | tar xvf -
• Change the current directory to Omni directory.
• cd Omni-1.4
• Run "configure".
• % configure

• Run "make" to compile the sources.
• % make
• Run "make install" to install the compiler.
• % make install
Make sure that the command path includes ‘install_directory/bin’. Suggest to use
root user to install the Omni OpenMP.
The compiler command as bellow:

• Run omcc [driver-options] [compiler-options] filename

Example compiler the default output file is ‘a.out’ :
• Run omcc prime_2_omp_t –lm

Example run 8 means 8 threads:
• Run ./a.out 8

17

Chapter 4

 Experimental Results and Discussion

4.1 Twin Primes

It's a very old fact that the set of primes is infinite and a much more recent and famous

result (by Jacques Hadamard (1865-1963) and Charles-Jean de la Vallee Poussin

(1866-1962)) that the law rules the density of primes

log(n)
n~ p(n)

A couple of primes (p,q) are said to be twins if q = p+2. Except for the couple

(2,3), this is clearly the smallest possible distance between two primes. For Example

(3,5), (5,7), (11,13), (17,19), (29,31),...(419,421),... are Twin Primes.

Through Table 4.1 to 4.2 and Figure 4.1 we find out the efficiency will reach

80% while upper bound is over 1000K. This result is caused from the density and

prime gap become larger. Beside this, we used Modulo 30 algorithm to sieving Twin

Primes in Twin Primes program [8]. No wonder it takes this feature.

As the Table 4.3 and Figure 4.2 shown that the overhead of dynamic schedule is

depended on the threads number. The more threads and iterations get more overheads.

It comes out bad performance than by using static schedule. The reason is default

scheduling is static and running a simple round-robin block scheduling. It may cause

load imbalance but in this Independent Model the data communication is fewer, each

processor received only an integer of upper bound.

18

Table 4.1: The elapsed time (seconds) of Twin Primes by dynamic schedule with

difference upper bound

Number of
threads 1 2 4 8

1K 0.0497 0.0480 0.0483 0.0487

10K 0.0527 0.0531 0.0560 0.0612

100K 0.1014 0.1068 0.1239 0.1838

1000K 0.8894 0.7746 0.8625 1.3834

10000K 16.8861 10.4647 7.9914 12.4649

100000K 352.8218 193.5303 106.9369 99.9079

Table 4.2: The efficiency of Twin Primes by dynamic schedule in each upper bound

Number of
threads 1 2 4 8

Efficiency Ep 1K 100.0000 51.4583 25.5694 12.6797
Efficiency Ep 10K 100.0000 49.6234 23.5268 10.7639
Efficiency Ep 100K 100.0000 47.4719 20.4600 6.8961
Efficiency Ep 1000K 100.0000 57.4092 25.7792 8.0362
Efficiency Ep 10000K 100.0000 80.6800 52.8258 16.9336
Efficiency Ep 100000K 100.0000 91.1541 82.4836 44.1436

Through the results of above tables we make the chart as Figure 4.1. It shows us

that the efficiency is increased by the upper bound, but it is downside by the number

of threads

19

Efficiency of Different UpperBound

0

20

40

60

80

100

120

1 2 4 8

Number of Threads (CPU)

E
ffi

ci
en

cy
 (%

)

1K

10K

100K

1000K

10000K

100000K

Figure 4.1: The efficiency of Twin Primes with different upper bound by

dynamic schedule

Table 4.3: The overhead of Twin Primes by dynamic schedule in each upper bound

Number of

threads

1 2 4 8
Total overhead/s 1K 0.0000 0.0233 0.0360 0.0425
Total overhead/s 10K 0.0000 0.0268 0.0428 0.0546
Total overhead/s 100K 0.0000 0.0561 0.0986 0.1711
Total overhead/s 1000K 0.0000 0.3299 0.6402 1.2722
Total overhead/s 10000K 0.0000 2.0217 3.7699 10.3541
Total overhead/s 100000K 0.0000 17.1194 18.7315 55.8052

The overhead results show as Figure 4.2 It shows us that the upper bound and the

number of threads increase the overhead

20

Overhead of Different Upperbound

0

10

20

30

40

50

60

1 2 4 8

Number of Threads (CPU)

O
ve

rh
ea

d
(s

ec
)

1K

10K

100K

1000K

10000K

100000K

Figure 4.2: The overhead of Twin Primes with different upper bound by dynamic

schedule

Table 4.4 is the elapsed time of Twin Primes by static schedule. The efficiency

refer Table 4.5 and Figure 4.3, it is easy to find out the efficiency will reach 80%

while upper bound is over 1000K. That’s means the same model (Independent model)

will give us the same performance ratio.

Table 4.4: The elapsed time of Twin Primes by static schedule in each upper

bound

Number of
threads

1 2 4 8

1K 0.0494 0.0495 0.0495 0.0497

10K 0.0527 0.0528 0.0512 0.0505

100K 0.1014 0.0786 0.0648 0.0579

1000K 0.8894 0.5141 0.2663 0.1374

10000K 16.8861 9.9592 5.2601 2.6720

100000K 352.8218 213.7587 113.4414 57.8288

21

Table 4.5: The efficiency of Twin Primes by static schedule in each upper bound

Number of
threads 1 2 4 8

Efficiency Ep 1K 100.0000 49.8990 24.9495 12.4245
Efficiency Ep 10K 100.0000 49.9053 25.7324 13.0446
Efficiency Ep 100K 100.0000 64.5038 39.1204 21.8912
Efficiency Ep 1000K 100.0000 86.4989 83.4879 80.9142
Efficiency Ep 10000K 100.0000 84.7761 80.2558 78.9940
Efficiency Ep 100000K 100.0000 82.5280 77.7542 76.2643

Through the results of above tables we make the chart as Figure 4.3. It shows us

that the efficiency is increased by the upper bound, but it is downside by the number

of threads

Efficiency of Upper Bound

0

20

40

60

80

100

120

1 2 4 8

Thread (CPU) Numbers

Ef
fic

ie
nc

y
(%

)

1K

10K

100K

1000K

10000K

100000K

Figure 4.3: The efficiency of Twin Primes with different upper bound by static

schedule

22

Table 4.6: The overhead of Twin Primes by static schedule in each upper bound

Number of

threads

1 2 4 8
Total overhead/s 1K 0.0000 0.0248 0.0372 0.0435
Total overhead/s 10K 0.0000 0.0265 0.0380 0.0431
Total overhead/s 100K 0.0000 0.0279 0.0395 0.0452
Total overhead/s 1000K 0.0000 0.0694 0.0440 0.0262
Total overhead/s 10000K 0.0000 1.5162 1.0386 0.5613
Total overhead/s 100000K 0.0000 37.3479 25.2359 13.7261

The overhead result is shown as Table 4.6 and Figure 4.4. It tells us that the upper

bound over 1000K the overhead will decrease by the number of threads.

Overhead of Upper bound

0

5

10

15

20

25

30

35

40

1 2 4 8

Number of Thread (CPU)

O
ve

rh
ea

d
(s

ec
)

1K

10K

100K

1000K

10000K

100000K

Figure 4.4: The overhead of Twin Primes with different upper bound by static

schedule

23

Table 4.7: The efficiency ratio of Twin Primes by dynamic vs. static schedule

Number of

threads 1 2 4 8

1K - 103.1249 102.4846 102.0540
10K - 99.4351 91.4287 82.5161
100K - 73.5955 52.3001 31.5017
1000K - 66.3699 30.8778 9.9318
10000K - 95.1683 65.8218 21.4366
100000K - 110.4523 106.0825 57.8824

While we compare the efficiency ratio results of dynamic vs. Static schedule see

the Table 4.7 and Figure 4.5. It shows that when the upper bound over 10000K, the

dynamic’s efficiency ratio will better than static’s, but once the number of threads

reach 8 the ratio will down to 60%. That means dynamic scheduling will take idler

threads for waiting synchronize.

Effieiency ratio of Dynamic vs. Static

0

20

40

60

80

100

120

140

1 2 4 8
Number of Threads (CPU)

D
yn

am
ic

 v
s.

 S
ta

tic
 (%

) 1K

10K

100K

1000K

10000K

100000K

Figure 4.5: The efficiency ratio of Twin Primes by dynamic vs. static schedule

24

Table 4.8: The overhead ratio of Twin Primes by dynamic vs. static schedule

Number of

threads 1 2 4 8

1K - 93.9516 96.7742 97.7011
10K - 101.1321 112.6316 124.3736
100K - 201.0753 249.6203 378.5398
1000K - 475.3602 1455.0000 4855.7252
10000K - 133.3399 362.9790 1844.6642
100000K - 45.8377 74.2256 406.5627

While we compare the overhead ratio results of dynamic vs. Static schedule see

the Table 4.8 and Figure 4.6. It shows that when the upper bound over 10000K, the

dynamic’s overhead ratio will bad than static’s, once the number of threads over 4 the

ratio will up quickly, but will reach smoothly while the iteration is bigger than 1000K.

That means dynamic scheduling will take idler threads for waiting synchronize.

Overhead Dynamic vs. Static

0
1000
2000
3000
4000
5000
6000

1 2 4 8
Number of Threads (CPU)

D
yn

am
ic

 v
s.

 S
ta

tic
 (%

)

1K
10K
100K
1000K
10000K
100000K

Figure 4.6: The overhead ratio of Twin Primes by dynamic vs. static schedule

25

4.2 Matrix Multiplication

The matrix operation derives a resultant matrix by multiplying two input matrices, a

and b, where matrix a is a matrix of N rows by P columns and matrix b is of P rows

by M columns. In the experiment we create matrix sizes by dynamic memory allocate.

To initial two matrixes value into 5.0 and 2.0 that we can easily validate the final

value.

From Table 4.9 to 4.10 and Figure 4.6, it shows the result in dynamic and static

schedule model. Since we are used dynamic memory allocate to create matrix size.

The memory is fixed at initial region. So the more iteration size will comes good

efficiency. It is near to reach 100% efficiency. Specifically in dynamic schedule it

comes out supper linear speed up performance (if we select the dynamic elapsed time

of one thread as the Ts). Note that it will be possible for an overhead to be negative

and thus relate to an improvement in the parallel performance. In our case, for a

certain processors it may be possible that the data fits into cache when it does not for

the serial implementation. In such case, the overhead due to data access would be

negative.

Table 4.9: The elapsed time of Matrix Multiplication by dynamic schedule

Number of

threads
1 2 4 8

128 0.1684 0.0894 0.0453 0.0232

256 1.4040 0.7429 0.3704 0.1864

512 11.3228 5.9034 2.9489 1.4684

1024 94.4611 48.0127 23.8313 11.9161

2048 1742.7566 880.4999 438.2902 218.7415

4096 16853.7397 8579.0476 4287.6328 2141.1396

26

Table 4.10: The efficiency of Matrix Multiplication by dynamic schedule

Number of
threads

1 2 4 8

Efficiency Ep 128 100.0000 94.1834 92.9360 90.7328
Efficiency Ep 256 100.0000 94.4945 94.7624 94.1524
Efficiency Ep 512 100.0000 95.9007 96.0341 96.3872
Efficiency Ep 1024 100.0000 98.3710 99.0935 99.0898
Efficiency Ep 2048 100.0000 98.9640 99.4056 99.5900
Efficiency Ep 4096 100.0000 98.2262 98.2695 98.3786

Perfermance of Different Matrix Sizes

86
88
90
92
94
96
98

100
102

1 2 4 8
Number of Threads (CPU)

Ef
fic

ie
nc

y
(%

)

128

256

512

1024

2048

4096

Figure 4.7: The efficiency of Matrix Multiplication by dynamic schedule

27

The overhead result is shown as Table 4.11 and Figure 4.8. It make the same

result as Twin Primes.

Table 4.11: The overhead of Matrix Multiplication by dynamic schedule

Number of
threads

1 2 4 8

Total overhead/s 128 0.0000 0.0052 0.0032 0.0022
Total overhead/s 256 0.0000 0.0409 0.0194 0.0109
Total overhead/s 512 0.0000 0.2420 0.1169 0.0530
Total overhead/s 1024 0.0000 0.7822 0.2160 0.1085
Total overhead/s 2048 0.0000 9.1216 2.6011 0.8969
Total overhead/s 4096 0.0000 152.1777 74.1979 34.7221

Overhead of Different Sizes

0
20
40
60
80

100
120
140
160

1 2 4 8

Number of Threads (CPU)

O
ve

rh
ea

d
(s

ec
)

128

256

512

1024

2048

4096

Figure 4.8: The overhead of Matrix Multiplication by dynamic schedule

28

During Table 4.12 to 4.14 and Figure 4.9 to 4.10, we found that the performance

and overhead shown the same curve outline as dynamic’s.

Table 4.12: The elapsed time of Matrix Multiplication by static schedule

Number of
threads

1 2 4 8

128 0.1684 0.0902 0.0456 0.0233

256 1.4040 0.7449 0.3726 0.1872

512 11.3228 5.8813 2.9489 1.5073

1024 94.4611 48.3024 24.5135 12.0478

2048 1742.7566 869.3907 436.3162 217.9633

4096 16853.7397 8456.3749 4228.3545 2108.8773

Table 4.13: The efficiency of Matrix Multiplication by static schedule

Number of
threads

1 2 4 8

Efficiency Ep 128 100.0000 93.3481 92.3246 90.3433
Efficiency Ep 256 100.0000 94.2408 94.2029 93.7500
Efficiency Ep 512 100.0000 96.2610 95.9917 93.8997
Efficiency Ep 1024 100.0000 97.7810 96.3358 98.0066
Efficiency Ep 2048 100.0000 98.4968 99.1256 99.2142
Efficiency Ep 4096 100.0000 99.6511 99.6472 99.8976

29

Matrix Size Perfermance

84
86
88
90
92
94
96
98

100
102

1 2 4 8

 Number of Threads (CPU)

Ef
fic

ie
nc

y
(%

)

128

256

512

1024

2048

4096

Figure 4.9: The efficiency of Matrix Multiplication by static schedule

Table 4.14: The overhead of Matrix Multiplication by static schedule

Number of
threads

1 2 4 8

Total overhead/s 128 0.0000 0.0060 0.0035 0.0023
Total overhead/s 256 0.0000 0.0429 0.0216 0.0117
Total overhead/s 512 0.0000 0.2199 0.1182 0.0920
Total overhead/s 1024 0.0000 1.0719 0.8982 0.2402
Total overhead/s 2048 0.0000 13.2014 3.8150 1.7127
Total overhead/s 4096 0.0000 29.5050 14.9196 2.1598

30

The Overhead Between Different SIze

0
5

10
15
20
25
30
35

1 2 4 8

Numbers of Threads (CPU)

O
ve

rh
ea

d
)(s

ec
)

128

256

512

1024

2048

4096

Figure 4.10: The overhead of Matrix Multiplication by static schedule

The ratio of efficiency present as slow down style. When the matrix size over

2048 dynamic has bad efficiency than static’s. This may help us to know even

dynamic memory allocated, static scheduling will take good performance when matrix

size is larger.

Table 4.15: The efficiency ratio of Matrix Multiplication by dynamic vs. static

schedule

Number of
threads 1 2 4 8

128 100.0000 100.8948 100.6623 100.4311
256 100.0000 100.2692 100.5939 100.4292
512 100.0000 99.6257 100.0441 102.6491
1024 100.0000 101.0700 102.8626 101.1052
2048 100.0000 99.7392 99.5496 99.6443
4096 100.0000 98.5701 98.6175 98.4795

31

Efficiency ratio of Dynamic vs. Static

90

92

94

96

98

100

102

104

1 2 4 8
Number of Threads (CPU)

D
yn

am
ic

 v
s.

 S
ta

tic
 (%

) 128

256

512

1024

2048

4096

Figure 4.11: The efficiency ratio of Matrix Multiplication by dynamic vs. static

schedule

Due to dynamic scheduling with chunk 1, for a larger number of processors it

will take more overhead, it only get better overhead ratio on 1024 matrix size.

Table 4.16: The overhead of Matrix Multiplication by dynamic vs. static

schedule

Number of
threads

1 2 4 8

Total overhead/s 128 0.0000 86.6667 91.4286 97.7778
Total overhead/s 256 0.0000 95.3380 89.8148 93.1624

Total overhead/s 512 0.0000 110.0500 98.9002 57.6400

Total overhead/s 1024 0.0000 52.2834 24.0474 45.1777

Total overhead/s 2048 0.0000 133.6400 414.8485 755.6024

Total overhead/s 4096 0.0000 515.7684 497.3192 1607.6265

32

Overhead Dynamic vs. Static

0

500

1000

1500

2000

1 2 4 8
Number of Threads (CPU)

D
yn

am
ic

 v
s.

 S
ta

tic
(%

) 128
256
512
1024
2048
4096

Figure 4.12: The overhead of Matrix Multiplication by dynamic vs. static

schedule

33

4.3 Laplace’s Equation

To solve Laplace’s Equation we used OpenMP with explicit Jacobin iteration method

[9]. It starts with an initial guess at the solution and iterates to a final solution by

averaging over the values of the four nearest neighbors. This is called successive

over-relaxation. Define a square gird consisting of points (x,y), and use Jacobin

iteration to compute the value of u(x,y) at all the grid points.

In this style we select square matrix size 4000 as our evaluation program. Table

4.17 is shown that the result in dynamic schedule model. In static schedule the

efficiency range from 80% to 100% see Table 4.18. It has little difference between

iteration sizes. In dynamic schedule the efficiency are mostly the same between

different iteration sizes. The curves almost overlap together refer Figure 4.13. This

feature bring us to explore the behavior in Nearest Neighbor Model. The elapsed time

and overhead in each loop should be same. Dynamic scheduling take nearest points

with the same updated timing. The overhead increased by the iteration size.

Table 4.17: The elapsed time of Laplace’s Equation by dynamic schedule

Number of
threads

1 2 4 8

20 100.63 200.038 401.434 800.432

40 56.472 112.108 224.707 449.38

80 31.159 62.028 125.99 249.632

160 16.235 32.369 64.675 129.153

34

Table 4.18: The efficiency of Laplace’s Equation by dynamic schedule

Number of
threads 1 2 4 8

Efficiency Ep 20 100.0000 89.0973 80.7391 77.4792
Efficiency Ep 40 100.0000 89.2166 80.6241 77.2491
Efficiency Ep 80 100.0000 89.3239 79.6559 77.5868
Efficiency Ep 160 100.0000 89.0596 80.1612 77.4694

Efficiency of Different Iteration Sizes

0

20

40

60

80

100

120

1 2 4 8

Number of Threads (CPU)

Ef
fic

ie
nc

y
(%

) 20

40

80

160

Figure 4.13: The efficiency of Laplace’s Equation by dynamic schedule

Table 4.19: The overhead of Laplace’s Equation by dynamic schedule

Number of

threads 1 2 4 8
Total overhead/s 20 0.0000 6.1570 6.0015 3.6563
Total overhead/s 40 0.0000 12.0890 12.0185 7.3643
Total overhead/s 80 0.0000 23.9900 25.6315 14.4958
Total overhead/s 160 0.0000 49.1640 49.5240 29.0990

35

Overhead of Different Iteration Sizes

0

10

20

30

40

50

60

1 2 4 8
Number of Threads (CPU)

O
ve

rh
ea

d
(s

ec
)

20

40

80

160

Figure 4.14: The overhead of Laplace’s Equation by dynamic schedule

While in static scheduling the efficiency are mostly the same too (see Figure 4.15),
but there are some gap in each iteration size. The only different is overhead increased
by the number of threads without any slow down even it was ran on 8 threads.

Table 4.20: The elapsed time of Laplace’s Equation by static schedule

Number of
threads

1 2 4 8

20 100.63 200.038 401.434 800.432

40 50.704 100.66 203.913 406.489

80 26.558 51.844 105.133 208.573

160 13.695 27.287 55.018 108.641

Table 4.21: The efficiency of Laplace’s Equation by static schedule

Number of
threds p 1 2 4 8

Efficiency Ep 20 100.0000 99.2328 94.7266 91.8492
Efficiency Ep 40 100.0000 99.3632 96.4615 91.6361
Efficiency Ep 80 100.0000 98.4327 95.4586 91.2052
Efficiency Ep 160 100.0000 98.4568 95.9415 92.0960

36

Efficiency of Thread Numbers

86
88
90
92
94
96
98

100
102

1 2 4 8
Thread (CPU) Numbers

Ef
fic

ie
nc

y
(%

)

20

40

80

160

Figure 4.15: The efficiency ratio of Laplace’s Equation by static schedule

Table 4.22: The overhead of Laplace’s Equation by static schedule

Number of

threads 1 2 4 8
Total overhead/s 20 0.0000 0.3890 1.4005 1.1163
Total overhead/s 40 0.0000 0.6410 1.8345 2.2823
Total overhead/s 80 0.0000 3.1960 4.7745 4.8388
Total overhead/s 160 0.0000 6.2730 8.4650 8.5870

Overhead of Thread Numbers

0

2

4

6

8

10

1 2 4 8
Numbers of Threads (CPU)

O
ve

rh
ea

d
(s

ec
) 20

40

80

160

Figure 4.16: The overhead of Laplace’s Equation by static schedule

37

 The dynamic’s performance is less than static’s around 84% to 91 %.
Table 4.23: The efficiency ratio of Laplace’s Equation by dynamic vs. static

schedule

Number of
threds p 1 2 4 8

Efficiency Ep 20 100.0000 89.7861 85.2338 84.3548

Efficiency Ep 40 100.0000 89.7884 83.5816 84.2998

Efficiency Ep 80 100.0000 90.7462 83.4455 85.0684

Efficiency Ep 160 100.0000 90.4555 83.5522 84.1181

The Efficiency of Dynamic vs. Static

80

85

90

95

100

1 2 4 8
Number of Threads (CPU)

D
yn

am
ic

 v
s.

 S
ta

tic
(%

)

20

40

80

160

Figure 4.17: The efficiency ratio of Laplace’s Equation by dynamic vs. static

schedule

Table 4.24: The overhead ratio of Laplace’s Equation by dynamic vs. static

schedule

Number of
threds p 1 2 4 8

Total overhead/s 20 0.0000 1582.7763 428.5255 327.5521

Total overhead/s 40 0.0000 1885.9594 655.1376 322.6772

Total overhead/s 80 0.0000 750.6258 536.8416 299.5774

Total overhead/s 160 0.0000 783.7398 585.0443 338.8727

38

Overhead of Different Iteration Sizes

0

500

1000

1500

2000

1 2 4 8
Number of Threads (CPU)

O
ve

rh
ea

d
(s

ec
)

20

40

80

160

Figure 4.18: The overhead ratio of Laplace’s Equation by dynamic vs. static

schedule

39

4.4 Experimental of Twin Primes by Pthread

Code

Table 4.25: The elapsed time (seconds) of Twin Primes by Pthread code in each upper

bound

Number of

threads
1 2 4 8

1K 0.0494 0.0523 0.0525 0.0532

10K 0.0527 0.0541 0.0565 0.0541

100K 0.1014 0.0794 0.0664 0.0604

1000K 0.8894 0.5094 0.2912 0.1752

10000K 16.8861 8.8294 4.6841 2.4168

100000K 352.8218 188.9959 100.4106 50.7818

Table 4.26: The efficiency of Twin Primes by Pthread in each upper bound

Number of
threads 1 2 4 8

Efficiency Ep 1K 100.0000 47.2275 23.5238 11.6071
Efficiency Ep 10K 100.0000 48.7061 23.3186 12.1765
Efficiency Ep 100K 100.0000 63.8539 38.1777 20.9857
Efficiency Ep 1000K 100.0000 87.2971 76.3550 63.4548
Efficiency Ep 10000K 100.0000 95.6241 90.1244 87.3369
Efficiency Ep 100000K 100.0000 93.3411 87.8448 86.8475

Through the results of above tables we make the chart as Figure 4.19. It shows us

that the efficiency is increased by the upper bound, but it is downside by the number

of threads. This take the same feature as coding by OpenMP.

40

Efficiency of Upper Bound

0

20

40

60

80

100

120

1 2 4 8

Number of Threads (CPU)

Ef
fic

ie
nc

y
(%

)

1K

10K

100K

1000K

10000K

100000K

Figure 4.19: The efficiency of Twin Primes with different upper bound by

Pthread

Table 4.27: The overhead of Twin Primes by Pthread in each upper bound

Number of
threads

1 2 4 8

Total overhead/s 1K 0.0000 0.0276 0.0402 0.0470
Total overhead/s 10K 0.0000 0.0278 0.0433 0.0475
Total overhead/s 100K 0.0000 0.0287 0.0411 0.0477
Total overhead/s 1000K 0.0000 0.0647 0.0687 0.0640
Total overhead/s 10000K 0.0000 0.3864 0.4626 0.3060
Total overhead/s 100000K 0.0000 12.5850 12.2052 6.6791

The overhead results show as Figure 4.20 It shows us that the upper bound and the

number of threads increase the overhead

41

Overhead of Upper bound

0
2
4
6
8

10
12
14

1 2 4 8

Number of Threads (CPU)

O
ve

rh
ea

d
(s

ec
)

1K

10K

100K

1000K

10000K

Figure 4.20: The overhead of Twin Primes with different upper bound by Pthread

42

4.5 Experimental of Matrix Multiplication by

Pthread Code

The performance curves are as same as OpenMP’s, But the start overhead(2 threads)

is higher than other threads. The best performance and overhead are shown on 4

threads.

Table 4.28: The elapsed time of Matrix Multiplication by Pthread

Number of
threads

1 2 4 8

128 0.1684 0.0941 0.0475 0.0246

256 1.4040 0.7693 0.3858 0.1934

512 11.3228 6.0868 3.0491 1.5277

1024 94.4611 49.3074 24.5992 12.6769

2048 1742.7566 875.6255 436.5643 219.3900

4096 16853.7397 8448.4465 4215.6423 2115.0166

Table 4.29: The efficiency of Matrix Multiplication by Pthread

Number of
threads

1 2 4 8

Efficiency Ep 128 100.0000 89.4793 88.6316 85.5691
Efficiency Ep 256 100.0000 91.2518 90.9798 90.7446
Efficiency Ep 512 100.0000 93.0111 92.8372 92.6458
Efficiency Ep 1024 100.0000 95.7880 96.0002 93.1429
Efficiency Ep 2048 100.0000 99.5150 99.7995 99.2956
Efficiency Ep 4096 100.0000 99.7446 99.9476 99.6076

43

Perfermance of Different Matrix Sizes

75

80

85

90

95

100

105

1 2 4 8
Number of Threads (CPU)

Ef
fic

ie
nc

y
(%

)

128

256

512

1024

2048

4096

Figure 4.21: The efficiency of Matrix Multiplication by Pthread

Table 4.30: The overhead of Matrix Multiplication by Pthread

Number of
threads

1 2 4 8

Total overhead/s 128 0.0000 0.0099 0.0054 0.0036
Total overhead/s 256 0.0000 0.0673 0.0348 0.0179
Total overhead/s 512 0.0000 0.4254 0.2184 0.1124
Total overhead/s 1024 0.0000 2.0769 0.9839 0.8693
Total overhead/s 2048 0.0000 4.2472 0.8752 1.5454
Total overhead/s 4096 0.0000 21.5766 2.2074 8.2991

44

Overhead of Different Sizes

0

5

10

15

20

25

1 2 4 8

Number of Threads (CPU)

O
ve

rh
ea

d
(s

ec
)

128

256

512

1024

2048

4096

Figure 4.22: The overhead of Matrix Multiplication by Pthread

45

4.6 Experimental of Laprice's Eauation by

Pthread Code

Table 4.31: The elapsed time of Laplace’s Equation by Pthread

Number of
threads

1 2 4 8

20 100.63 54.018 27.316 14.899

40 200.038 107.916 54.711 29.603

80 401.434 215.618 109.474 57.945

160 800.432 430.102 218.073 116.516

Table 4.32: The efficiency of Laplace’s Equation by Pthread

Number of
threds p 1 2 4 8

Efficiency Ep 20 100.0000 93.1449 92.0980 84.4268
Efficiency Ep 40 100.0000 92.6823 91.4067 84.4669
Efficiency Ep 80 100.0000 93.0892 91.6734 86.5981
Efficiency Ep 160 100.0000 93.0514 91.7619 85.8715

As shown on Table 4.31 to 4.33 the curves almost overlap together, it is similar as
OpenMP’s.

46

Efficiency of Thread Numbers

75
80
85
90
95

100
105

1 2 4 8
Number of Threads (CPU)

Ef
fic

ie
nc

y
(%

) 20

40

80

160

Figure 4.23: The efficiency of Laplace’s Equation by Pthread

Table 4.33: The overhead of Laplace’s Equation by Pthread

Number of

threads 1 2 4 8
Total overhead/s 20 0.0000 3.7030 2.1585 2.3203
Total overhead/s 40 0.0000 7.8970 4.7015 4.5983
Total overhead/s 80 0.0000 14.9010 9.1155 7.7658
Total overhead/s 160 0.0000 29.8860 17.9650 16.4620

Overhead of Thread Numbers

0

10

20

30

40

1 2 4 8
Number of Threads (CPU)

O
ve

rh
ea

d
(s

ec
) 20

40

80

160

Figure 4.24: The overhead of Laplace’s Equation by Pthread

47

4.7 Experimental OpenMP vs. Pthread

This section we will discuss the performance, which one is the better one between

OpenMP and Pthread. In Twin Primes program the OpenMP have good performance

until the upper bound is over 10000K. That’s means Pthread can handle good

threading on large iterations.

Table 4.34: The efficiency ratio of Twin Primes by Pthread vs. static schedule

Number of

threads 1 2 4 8

1K - 94.6462 94.2857 93.4211
10K - 97.5970 90.6196 93.3451
100K - 98.9925 97.5903 95.8636
1000K - 100.9228 91.4564 78.4223
10000K - 112.7961 112.2964 110.5614
100000K - 113.1023 112.9776 113.8770

Performance ratio of Pthread vs. Static

0

20

40

60

80

100

120

1 2 4 8
Number of Threads (CPU)

Pt
hr

ea
d

vs
. S

ta
tic

 (%
)

1K

10K

100K

1000K

10000K

100000K

Figure 4.25: The efficiency ratio of Twin Primes by Pthread vs. static schedule

48

Table 4.35: The overhead ratio of Twin Primes by Pthread vs. static schedule

Number of

threads 1 2 4 8

1K - 111.2903 108.0645 108.0460
10K - 104.9057 113.9474 108.2005
100K - 102.8674 104.0506 105.5310
1000K - 93.2277 156.1364 244.2748
10000K - 25.4848 44.5407 54.5163
100000K - 33.6967 48.3644 48.6599

While we compare the overhead ratio results of Pthread vs. Static schedule see

the Table 4.35 and Figure 4.26. It shows that when the upper bound over 10000K, the

Pthread’s overhead ratio is better than static’s, in this case means that the more

iteration Pthread will spend more time for lock and synchronization.

Overhead of Pthread vs. Static

0

50

100

150

200

250

300

1 2 4 8
Number of Threads (CPU)

Pt
hr

ea
d

vs
. S

ta
tic

 (%
) 1K

10K

100K

1000K

10000K

100000K

Figure 4.26: The overhead ratio of Twin Primes by Pthread vs. static schedule

49

Table 4.36: The efficiency ratio of Matrix Multiplication by Pthread vs. static

schedule

Number of
threads 1 2 4 8

128 100.0000 95.8555 96.0000 94.7154
256 100.0000 96.8283 96.5786 96.7942
512 100.0000 96.6238 96.7138 98.6647
1024 100.0000 97.9618 99.6516 95.0374
2048 100.0000 101.0337 100.6798 100.0820
4096 100.0000 100.0938 100.3015 99.7097

Performance ratio of Pthread vs. Static

90
92
94
96
98

100
102

1 2 4 8
Number of Threads (CPU)

Pt
hr

ea
d

vs
. S

ta
tic

(%
)

128
256
512
1024
2048
4096

Figure 4.27: The efficiency ratio of Matrix Multiplication by Pthread vs. static

schedule

Table 4.37: The overhead of Matrix Multiplication by Pthread vs. static schedule

Number of
threads

1 2 4 8

Total overhead/s 128 0.0000 165.0000 154.2857 160.0000
Total overhead/s 256 0.0000 156.8765 161.1111 152.9915
Total overhead/s 512 0.0000 193.4516 184.7716 122.2403
Total overhead/s 1024 0.0000 193.7678 109.5383 361.9633
Total overhead/s 2048 0.0000 32.1723 22.9410 90.2318
Total overhead/s 4096 0.0000 73.1285 14.7953 384.2467

50

Overhead ratio of Pthread vs. Static

0

100

200

300

400

500

1 2 4 8
Number of Threads (CPU)

Pt
hr

ea
d

vs
. S

ta
tic

(%
)

128
256
512
1024
2048
4096

Figure 4.28: The overhead of Matrix Multiplication by Pthread vs. static

schedule

For the Matrix Multiplication, the Pthread also get good performance by large

parallel regions, such as matrix size over 2048. One the other hand the overhead is

reduced by the parallel regions sizes. It has an out order overhead comes from running

on 8 threads. That may be runtime environment is changed.

Most the same as run on the Pthread and OpenMP, no matter they are dynamic or

static scheduling, the curves of performance are nearly to overlap. But this time, the

OpenMP show the power of performance better than Pthread.. On the other hand the

overhead of OpenMP is less than Pthread’s.

Table 4.38: The efficiency ratio of Laplace’s Equation by Pthread vs. static

schedule

Number of
threds p 1 2 4 8

Efficiency Ep 20 100.0000 93.8650 97.2250 91.9189

Efficiency Ep 40 100.0000 93.2763 94.7598 92.1764

Efficiency Ep 80 100.0000 94.5715 96.0347 94.9487

Efficiency Ep 160 100.0000 94.5099 95.6436 93.2413

51

Performance ratio of Pthread vs. Static

80

85

90

95

100

1 2 4 8
Number of Threads (CPU)

Pt
hr

ea
d

vs
. S

ta
tic

(%
)

20

40

80

160

Figure 4.29: The efficiency ratio of Laplace’s Equation by Pthread vs. static

schedule

Table 4.39: The overhead ratio of Laplace’s Equation by Pthread vs. static

schedule

Number of
threds p 1 2 4 8

Total overhead/s 20 0.0000 951.9280 154.1235 207.8656
Total overhead/s 40 0.0000 1231.9813 256.2824 201.4810
Total overhead/s 80 0.0000 466.2390 190.9205 160.4919
Total overhead/s 160 0.0000 476.4228 212.2268 191.7084

52

Overhead ratio of Pthread vs. Static

0
200
400
600
800

1000
1200
1400

1 2 4 8
Number of Threads (CPU)

Pt
hr

ea
d

vs
. S

ta
tic

 (%
) 20

40

80

160

Figure 4.30: The overhead ratio of Laplace’s Equation by Pthread vs. static

schedule

53

Chapter 5

Conclusion and Future Work

OpenMP [14] is an API aimed for portable shared memory parallel programming

which defines directives/pragmas, functions, and environment variables as an

interface to the system. Currently, language bindings exist for Fortran, C, and C++.

OpenMP performs reasonably well on all SMP systems. The overhead for starting up

a parallel region was fairly high and programs which fork a parallel region for every

Fine-grained parallel loop might have performance problems. Data placement and

processor locality of data in non-UMA systems is an important aspect. There are tools

available to gather information on the memory performance [15] which might help to

optimize data locality although there are no language constructs in OpenMP to guide

the compiler in generating processor locality. The static scheduling scheme has the

lowest overhead as every thread is able to calculate from the known loop boundaries

and the number of participating threads its own iteration space. Neither

communication nor synchronized access to a global variable is necessary. On the

other hand, static scheduling works only if there is an equal amount of work in the

blocks the threads work on (leaving the aspect of data communication out of the

discussion). Therefore, the cases with increasing and decreasing amount of work in

the iterations for the static loop do not perform well. The dynamic scheduling scheme

is usually implemented with atomic accesses to a shared variable which holds the loop

count. For a (default) chunk size of 1 this means that every iteration involves an

atomic access to the variable. As the OpenMP install guide mentioned, OpenMP have

to call thread library, therefore we compare the performance with POXIS thread.

However, only iteration size large enough the Pthread’s performance will better than

54

OpenMP. Through the result of this thesis we find out some characters in overhead

behavior. First, the same data communication style will take same overhead ratio.

Second, the supper linear speed up is possible in some special problem and algorithm

designed. Third, the dynamic schedule comes out bad performance than static

schedule, unless we can rearrange chunk size and design a powerful machine or to

prefix the data into dynamic memory or cache memory. In future we will study our

case on PC cluster SMP system that will take more challenge in overhead reduction.

55

 References

[1] B. McGarvey, R. Cicconetti, N. Bushyager, E. Dalton, M. Tentzeris, “Beowulf
Cluster Design for Scientific PDE Models,” Proc. of the 2001 Annual Linux
Showcase, Oakland, CA, November 2001.

[2] M.K. Bane and G.D. Riley: “Automatic Overheads Profiler for OpenMP Codes”
Research Thesiss presented in EWOMP2000.

[3] Y.Charlie Hu, Honghui Lu, Alan L. Cox and Willy Zwaenepoel “OpenMP for
Networks of SMPs” Journal of Parallel and Distributed Computing,

[4] The OpenMP forum OpenMP C and C++ Application Program Interface,
Version 2.0, http://www.OpenMP.org, DEC. 2002.

[5] Omni RCWP OpenMP Compiler projects, http://phase.etl.go.jp/Omni/omni.htm
[6] The Real World Computing Partnership, http://www.rwcp.or.jp/lab/pdslab/dist.
[7] Mitsuhisa sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design

of OpenMP compiler for SMP cluster. The 1st European Workshop on OpenMP
(EWOMP’99)

[8] Thomas R. Nicely. “Counts of twin prime pairs and Brun’s constant to 3*10^5”
http://www.trincely.net/twins/tabpi2.html.

[9] Solution of Laplace’s Equation by using Jacobi Iteration,
http://www.dartmouth.edu/~rc/classes/intro_mpi/laplaces_eqn.html.

[10] Omni OpenMP installation guideline,
http://phase.etl.go.jp/Omni/Omni-doc/Install.html

[11] Omni/SCASH: Cluster-enabled Omni OpenMP on software distributed shared
memory system SCASH, http://phase.etl.go.jp/Omni/Omni-doc/omni-scash.html

[12] OmniRPC: A Grid RPC Facility for Cluster and Global Computing in OpenMP,
http:// ninf.apgrid.org/papers/wompat01sato/WOMPAT01.pdf

[13] E.Tentzeris, R.Robertson, A.Cangellaris and L.P.B.Katehi, “Space and time
adaptive gridding using MRTD”,Proc. of the 1997 IEEE Symposium on
Microwave Theory and Techniques, pp.337-340, Denver, CO.

[14] Leonardo Dagum and Ramesh Menon OpenMP: “An industry-standard API for
shared-memory programming” IEEE Computational Science and Engineering,
pages 46–55, January 1998.

[15] PCL – the performance counter library version1.2.
http://www.fz-juelich.de/zam/PCL/, July 1999

56

