
Abstract

For two vertices u and v in an oriented graph D, a u-v geodesic is a directed path

of minimum length from u to v. Let I(u, v) denote the set of all vertices lying on

a u-v geodesic or a v-u geodesic. If A is a subset of V (D), then I(A) is the union

of all I(u, v) for u, v ∈ A. The geodetic number g(D) is the minimum cardinality

of the subset A of V (D) with I(A) = V (D). For a nontrivial connected graph G,

the geodetic spectrum of G is the set of geodetic numbers among the all orientations

of G and the strong geodetic spectrum of G is the set of geodetic numbers among

the all strongly connected orientations of G. In this paper, we investigate geodetic

spectra and strong geodetic spectra of graphs. For the geodetic spectra of graphs, we

demonstrate that for every two integers n and m with 1 ≤ n − 1 ≤ m ≤ (n
2 ), there

exists a connected graph G of order n and size m such that S(G) = {2, 3, . . . , n}. We

also determine the geodetic spectra of complete r-partite graphs, cycles and trees.

These results provide answers to a conjecture and two problems given by Chartrand

and Zhang [?]. For the strong geodetic spectra of graphs, we show that the strong

geodetic spectrum of each graph is the subset of {2, 3, · · · , n−2} and for every positive

integers n, m, k, with 2 ≤ k ≤ n − 3, and n + k ≤ m ≤
(

n
2

)
− k, we can construct a

strongly connected digraph D of order n and size m such that g(D) = k.



1 Introduction

The study of convex set is a fundamental and significant topic in geometry, topology,

and functional analysis, see [1]. Usually, a set C of points in a metric space (X, d) is

called convex if for every two points x and y in C, all points of any geodesic (shortest

arc, curve, or path) from x to y are contained in C.

In graph theory, the best-know metric space is (V (G), d), where V (G) is the vertex

set of a graph G and the distance dG(u, v) between two vertices u and v is the minimum

number of edges of a u-v path. Convexity in graphs is discussed in the book by Buckley

and Harary [?] and studied by Harary and Neimenen [?].

In a connected graph G, the convex hull of a vertex subset A is the smallest convex

set containing A. The hull number of G is the smallest cardinality of a set whose

convex hull is V (G). The concept of the hull number of a graph was introduced by

Everett and Seidman [?] and studied further by [?, ?, ?].

Chartrand and Zhang [?] extended the study of geodetic number to oriented graphs.

They showed that there is an oriented graph of order n and geodetic number k with

2 ≤ k ≤ n as the following theorem.

Theorem 1.1 [9] For every two integers k and n with 2 ≤ k ≤ n, there exists an

oriented graph of order n and geodetic number k.

They considered the lower geodetic number and the upper geodetic number of

some special graphs(trees, cycles, and complete bipartite graphs) in [?].

Theorem 1.2 [9]

(a) If T is a tree of order n ≥ 2 with exactly k end-vertices, then g−(T ) = k and

g+(T ) = n.

1



(b) For n ≥ 3, g−(Cn) = 2 and g+(Cn) = n if n = 3 or n is even; otherwise

g+(Cn) = n − 1.

(c) For two integers r and s with 2 ≤ r ≤ s, g−(Kr,s) = 2 and g+(Kr,s) = r + s.

For integers n and m with 1 ≤ n − 1 ≤ m ≤
(

n
2

)
, Chartrand and Zhang [?] gave a

connected graph G1 (G2) of order n and size m such that g−(G1) = 2 (g+(G2) = n).

Theorem 1.3 [9] For every two integers n and m with 1 ≤ n− 1 ≤ m ≤
(

n
2

)
, there

exist two connected graphs G+ and G− of order n and size m such that g+(G+) = n

and g−(G−) = 2.

In this thesis, we focus on the study of the geodetic spectra and strong geodetic

spectra of graphs. First, we demonstrate that for every two integers n and m with

1 ≤ n − 1 ≤ m ≤
(

n
2

)
, there exists a connected graph G of order n and size m such

that the geodetic spectrum S(G) = {2, 3, . . . , n}. This result generalizes Theorem 1.3

and provide the positive answer for a conjecture and a problem given by Chartrand

and Zhang [?]. Second, we confirm the geodetic spectra of trees, cycles, and complete

r-partite graphs. The geodetic spectrum of cycle Cn is {3} ∪ {2s : 2 ≤ 2s ≤ n}. This

implies that the geodetic spectrum of a connected graph is not forever consecutive.

Finally, we stretch our study on the strong geodetic spectra of graphs. We prove that

for any triple n,m, k of integers with 2 ≤ k ≤ n − 3 and n + k ≤ m ≤
(

n
2

)
− k, there

exists a strongly connected graph D of order n, size m and g(D) = k.
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2 Definitions

A simple graph G is an ordered pair (V (G), E(G)) in which V (G) is a finite nonempty

set of vertices and E(G) is a set of pairs of distinct vertices of V (G). An oriented

graph (or digraph) D is an ordered pair (V (D), A(D)) with a finite nonempty set

V (D) of vertices and a finite set A(D) of arcs which are ordered pairs of vertices

of V (D). A directed path (or dipath) P=(v1, v2, v3, ..., vn) of D is a subgraph of G

with the vertex set {v1, v2, v3, ..., vn} and the arc set {(v1, v2), (v2, v3),...,(vn−1, vn)}
⊆ A(D). For two vertices u, v of D, a u-v geodesic is a directed path of minimum

length from u to v. Denote I(u, v) to be the set of all vertices lying on a u-v geodesic

or v-u geodesic. For A ⊆ V (D), we define that I(A) = ∪
u,v∈A

I(u, v). A set A is called

a geodetic set of D if I(A) = V (D). The minimum cardinality of geodetic set in D is

the geodetic number g(D) of D. An oriented graph received by directing each edge

of a graph G is called an orientation of G. The geodetic spectrum S(G) of a graph

G is the set of geodetic numbers of all orientations of G, i.e.,

S(G) = {g(D) : D is an orientation of G}.

The lower geodetic number g−(G) is the minimum number of S(G) and The upper

geodetic number g+(G) is the maximum number of S(G), that is,

g−(G) = min S(G) and g+(G) = max S(G).

An orientation D of a graph G is called a strongly connected orientation of G

if for any two vertices u, v of G, there is a u-v dipath and a v-u dipath in D. The

strong geodetic spectrum S(G) of a graph G is the set of geodetic numbers of all

strongly connected orientations of G, i.e.,

S(G) = {g(D) : D is a strongly connected orientation of G}.
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3 Geodetic spectra

In this chapter, we mainly discuss the geodetic spectra of connected graphs. First,

we construct a connected graph G of order n and size m with S(G) = {2, 3, · · · , n}
and n − 1 ≤ m ≤

(
n
2

)
. Second, we determine geodetic spectra of complete r-partite

graphs, cycles and trees.

3.1 Preliminary properties

It is clear that for any two graphs G and H,

S(G ∪ H) = {a + b : a ∈ S(G) and b ∈ S(H)},

where G∪H is the union of G and H. Hence, in this paper we only study the geodetic

spectra of connected graphs. First, if G is a connected graph of order n ≥ 2, then

S(G) ⊆ {2, 3, . . . , n}. (1)

The attempt of this section is to determine the geodetic spectrum for several classes

of graphs.

A source (respectively, sink) of an oriented graph is a vertex of in-degree (respec-

tively, out-degree) zero. Notice that a source or a sink can not be an interior vertex

of a geodesic. Hence, we have

Proposition 3.1.1 In any oriented graph, sources and sinks all lie in any geodetic

set.

The following lemmas are useful in our studies for the geodetic spectra of graphs,

as shown in the consequent sections.
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Lemma 3.1.2 If the vertex set of a connected graph G of order at least two can be

partitioned into {x} = V0, V1, . . . , Vr = {y} such that every vertex of the graph is in

an x-y path x = x0, x1, · · · , xr = y with xi ∈ Vi for 0 ≤ i ≤ r, then 2 ∈ S(G).

Proof. Consider the orientation D of G given by orienting an edge uv of G (where

u ∈ Vi and v ∈ Vj with i ≤ j) from u to v if j = i + 1, and from v to u otherwise.

Then dD(x, y) = r and every vertex of D is in an x-y geodesic. Thus {x, y} is a

geodetic set of D, and so g(D) = 2 ∈ S(G).

Corollary 3.1.3 If a connected graph G of order at least two has a hamiltonian

path, then 2 ∈ S(G).

Lemma 3.1.4 If D is an oriented graph obtained from another oriented graph D′

by adding a set X of pairwise non-adjacent new vertices each joining to all vertices

in D′, then g(D) = g(D′) + |X|.

Proof. If A is a minimum geodetic set of D′, then A∪X is a geodetic set of D since

a geodesic in D′ is also a geodesic in D. Then

g(D) ≤ |A ∪ X| = |A| + |X| = g(D′) + |X|.

On the other hand, as all vertices in X are sources of D, a minimum geodetic set of

D is of the form A∪X. Notice that A is a geodetic set of D′ since a geodesic of D is

either a geodesic of D′ or a directed path of the form x, y with x ∈ X and y ∈ V (D′).

Consequently,

g(D′) ≤ |A| = |A ∪ X| − |X| = g(D) − |X|.

Therefore g(D) = g(D′) + |X|.
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Lemma 3.1.5 If D is the oriented graph obtained from another oriented graph D′ of

order at least two, with a specified vertex x′, by adding a set X of pairwise non-adjacent

new vertices each joining to x′. If x′ is a source of D′, then g(D) = g(D′) + |X| − 1.

If x′ is a sink of D′, then g(D) = g(D′) + |X|.

Proof. Suppose x′ is a source of D′. If A is a minimum geodetic set of D′, then

x′ ∈ A by Proposition 3.1.1. Since a geodesic in D′ is also one in D and a geodesic in

D starting from a vertex in X has x′ as its second vertex, (A−{x′})∪X is a geodetic

set of D. Thus,

g(D) ≤ |(A − {x′}) ∪ X| = |A| + |X| − 1 = g(D) + |X| − 1.

On the other hand, suppose a minimum geodetic set of D is of the form A∪X. Since

a geodesic in D starting from a vertex in X having x′ as its second vertex, A does

not contains x′ otherwise the removing of x′ from A ∪ X gives a geodetic set of D of

smaller size. Consequently, A ∪ {x′} is a geodetic set of D′ and so

g(D′) ≤ |A ∪ {x′}| = |A ∪ X| − |X| + 1 = g(D) − |X| + 1.

These prove that g(D) = g(D′) + |X| − 1.

The proof for the case when x is a sink is similar, except that x′ is still a sink and

so remains in a geodetic set of D. This gives g(D) = g(D′) + |X|.

3.2 Graphs with geodetic spetra {2, 3, . . . , n}

In this section, we study graphs G for which the equality holds in Relation (1),

i.e., S(G) = {2, 3, . . . , n}. Particular examples of such graphs are complete graphs,

complete graphs with an edge deleted, and complete r-partite graphs.

Theorem 3.2.1 For every two integers n and m with 1 ≤ n − 1 ≤ m ≤
(

n
2

)
, there

exists a connected graph G of order n and size m such that S(G) = {2, 3, . . . , n}.
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Proof. We prove a more general statement by induction that for two integers n and

m with 1 ≤ n − 1 ≤ m ≤
(

n
2

)
there exists a connected graph G of order n and size

m, with a specific vertex x, such that the following two conditions hold.

(C1) The graph G has a hamiltonian path starting from x.

(C2) For 3 ≤ k ≤ n, G has an orientation D using x as a source and g(D) = k.

The assertion is clearly true for n ≤ 3. Suppose n ≥ 4 and assertion is true for

n − 1. We consider the following two cases.

Case 1. 2n − 3 ≤ m ≤
(

n
2

)
.

In this case, (n − 1) − 1 ≤ m − (n − 1) ≤
(

n−1
2

)
. By the induction hypothesis,

there exist a connected graph G′ of order n− 1 and size m− (n− 1) with a vertex x′

satisfying the following conditions (C1′) and (C2′).

(C1′) The graph G′ has a hamiltonian path starting from x′.

(C2′) For 3 ≤ k′ ≤ n − 1, G′ has an orientation D′ using x′ as a source and

g(D′) = k′.

Let G be the graph obtained from G′ by adding a new vertex x joining to all

vertices in G′. Then G is a connected graph of order n and size m. Also, (C1′) for G′

implies (C1) for G. And, for any 3 ≤ k ≤ n, we have 2 ≤ k−1 ≤ n−1. By (C1′) and

(C2′) and Corollary 3.1.3, G′ has an orientation D′ with g(D′) = k − 1. D′ together

with the directed edges from x to all vertices in D′ forms an orientation D of G with

x as a source. According to Lemma 3.1.4, g(D) = g(D′) + 1 = k.

Case 2. n − 1 ≤ m ≤ 2n − 4.

In this case, (n− 1)− 1 ≤ m− 1 ≤ 2n− 5 ≤
(

n−1
2

)
. By the induction hypotheses,

there is a connected graph G′ of order n−1 and size m−1, with a vertex x′, satisfying

conditions (C1′) and (C2′). Let G be the graph obtained from G′ by adding a new

vertex x joining to x′. Then G is a connected graph of order n and size m. Also,
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(C1′) for G′ implies (C1) for G. For 3 ≤ k ≤ n, consider two cases. For the case when

3 ≤ k ≤ n − 1, by (C2′), G′ has an orientation D′ using x′ as source and g(D′) = k.

Then D′ together with the directed edge xx′ forms an orientation D of G using x as

a source. By Lemma 3.1.5, g(D) = g(D′) + |{x}| − 1 = k. For the case when k = n,

we have 3 ≤ k−1 ≤ n−1. By (C2′ ), G′ has an orientation D′ using x′ as source and

g(D′) = k − 1. Reverse the direction of each edge in D′ and direct x to x′ to get an

orientation D of G using x as a source. By Lemma 3.1.5, g(D) = g(D′) + |{x}| = k.

The assertion then follows from induction.

As a consequence, we have

Corollary 3.2.2 For any integer n ≥ 2, we have S(Kn) = S(Kn−{e}) = {2, 3, . . . , n}.

Proof. The corollary follows from the fact that for m =
(

n
2

)
(respectively, m =

(
n
2

)
− 1) the only graph G in Theorem 3.2.1 is Kn (respectively, Kn − {e}).

Theorem 3.2.1 provides positive answers to the following conjecture and problem

given by Chartrand and Zhang [?].

Conjecture 1 ([9]) For any triple n,m, k of integers with 1 ≤ n − 1 ≤ m ≤
(

n
2

)

and 2 ≤ k ≤ n, there exists a connected oriented graph of order n, size m and geodetic

number k.

Problem 1 ([9]) For every two integers n and m with 1 ≤ n − 1 ≤ m ≤
(

n
2

)
, does

there exist a connected graph G of order n and size m such that

g−(G) ≤ g+(H) and g−(H) ≤ g+(G)

for every connected graph H of order n and size m?
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A complete r-partite graph is one whose vertex set can be partitioned into r non-

empty sets V1, V2, . . . , Vr such that for any two vertices x ∈ Vi and y ∈ Vj, we have

x is adjacent to y if and only if i �= j. We denote the complete r-partite graph by

Kn1,n2,...,nr when |Vi| = ni for 1 ≤ i ≤ r. Let n = n1 + n2 + . . . + nr.

Theorem 3.2.3 If G = Kn1,n2,...,nr is a complete r-partite graph of order n in which

every vertex is of degree at least two, then S(G) = {2, 3, . . . , n}.

Proof. We shall prove the theorem by induction on n. For the case when n ≤ 3,

G = K3 and so the theorem follows from Corollary 3.2.2. Suppose n ≥ 4 and the

theorem is true for all n′ < n. For any 2 ≤ k ≤ n, we consider the following three

cases. Without loss of generality, we may assume that n1 ≥ n2 ≥ . . . ≥ nr.

Case 1. r = 2 and k ≥ n1 + n2 − 1.

For the case when k = n1 + n2, orient all edges of the graph from V1 to V2 gives

an orientation with n1 sources and n2 sinks. Then k = n1 + n2 ∈ S(G).

For the case when k = n1 + n2 − 1, orient all edges of the graph from V1 to V2

except one edge yx with y ∈ V2 and x ∈ V1. Then all vertices in V1 −{x} are sources

and in V2 −{y} are sinks. While (V1 −{x})∪ (V2 −{y}) is not a geodetic set, the set

(V1 − {x}) ∪ (V2) is. Thus, k ∈ S(G).

Case 2. r = 2 with k ≤ n1 + n2 − 2 or r ≥ 3 with k ≤ n1 + n2 − 1.

In this case, we can properly choose nonempty subset A ⊆ V1 and B ⊆ V2 with

|A| + |B| = k such that V (G) − (A ∪ B) can be partition into nonempty set A′

and B′ with the property that all vertices of A ∪ A′ are adjacent to all vertices of

B ∪ B′. Notice that there may have other edges when r ≥ 3. Also choose x ∈ A

and y ∈ B. Orient the graph so that all vertices in A are sources, all vertices in B

are sinks, and any vertex b′ ∈ B′ is toward to any vertex a′ ∈ A′. After that, reverse
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the edge xy into yx, and xa′ into a′x for those edges xa′ with a′ ∈ A′, and b′y into

yb′ for those edges b′y with b′ ∈ B′. Then, all vertices in A − {x} are sources and in

B−{y} are sinks. While (A−{x})∪ (B−{y}) is not a geodetic set, the set A∪B is

geodetic set since dD(x, y) = 3 and x, b′, a′, y is a geodesic for all b′ ∈ B′ and a′ ∈ A′.

Suppose A ∪ B is not a minimum geodetic set. Then a geodetic set is of the form

C = (A − {x}) ∪ (B − {y}) ∪ {z} for some z.

If z = x, then the only geodesic containing vertices not in C is a, a′, x with a ∈
A − {x} and a′ ∈ {y} ∪ (A′ − V1). In this case, B′ ⋂ I(C) = ∅, a contradiction.

Similarly, we have that z �= y. If z ∈ A′, then the only geodesic containing vertices

not in C is a, b′, z with a ∈ A− {x}, b′ ∈ B′ and z ∈ A′ ⋂ V1. In this case, x /∈ I(C) ,

a contradiction. Similarly, z /∈ B′.

Hence, k = |A| + |B| ∈ S(G).

Case 3. r ≥ 3 and k ≥ n1 + n2

We may assume that n1 ≥ 2 for otherwise G ∼= Kn and so the theorem follows

from Corollary 3.2.2. In this case, k ≥ n2 + 2 ≥ nr + 2.

If G − Vr has a vertex of degree less than 2, then r = 3 and n2 = n3 = 1.

Thus k ≥ n1 + 2 = n and so k = n. As G − V1 = K2 has an orientation D′ with

g(D′) = 2, by Lemma 3.1.4 using X = V1, graph G then has an orientation D with

g(D) = 2 + |X| = n = k.

If any vertex in G − Vr is of degree at least two, as 2 ≤ k − nr ≤ n − nr, by the

induction hypothesis, G − Vr has an orientation D′ with g(D′) = k − nr. By Lemma

3.1.4 using X = Vr, G has an orientation D with g(D) = k.

3.3 Geodetic spetra of trees and cycles

This section studies geodetic spectra of trees and cycles. The geodetic spectra of the

graphs given in the last section are all of the form {2, 3, . . . , n}. This is not always
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the case, as shown by the trees.

Theorem 3.3.1 If T is a tree with n ≥ 2 vertices and � leaves, then S(T ) =

{�, � + 1, . . . , n}.

Proof. First, any leaf of T is a source or a sink in any orientation of T . So, the

leaves are in any geodetic set of any orientation. Thus we only need to prove that

for any k with � ≤ k ≤ n, there exists some orientation D of T with g(D) = k, i.e.

k ∈ S(T ). We shall prove this by induction.

When T is a star with center x1 and the other vertices x2, x3, . . . , xn, we have � =

max{2, n−1}. The orientation D1 of T with A(D1) = {x1x2, x1x3, · · · , x1xn} gives n ∈
S(T ) by Lemma 3.1.2. The orientation D2 of T with A(D2) = {x2x1, x1x3, x1x4, · · · , x1xn}
gives � = n − 1 ∈ S(T ). So the theorem hold.

When T is not a star, we have n ≥ 4. Choose a longest path in the tree whose

second vertex is x. Then all neighbors of x except exactly one are leaves. Let the

set of all these leaves is X. Then T − X is a tree with n − |X| ≥ 2 vertices and

� − |X| + 1 ≥ 2 leaves.

For the case when � ≤ k ≤ n− 1, we have �− |X|+ 1 ≤ k− |X|+ 1 ≤ n− |X|. By

the induction hypothesis, T −X has an orientation D3 such that g(D3) = k−|X|+1.

As x is a leaf in T −X, we may assume that x is a source of D3 by reverse all the arcs

in D3 if necessary. D3 together with the edges directed from all vertices of X to x

results an orientation D of T . By Lemma 3.1.5, we have g(D) = g(D3)+ |X|−1 = k.

For the case when k = n, we have � − |X| + 1 ≤ k − |X| ≤ n − |X|. By the

induction hypothesis, T − X has an orientation D4 such that g(D4) = k − |X|. As x

is a leaf in T −X, we may assume that x is a sink of D4. Then D4 together with the

edges directed from all vertices of X to x results an orientation D of T . By Lemma
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3.1.5, we have g(D) = g(D4) + |X| = k.

The graphs given above all have spectra consisting of consecutive integers. This is

not always the case as shown by the cycles.

The n-cycle is the graph Cn with vertex set V (Cn) = {0, 1, . . . , n−1} and edge set

E(Cn) = {(0, 1), (1, 2), . . . , (n − 2, n − 1), (n − 1, 0)}. The vertices of Cn are assume

to be taken modulo n. For instance, (n − 1) + 1 is 0 and 0 − 1 is n − 1.

Theorem 3.3.2 For n ≥ 3, we have S(Cn) = {3}⋃{2s : 2 ≤ 2s ≤ n}.

Proof. Suppose D is an orientation of Cn with s sources a1, a2, . . . , as and hence s

sinks b1, b2, . . . , bs.

For the case when s = 0, we have g(D) = 2 since any two vertices form a geodetic

set of D. To consider the case of s ≥ 1, we may assume that the sources and the

sinks are alternatively clockwise in the cycles as a1, b1, a2, b2, · · · , as, bs.

For the case when s = 1 with dD(a1, b1) = n/2, we have that {a1, b1} is a geodetic

set and so g(D) = 2. For the case when s = 1 but dD(a1, b1) < n/2, the set {a1, b1}
is not a geodetic set, while either {a1, a1 + 1, b1} or {a1, a1 − 1, b1} is a geodetic set.

Thus, g(D) = 3.

For the case when s ≥ 2, the geodesics from ai to bi and from ai to bi−1 (1 ≤ i ≤ s),

where b0 = bs, cover all vertices of the cycle. This together with Proposition 3.1.1 gives

that {a1, a2, . . . , as, b1, b2, . . . , bs} is a minimum geodetic set of D and so g(D) = 2s.

On the other hand, it is easy to orient Cn into D such that D has exactly s sources

and exactly s sinks with 0 ≤ s ≤ 	n/2
. The lemma then follows.

Theorem 3.3.2 gives as negative answer to the following problem proposed by

Chartrand and Zhang [?].
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Problem 2 ([9]) For every connected graph G and every integer k with g−(G) ≤
k ≤ g+(G), does there exist an orientation D with g(D) = k?
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4 Strong geodetic spectrum

It is well-known that a graph has a strongly connected orientation if and only if it

is bridgeless and connected. As Cn has only one strongly connected orientation in

which there is no sources or sinks, S∗(Cn) = {2} for any integer n ≥ 3. In general we

have

Theorem 4.1 If G is a bridgeless connected graph of order n ≥ 4, then S∗(G) ⊆
{2, 3, . . . , n − 2}.

Proof. We shall prove that for any strongly connected orientation D of G, it is

always the case that g(D) ≤ n − 2. We first consider the case when G �∼= Kn. In this

case, there are two vertices x and y such that dD(x, y) ≥ 2 and dD(y, x) ≥ 2. Choose

an x-y geodesic P and a y-x geodesic Q. Note that |(V (P )∪V (Q))−{x, y}| ≥ 2 and

so (V (D) − V (P ) − V (Q)) ∪ {x, y} is a geodetic set of D of size at most n − 2.

Next, we consider the case when G ∼= Kn. Suppose to the contrary that g(D) ≥
n−1. For any geodesic x0, x1, . . . , x� in D, V (D)−{x1, x2, . . . , x�−1} is a geodetic set

of size n− � + 1. Then g(D) ≥ n− 1 implies n− � + 1 ≥ n− 1 and so � ≤ 2. That is,

dD(u, v) ≤ 2 for any two vertices u and v. For any vertex x, let x1, x2, . . . , xr be its

out-neighbors and y1, y2, . . . , ys its in-neighbors. Then dD(x, yi) = 2 and so there is

some ji with (xji
, yi) an arc in D for all 1 ≤ i ≤ s. Consequently, {x, x1, x2, . . . , xr}

is a geodetic set of D. And so n− s = r + 1 ≥ n− 1 or s ≤ 1. Thus each vertex is of

in-degree 1. This would imply that n =
(

n
2

)
and so n = 3, a contradiction.

Theorem 4.2 For any triple n,m, k of integers with 2 ≤ k ≤ n − 3 and n + k ≤
m ≤

(
n
2

)
− k, there exists a strongly connected orientation D of order n, size m and

g(D) = k.
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Proof. We construct an oriented graph D with vertex set V = {1, 2, · · · , n} whose

arcs are described as follows. First, it contains the following n + k arcs .

{(1, i), (i, k + 2) : 2 ≤ i ≤ k + 1} ∪ {1, k + 2}

∪{(j, j + 1) : k + 2 ≤ j ≤ n − 1} ∪ {(n, 1)}. (2)

If n + k < m, then we add arcs one by one to D according to the following order.

(i, i′) for 2 ≤ i ≤ k + 1 and i + 1 ≤ i′ ≤ k + 1; (3)

(1, j) for k + 3 ≤ j ≤ n − 1; (4)

(j′, j) for k + 2 ≤ j ≤ n − 2 and j + 2 ≤ j′ ≤ n; (5)

(i, j) for 2 ≤ i ≤ k + 1 and k + 3 ≤ j ≤ n − 1. (6)

In the case when D contains arcs in Formula (6) and the last such arc is (k +1, j), we

reverse the arcs (j + 1, x) for k + 2 ≤ x ≤ j − 1. It is then easy to see the following

properties.

(P1) D is strongly connected as it has the arcs in Formula (2).

(P2) If 1 ≤ i ≤ i′ ≤ k + 1 and i′x is an arc, then ix is an arc.

(P3) For 2 ≤ i′ ≤ k + 1, the possible in-neighbors of i′ are those i < i′.

From (P2) and (P3), we have that if 2 ≤ i′ ≤ k+1, then any geodesic containing i′

can not use i′ as an interior vertex, for otherwise it is of the form · · · , i, i′, x, · · · with

i < i′ and ix an arc, which is a contradiction. Then any geodetic set of D include the

set S = {2, 3, · · · , k + 1}.
On the other hand, we claim that S is a geodetic set of D. For the case when D

contains no arc of the form (k + 1, j) from Formula (6), the only (k + 1)-2 geodesic is

k + 1, k + 2, k + 3, · · · , n, 1, 2, and hence I(S) = V (D). On the other hand, suppose

(k + 1, j) is the last arc added into D. Then a (k + 1)-2 geodesic is of the form

k + 1, x, j + 1, j + 2, · · · , n, 1, 2 for some k + 2 ≤ x ≤ j. Again I(S) = V (D).

15



This completes the proof of the theorem.
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5 Conclusions

For the study of the geodetic spectrum, we construct a connected graph G with n

vertices, m edges, and S(G) = {2, 3, . . . , n} for n and m being positive integers and

n − 1 ≤ m ≤ (n
2 ). On the other hand, we determine the geodetic spectra of complete

r-partite graphs, cycles and trees. Those solutions give answers of a conjecture and

two problems of Chartrand and Zhang [?].

For every positive integers n, m, k with 2 ≤ k ≤ n − 3 and n + k ≤ m ≤
(

n
2

)
− k,

we can construct a strongly connected digraph D of order n and size m such that

g(D) = k. In future, we are interesting in finding a connected graph G with n vertices,

m edges, and the strong geodetic spectrum {2, 3, . . . , n−2} for every positive integers

n and m with n + 1 ≤ m ≤
(

n
2

)
.
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