1 Introduction

Predator-prey models have been studied for a long time . One of the most im-
portant problems in a Predator-prey system is the global stability of the unique
positive equilibrium point . The global stability analysis for Predator-prey system
without time delay has been done by many researchers . Most of them use the follow-
ing methods to prove global stability of a Predator-prey system without delay . The
first method is to construct a Lyapunov function [3 , 4 , 5] . The second method is
to employ the Dulac Criterion to eliminate the existence of periodic orbits and then
use the Poincar’e-Bendixson Theorem to analyse the global stability of the unique
positive equilibrium [3 , 4, 5, 6] . The third method is the limit cycle stability
analysis [3, 6, 7, 8] . The fourth method is the comparison method [3 , 7, 8] .

But more realistic models should include some of the past states of the popula-
tion system ; that is , a real system should be modeled with time delays.In[9, 10, 11]
, authors were to anal al stability of th ith time delay by con-

structing a Lyapunov onal..

In this thesis , we were concerned about the Leslie-Gower Predator-prey sys-

tem . For this system without delay asin |12, authors to analyze the global stability

by constructing a Lyapunov function . And in [14] | authors discussed the global

+1

stability of this system with a single delay by constructing a Lyapunov function-

al . Now , we are to establish global stability of the Leslie-Gower Predator-prey
system with a single y with the different function sponse of the preda-
tor , p(z) , by constr Lyapunov-functional tion 2 , we introduce

some useful definitions and theorems . In section 3 , we analyse the global stabil-

ity of the Leslie-Gower Predator-prey system with a single delay with p(z) = cx

cx
14z

in the Holling-type II , and p(z) = -5 in the

in the Holling-type I, p(z) = s

Holling-type III by constructing Lyapunov functionals . In section 4 , we illustrate

our results by some examples .



2 Preliminaries

2.1 Nonlinear autonomous system

Consider the following general nonlinear autonomous system of differential

equation
©(t)=f(z) , z€E (2.1)

where f € C'(FE) and E is an open subset of R™. In this thesis, we need the following

definitions and theorems.

Definition 2.1 [1]

(i) A point 2y € FE is called an equilibrium point or critical point of the system

(2.1) if f(z) = 0.

(ii) An equilibrium point z, of the system (2.1) is called a hyperbolic equilibrium
point of the system (2.1) if none of the eigenvalues of the matrix D f(z,) have

zero real part.

(iii) An equilibrium point zg is called a saddle point of the system (2.1) if it is a
hyperbolic equilibrium point and D f(xy) has at least one eigenvalue with a

positive real part and one with negative real part.

Definition 2.2 [1] Let E be an open subset of R" and let f € C*(F). For
zg € E, let ¢(t,z9) be the solution of the system (2.1) with the initial condition



x(0) = z defined on its maximal interval of existence I(z). Then for ¢ € I(xy), the

set of mappings ¢, defined by

¢t($0) = <i5(75, CUU)

is called the flow of the system (2.1).

Definition 2.3 [1] Let ¢; denote the flow of the system (2.1) defined for all
t € R. An equilibrium point zy of the system (2.1) is stable if for all € > 0 there

exists a 0 > 0 such that for all x € Ns(xy) and ¢ > 0 we have

o1(x) € Ne(xp)

The equilibrium point xq is unstable if it is not stable. And xy is asymptotically

stable if it is stable and if there exists a 0 > 0 such that for all x € Ns(z() we have

fim o) =

In order to analyse the behavior of the system (2.1) near its equilibrium points,
we show that the local behavior of the nonlinear system (2.1) near a hyperbolic

equilibrium point x is qualitatively determined by the behavior of the linear system
T = Ax (2.2)

where the Jacobian matrix A = D f(x¢). The linear function Ax = D f(z)x is called

the linear part of f at x.

Theorem 2.1 [1I] Let E be an open subset of R" containing . Suppose
that f € C'(E) and that f(zp) = 0. Suppose further that there exists a function
V e C'(F) satisfying V(x¢) = 0 and V(z) > 0 if x # 9. Then

(a) if V(z) < 0 for all z € E, xy is stable.
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(b) if V(z) < 0 for all z € E — {x0}, 0 is asymptotically stable.

(c) if V(x) > 0 for all € E — {x,}, 0 is unstable.

Theorem 2.2 [1] (The Hartman-Grobman Theorem) Let £ be an
open subset of R™ containing the point zg, let f € C'(E), and let ¢; be the flow of
the system (2.2). Suppose that f(zo) = 0 and that the matrix A = D f(x() has no
eigenvalue with zero real part. Then there exists a homeomorphism H of an open
set U containing the origin onto an open set V' containing the origin such that for
x € U, there is an open interval I(z) C R containing origin such that for all x € U

and ¢t € I(x)

H o ¢y(z) = eMH(z)

Theorem 2.3 [1] Suppose zy is an equilibrium point of the system (2.1) and
A = Df(xg). Let 0 = det(A) and v = trace(A).

(a) If o < 0, then the system (2.1) has a saddle point at .
(b) If o > 0 and vy = 0, then the system (2.1) has a center at z.

(¢) If ¢ > 0 and 7? — 40 > 0, then the system (2.1) has a node at zo; it is stable

if ¥ < 0 and unstable if v > 0.

(d) If o > 0, 72 — 40 < 0 and v # 0, then the system (2.1) has a focus at x; it is
stable if v < 0 and unstable if v > 0.

In order to analyze the global stability of the system (2.1), it is necessary to
determine whether the closed orbit exist or not. Dulac’s Criteria has established

conditions under which the system (2.1) with z € R? has no closed orbit.



Theorem 2.4 [1] (Dulac’s Criteria) Let f € C'(F) where F is a simply
connected region in R?. If there exists a function H € C'(F) such that <7 - (Hf)
is not identically zero and does not change sign in E, then the system (2.1) has no
closed orbit lying entirely in E. If A is an annular region contained in £ on which

v - (Hf) does not change sign, then there is at most one limit cycle of the system

(2.1) in A.

Theorem 2.5 [1] Let f € C'(E) where E is a simply connected region in R?.
Suppose x = z(t), 0 <t < T, is a nonconstant periodic solution of preiod T" of the

system (2.1). If

T
/ V- fdt<O0
0

where 57 - f is the divergence of the vector field f, then the T'—periodic solution x(t)

is a stable limit cycle.

Definition 2.4 [1] A periodic or closed orbit of the system (2.1) is any closed
solution curve of the system (2.1) which is not an equilibrium point of the system
(2.1). A periodic orbit I is called stable if for each € > 0,there is a neighborhood U
of I such that for all z € U and t > 0, d(¢(t,z),I") < e. A periodic orbit I is called
unstable if it is not stable; and I' is called asymptotically stable it is stable and if for

all points = in some neighborhood U of I'

lim d(¢(t,z),T) =0

t—00

Definition 2.5 [1] A point p € F where E is an open subset of R" is an
w—Llimit point of the trajectory ¢(-,z) of the system (2.1) if there is a sequence

t, — oo such that

lim d)(tna $) =p

n— 00



Similarly, if there is a sequence t,, — —oo such that
lim ¢(t,, x) =¢q
n—o00

and the point ¢ € E, then the point ¢ is called an a-limit point of the trajectory
é(+, x) of the system (2.1). The set of all w-limit points of a trajectory I' is called
the w-limit set of I' and it is denoted by w(I"). The set of all a-limit points of a
trajectory I' is called the a—limit set of I and it is denoted by a(T"). The set of all
limit points of I', a(I") U w(T") is called the limit set of T.

Theorem 2.6 [1] The a and w-limit sets of a trajectory I" of the system (2.1),
a(I') and w(T'), are closed subsets of E and if I is contained in a compact subset of

R™, then «(T") and w(I'), are nonempty, connected, compact subsets of F.

Definition 2.6 [1] A [limit cycle T of a planar system is a cycle of the system
(2.1) which is the & or w—limit set of some trajectory of the system (2.1) other than
. If T is the w—limit set of every trajectory in some neighborhood of I", then T is
called an w-limit cycle or stable limit cycle; if a cycle I' is the a-limit set of every
trajectory in some neighborhood of I'; then I' is called an o — limit cycle or an
unstable limit cycle; and if I is the w-limit set of the trajectory other than I' and the
a-limit set of another trajectory other than I', then T" is called a semi-stable limit

cycle.

Theorem 2.7 [1] (The Poincaré—Bendixson Theorem)  Suppose that
f € CY(E) where E is an open subset of R" and that the system (2.1) has a
trajectory I' contained in a compact subset F' of E. Assume that the system (2.1)

has only one unique equilibrium point xy in F', then one of the following possibilities

holds.



(a) w(T') is the equilibrium point z.
(b) w(T) is a periodic orbit.

(c) w(T) is a graphic.



2.2 Nonlinear autonomous system with delays

For ordinary differential equations, we view solutions of initial value problems
as maps in Euclidean space. In order to establish a similar view for solutions of
delay differential equations, we need some definitions.

We denote C = C([—7,0], R") the Banach space of continuous functions map-
ping the interval [—7, 0] into R™ with the topology of uniform convergence; That is,
for ¢ € C, the norm of ¢ is defined as |¢| = sup |¢(0)|, where |- | is a norm in
R". We define z; € C as x(0) = z(t +0), 0 966 f:7?1 0]. Assume that  is a subset
of C and f : 2 — R" is a given function, then we consider the following general

nonlinear autonomous system of delay differential equation

2(t) = f(x) (2:3)

Definition 2.7 [13] Let R% = {z € R*|z; > 0, i = 1,2}. The notation z > 0
denotes x € IntRi. The system (2.3) is said to be unifromly persistent if there exists
a compact region D C IntR% such that every solution z(t) of the system (2.3) with

the initial conditions eventually enters and remains in the region D.

Definition 2.8 [2]  We say that ¢ € B(0,9) if ¢ € C and |¢| < 0, where
[o] = sup |p(0)].

0e[—7,0]
(i) The solution z = 0 of the system (2.3) is said to be stable if, for any o € R,
€ > 0, there is a § = §(¢, o) such that ¢ € B(0, ) implies z;(o, ¢) € B(0,¢€) for

t > 0. Otherwise, we say that x = 0 is unstable.

(ii)) The solution x = 0 of the system (2.3) is said to be asymptotically stable
if it is stable and there is a by = b(c) > 0 such that ¢ € B(0,by) implies

z(o,¢)(t) = 0 as t — oc.



(iii) The solution x = 0 of the system (2.3) is said to be uniformly stable if the

number ¢ in the definition of stable is independent of o.

(iv) The solution x = 0 of the system (2.3) is said to be uniformly asymptotically
stable if it is uniformly stable and there is a by > 0 such that, for every
n > 0, there is a to(n) such that ¢ € B(0,by) implies z;(o,¢) € B(0,n) for
t > o+ ty(n), for every o € R.

Theorem 2.8 [2] Let u(-) and w(-) be nonnegative continuous scalar functions
such that, u(0) = w(0) = 0, lirll u(s) = +oo, and that V' : C — R is continuous
S§—>+00

and satisfies

V() = u(|¢(0)])

and

V(e) < —w(|9(0)]).

Then the solution x = 0 of &(t) = f(x;) is uniformly stable, and every solutions is
bounded. If in addition, w(s) > 0 for s > 0, then = 0 is globally asymptotically
stable.



3 The Model with Time Delay

Consider the Leslie-Gower predator-prey system with time delay 7 modelled by
z(t — 1)

i) = o0 {r1 - ")~ platonuo

0 (3.1)
- — _g\Y
0 = oo |5- 620
with the initial conditions
z(0)=¢0) >0, € [-7,00), ¢ € C'([-7,00),R)
(3.2)

z(0)>0 , y(0)>0
where § , #, r, and 7 are positive constants , K is defined as the prey environmental
carrying capacity , x and y denote the densities of prey and predator population ,
respectively . Because all we want to discuss is biological population , we only con-
sider the first quadrant in the x — y plane . The following assumption is consistent
with the system (3.1).
(A1) p € C*([0,00),[0,00)) ; p(0) = 0 and p (z) > 0 for all x > 0.

The functional response of the predator , p(x) , has been discussed in the litera-
ture . Now , we just concern about the following p(z) of this thesis , p(x) = cz in the
cz?

in the Holling-type Il model , and p(z) = ;55 in

CcT
14z

Holling-type I model , p(z) =

the Holling-type III model ; where ¢ is encounter rate .

Lemma 3.1 FEvery solution of the system (3.1) with the initial conditions (3.2)

ezists in the interval [0,00) and remains positive for all t > 0.

Proof : 1t is true because

of0) = s(0)eap { [ o) P )0

o) = v0peap { [ 15— 520

and z(0),y(0) > 0.
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Lemma 3.2 Let (x(t),y(t)) denote the solution of (3.1) with the initial condi-
tions (3.2) , then

O0<z(t) <M ,0<y(t) <L (3.3)

eventually for all large t,where

M=Kem (3.4)
SM
L="- .
5 (3.5)

Proof : Now , we want to show that there exists a T > 0 such that z(t) < M for
t > T . By Lemma 3.1 , we know that solutions of the system (3.1) are positive , and
hence , by assumption (A1) , and (3.1)

z(t — 1)

i) = o0 {1t - ")~ platono

< rx(t) {1 — @} (3.6)

Taking M* = K(1+ K;) ,0 < K; < €' — 1 . Suppose z(t) is not oscillatory about
M* . That is , there exists a T' > 0 such that either

z(t) > M* for t>1T, (3.7)
or

z(t) < M* for t>1T, (3.8)
If (3.8) holds , then for ¢ > Tj
() <M =K(1+K,) <Ke™ =M

That is, (3.3) holds . Suppose (3.7) holds . Equation (3.6) implies that for ¢t > Ty+7

i) < re(t) {1—”“"(’};7)}

< —Kyrz(t)
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It follows that

t ¢
/ @ds < / —Kirds
To+T1 JZ(S) To+T1
= —Kyr(t—Ty—1)

Then 0 < z(t) < z(Ty + 7)e K17¢=T0=7) 5 0 as ¢ — oo . That is , tlirglox(t) =0 by
the Squeeze Theorem . It contradicts to (3.7) . Thereore , there must exist a 73 > T
such that z(7y) < M* . If z(Ty) < M* for all ¢ > T; , then (3.3) follows . If
not , then there must exist a Tp > T} such that T5 be the first time which z(T5) >
M* . Therefore , there exists a T3 > T, such that T3 be the first time which z(T3) <
M* by above discussion . By above , we know that (7)) < M* , z(T3) > M* | and
x(T3) < M* where T} < Ty < T3 . Then , by the Intermediate Value Theorem , there
exists Ty and Ty such that

IL'(T4):M* , T <T,<Ty
ZU(T5):M* s T2§T5<T3

and z(t) > M* for Ty <t < T5 . Hence there is a Ty € (T4, T5) such that z(75) is an

arbitrary local maximum , and hence it follows from (3.6) that

T. —
0= i(Tp) < ra(Ts) {1 - M}
K
and this implies

(To—7) < K

Integrating both sides of (3.6) on the interval [Ts — 7, Tg] , we have

It follows that

2(Ts) <z(Tg — 1) < Ke'" =M
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Since x(Tg) is local maximum of z(t) and x(Ts) < M , x(t) < M where t near
Ts . Since x(Tg) is an arbitrary local maximum of z(t) , we can conclude that there

exists a 7" > 0 such that
z(t) <M for t>T (3.9)

Suppose x(t) is oscillatory about M* | for this case , the proof is similarly to above
one . Now , we want to show that y(¢) is bounded above by L eventually for all large

t . By (3.9) , it follows that for t > T’

i = yo))s- 520
S ]
— (0| 1= 5010
= 0y(t) _1 - %
L B
Therefore , y(t) < %VI = L for t > T . This completes the proof .

Lemma 3.3 Suppose that the system (3.1) satisfies
r—cL >0 (3.10)

where L defined by (3.5) , and c is defined in assumption (A1) . Then the system
(8.1) is uniformly persistent . That is , there exists m , 1 , and T* > 0 such
that m<ax <M andl <y <L for t>T*.

Proof : By Lemma 3.2 | and assumption (A1) , equation (3.1) follows that for ¢ >

T+

M
(t) > x(t) {r(l - E) - CL:| (3.11)
Integrating both sides of (3.11) on [t — 7,¢] , where t > T + 7 , then we have
1—-M

x(t) > x(t — 7)elr=m)—ellr
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That is

z(t—71) < x(t)e_[’"(l_M

7 )—cL]T

It follows from (3.1) that for ¢t > T + 7

#(t) =

x@rb—x“_ﬂ

> x(t){r — L — Lelri-%

- K)_CL]Ta?(t)}

It follows that

h{n 1nfx(t) Z M [r(1 M)*CL}T
— 00

&
r

m
and m > 0 by (3.10) . So , for large t , z(t) > 2 =m > 0 . It follows that

0 = v 5

m

- om
Then

So , for large t , y(t) >

D={(z,y)im <z <M <y<L}

Then D is bounded compact region in R that has positive distance from coordinate

hyperplanes . Hence we obtain that there exists a 7 > 0 such that if £ > T™ | then
every positive solution of system (3.1) with the initial conditions (3.2) eventually

enters and remains in the region D , that is , system (3.1) is uniformly persistent .

14
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Theorem 3.1 If p(x) = cx in the Holling-type I model , and the delay T satisfy

r—cL >0
ra* eyt  ox*  Mriz*t  Mreytr
+ - - — >0
K 2 2m K? 2K
By*  cy*  ox*  Mrey'r

(3.13)

(3.14)

(3.15)

where m , M , and L defined in Lemmas 3.2 and 3.3 , then the unique positive

equilibrium E* of the system (3.1) is globally asymptotically stable.

Proof : Define z(t) = (21(t), 22(t)) by

A(t) = ff(t)T—x ) = y(t)T—y
From (3.1) ,
Z(t) = [1+ 2.(2)] [— r}x{* at —7) — ey z (t)]
5(t) = [1+ 2(t)] {5”5*; ([i); Zﬁl?(;;)?(t) }
Let

Vi(z(t)) = {z1(t) — In[l + 21 (D]} + {22(t) — In[l + 22(1)]}

then we have from (3.16) and (3.17) that

Vi(z(t) = L+z21(t) 1+ 2()

= —T;* 21(t)21 (t — 7) — ey™ 21 () 22(t) + %zl(t)

21 (t)Zg (t)
_ ByA()
o [1 + 21 (t)]

ra* 6 — cy*[l + 2 (¢)]
K zl(t)zl(t—7)+ ]_—|—Zl(t)

IN

21 (t) Z9 (t)

Byt
x*[1 + 2 ()]

15

(3.16)

(3.17)

(3.18)

(3.19)



If ox* — cy*M > 0 , and by Lemma 3.3 , there exists a T* > 0 such that m <
21+ 2(t)] < M and | < y*[1 + 2(t)] < L for t > T* . Then (3.19) implies that

*

M) € —=alalt—7)
2Ty 4 ) - 220

_ _T;*Zl(t) [zl(t) ~ /; z"l(s)ds] - (gfn - Cg*)Zf(t)
L R E0

= e+ A0 - G = )
+7"§z1(t) /ttT[Hzl( )][—’";*zl(s—r) — ey za(s)]ds

- (L - -+ L - D)3
id /t:u Fa(l- " )a(s — 7) — ez (1) a(s)lds

< (Y (B0

+KL:u+m%ﬁymmmw—ﬂ+w%wma@w5

(3.20)

Then for t > T* + 7 =T , we have from (3.20) that

* *

rT cy ox*, By* eyt dx*

i) < = )20 - (B + L - )20

K+2 2m

e [ CE Ot = 0+ a0l
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— t
- K 2 2m'™ T T g2
Mr {rx*t ro* [t Yy T
+?[2K 22(t) 5K tfrZ%(S_T)dS_F 2(t)
Cy* t )
+ 5 z5(s)ds
t—1
B ro* eyt dx*  Mr?z*t Mrey*r By*
= Kty T T e i W= G
cy*  oxt, Mrig* [t Mrcy* )
+2 —%)22(15)+72K2 HZI( T)ds + ——— Ve tiTZQ(s)ds
(3.21)
Let
Mr2z*
Vo(z(t)) = w zl v — 7)dyds
M
rcy/ /22 )dvyds (3.22)
t—7 Js
then
: Mriz*r Mr2z* [t
) = Sa—n - G [ =i
Mrey*r Mrey*
Ve 25 (t) — Ve 1t_ng(s)ds (3.23)
and then we have from (3.21) and (3.23) that for ¢ > T
: : ra* eyt  dx*  Mr?z*t  Mreytr
Vi(z(t) + Va(z(t)) < - _ - t
(e0) +Va(e) < (e 0 MrrT AT g
By* ¢y ozt Mrey't, ,
- A t
Gr > 2m T
Mr2z*r
i 2t —1) (3.24)



Let

Mr2z*r /t
Va(z(t = — 22(s)ds 3.25
) = S5 [ A (3.25)
then
. Mr2z*r Mriz*r
Vylelt) = oA — A=) (3.26)

Now define a Lyapunov functional V' (z(t)) as
V(z(t)) = Vi(z(t) +Va(z(1) + Va(2(2)) (3.27)

then we have from (3.24) and (3.26) that for t > T

. ro* eyt dx*  Mr?z*t Mrey*r
V) < (W0 M AT A

= —Czi(t) —nz3(0) (3.28)

Then it follows from (3.14) and (3.15) that ¢ > 0 and 5 > 0 . Let w(s) = N2
where N = min{¢,n}, then w is nonnegative continuous on [0,00) , w(0) = 0 , and

w(s) >0 for s > 0 . It follows from (3.28) that for ¢ > T

V(=) < =N [Z(®) + 5(0)] = =N 201 = —w(|=(0)]) (3.29)

Now , we want to find a function u such that V(z(t)) > u(||z(¢)]]) . It follows from
(3.18) , (3.22) , and (3.25) that

V(z(t)) > {z1(t) — In[1 + 21 ()]} + {22(t) — In[1 + 25(¢)]} (3.30)

By the Taylor Theorem , we have that

alt) ~Inf1 + (0] = o 7’: (;)( i (3.31)
where 6;(t) € (0, 2;(t)) or (2;(t),0) fori =1,2.
Casel : If 0 < 6;(t) < z;(t) for i = 1,2, then
(1) z (1) 2
= @F < v amp <Y (3.32)
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By Lemma 3.3 , it follows that for ¢t > T™

m <z [l+z(t)]=z) <M

<y l+zn@)]=ylt) <L (3.33)

Then (3.32) implies that

)\ 2 4 () 2
(5) 0= 20 <0

y ’ 2 2 (t) 2
<f> z5(t) < M1 6,0F < z5(t) (3.34)

It follows that (3.30) , (3.31) , and (3.34) that for ¢t > T*

1 2() I10)
VED) 2 SaremF T2 0P

> 1 (%)sz(w il (y{)zé(w
i) ) o

= N0

Case2 : If —1 < z(t) < 6;(t) < 0 for i = 1,2, then

z (1) z (1)

40 < TP < Tt 2P (3:35)
By (3.33) , (3.35) implies that

2 zi(t) T 222

0 < o< (2) A0

2 25 (t) Y ? 2

30 < 20 < (1) 0 (3.36)
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It follows that (3.30) , (3.31) , and (3.36) that for ¢t > T*

1 22(t) 1 22t

Viz(t) > =2/ - "V
G0 = SETo,0F T anT 00P

1 1
> 52’%(’5) + 523@)

AV
DN | —
VR
=[5
N——

[N}

— N
=

_|_
DO |
VR
=)<,

N [1(t) + 25 (1)]

v

= N0

Case3 : If 0 < 61 (t) < z,(t) and —1 < 25(t) < 02(t) < 0, then it follows that (3.30) ,
(3.31) , (3.34) and (3.36) that for ¢t > T*

1 2 L 4(t)
V(z(t)) > 5[1—1—91@)]2 §[l+92(t)]2

(AV4
DN | —
/N

*
<[
N~
[\

Ll \V)
~—

S~
N

+
DN | =
/N
S,
N——

N

N
NN
)

~

N—r

N [21(t) + 25(1)]

v

= N[0

Cased : If —1 < z(t) < 61(t) < 0 and 0 < 02(t) < 22(t) , then it follows that (3.30) ,
(3.31) , (3.34) and (3.36) that for ¢t > T*

1 22(t) 1 2(t)
V(y() = 214+ 6,02 2[1 + 6:(1)]2

> %zf(t) 41 <yf*>2z§(t)
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AV
DN | =
N
<[ =
N——

[N}

)—‘NN)

=

+

| —
/7~
=~

> N [2(t) + 25(1)]

= N0

Let u(s) = Ns? , then u is nonnegative continuous on [0,00) , u(0) = 0 , u(s) > 0

for s >0, and lim u(s) = +o0o . So, by casel ~ cased , we have
S§—00
VI(z(t) 2 ull[z(0)])  for t=T" (3.37)

So the equilibrium point E* of the system (3.1) is globally asymptotically stable
with p(z) = cx . |

21



Theorem 3.2 If p(x) = lf in the Holling-type II model , and the delay T
x

satisfy

r—cL>0 (3.38)

ra*(1 + 2x*) N cy*  rxt 1+ M) rat(at+ M)
K1+ M) 20+m) 1+m 2m(1+m) K(1+m)

_ MrPrtr(1 4+ af)(K 432" + 14+ M) Mrey*r(1 +a%)

K2(1 + m)? k(1 +mez 0 (3:39)

By* N cy* dx*(1+ M) Mrey*r(1l+ z*)
M  2(1+m) 2m(l+m) 2K(1 4 m)?

>0 (3.40)

where m , M , and L defined in Lemmas 3.2 and 3.3 , then the unique positive
equilibrium E* of the system (3.1) is globally asymptotically stable.

Proof : Define z(t) = (2(¢), 22(t)) by

_r = ==y
z(t) = o , 2(t) y*
From (3.1) ,
ra*z (t) B ra*?z (t)
Lo la@)]  K{l+o 1+ (0]}

A0 = [ +z1<t>1{

ra*z(t — 1) B ro*?z(t — 1) B ra*z(t — 1)z (1)
K{1+z[14+2(t)]} K{1+z1+2z()]} K{1+2*[1+2()]}

cy*za(t)
1+l +zl(t)]} (3.41)
0 = v (20
Let
Vi(z(t)) = {z1(t) = In[1 4+ 21 ()]} + {z2(t) — In[1 + z2(2)]} (3.43)

22



then we have from (3.41) and (3.42) that

Vi(z(t) = L+z(t) | 1+ 2()

rr*z2(t) ra*?22(t) re*z ()2 (t —7)

L+a*l+z(t)] K{l+z1+z0)]} K{l+z*[1+2()]}

ra*z ()2 (t — ) ra*? 22 ()2 (t — 1) By*z3(t)

K{l+ 2 [1+201)]} K{1+z[1+z0)]} 21+ 2(1)]

{1+ 1+ 2]} — eyl + 21 (0]
{1+ L+ 2 ()]} + 2. (2)]

21 (t) Z9 (t)

ra*zi(t) B ra?z}(t) ra* 23 (t)]z1(t = 7)]
L+zl+z(t)] K{l+z1+z()]}  K{I+a*[1+2()]}

IN

By Lo+l a@]} —eyl+ )]Zl(t)'z?(t)

L+ 21 (1)] {1+ L+ 2 ()1 + 2. (t)]

re* ra*?

{K{l TN+ a0 K+ el+a0])

basae -7

(3.44)

If 62*(1 +m) — cy*M > 0, and by Lemma 3.3 , there exists a T* > 0 such that
m < a*[1+ 2z (t)] < M and | < y*[1 + 25(t)] < L for t > T* . Then (3.44) implies
that

rati () ratA() | rattR()|alt - 1)

Vi(z(t) < T+m K+ M) K(1+m)

By z(t)  cyzi(t)  ey'z(t) | dxt(1+ M)2i(t) | dx*(1+ M)z5(1)

M 2(L+m) 2(1+m) 2m(1 +m) 2m(1 +m)
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ra*(1+ %)

- w0 20 [ s

IN

B [W(l +2) ey rat (14 M)] (1)
KA+M) " 20+m) 1+m 2m(l+m)]|"
By* cy* sz*(1+ M)] r*2 ,
[ M * 2(1+m) B 2m(1 —i—m)] % (t) + K(1+ )Zl(t)|31(t— 7)]|
ro*(1+ z*) t ra* 2 ()21 (s)
K{1+a*1+z0)]} /s [1+Zl(8)]{1+x*[1+21(8)]

rz*?z(t) 21 (s) ra*z(t)z (s — 1) ra*?z ()2 (s — 1)

K{l+z*[1+ z(9)]} B K{1+x*[1+2z(s)]} K{l+z*[1+2(9)]}

Tx*Zzl(t)Z1(5)Zl (5 — T) B cy*21(t)22(8) } ds
K{l+o*1+z(s)]} 14z l+z(s)]

ra* (1 + 2z7) cy* ro* dx*(1+M)] ,
_[K(I—I—M) +2(1—|—m)_1_|_m_Qm(l_i_m)}zl(t)
By* cy* sz (1+ M)] 2
{M T rm) 2m(1+m)] 20+ Frrmatlat—7)
mc*(l +x*) ¢ 7”30*|21(t)||21(3)|
i ) MR b ey

ra*?)z1(t)|]z1(s)] ra|zi(8)]]z1(s — 7)]
K{1+az 14 2(s)}  K{14+a*[1+2z(s)]}

re?la(®)lla(s — )| | eylaa(t)]]z(s)] }ds
E{l+z[l+z(s)]} 1T+ 1+2(s)]
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Vi(z(1))

K+ o+ a0l S KL+ 2 [+ 21()]}

<

ta) [ Palalon) e

ra*(1+ z*) b ora |z ()||z(s — 7))
K{1+ a1+ 2]} Jir K{1+2*[1+ 2.(s)]}

[1+ 2z1(s)]ds

(3.45)
Then for t > T* + 7 =1 , we have from (3.45) that
a1+ 227) cy* ot dr(1+ M) 2(1)
KA+M) " 2(0+m) 1+m 2m1l+m)]| "

By* cy* dx*(1+ M)] , ra*? M.,

— t 14+ — t
{M+2(1+m) om+m) | 2O Ragm Al
Mr(1+ ") /t ralzaOla()] | raz @)z ()
K(1+m) J,_. 1+m K(1+m)
raflaOllza(s =7l | rala@llals =) | etladll6)]

IN

K(1+m) K(1+m) 1+m

M?*r(1+ z*) /t rx*2|zl(t)||zl(s—7')|d8
Kx*(14+m) J,_, K(1+m)

Mr(14+z*) " ra*?|z(t)||z(s — 7))
K(1+m) /t_T Ka+m) &

ra*(1 + 2x*) N cy* ra* dz*(1+ M)
K1+M) 2(14+4m) 14+m 2m(l+m)

ro*(z*+ M) Mr(l+ x*)T(r:v* N 3rz*? N ra* N cy*)
K(l+m) K(l+m)? ' 2 ' 2K ' 2K 2
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M?r2z*(1+2*)1] By* cy* dx*]
267(1 + m)? ] 1(t)_[ - ~ o) 20

Mriz*(1+2*)(K +z%) [t
+ 2K2(1+ m)? /t_T 4 (s)ds

Mr2z*(1+2*) (M + 1+ 22*) [t
—7)d
2K2(1 + m)? /t 25 = 7)ds

M * 1 * t
+ rey’(1+2 )/ Z5(s)ds
t—7

2K (1 +m)?
(3.46)
Let
Mr’x (l—i-x K+x
B = g / T / 22(7)dyds
Mr2z*(1+ z*)( M—|—1+2x
+ S0+ / /Zl — 7)dvyds
Mrey*(1 + z¥)
+ 2K (1+m) / /zz Ydyds
(3.47)
then

Mr2z*r(1+ z*) (K + z*)

Va(=(t) = 9K2(1+ m)? “(t)

Mt 4t (K + 2t /t 2(5)ds
2K2(1 4+ m)? —r

Mriz*r(1+z*) (M + 1 + 2z*) 2t - 1)
2K2%(1+m)?
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M2zt (14 2%) (M + 1+ 22%) [t
_ —7)d
2K2(1 + m)? /t Zi(s = 7)ds

-7

Mrey*r(1+2*) , Mrey*(1 4 z%) /t )
kA meE 2T SrarmeE [ 2

(3.48)

and then we have from (3.46) and (3.48) that for ¢ > T
ra*(1+ 2z%) cy* ra* dx*(1+ M)

Vi(z(1) + Va(z(t) < — K(1+ M) +2(1+m)_1+m 2m(1 +m)

re*(z* + M)  Mr(l+ x*)T(rx* 3ra*? N ra* N cy*
K(1+m) K(1+m)?

2 - 2K 2K 2 )

2.2 ,.% * 2 % * *
o MPPrr(l+a) Mrfatr(l+4 o) (K +a%) 2(1)
2K2(1 4 m)? 2K2(1 + m)? !
By cy*  dar(1+M) Mrey'r(l+a¥) 2(1)
M " 2(1+m)  2m(l+m) 2K(1+m)? |
Mriz*r(1+2*) (M + 1+ 22%)
" 2K2(1 + m)? alt=7)
(3.49)
Let
Mr2z*r(1+2*) (M + 1+ 22*) [P
t = .
V(a(0) T | s (3.50)
then
: Mriz*r(1+z*) (M + 1 + 2z*)
Mriz*r(1+z*) (M + 1+ 2z%) , (3.51)

2K2(1 + m)? alt=7)

27



Now define a Lyapunov functional V' (z(t)) as
V(z(t)) = Vi(z(t)) +Va(z(1) + Va(2(2)) (3.52)

then we have from (3.49) and (3.51) that for t > T

ra*(1+ 2z%) N cy* ra* dz*(1+ M)
KA1+M) 2(14m) 14+4m 2m(l+m)

V() < - [

re*(z* + M)  MrPz*t(1+2*)(K + 32" + 1+ M)
K(1+m) K2%(1+m)?

Mrey*r(1 + x*)
T T 2K(1+m) ] al)
B [ﬁy* N cy*  ox(1+M) Mrey'r(l+a¥) 2(1)
M T20+m) 2m(l+m)  2K1+mpe |7

—(zi(t) — nz3(t) (3.53)

Then it follows from (3.39) and (3.40) that ¢ > 0 and 5 > 0 . Let w(s) = Ns?
where N = min{¢,n} , then w is nonnegative continuous on [0, 00) , w(0) =0, and

w(s) > 0 for s > 0. It follows from (3.53) that for ¢t > T
V() < =N [2(0) + 5(0)] = =N 2(0]° = —w(|lz0)]) (3.54)

Now , we want to find a function u such that V' (z(¢)) > u(||z(¢)]]) . It follows from
(3.43) , (3.47) , and (3.50) that

V(2(t)) > {z1(t) = In[1 4+ 21 ()]} + {22(t) — In[1 + 2(t)]} (3.55)

then by Theorem 3.1 , we have that u(s) = Ns? and V(2(t)) > u(]|z(t)]) . So
the equilibrium point E* of the system (3.1) is globally asymptotically stable with
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2

Theorem 3.3 If p(z) = in the Holling-type III model , and the delay T

1+ 22
satisfy
r—cL>0 (3.56)
ra*(1 4 32*?) N cr*y* ce*y*  ra*(M + 3z%)
K(1+M?)  2(14+4m?) 14 M? 1+ m?
3ra*?(M + %) ra*(M +2%)?  Sx*(1+ M?)  ca*(L+y*)
K(1+ m?) K(1+m?) 2m(1 + m?) 14+ m?

Mrir*r(1 + 2*?)(3Ka* + 92 + MK +5Ma* + 1+ M?)
K2(1 +m?)?

_ Mrey*r(1 + z*?)(4z* + M)
2K (14 m?)?

>0 (3.57)

By* N cx*y* Sx*(14+ M?)  Mrey*(1 + 2*?)(22* + M)
M 2(1+m?)  2m(1+m?) 2K (14 m?)?

>0 (3.58)

where m , M , and L defined in Lemmas 3.2 and 3.3 , then the unique positive
equilibrium E* of the system (3.1) is globally asymptotically stable.

Proof : Define z(t) = (21(t), 22(t)) by

From (3.1) ,

2rz*?z (1) ra*22(t) B 2rz*3 2 ()
L+a?[1+z(0)]2  1T4+a?[l+z()2  K{14+2**[1+ 2z (1)}

A0 = 1 +Z1(t)]{

ra*3 23 (t) B ra*z(t — 1) B ra*?z (t— )
K{1+ 2?1+ ()} K{l1+z?[1+4+2z)]?} K{1+ 2?1+ z()]*}

2ratn ()t —1)  redalt-71) cx*y*z (1)
E{l1+aP?1+a®)P} K{l+z?l+a0)P} 1+2?[1+z0)
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cr*y* 2z (t) cr*y* 2 (t)za(t) } (3.59)

T+ 221+ 202 1+22[1 4 2/(t)?

H(t) = [1+z2(t)]{ (3.60)

Let

ox* 21 (t) — By 25(t) }
x*[1 + 21 ()]

Vi(z(t)) = {z1(t) = In[1 4+ z1(t)]} + {22(t) — In[1 + z2(2)]} (3.61)

then we have from (3.59) and (3.60) that

Vi(z(t) = L+z21(t) 1+ 2()

2ra*? 23 (t) ra*? 23 (t) 2ra*? 22 (t)
Lta?[l+ 2P 1+220+20P  K{l+27°[1+=x0)P}

ra*3 23 (t)  rwra@®alt-r) ra*3z (t)z (t — 1)
K{1+z2[1+2.(0))2} K{Q+z21+x0))?F K{1+a*2[1+ ()]}

2ra”’d ()t —1) raRMalt-1) aryi()
K{1+ 22?1+ 20)]2} K{1+2?1+20)2} 1+z*1+2()>

aty R Wnl) | {1+ L+ ()P} — ety 1 4 21 ()] .
) R 1) R WU [y 1)) [ 1) A

By*2;(t)
] (3.62)

If 5(1 +m?) —cy*M > 0, and by Lemma 3.3 , there exists a 7 > 0 such that
m < a*[1+ 2z (t)] < M and | < y*[1 + 25(t)] < L for t > T* . Then (3.62) implies
that

2ra*? 23 (t) 2ra*? 23 (t) cx*y*Z2(t)

W) € T OF T RO a0+ 2@ 1770+ a0F

ra*? 23 ()] 2 (t)] ra 23 ()] 21 (t)] 2ra* 23 ()| 21 (t — 7)]
L+l + 2 K{I+zP[14+20)P}  K{1+2?[1+2(t)}
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IN

IN

cr*y 2 (t)zat)| | ra ) @llat —1)] Byt
14 2*2[1 4 2, (8)]? K{1+ 21+ 2(t)]?} x*[1 + 2 (¢)]

{14+ 221 + 2,(1)]?} — ca*y*[1 + 21 (¢)]
{1+ 2?1+ 21 (8)2H1 + 21(2)]

|21(8)[]22(1)]

ra*z ()2 (t — 1) B ra*?z ()2 (t — 7)
K{1+ 221+ ()2} K{1+z2[1+x0)]?}

2

) — o A0~ 1)+ O 0)
A 0 0]+ e Dl = 7+ 0l
PO — ) - 20 + S e+ 300
S0+ 0] - et o) [ - [ s
D0~ ) - i + T

ra*?(M + z*) cx*(L+y*) , By* Sa*(1+ M?)
mzl( ) (1+m2) (&) = 520+ (L4 m?) (t)

cary” d0z* (14 M?) , cx'yt ro*(1+2%%)
2(1 +m2)21(t) * WZQ( ) - 2(1 +m2)z2( ) - mzl(t)

2007 a1t ra 0212, (8)|| 24 (¢
mZI(”Zl( —T)|+K(1+m2)21() |Zl( )||Zl( —7-)|
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ra* (14 z*?) t
K{l+a?[1+2(t)]*} /s

(14 21(s)]

{ 2ra*?zy ()21 (5) ra*?z(t)22(s) B 2ra*? 21 ()21 (s)
L+a2[1+2(s)]? 14221+ 2(5))? K{1+ 231+ 2(s)]?}

ra*dz (t)22(s) rwraals-1) ra*z ()2 (s — 1)
K{1+ 21+ z(s)]2} K{1+z*?[1+2z(s)]?} K{l+2*?[1+ z1(9)]?}

2ra*? 2 (t)21(5) 21 (s — T) ra*3z(t)22(5)z1(s — 7) _ar'yz(t)a(s)
K{1+2?1+z()P)  K{I+o?l+z()P)  1T+a?[l+2(s)P

cx'y z(t)z(s)  cxtytui(t)zi(s)za(s) } ds (3.63)

L+ 221+ 2(s)]2 14221+ z(s)]?

Then for t > T*+7 =T , we have from (3.63) that

Vi(2(1))

<

oty ro*(M + 3z*) , 3ra*?(M + %) cx*(L+y*) ,
1_|_M221() 1_|_m2 Zl() K(1+m2) Zl() (1+m2) Zl(t)

re*(M+z*)?% . Byt , dx*(1+ M?) crryt

Rarm) W 20 sy 10 - syt

ra*(1+3z*%) , dz*(1+ MQ)zZ(t) 'y’ 2(1)

ka2 A snar e 2 T sg e

2 [ (20l + 2 a0

ra¥

T [ @Ollzi(s = )] + ca”y [ (@) |22 (s)] + ex”y" 21 (8)] 21 (5))]

ra*

s (s — 7)) s

32



IN

ra* (14 z*?) t
K{l+a?[1+2(t)]*} /s

(14 21(s)]

{ [ ra*?z(t)z1(s) B ra*3z (t)z1(s) B 2ra*P 2y (t) 21 (s — 7)
L+ a1+ 2z(s)]? K{l+z*?1+z(s)?} K{1+z*[1+2z(s)*}

cx*y*z1(t)z2(s) ra*?z (t)z1(s) ra*3z(t)21(s)
T+ 21 + 21(5)12} L s - e P~ RO el + 2 (0F)

2T1‘*3Z1(t)31(3 — 7—) B Ca;‘*y*z1(t)22(8) ]} ds
K{1+ 221+ 2(s)’} 14+l +z(s)?

ra* (14 z*?) t
K{1+2?[L+ 2P} Ji—r

ra*3z ()2 (s — 1)
K{1+ 2?1+ z(s)]*}

1+ z(s)]”

1+ 201 {

ra*3z ()2 (s — 1) 2ra*zi(t)21(s) 21 (s — 7) } d
K{1+ 221+ 21(s)]?}  K{1+2*2[1 + 2z1(s)]?}

cxty* 2(4) ro*(M + 3z*) , 3ra*?(M +x*)

— t t t
11 M2 L+ m) z (1) + K+ m?) 21 (t) + A+ m?) z{(t)
ra*(M + x*)? 2 By ox*(1+ M?) , cr*yt
R N () R = 1 W Sl M Y ) ¢
K1 +m?) alt) - 320+ 2m(1+m2)21() 2(1+m2)21()
ra*(1+32*%) dz* (1 4+ M?) cr*y*
—— 2 27(¢t — = 25(t) — t
K+ AT ey 20 T g g 20
Mr(1+ z*?) . o ! ro*dr
m |:7"IL' 27'Z% (t) +rx 2 /tT Z% (S)dS + K Z% (t)
ra*® [t 9 re’T ro* [t 9 ro*ir 9
N - zi(s)ds + 5K z{(t) + oK - zi(s — 7)ds + 5K z{(t)
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IN

*3 t EP ® ok t
rT cxrry*T cx*y
oK | (s —7)ds + Tzf (t) + 5 /tT 21 (s)ds

%,k * )k t
Yy 7—zf(t) + “y / 22(s)ds
2 2 ¢

-7

M?r(1 4 2*?) ra*

m/t {7“33*2|Zl(t)||2’1(5)|+ % |21 (t)[|21(s)]

-7

2r 3 .

% |21 (t)[|2(s — 7)| + cx™y |2’1(t)||2’2(5)|] ds
Mr(1+2*%) [ 9 ro*?
m/t_T[m |21 (8)]|21(8)| + % |21(8)][21(8)]
2r 3 .

% |21(D)][2(5 — T)| + cx™y*| 21 (t)]|22(s) ] ds

M3r2g*(1 + 2*?) [*
e [ a0l =0l

MTZJ:.*?)(l_'_x*Z) t
e [ a0l =0l

M L [ @l - Dl + (9] + 0]l (s = 7

ra* (1 + 3z*?) N cx*y* cx*y*  rax*(M + 3z*%)
K1+ M?)  2(14+m?) 1+ M? 1+m?

3ra**(M +z*)  ra*(M +2%)  dx*(1+ M?)  ca*(L+y*)
K(1+m?) K(1+m?) 2m(1 + m?) 1+m?
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Let

Va(2(1))

Mr(1+a**)7 <37":v*2 Ira*®  rx* 3cx*y*>

K (14 m?)? 2 + 2K +2K+ 2

M?r(1 +2**)7 <7”:L‘*2 Sra*3 cx*y*)

Kx*(14+m2)2 | 2 oK T

M37"2!L'*(]_—|—.'L'*2)T:| ) By* C.’L'*y* (SI*(].—l-MZ) )

2K (1 +m2)? |~ ®)- { M a0 m?)  2m(i+ m2)] %(?)

Mr(1+2*%) [ 3ra**  3ra*®  cx*y*. [1
( + + )
Ki+m2)? | 2 T2k 2 ).,

t * 3 *3 t
o [ Ao G 250 [ oo

M?r(1+2**) [ ra*?  ra*® 7 )
d
Ka*(1 + m?)? {( > T 2K)/”ZI(S) iy

*3

%,k t 2 t
C$2y /tT 2z (s)ds + r;( (s — T)ds]

t—7

MST'ZIL'*(]_ —|—IL'*2) t )
2K2(1 + m?)? /1t aals = )ds

(3.64)

Mrz*(1+ 2**)(3Krz* + 3rz** + Key* + MrK + Mrx*) [ ",
21 (y)dyds
21+ )2 e do T

Mrey* (14 2*?) (20" + M) / / dyd
7 $
2K (1 + m2)? . 2(7)dy
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Mr2z*(1 + 2*?)(1 + 62*2 + 4Ma* + M?) (1 [,
— 7)dvd
2K2(1 + m2)? /tr/s zi(y — 7)dvds

(3.65)

then

: Mrz*r(1 + 2*?)(3Kra* + 3ra** + Key* + MrK + Mra*)

Mrz*(1+ 2**)(3Kra* + 3ra*? + Key* + MrK + Mrz*) /t 2(5)d
2K2(1 + m?)? e

-7

Mrey*r(1+ 2*?)(22* + M) 2(1)
2K (1 + m?)? “2

_ Mrey*(1+ %) (22" + M) /t 2(5)ds
2K (14 m?)? ¢

-7

Mr2x*r(1 + %) (1 + 62* + 4dMa* + M?)
+ z{(t—T)
2K2(1 + m?)?2

M 2 .k 1 *2 1 6 *2 AM * M2 t
B réx*(1+2*%)(1 4+ 62*° + 4Mz* + )/ 2(s— 7)ds
2K2(1 + m?)? L

(3.66)

and then we have from (3.64) and (3.66) that for ¢ > T

: : ra*(1 4 3z2*?) cx*y* cx*y* ra* (M + 3z*)
Vi(z(t Vo(z(t) < — -
1(=z0) +Val=t) < KA +0%) 20 +m?) 1+ 1+ m?

3rav*(M +a2%)  rat(M+a*)* dxr(1+M?)  c*(L+y)

K(1+m?) K(1+m?) 2m(1 + m?) 1+m?

Mra*r(1+ 2*%)(3Kra* + 3ra*® + Key* + MrK + Mra*)
2K2(1 + m?2)?2
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Mr(1+z**)7 (3rz**  9rz*®  ra*  3ex*y*
- + +

K(1+m2)? \ 2 ok ok T 2

M?r(1 +2**)7 <7":v*2 5ra*? c:v*y*) B M3r2z*(1 +x*2)7} )

— t
Ko (1 +m2)2 \ 2 TR T 2K2(1 4 m?2)2 ()

By* cry* ox*(14+ M?)  Mrey*r(1+2*?)(22* + M)]
M 2(1+m?)  2m(1+m?) 2K (14 m?)?

(1)

+Mr2x*7'(1 +2*?)(1 4 62*% + 4Mz* + M?)

2
2K2(1 + m?)2 At =7)

(3.67)
Let
Mr2z*r(1 4+ 2*?)(1 + 62*% + 4Ma* + M?) [,
Vi(a(t) = SR T / 22(5)ds
(3.68)
then
: Mrizrr(1 4+ 2*?)(1 + 62*? + 4Ma* + M?)
M (1427 (1 4 6277 + AMa* + M?) 20— 1)
2K2(1 + m?)? AT
(3.69)
Now define a Lyapunov functional V' (z(t)) as
V(z(t)) = Vi(z(t)) +Va(2(1) + Va(2(2)) (3.70)
then we have from (3.67) and (3.69) that for t > T
: ra*(1+32*%)  cary* cx*y* ra* (M + 3z*)
Viz(t)) < — —
() < KA+ M3 1M 21+ m?) 1+ m?
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3ra*?(M +z*)  ra*(M + x*)? (1 +M?) e (L 4y

K(1+m?) K(1+m?) 2m(1 4+ m?) 1+ m?

Mrizr(1+ 2*?)(3Kz* + 922 + MK +5Mz* + 1+ M?)
K2(1 + m?)?

Mrey*r(1 + 2*?) (40" + M) 2(4)
— z
2K (1 4+ m?2)2 !

By* N cetyt  Sxt(L+ M?)  Mrey'r(1+a*?)(22" + M)] ,

25 (t)

M " 2(1+m2)  2m(1+m?2) 2K (1 + m?2)? 2

—Cz1(t) — nz(t) (3.71)

Then it follows from (3.57) and (3.58) that ¢ > 0 and > 0 . Let w(s) = Ns?
where N = min{¢, 7} , then w is nonnegative continuous on [0, 00) , w(0) = 0, and

w(s) >0 for s > 0. It follows from (3.71) that for ¢ > T

V(1) < =N [2(0) + 2] = =N 2(0)]° = —w(||lz0)]) (3.72)
Now , we want to find a function u such that V(2(t)) > u(||z()]]) . It follows from
(3.61) , (3.65) , and (3.68) that

V(2(t) > {z(t) — In[1 + 2, ()]} + {z2(t) — In[1 + 2 (8)]} (3.73)

then by Theorem 3.1 , we have that u(s) = Ns? and V(2(t)) > u(|[2(t)])) . So
the equilibrium point E* of the system (3.1) is globally asymptotically stable with

CCE2
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Remark 3.1 By Theorem 3.1 , Theorem 3.2 , and Theorem 3.3 we can assume

that
Vi(z(t) = {z1(t) = In[l + 2z (t)]} + {22(t) — In[l + 2()]}
]\24;2/ /21 )dvyds
+b(p(x) ]\ggf* [/ /zl -7 dfyds+7'/ zf(s)ds}
+( Mrcy /tT/s 25 (v)dyds
Then

(i) for p(x) = cx in the Holling-Type I model

(ii) for p(x) = & in the Holling-Type II model

bp(x)) = (1+x*21(]‘ﬁ;)12+2x*)
O =
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(iii) for p(z) = e’ in the Holling-Type IIT model

(14 2®)(3Krz* +3rz** + Key* + MKr + Mrz*)
alp(a) = e

(14 2?) (1 + 62"+ AMz* 4+ M?)
b(p(z)) = (1+m2)?
(p(z) = (14 2*°)(22* + M)

(1+m?)?
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4 Examples

Example 4.1 In the Holling-Type I we consider the system

#(t) = a(t)[3— 102t — ) — 15y(t)]

0 (4.1)
. ()
t) = t) |1 —6—=
i = oo |1-647)
where r =3, K =2 ,¢=15,0=1,=6,and E* = (&, 5) . Then

r—clL = 2.24246 > 0

ox* —cy*M = 0.0582 > 0

ra* eyt  ox*  Mriz*t  Mreytr

— — — = 1.5940 > 0
K 2 2m K 2K ~
By* eyt  ox*  Mrey*r
—_ - — = =0.0103 >0

M T2 T om 2K ~

whenever 7 = ﬁ . Consequently , by Theorem 3.1 , we conclude that the unique pos-

itive equilibrium point E* of the system (4.1) is globally asymptotically stable . The
trajectory of the system (4.1) is dipicted in Figure 4.1 .

0.2

0.18- —

0.16 i

0.14 B

0.12- —

0.08 B

0.06 - B

0.04 B

0.02 N

0 I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3

X

Figure 4.1: The trajectory of the system (4.1) with 7 = 5 .
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Example 4.2 In the Holling-Type II we consider the system

. y(t)
t) = t) |3 —10x(t —7)— 15
i) = o) 3100t - 1) - 1520
" (4.2)
. )
t) = t) |1 —6—F=
i = oo |1-6%3]
where r =3, K =2 ,¢=15,0=1,3=6,and E* = (§,5;) - Then
r —cL =2.24246 > 0
5a* (1 +m) — ey* M = 0.08843 > 0
ra* (1 + 2z*) cy* ra* dz*(1+ M) ra*(z*+ M)

KO1+M) 20+m) 1+m 2m(i+m) K@ +m)

Mr2a*r(14+2*)(K +32" + 14+ M)  Mrey*r(l +a%)
K2(1+m)? 2K (14 m)?

= 0.05316 > 0

By* N cy* dz*(14+ M) Mrey*r(1+ z*)
M  21+m) 2m(l1+m) 2K(1+ m)?

= 0.00475 > 0

1

505 - Consequently , by Theorem 3.2, we conclude that the unique pos-

whenever 7 =
itive equilibrium point E* of the system (4.2) is globally asymptotically stable . The

trajectory of the system (4.2) is dipicted in Figure 4.2 .

0.2

0.18

0.16

0.14 -

0.12

> 01

0.08 -

0.06 [~

0.04 -

0.02

I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

X

Figure 4.2: The trajectory of the system (4.2) with 7 = =% .
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5 Conclusion

In this thesis , we obtain that the sufficient condition for the global stability
of the Leslie-Gower predator-prey system in Holling-Type I , Holling-Type II , and
Holling-Type III models with time delay , respectively . But we believe that the
global stability of the predator-prey model with time delay with all different func-
tional response of the predator , p(z) , for instance , p(z) = mz , p(z) = 2% , p(x) =
ﬂ—:f? ,p(xr) =mz,0<e<1,orp(r)=m(l—e ) will be an important topic for

future study .
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