(一) 前言

發展對去氧核醣核酸(DNA)具有序列專一性結合的化合物⁽¹⁻⁹⁾,已是有機化學 及分子生物學的研究方向之一。在藥物設計上,特定地專一性更顯得格外重要, 因為致病的因素,很可能只是一到兩個鹼基對的差異,便可能導致遺傳性的功 能不全,或使得某些蛋白質表現發生異常,讓細胞成為異常的增生或造成毒性, 導致癌症的發生。因此設計合成出對 DNA 具辨識能力的化合物,已經成為許多 科學家研究的重點。在國際間有不少的研究團隊合成嶄新的分子化合物,以利 進行與 DNA 作用之相關研究⁽¹⁰⁻¹⁶⁾。以高解度電泳瞭解化合物對 DNA 結合及切 割的代表研究員有美國加州理工學院的 Dervan 教授,英國劍橋大學的 Waring 教授及法國的 Bailly 教授等⁽¹⁷⁻²²⁾。

許多具有生物活性的巨分子蛋白質,以內切限制酶為例⁽²³⁻²⁴⁾,均具有辨識 DNA 特定序列的能力,且對此專一位置具有水解磷酸雙酯鍵的生物活性⁽²⁵⁻²⁷⁾。 另外,許多的轉錄因子(transcription factors)、啟動子(promoters)及抑制子 (repressors)亦可辨識特定基因區域及專一性結合的能力,也因此這類型的生物巨 分子蛋白質具有調控基因表現的能力⁽²⁸⁾。長久以來,關於蛋白質與調節基因表 現之間的相關研究已有不少成果⁽²⁹⁻³²⁾。在過去的研究發現,從組織蛋白、固醇 類激素之受體及一些致癌基因生成物所分離出的蛋白質中,彼此之間胺基酸順 序存在的共同性,就是這些蛋白質的胺基酸序列都是以 Ser-Pro-Lys(Arg)-Lys(Arg) 重複多次組成的脏肽為主⁽³³⁾。而這些多肽也被證實是以β-turn 的結構存在,且 對 DNA 具有高的親合力⁽³³⁾。因此,依據此脏肽序列為中心主體,作一系列胺基 酸排列組合上的置換來進行實驗及比對。在近期的研究成果中發現,胺基酸順序 X-Pro-Arg-Lys 重複多次組成的胜肽,對 DNA 具有序列選擇性結合的能力^{(34)。}

因此,本篇論文將著重在特殊胜肽序列對 DNA 專一性結合方面的研究。而 此文將以 XPRK 順序為基礎的九種環狀多肽,對 DNA 序列專一性結合的問題進 行探討。期待此胺基酸序列幾經修飾後的特殊胜肽,能有別於過去的 DNA 結合 單元,如:helix-turn-helix、anti-parallel β-sheet 及 Zn-finger (圖一),進而發展出 另一種新型的 DNA 結合物,作為具有潛在調節基因表現能力的胜肽。

本文所使用之環狀多肽如下所示。其中環十肽及環九肽由<u>魯程泰</u>學長所提供,環十四肽由楊菀漵同學提供。

CY-10P:

Cyclo[CH₂CO-Gly-Tyr-Pro-Arg-Lys-Tyr-Pro-Arg-Lys-Cys-CONH₂]

CW-10P:

Cyclo[CH₂CO-Gly-Trp-Pro-Arg-Lys-Trp-Pro-Arg-Lys-Cys-CONH₂]

CWKK-9P:

Cyclo[CH₂CO-Gly-Trp-Pro-Arg-Lys-Trp-Lys-Cys-CONH₂]

CHyY-14

Cyclo[CH₂CO-Gly-His-Hyp-Arg-Lys-Tyr-Pro-Arg-Lys-His-Hyp-Arg-Lys-Cys-CONH₂] **CHvD-14**

Cyclo[CH₂CO-Gly-His-Hyp-Arg-Lys-Asp-Pro-Arg-Lys-Tyr-Pro-Arg-Lys-Cys-CONH₂] **CMY-14**

Cyclo[CH₂CO-Gly-Met-Pro-Arg-Lys-Met-Pro-Arg-Lys-Tyr-Pro-Arg-Lys-Cys-CONH₂] CNW-14

Cyclo[CH₂CO-Gly-Asn-Pro-Arg-Lys-Asn-Pro-Arg-Lys-Trp-Pro-Arg-Lys-Cys-CONH₂] CH2Y-14

Cyclo[CH₂CO-Gly-His-Pro-Arg-Lys-Tyr-Pro-Arg-Lys-Tyr-Pro-Arg-Lys-Cys-CONH₂]

CRHY-14

Cyclo[CH₂CO-Gly-His-Pro-Arg-Lys-Tyr-Pro-Arg-Lys-Lys-Arg-Pro-His-Cys-CONH₂]

(二) 原理

A. DNA 足跡法

聚丙烯胺凝膠電泳(Polyacrylamide gel electrophoresis, PAGE)

聚丙烯胺凝膠是電泳的選擇支持介質,可以由丙烯胺(acrylamide)快速地 聚合形成。膠體的主要成份除了單體分子(monomer)丙烯胺之外,尚有架橋 分子(bridge) Bis-acryamide,可看作兩個丙烯胺單体分子連結在一起,形成分 叉點,以構成立体結構;自由基(free radical)產生者 ammonium persulfate, APS;催化劑 TEMED,幫助自由基電子的傳遞。在鑄膠中主要包含三種基 本反應:1. 自由基的形成:靠上述自由基產生者 APS 生成自由基,再使單 体分子成為自由基型式。2. 聚合反應:自由基單体可首尾相接,以連鎖反應 形成大分子的長鏈。3. 交錯連結:若架橋分子加入聚合反應,則形成網狀三 次元結構。由於 APS 容易從分子中央裂解,成為對稱的兩半,平分原來的 共價鍵,並形成自由基(O₄S₂-S₂O₄)²⁻→2SO₄⁻。此自由基開始攻擊一個丙烯胺 單元體,使後者成為自由基形式,再接續攻擊第二個單元體,因而串連起來; 如此一直連接下去,即可成為長鏈巨分子。Bis 是兩個丙烯胺連在一起,若 上述連鎖反應中含有少量 Bis,則有可能接到一個 Bis 分子,此長鏈將在此 分叉,形成網狀構造。而 TEMED 是催化劑,可以暫時保留自由基,以便充 分供應連鎖反應所要的自由基。

當 DNA 或蛋白質在變性(denaturing)的情況下,於聚丙烯胺凝膠電泳中可依

3

據質量的大小被分離,分子量小的分子具備向正電極移動較快的能力。聚丙烯 胺凝膠電泳通常以一個垂直薄片(slab)為型式,如圖二,電泳的方向是由頂端至 底端。最後,凝膠中的 DNA 若是以放射活性標記者,可以藉由放置一張 X 射線 底片於凝膠上而得到結果,此程序稱為放射自顯影(autoradiography)。

足跡實驗(footprinting)⁽³⁵⁾

在生物體內,有許多蛋白質以非共價鍵的方式與 DNA 作用與結合,其作用 機制,掌控了細胞內基因的調控、DNA 的複製、轉錄及重組等功能,仰賴氫鍵 (Hydrogen bonds)、凡得瓦力(Van der Waal interactions)及疏水性作用力 (Hydrophobic interactions)等分子間的交互作用,來辨識 DNA 的序列。而蛋白質 辨識序列軌跡的判讀形式,則可以使用 DNA footprinting 技術。

西元 1978年,科學家 Galas 和 Schmits 以去氧核醣核酸切割酶(DNase I)為切 割試劑^(36,37),也就是以酵素來切割 DNA (enzymatic cleavage of DNA)。其他的酵 素,如核酸外切酶(exonuclease III),micrococcal nuclease 和 DNase II 都是有用的 切割試劑⁽³⁸⁾。此方法的原理由圖三表示。已知序列的 DNA 片段,一股的末端以 ³²P 標記,隨後以 DNase I 進行切割,以造成 DNA 的斷片,並利用電泳依其大小 而分離,最短的片段位在凝膠的最底部。反之,最長的片段則在凝膠的最上端, 此一實驗視為對照組(control lane)。另外在相同條件下,將蛋白質加到標記的 DNA 上形成一複合物,再用 DNase I 切割,可看到一系列的切割帶(band)。但在 含有蛋白質的序列位置則不出現切割帶,使得凝膠圖形成一段空白的區域(blank region),就好比蛋白質的足印(footprint)。這些切割帶的消失是因為蛋白質遮蔽 了 DNA,也就是結合的蛋白質保護了此一特殊的區域,免於被 DNase I 切割成 相對應的片段。當然有時候切割的程度會有所不同,微弱的切割或是沒有切割, 在凝膠圖上便呈現低強度的切割帶或是不出現切割帶。於是我們利用這些遺失 的切割帶(missing band)來辨認蛋白質結合在 DNA 的位置。

DNA 放射活性標記

標記 5´端 DNA 使用的放射性同位素為[γ -³²P]ATP,以 T4 polynucleotide kinase 此酵素來活化反應進行標記⁽³⁹⁾。由於此種酵素為一活化激酶,能辨認 ATP 上 γ 磷酸位置,並切斷此處鍵結,而連接³²P 到 5´端 DNA,使得 5´端 DNA 變 成^{*}PO₄⁼,達到標記的目的。如圖四所示。

B. 馬克薩姆(Maxam)-吉爾伯特(Gilbert)特異性鹼基化學斷裂法^(40,41)

放射性同位素末端標記常使用此法來檢示 DNA 的序列。二甲基硫酸鹽(DMS) 會破壞嘌呤(purine),它會在鳥嘌呤(guanine)的 N-7 和腺嘌呤(adenine)的 N-3 上 加上一個甲基。在高溫及六氫吡啶(piperidine)的作用下,核苷酸本體的五碳醣或 磷酸根會因此分解或脫去,而特定地在G 鹼基上斷裂,因此可作為序列比對的 標準品。六氫吡啶是屬於較弱的親核試劑,僅會導致位於核酸鏈鹼基缺陷的地 方斷裂,不易與位在正常鹼基的位置反應。裂解後的核酸片段在 5'及 3'端均會 含有磷酸根離子。而這就是所謂的 Maxam-Gilbert 特異性鹼基化學斷裂法,其反 應機構如圖五所示。此法在 1977 年由 Allan Maxam 和 Walter Gilbert 發展出來, 於1980年得到諾貝爾化學獎。

C. 聚合酶連鎖反應⁽⁴²⁾

在 1985 年, 化學家 Mullis 提出了聚合酶連鎖反應 (polymerase chain reaction, PCR), 並於 1993 年得到諾貝爾獎化學獎。這是一種利用雙股 DNA 重 複地變性(denature)與複製,以大量生產某特定 DNA 序列的技術。其方法為:首 先購得兩條分別與二股 DNA 序列互補,且位於所欲增殖放大的片段尾端的寡核 酸,以作為複製時所需的引子,此時這兩條引子將分別與其互補序列的 DNA 片 段進行雜化黏合,而後在四種不同的核苷酸及聚合酶的存在下經過25-30個循環 的加熱、冷卻及複製的過程,即可將兩個引子間的 DNA 片段加以增殖放大(圖 六)。其循環步驟主要如下: denaturation → primer annealing → polymerization → denaturation \rightarrow primer annealing \rightarrow polymerization $\rightarrow \rightarrow \rightarrow$ 的多次循環。由於要在 72℃左右的高溫中進行 DNA 的聚合反應,所以對熱穩定的 DNA 聚合酶是非常 重要的。自溫泉菌(Thermus aquaticus)分離出的熱安定性 DNA 聚合酶,可在 PCR 的高溫條件下進行 DNA 的複製。另外,引子的設計要點為:1. 要有 18-20 個鹼 基,若太短會降低專一性,太長會增加成本。2. 寡核酸最後的五個鹼基其中要 有 2-3 個 G 或 C, 且最後一個鹼基必定為 G 或 C, 此因其可與互補的模板形成 三個氫鍵,較A或T黏合的能力更好。3. 兩條引子的序列中不可有連續三個以 上的相互補的鹼基,否則引子間會彼此互相黏合。引子之黏合溫度的計算為:G 及 C 的個數乘 4 ℃ 加上 A 及 T 的個數乘 2 ℃。兩條引子的黏合溫度最好不要差

距過大,以135-mer所使用之引子為例:

Watson primer 5'-acgtagcgatagcggagtg Crick primer 5'-agcggaagagcgcctgatg Watson $\begin{cases} 11 個 G \mathcal{B} \mathbb{C} : 11 \times 4^{\circ}\mathbb{C} = 44^{\circ}\mathbb{C} \\ 8 個 \mathbb{A} \mathcal{B} \mathbb{T} : 8 \times 2^{\circ}\mathbb{C} = 16^{\circ}\mathbb{C} \\ \hline \text{Total} & 60 \end{cases}$ Crick $\begin{cases} 12 個 G \mathcal{B} \mathbb{C} : 12 \times 4^{\circ}\mathbb{C} = 48^{\circ}\mathbb{C} \\ \hline 12 \mod G \mathcal{B} \mathbb{C} : 12 \times 4^{\circ}\mathbb{C} = 48^{\circ}\mathbb{C} \end{cases}$

7個G及C:	$7 \times 2^{\circ} C = 14^{\circ} C$
 Total	62

由於溫度太高引子無法黏合,太低也會降低專一性,因此溫度再減去 5℃, 即為 PCR 設定的黏合溫度約 55-57℃。

PCR 樣品的前處裡是指在反應進行的 eppendorf 中,加入 PCR 反應進行時所 需之各反應物。這些反應物通常包括有:(a) DNA template (b) primers (c) dNTP mixture (d) DNA polymerase (e) reaction buffer (f) ddH₂O (g) Mg²⁺(視反應須要而 添加)。目前實驗室之 PCR 反應皆由機器執行,一般只要樣品之前處理做好,並 在 PCR 機器中將反應進行所需之溫度、時間、循環數設定好,然後樣品置入 PCR 機器中即可進行反應。所有的反應全部都是在一根密閉的管子進行,所進行的 循環都是靠著溫度的改變在推動。

(三) 實驗

A. 藥品與儀器

化學藥品及試劑

40% Acryamide/ Bis-acryamide 19:1	波仕特
Acetic acid	景明化工
Agar	啟欣生物科技 (DIFCO)
Agarose	騰達行 (Seakem)
Ammonium persulfate(APS)	基因客(serva)
Ampicillin	季勗 (USB)
Bromophenol blue	波仕特 (aMRESCO)
Chloroform: isoamyl alcohol = 24 : 1	台灣默克(merck)
Dimethyl sulfate (DMS)	台灣默克(merck)
Ethidium bromide	Sigma
Ethanol	景明化工
Formic acid	景明化工
Glycerol	季勗 (USB)
Isopropanol	台灣默克 (merck)
ExcelPure DNA Ladder(1Kb)	全盟科技
LB Broth, Miller(Luria-Bertani)	波仕特
2-Mercaptoethanol	台灣默克(merck)

NaCl(sodium chloride)	台灣默克 (merck)
Nuclean	富聯
Phenol	波仕特 (aMRESCO)
Piperidine	台灣默克(merck)
Sodium acetate (NaOAc)	季勗 (USB)
Cacodylic acid sodium salt trihydrate	台灣默克(merck)
ssDNA	Strategen
TBE buffer	波仕特 (aMRESCO)
TEMED	騰達行(clontech)
Urea (CH ₄ N ₂ O)	波仕特 (aMRESCO)
Xylene cyanol FF	波仕特 (aMRESCO)
核酸內切限制酶(restriction endonucleases)	
EcoR I	諾貝爾 (Biolab)
5'-G [♥] AATTC-3' 3'-CTTAA₄G-5'	
BsrB I	諾貝爾 (Biolab)
5'-GAG ▼ CGG-3' 3'-CTC ▲ GCC-5'	
Pvu II	諾貝爾 (Biolab)
5'-CAG [♥] CTG-3' 3'-GTC₄GAC-5'	
DNA 修飾酶(DNA Modifying Enzymes)	

Alkaline phosphatase, calf intestinal (CIP)諾貝爾 (Biolab)

T4 polynucleotide kinase	諾貝爾 (Biolab)
聚合酶(polymerase)	
<i>Taq</i> polymerase	勁 因(Promaga)
切割試劑	
DNase I	勁 因(Promaga)
其他	
dNTP(dATP, dTTP, dGTP, dCTP) nucleosides Primer 5'-acgtagcgatagcggagtg 5'-agcggaagagcgcctgatg 5'-gatccactagttctagagc	Pharmacia
5'-aggtttcccgactggaaag	Merck
RNase A	勁 因(Promaga)
放射性同位素	
$(\gamma - {}^{32}P) ATP$	伯森生物科技(Amersham)
套組試劑(Kits)	
QIAGEN plasmid midi kit	諾貝爾(QIAGEN Inc.)
PCR purification kit	諾貝爾(QIAGEN Inc.)
Millipore Centrifugal filter Devices	伯森生物科技(Amersham)
Target PTFE GL 0.45 μ M filter	伯森生物科技(Amersham)

儀器

電泳槽 BRL sequencer model S2	騰達行
電泳槽玻璃(L:41cm W:33cm H:0.4cm)	
(L:38.5cm W:33cm H:0.4cm)	騰達行
齒梳 Analytical Delrn comb, 32-tooth, 0.3mm thick	騰達行
Spacer, 0.3mm thick	騰達行
Surface Temperature Monitor	騰達行
Spring clips	騰達行
Gel dealing tape	騰達行
Gene Amp / PCR System 2400	Perkin Elmer
射線顯像儀(Molecular Dynamics 425E Phosphor Imager)	Molecular Dynamics
Molecular Dynamics 425E Phosphor Imager storage screen	Molecular Dynamics
ImageEraser	Molecular Dynamics
卡式膠捲匣 cassette	Molecular Dynamics
膠體乾燥機 (Gel dryer system Model 583)	Bio-Rad
Gel pump GP 110 型	Savant
冷凍乾燥機 Speed vac Concentrator	Savant
冷阱 Refrigerated Condensation Trap	Savant
高真空 pump VP100 型	Savant
冷凍離心機 3K20 型	Sigma

桌上型微量離心機	Biofuge Heraeus
乾式加熱器 (Dry bath)	Boe Kel
直立式電泳槽(Model#SG200)	康谷(C.B.S. scientific co.)
電源供應器(Ps500XT DC)	伯昂興業有限公司
電源供應器(CONSORT, E734)	伯昂興業有限公司
蓋格偵測器 Series 900	康芙
振盪器(sma-36)	Scientific
旋轉式震盪器	雙鷹企業
迴旋式震盪器	建鑫儀器有限公司

積分軟體: BIO-ID software (Version 6.32)

B. 實驗步驟

(一)、質體 DNA 製備

將含有質體 pBluescript II SK(+)之大腸桿菌(XL1-Blue MRF),以白金絲沾 取,劃至固體培養基,於 37℃暖房培養約 10-12 小時。挑取單一菌落(single colony) 至 3 mL LB 培養液中(內含 100 µ g/mL Ap),於 37℃培養三至四小時。待菌液變 濁,從中取 500 µL (總體積的百分之一)轉至三角錐形瓶做大量的繁殖 (內含 50 mL 的 LB 培養液及 100 µ g/mL Ap),於 37℃培養四至五小時。待菌液變濁,即 可抽取質體 pBluescript II SK(+)。相關溶液配製參照表一,其他溶液配製列於表 八。

(二)、抽取質體 DNA

利用 QIAGEN plasmid midi kit (QIAGEN Inc.) 抽取。將 50 mL 之菌液,於4 $^{\circ}$ C下離心 8000 rpm,5分鐘。移去上清液,劇烈振盪使沈澱物懸浮於4 mL 之冰 buffer P1(內含 RNase A)中,由於 buffer P1 中含有 EDTA,可抓走細胞壁中的鈣 離子,以使細胞壁脆化。加入4 mL 之 buffer P2 輕輕混勻後,靜置室溫5分鐘, 此因 buffer P2 中含有 1% SDS 可破壞細胞膜,而 200 mM NaOH 可將蛋白質變性 (protein denature)。再加入4 mL 之 buffer P3 輕輕混勻,冰浴 15 分鐘,此因 buffer P3 中含有醋酸可中和 NaOH,而懸浮的白雲狀物即為被中性化的蛋白質。於 14,000 rpm,4[°]C離心 30 分鐘,將上清液移至新的離心管,再以 14,000 rpm,4 $^{\circ}$ C離心 15分鐘。將此不含菌體細胞碎片之上清液通過事先以4 mL buffer QBT 平 衡過之 QIAGEN-tip 100 column。再以 10 mL buffer QC 沖提二次。而後用 5 mL buffer QF 將 DNA 流析出來,分別由 10 個微量離心管盛接(每管約 500 µ L),加 入 0.7 倍之 isopropanol (亦即 350 µ L)沈澱 DNA,混勻後以 14,000 rpm,4℃離心 30 分鐘,去上清液。沈澱物再以 600 µL 70%的冰酒精清洗,14,000 rpm,4℃ 離心 2 分鐘,去上清液以帶走鹽類。沈澱物真空抽乾成 pellet,溶於適量之無菌 去離子水,測其 OD₂₆₀以定量濃度,存於-20℃備用。相關溶液配製參照表二。

製備質體 pBR322 同上述步驟,所使用之大腸桿菌菌種為 E. coli JM103y。 (三)、製備放射活性標記之 276-mer 及 176-mer pBS DNA 片段

(1) 限制酶 EcoR I 切割質體 DNA pBluescript II SK(+)

取適量質體 DNA 10µL(約9.5µg),溶入特定的活化溶液中,在此選用 EcoR I buffer,加入量4µL為總體積的十分之一。EcoRI(20 u/µL)加入的量依據欲 切割質體 DNA 濃度之高低而不同,約為1-2µL。再以去離子水來補足體積至 40µL(表三)。置於37℃反應一小時。使雙股環狀的質體 DNA 切開成線狀。以 0.8%瓊脂醣凝膠電泳偵測結果。

(2) 去除 DNA 5'端上之磷酸根

將上述溶液 40 μ L 加入 5 μ L 之 3 號 buffer 與適量的 Alkaline phosphatase (10 u/ μ L)約 1 μ L, 再以去離子水補足體積至 50 μ L(表三)。於 37℃反應一小時,去 除 DNA 5'端上的磷酸根。然後於 70℃ 再 10 分鐘使酵素失去活性。

加入等體積之 phenol 振盪 10 秒,離心 30 秒,吸取上層水層至新的微量離 心管。再加入二分之一體積之 phenol 及二分之一體積之 chloroform (chloroform : isoamyl alcohol = 24:1)振盪 10 秒,離心 30 秒,吸取上層水層至新的微量離心

14

管。加入等體積之 chloroform 振盪 10 秒,離心 30 秒,吸取上層水層至新的微量離心管,重複萃取至界面無雜質,藉此方式移除酵素,此因 phenol 為有機溶劑,利用水溶液及有機溶劑(aqueous-organic solvent)可破壞蛋白質的二級結構, 使其去活性,通常蛋白質沉澱物會位於水層和有機層的介面。而 chloroform 可 移除 phenol,以避免 phenol 干擾下一個酵素的活性。

然後酒精沉澱:加入3 M NaOAc (pH 5.5) 6-10μL、95% EtOH 1000μL,混 合均匀。置於-20℃冰箱至少一小時。4℃下,14000 rpm 離心 20 分鐘。吸乾上 清酒精。加入 600 μL 95%酒精,14000 rpm 離心 3 分鐘(保持低溫4℃),再吸 乾上清酒精,重複一至兩次,以洗去鹽類。最後真空抽乾成 pellet。

(3) 標記 5³端 DNA

將上述抽乾後的 DNA,以 41 μL 無菌去離子水溶解。加入 5 μL 的 T4 polynucleotide kinase buffer, 2.5 μL 的 T4 polynucleotide kinase (10 u/μL)及 1.5 μ L 的[γ -³²P] ATP (10 μ Ci/ μ L),使最後總體積為 50 μ L (表四)。於 37°C下,反 應一小時。酒精沉澱:加入 6-10 μ L 之 3 M NaOAc (pH 5.5),1000 μ L 之 95% 酒精,置於-20°C冰箱一小時。4°C下,14000 rpm 離心 20 分鐘。吸乾酒精。加 入 600 μ L 95%酒精,14000 rpm 離心 3 分鐘(保持低溫 4°C),再吸乾酒精,重複 一至兩次。最後真空抽乾得到以 ³²P 標記在 5°端的 DNA。

(4) 第二種限制酶切割³²P標記之 DNA

目的為切割出合適片段。將標記好的 DNA 溶於適量的去離子水約 50 μL, 加入第二種限制酶 Pvu II (10 u/ μL) 2-3 μL 及 2 號活化溶液 6 μL (總體積的十 分之一),於37℃下反應至少一小時或隔夜(表四)。反應後可得數條DNA 片段(依 據內切限制酶對質體的切位而定)。反應後溶液以8%聚丙烯胺凝膠(native gel)於 4℃下分離。可分別得到片段176-mer 及276-mer。

若使用質體 pBR322,第二種限制酶 BsrBI(20 u/μL),可得 156-mer。
(5) 8% native gel 電泳回收 DNA 片段

目的為回收放射活性標記之 DNA 片段。取 40% Acrylamide: Bis-acrylamide (19:1)6mL、10×TBE 3mL、dH2O 21mL 於燒杯中搖勻,加入 10% APS 350 µL 及 TEMED 25 μL(表五), 儘速倒入已封好的玻璃夾層中, 插入齒梳, 靜置約 2.5 小時,使凝膠聚合完全,即可架設直立式電泳槽(Model#SG200)。電泳時所使用 之緩衝液為 1xTBE buffer,於4℃下(避免 DNA denature),預跑一小時,再將放 射活性標記 DNA 與染料混合均勻後,小心加入樣品槽(well)中,通入電流使其 泳動, 電壓 300 伏特, 利用染料(native dye)位置判定所需的時間, 約三小時。拆 開玻璃卸下凝膠, 到暗房壓 X-ray 底片, 半小時後洗片。由底片上的影像判斷回 收片段。在底片上挖空欲回收的片段,對回凝膠,割下該處膠體。並放入 0.45 μm 孔徑的分離管內,加入 200 μL 無菌濾過水並於 4℃下以振盪機振盪至少一 小時或隔夜,目的為析出凝膠內之 DNA。離心 10 分鐘 14,000rpm 將帶有 DNA 的溶液甩到分離管下層。酒精沉澱後真空抽乾,再以無菌去離子水溶成 50 cps/ μ L。即得放射活性標記在 5[´]-端的 276-mer 及 176-mer 片段。

16

(四)、以 PCR 製備放射活性標記之 135-mer 片段

135-mer Crick 股之標記

Watson primer(forward strand) : 5'-acgtagcgatagcggagtg

Crick primer (reverse strand) : 5'-agcggaagagcgcctgatg

(1) Crick 引子標記

取 20µM 的 Crick 引子(5'-agcggaagagcgcctgatg) 4µL, 加入 11.5µL 無菌 去離子水、2µL 之 T4 polynucleotide kinase buffer、1µL 之 T4 polynucleotide kinase 及 1.5µL[γ -³²P]ATP,總體積 20µL。最後加入足以覆蓋液面之礦物油, 防止溶液揮發,於 37℃下,反應一小時。然後於 65℃下反應 20 分鐘,使酵素 去活性。

(2) 聚合酶鏈反應(Polymerase Chain Reaction, PCR)

PCR 反應混合物:取 0.225 μ g/ μ L 的 pBR322 為模板(template) 1.5 μ L、m入 20 μ M 的 Watson 5′-OH primer(5′- acgtagcgatagcggagtg)4 μ L、20 μ L Crick 5′-³²P primer、8 μ L 的 dNTP(dATP、dGTP、dCTP 及 dTTP)、1 單位的 *Taq polymerase* 約 1 μ L、10 μ L *Taq* buffer 和 55.5 μ L 無菌去離子水使總體積為 100 μ L,為預防 不必要的引子與模板之黏合(annealing),在開始循環反應前,反應加熱 60°C 後再 m入 *Taq polymerase*。之後才開始進行變性步驟:94°C下反應 5min。30 次放大 循環,其循環溫度時間如下:94°C,40 sec \rightarrow 50°C,40 sec \rightarrow 72°C,40 sec \rightarrow \pm 複循環此流程。最後於 72°C下反應 7 min 以結束反應(表六)。

使用 PCR purification kit 純化出 135-mer 片段:加入 500 µ L 之 buffer PB 到

PCR 樣品中,混合均勻。混合液轉置 QIAquick column,離心一分鐘,使 DNA 留在管柱中,丟棄離心下的廢液。加入 750 µL 之 buffer PE (含有 99.5%酒精) 離心一分鐘,以清洗管柱中的 DNA。丟棄離心下的廢液,再追加離心一分鐘。 將 QIAquick column 換到新的 1.5 mL 微量離心管。加 30 µL 無菌去離子水至 QIAquick membrane,靜置一分鐘,離心一分鐘流析出 DNA。再以無菌去離子水 稀釋成 50 cps/µL。即可得放射活性標記在 Crick 股 5′-端的 135-mer 片段。

放射活性標記在 Watson 股 5´-端之方法亦同,先於 Watson 引子作放射活性標記,再與未作放射活性標記之 Crick 引子進行 PCR,即可得標記在 Watson 股 5´-端的 135-mer 片段。

(五)、以 PCR 製備放射活性標記之 248-mer 片段

248-mer Crick 股之標記

Watson primer(forward strand) : 5'-gatccactagttctagagc

Crick primer (reverse strand) : 5'-aggtttcccgactggaaag

(1) Crick 引子標記

取 20µM 之 Crick 引子(5'-aggtttcccgactggaaag)4µL,加入 11.5µL 無菌去 離子水、2µL 之 T4 polynucleotide kinase buffer、1µL 之 T4 polynucleotide kinase 及 1.5µL 之[γ -³²P] ATP,總體積 20µL。最後加入足以覆蓋液面之礦物油,防 止溶液揮發,於 37℃下,反應一小時。然後於 65℃下反應 20 分鐘,使酵素去 活性。 (2) 聚合酶鏈反應(Polymerase Chain Reaction, PCR)

PCR 反應混合物:取 0.225 μ g/ μ L pBluescript II SK(+)1.5 μ L 為模板 (template)、20 μ M 的 Watson 5´-OH primer(5'-gatccactagttctagagc) 4 μ L、20 μ L Crick 5´-³²P primer、8 μ L 的 dNTP(dATP、dGTP、dCTP 及 dTTP)、1 單位的 Taq polymerase 約 1 μ L、10 μ L Taq buffer 和 55.5 μ L 無菌去離子水使總體積為 100 μ L,為預防不必要的引子與模板之黏合,在開始循環前,反應加熱 60°C後再加 入 Taq polymerase。之後才開始進行變性步驟,30 次放大循環,其循環溫度時間 同表六。

同樣使用 PCR purification kit 純化出 248-mer 片段。即得放射活性標記在 Crick 股 5[´]-端的 248-mer 片段。放射活性標記在 Watson 股 5[´]-端之方法亦同,先於 Watson 引子作放射活性標記,再與未作放射活性標記之 Crick 引子進行 PCR, 既得標記在 Watson 股 5[´]-端的 248-mer 片段。

(六)、G-lane 及 GA-lane 製備

採用 Maxam-Gilbert 特異性鹼基化學斷裂法。每一個 DNA 片段的切割帶被指認出,乃藉由比對標準序列的相對位置。

G-lane: 取約 500~1K cps 放射活性標記 DNA 片段,加入 10 M DMS 0.8 μL, 室溫下靜置 20sec,迅速加入 2-Mercaptalethanol 5 μL,混合。再加入 Quench DNA 2 μL(1.65 μg/μL)、6-10 μL 之 3 M NaOAc(pH 5.5)及 1000 μL 之 95% EtOH, 混合均匀,置於-20℃冰箱,酒精沉澱至少一小時。

GA-lane: 取 500~1K cps 放射活性標記 DNA 片段, 加入等體積的甲酸(formic

acid)於室溫下反應 10 分鐘。再加入 Quench DNA 2 µ L (1.65 µ g/µL)、6-10 µ L 之 3 M NaOAc (pH 5.5)及 1000 µ L 之 95% EtOH, 混合均匀, 置於-20℃冰箱酒 精沉澱至少一小時。

小心從冰箱中取出樣品,避免擾動到沉澱下來的 DNA。於4℃下,離心 14000 rpm 20 分鐘。移去酒精,再加入 600 µL 的 95%酒精清洗沉澱物。4℃下,離心 14000 rpm 3 分鐘,再次移去酒精,重複一次至兩次後,冷凍抽乾成 pellet。加 入 50 µL 之 0.7 M piperidine,於 90℃下反應 30 分鐘,真空抽乾。加入 20 µL 無菌去離子水,繼續抽乾。再重覆加入 20 µL 無菌去離子水並抽乾,使有機雜 質完全去除。最後加入無菌去離子水備用。每次使用時取約 100 cps 之樣品並加 入追蹤染劑,於 90 ℃反應 4 min 變性後,即可與反應樣品一同注入樣品槽跑電 泳。

(七)、DNase I 足跡實驗 (DNase I footprinting)

得到已知序列之片段後便可進行化合物與 DNA 結合反應。以 CHyY-14 為例 (表七):2 µL 的標記 DNA 片段(276-mer 或 135-mer)與不同濃度之 CHyY-14 混合 均匀後(以 5 mM sodium cacodylic acid, pH 6.5 溶解環肽),於 65℃下反應一小時。 反應終了,每管間距 30 秒,加入限制量的 DNase I (2 µ L),於 37℃下反應 10 分鐘。DNase I 以 20 M NaCl、2 M MgCl₂及 2 M MnCl₂稀釋成 0.0006 u/µL,以 產生平均每個 DNA 分子可遭受約一次的切割頻率。反應的終止乃藉由加入 3 µL 的追蹤染劑(含 80% formamide, 10 mM EDTA, 0.1% bromophenol blue,及 1% Xylene cyanol)。所有反應樣品(包含 G-lane 及 GA-lane)於 90℃加熱 4 分鐘後, 冰浴 4 分鐘,使 DNA 變性即可注入至含尿素的 8% 聚丙醯胺凝膠中。

(八)、電泳及放射自顯影

切割 DNA 的結果以 8%尿素-聚丙烯胺凝膠電泳(urea-polyacrylamide gel electrophoresis)分析,也就是變性凝膠(denative gel)。尿素 126 g、40% Acrylamide: Bis-acrylamide (19:1) 60 mL、10×TBE 30 mL、H₂O 210 mL 之混合液,取75 mL 倒入三角錐瓶中,加入 10% APS 500 μL 以及 TEMED 35 μL (表五)。混合均匀後, 儘速倒入已事先封好的玻璃夾層內(0.3mm 的厚度),插入齒梳,靜置約 1.5 小 時,使凝膠聚合完全。電泳時所使用的緩衝液為 1xTBE buffer,先預跑一小時, 再將經過變性的反應樣品注於各樣品槽中,以功率 75 瓦、電壓 1800 伏特予以 電泳約 1.5 小時。機台為 BRL sequence model S2。電泳結束後的膠片浸漬在 10 %醋酸與10%甲醇混合溶液中15分鐘,使凝膠中的尿素稀出,再轉置到 Whatman 3MM 濾紙上並蓋上保鮮膜,在膠體乾燥機內以 80℃真空乾燥 45 分鐘。之後放 到 Molecular Dynamic 425E PhosporImager Storage screen 壓板隔夜。第二天以射 線顯像儀觀察結果。每一個 DNA 片段之切割帶位置的比對,依據 Maxam-Gilbert 特異性鹼基化學斷裂法所做的標準序列相對位置為基準。並以 Viber Lourmat BIO-ID 軟體積分所有切割帶的數據。

(九)、數據分析

數據之呈現以 ln(f_a/f_c)表示,f_a為在環肽存在下之切割分率,f_c為控制組的切 割分率。指加入環肽之切割帶對控制組(不含環肽)的切割差異度(differential cleavage)。正值表示切割程度增強,負值表示環肽保護 DNA 免於 DNase I 切割 的程度⁽⁴³⁾。另外,相對切割強度(relative cleavage, R)對環肽濃度(concentration, μ M)作圖,可估算出 C₅₀,此定義為當切割帶強度減少 50% 時之環肽濃度。R $=a_a/a_c$, a_a 為環肽存在時之結合區段的切割帶強度, a_c 為控制組相同區段的切割帶強度^(18,44)。

C. 注意事項

電泳結果不佳的原因有很多,在此列出幾點以供參考。

- 電泳膠體凝結不完全。檢查 APS, TEMED 或 Acryamide/ Bis-acryamide 等試 劑品質是否良好,或是 APS 濃度太稀。室溫太低亦不易凝結。
- 2. 丙烯胺具有神經毒性,應帶手套,並避免吸入。
- 3. 電泳後色帶扭曲。可能為鑄膠不良或膠體下方有氣泡。
- 各帶左右擴張或拖尾。追蹤染劑的色帶形狀扭曲(如波浪狀),可能是樣本中 含太高的鹽類。凝膠不均勻時,也會有色帶扭曲的現象,可能是 APS 沒有溶 解完全。
- 樣品槽(well)要清理。每個樣品槽內用微量針筒灌入 1×TBE 緩衝液洗過數次,
 因為槽內的凝膠殘留物質或是 urea 若沒有移除,可能會造成切割帶的缺陷。
- 6. 預跑(pre-run):最好在樣本加入前,先預跑約 60 min,以除去 APS 及 TEMED 的影響;在 denative gel 中因含 urea,溫度的提高(約 50℃)有助於 DNA 保持在 denature 的狀態,否則切割帶會有暈開的現象。
- 7. 電泳時勿使膠体過熱,否則易使凝膠變形及玻璃破裂。

(四) 結果與討論

(1) DNA 之放射活性標記

本實驗使用兩種方式取得放射活性標記之 DNA 片段,其一為以限制酶切割 質體 pBluescript II SK(+),並以 native gel 回收所得到之 276-mer 片段,流程如圖 七所示;其二為以 PCR 合成出的 248-mer 及 135-mer 片段,並以 PCR purification kit 純化。此三片段之序列如圖八所示。前者之步驟較為繁雜,約三天的時間方 可得到欲使用的 DNA 片段,然而此法可分離出差距較小的片段,如 276-mer 及 176-mer,這是 PCR purification kit 所不能為,此因 QIAquick column 只能收集 100-1000 bp 之 DNA,因此限用於以 PCR 合成出的 DNA 片段。另外,前法只能 獲得單股的 DNA 與環肽衍生物結合的資訊,另一股環肽衍生物與 DNA 結合的 資訊則須藉由標記在 3'端的 DNA 方可得知。放射活性物質則須使用(α-³²P) dATP。

改以 PCR 合成之目的在於可以看到環肽對互補股的結合情況,且得到所需 片段只須約一天的時間。因此,原以限制酶切割而得的 276-mer 片段經由 PCR 合成後改為 248-mer。然而,從 135-mer 之放射自顯圖中,Watson 股(forward strand) 所得到之 DNase I 之切割圖樣較 Crick 股(reverse strand)模糊。另外,欲得到相對 應之互補序列,須將其中一股(Watson 股) "跳海" (over-run)約 90 min。因此, 須設計另一段包含對應到 Crick 股序列之片段。

(2) 足跡實驗

A. 135-mer DNA 與六種環十四肽之足跡實驗

135-mer DNA 之 Watson 股及 Crick 股分別與六種環十四肽(CHyY-14、 CHyD-14、CMY-14、CNW-14、CH2Y-14及CRHY-14)作結合反應的DNase I足 跡實驗結果顯示於圖十至圖十五,不同程度的切割差異圖從放射自顯圖中積分 可得,顯示於圖十六(a)至(f)。135-mer DNA 之序列於圖八 a 所示。首先探討 CHyY-14 對 135-mer 之 Crick 股(圖十六 a),有兩個主要的結合位分別在 5'-GGTATTT-3'(89-83)及5'-ATTTTCT-3'(112-106)。另外,尚有兩個較弱的結合 位分別為 5'-ACA-3'(81-79) 及 5'-CTG-3' (95-93), 可見此環肽特別偏好結合 5'-ATTT-3'之序列形式,且為三到四個連續的胸腺嘧啶 (Thymine, T)。由於 DNA 具有主凹槽(major groove)及次凹槽(minor groove)的空間,可提供多餘的氫鍵給 外來的辨識系統或藉以接受氫鍵的供給(圖九),而位在次凹槽的 T 之第二個碳上 氧,為很好的氫鍵供給者,不似腺嘌呤的 N3 之未共用電子對,須穩定芳香環的 結構,參與環內的共振,因此推測可能是由於環肽序列中組織胺(His)側鏈 imidazole 的氮上之氫原子及精胺酸(Arg)、離胺酸(Lys) 等鹼性殘基側鏈的氮上 之氫原子,可與在次凹槽之 T 之 O2 易形成氫鍵(Hydrogen-bond)。另外,由於 Watson 股之 DNase I 切割圖樣較為模糊,故在此不予以討論。

圖 十 六 (b) CHyD-14 則 有 一 寬 廣 的 結 合 區 段 在 5'-CGGTATTTTCTC-3'(116-105), 其中 5'-ATTT-3' (112-109)及 5'-GTA-3' (114-112)有最強的結合位,看似有兩個峰(peak),因此推測可能有兩個環肽分子 結合於該區域,而形成較寬的結合位。另外,在相同序列的 5'-ATTTC-3'(86-82)

24

卻沒有顯著的結合位。因此推測環肽序列中的鹼性胺基酸殘基側鏈的氮上之氫 原子,雖可與次凹槽之胸腺嘧啶的 O2 易形成氫鍵,但由於環肽序列中含有一帶 負電荷的天冬胺酸(Asp),使得帶負電荷的 DNA 磷酸骨架受到同性相斥影響, 而失去了第二個結合位,也因此干擾了對5'-ATTT-3'的專一性。另外,由於 Watson 股之 DNase I 切割圖樣較為清楚,因此可對 Watson 股及 Crick 股的切割帶積分, 以比對環肽對兩股 DNA 之結合情況。由圖十七之結果顯示,有兩個強結合位在 Watson 股的 5'-AG-3'(103-104)及 5'-AA-3'(109-110),其與 Crick 股之結合位有 相對應的現象。因此可推測 CHyD-14 的結合位近乎平行於雙股螺旋 DNA 之間, 又或者傾斜的角度不大,並且只結合在該區段上。

CMY-14(圖十六 c)則有兩個明顯的結合位在 135-mer 的 Crick 股上,分別為 5'-ATTTTCT-3'(112-106)及 5'-GGTATTT-3'(89-83)。另外,尚有兩個很微弱的結 合位分別為 5'-CTG-3'(95-93)及 5'-ACA-3'(81-79),可推測 CMY-14 中的甲硫 胺酸(Met)較不會干擾對 DNA 的專一性。另外,Watson 股雖然模糊而無法積分, 但從圖十二的 Watson 股之 DNase I 之切割圖樣中,可約略看出在 5'-ACC-3'(87-89)有足印的呈現,所以它可能似 CHyD-14 之結合位,近乎平行於 雙股螺旋 DNA 之間,又或者傾斜的角度不大,並且專一性地結合在富含胸腺嘧 啶(T-rich)的序列上。

CNW-14(圖十六 d)則有一個寬廣的結合位在 135-mer 的 Crick 股上,為 5'-TATTTTCTCC-3'(113-104),總共有 10 個鹼基。因此推測該區段可能有兩個 環肽分子並排結合,因而形成極寬的結合位,可能分別結合在 5'-TATTTT-3'

25

(113-108)及 5'-CTCC-3'(107-104)。其他較弱的結合位在 5'-CGC-3'(100-98)、 5'-TCTGT-3'(96-92)及 5'-CTT-3'(104-102),推測可能是環肽序列中的天冬醯胺 (Asn)及色胺酸(Trp)殘基干擾了對 DNA 序列的專一性,使得有好幾個結合位是 其他環肽所沒有的。由於 Watson 股之 DNase I 切割圖樣較為清楚,是故,可對 Watson 股切割帶積分。由圖十八之結果顯示,Crick 股之主要結合位在 5'-TATTTTCTCCT-3'(113-103),此段序列之互補股卻無相同的結合現象,反而 在 Watson 股的 5'-ATA-3'(85-87)有一強結合位及較弱的結合位 5'-GTGTG-3'(78-82),顯示此環肽與 DNA 的結合位並非平行在兩股之間,亦或 者在斜對角處,極可能分別座落在 Watson 股及 Crick 股上。

CH2Y-14(圖十六 e)則有兩個強結合位在 135-mer 的 Crick 股上,分別為 5'-TTTCTC-3'(110-105)及 5'-CGGTATTT-3'(90-83),較弱的結合位在 5'-GCA-3'(99-97)、5'-ATCT-3'(97-94)及5'-TGC-3'(92-90)。其中111-105看似有 兩個峰,因此推測可能有兩個環肽分子在此並排結合,因而形成較寬的結合位, 可能分別結合在5'-TTTT-3'(111-108)及5'-TCTC-3'(108-105)。

CRHY-14(圖十六f)則有一個極為寬廣的強結合位在135-mer 的 Crick 股上, 為 5'-GGTATTTTCTCCTT-3'(115-102),總共有14個鹼基。因此推測該區段可能 有兩到三個環肽分子並排結合,因而形成極寬的結合位,分別在5'-GGTATTTT-3' (115-108) 及 5'-TCTCCTT-3'(108-102) 。 另外有一強結合位在 5'-ATG-3'(119-117),弱結合位在5'-CTGT-3'(95-92)。

總括此六種環十四肽對 135-mer 之 Crick 股之結合位,多共同偏好結合在

5'-ATTTT-3'之序列形式上,特別是 112-108 之序列。除了 CH2Y-14 的結合位向 3'端飄移了兩個鹼基,偏好結合在 5'-TTTCT-3'(110-106)。而在 87-83 之 5'-TATTT-3'也是另一結合位,除了 CHyD-14、 CNW-14 及 CRHY-14,推測可 能是天冬胺酸(D)、天冬醯胺(N)及色胺酸(W)殘基影響了對 5'-TATTT-3'的專一 性。但 CRHY-14 並無這些殘基在序列中,因此推測可能與胺基酸殘基序列特別 的排列組合有關,此環肽序列的第 10-13 個殘基(KRPH)為第 2-5(HPRK)之反向 排列,也因此構象(conformation)呈現如阿拉伯數字的 8,且上環較大,下環較小 (可由分子模擬得知,在此不予以圖示),這是其他五種環十四肽所沒有的特有構 象,因為它們皆呈圓環狀。另外,CHyD-14、CNW-14、CH2Y-14 及 CRHY-14 在 115-102 區段有相當寬廣的結合位,推測可能有兩個左右的環肽分子並排結合 (side-by-side binding)在 DNA 特定部位^(44,45),而此部位含有四個連續的 T。

六種環十四肽的主要結合位置之相對切割強度(Relative cleavage, R)對濃度 (Concentration, μM)作圖(圖十九 a-f),以估計 C₅₀值。可知 CRHY-14 之結合能 力較優,其相對切割強度在 50% 時,環肽濃度只須 1.35μM (C₅₀=1.35μM); 在六種環十四肽中,結合能力較弱者為 CHyD-14及 CHyY-14,前後者之胜肽序 列中分別帶有一及二個 Hyp 殘基(即在 3 號碳上帶有氫氧基團,可與 DNA 形成 氫鍵),C₅₀分別為 3.90μM 及 5.59μM。另外,圖十九 d-f 為典型的環肽保護 DNA 免於 DNase I 切割的曲線圖,當環肽濃度為零,亦即只加入 DNase I 切割 DNA 所得到切割帶之強度,以此結合位之積分值為 1,當濃度逐漸升高,環肽 分子也逐漸結合到 DNA 上,因此 DNase I 切割 DNA 的能力也漸漸地減弱,當 環肽分子將 DNA 上所有的結合位都佔據,亦即所有的結合位近達飽和,則 DNase I 切割 DNA 的能力也就趨於平緩。而圖十九 b-c 相對切割強度對濃度則呈現線 性關係,濃度升高 R 值下降,可能須要更高的濃度,方可達到結合位飽和的現 象。而圖十九 a 的 CHyY-14 在低濃度時,有明顯增強 DNase I 切割的現象(圖十 九 a),此推測可能是鄰近的環肽誘導出一個局部較寬的螺旋次凹槽,使得 DNA 成為一個更平均的似 B-DNA 結構(B-DNA-like structure)。當環肽濃度逐漸高時, CHyY-14 保護了 DNA 免於 DNase I 的切割,此因環境中充滿了環肽分子,使得 DNA 構象的轉換被停止,結合的環肽保護著核酸結合位的足跡反應^(34,46)。

B. 248-mer DNA 與六種環十四肽之足跡實驗

由 PCR 合成出 248-mer DNA 之 Crick 股與六種環十四肽反應之 DNase I 足 跡實驗結果顯示於圖二十至二十二。不同程度的切割差異圖從放射自顯圖中積 分而得,顯示於圖二十三(a)至(f)。248-mer DNA 之序列顯示於圖八 b。選擇另一 段序列之目的在於探討是否與 135-mer 序列之結合位有無異同處。但由於前所提 Watson 股較為模糊,故在此不予以討論。首先探討 CHyY-14 在 248-mer 之 Crick 股(圖二十三 a)其主要結合位在 5'-TTA-3' (226-224)、5'-AGTT-3' (218-215)及 5'-AGTGAGCG-3' (242-235)。CHyD-14 在 248-mer 之 Crick 股(圖二十三 b) 有一 非常專一性的結合位在 5'-ATTA-3' (227-224),其他相對較弱的結合位在 5'-GTT-3' (217-215)及 5'-GAGCG-3' (239-235)。CMY-14(圖二十三 c)之結合位同 樣在 5'-TTA-3' (226-224),另一強結合位在 5'-GCGC-3' (237-234)及 5'-ACGC-3' (232-229)。CNW-14(圖二十三 d)之強結合位在 5'-CGC-3'(236-234),另一強結合 位在 5'-ACGC-3'(232-229)、5'-TGA-3'(240-238)及 5'-CAG-3'(243-241)。有微 弱的結合位在 5'-GTT-3'(217-215)及 5'-TTA-3'(226-224)。CH2Y-14(圖二十三 e) 之強結合位分別在 5'-ATT-3'(227-225),另一強結合位在 5'-ACGC-3'(232-229), 及 5'-GCG-3'(237-235)。弱的結合位在 5'-TGA-3'(240-238)、5'-CAG-3'(243-241) 及 5'-GTT-3'(217-215)。CRHY-14(圖二十三 f)之強結合位分別在 5'-GTT-3' (217-215)、5'-ATT-3'(227-225),另一強結合位在 5'-ACGC-3'(232-229)及 5'-TGA-3'(240-238)。弱的結合位在 5'-CAG-3'(243-241)、 5'-GCG-3' (237-235)、5'-AT-3'(203-202)及 5'-TGT-3'(222-220)。

總括此六種環十四肽對 248-mer 之 Crick 股之結合位,多共同偏好結合在 5'-ATTA-3' (227-224),而在 5'-CAGTGAGCG-3' (243-235)有著弱至強之強度不 等的結合位。在 5'-ACGC-3' (232-229)也有相當強的結合位,除了 CHyY-14 及 CHyD-14。而在 218-215 的 5'-AGTT-3'也有弱至強之強度不等的結合位,除了 CMY-14。由於 248-mer 在可判讀之區段(指 245-198)沒有連續的三到四個胸腺嘧 啶,所以呈現的切割差異圖亦無 135-mer 有寬廣的結合位,也使得環肽較偏好結 合在兩個連續的胸腺嘧啶上,例如: 5'-ATT-3'、5'-TTA-3'及 5'-GTT-3'。另外, 在 205-202 有相同的序列型式 5'-ATTA-3',但六種環十四肽都未在此處有結合 位,因此推測 5'-ATTA-3'旁邊的 5'及 3'位置須為 A,才可能被環肽分子所辨識。

C. 276-mer DNA 與三種環十四肽之足跡實驗

由限制酶 *Eco*R I 及 *Pvu* II 切割質體 pBluescript II SK(+)得到的 276-mer DNA 與三種環肽(CY-10、CW-10 及 CWKK-9)反應之 DNase I 足跡實驗結果顯示於圖 二十四及二十五。不同程度的切割差異圖從放射自顯圖中積分而得,顯示於圖 二十六(a)至(c)。序列顯示於圖八 b。首先探討 CY-10(圖二十六 a),其結合位分 別在 5'-TTCTAGA-3' (29-35)、5'-CCGCCAC-3' (40-46)、5'-GCG-3'(48-50)及 5'-GGA-3'(53-55),且由圖二十四之放射自顯圖中可看出在很低的濃度下即有結 合的能力(約 0.5 μ M)。CW-10(圖二十六 b)之強結合位明顯地在 5'-CTAG-3' (31-34)。CWKK-9(圖二十六 c)之結合位在 5'-TCTAG-3' (30-34)、5'-TTTTG-3' (64-68)及 5'-TCCCTTTA-3' (70-77)。弱結合位 5'-TCCG-3' (58-61)、5'-AAT-3' (87-89)及 5'-GCG-3' (91-93)。

歸納此三肽有一共同的強結合位在 5'-CTAG-3'(31-34)。另外,CW-10 及 CWKK-9 皆在 5'-AAT-3'(87-89)及 5'-GCG-3'(91-93)有弱結合位,而這是 CY-10 所沒有的。雖然 CY-10 在很低的濃度即有結合的能力,但也有許多強的結合位 是其他兩種環肽所沒有的,也因此相對地減少了專一性結合能力。

(五) 結論

135-mer 序列中六種環十四肽偏好結合在 5'-TATTTT-3'(113-108), 5'-TTTTCT-3'(111-106)及 5'-TATTT-3'(86-83)。另外,CHyD-14、CNW-14、 CH2Y-14 及 CRHY-14 在 115-102 區段有相當寬廣的結合位,推測可能有 2-3 個 環肽分子並排結合在 DNA 的特定部位,而此部位含有四個連續的 T。環肽在 248-mer 則偏好 5'-ATT-3'、5'-TTA-3'及 5'-GTT-3'的序列形式。由於 248-mer DNA 序列中,可判讀之區段沒有連續的三到四個胸腺嘧啶,所以呈現的切割差異圖 並沒有像 135-mer 有寬廣的結合位,也使得藥物較偏好結合在兩個連續的胸腺嘧 啶上。可推測由於環肽序列中,鹼性胺基酸殘基側鏈氮上之氫原子,易與位在 次凹槽胸腺嘧啶的 O2 形成氫鍵。也因此使得 cyclo [CH₂CO-Gly-(X-Pro-Arg-Lys)_n -Cys]修飾之特殊環肽偏好結合在三到四個連續的胸腺嘧啶上。

對 276-mer DNA 有選擇性結合的三種環肽 CY-10、CW-10 及 CWKK-9 有一 共同的強結合位在 5'-CTAG-3'(31-34)。但 CY-10 卻多出許多強的結合位是其他 環肽所沒有的,也因此減少了對 DNA 序列專一性的結合能力。

由於 CMY-14 中的甲硫胺酸(M)較不會干擾對 DNA 序列的專一性,這現象 在 135-mer 及 248-mer 的 DNA 中都有相似之處,比起其他藥物所呈現的切割差 異圖較不複雜。環肽序列中含有天冬醯胺(N)及色胺酸(W)殘基的 CNW-14 則有 干擾 DNA 序列專一性的現象。而 CHyD-14 由於含有一帶負電荷的天冬胺酸 (D),使得 DNA 的磷酸骨架受到同性相斥的影響,也因此展現出不同的序列專 一性。因此,某些殘基的加入將影響到 cyclo [CH₂CO-Gly-(X-Pro-Arg-Lys)_n-Cys] 對 DNA 序列結合專一性的表現。此外,環肽構象也可能是影響對 DNA 序列專 一性結合的要素之一。因此若能夠將這些特殊環肽與其結合位之 DNA 序列做共結晶(cocrystallize),測其 X-ray 繞射,或以核磁共振(NMR)來得知兩者在三度空間之作用關係,將是未來的研究目標。以期望設計出對 DNA 序列更具結合專一性之胜肽化合物。