近幾十年來,過渡金屬與生物分子所形成之錯合物方面的探討,隨著生物無機的蓬勃發展,已發展成一引人注目的研究領域 1 ,亞硝醯五氰鐵(II)錯合物, $Fe^{II}(CN)_5NO^{2-}$,在化學史上不同時期都曾引起化學家們的研究興趣 2 。1910~1930 年間,義大利化學家 scagliarini 及 cambi 基本上主導了這方面研究,他們利用 $Fe(CN)_5NO^{2-}$ 與不同鹼反應合成並鑑定不少新的化合物 $^{3-5}$ 。

在七十年代,Dorza 與 Beck 將 $Fe(CN)_sNO^2$ ·應用到生物系統上 6 ,以探討核鹼(nucleic base)與 $Fe(CN)_sNO^2$ ·所進行的硝化反應,引起化學家的注意,之後 $Fe(CN)_sNO^2$ ·與核酸反應才再度引起興趣,主要發現 $Fe(CN)_sNO^2$ ·與血中 H5 oxyhemoglobin 結合形成 Methemoglobin 會自動分解出 Nitric oxide 及 Cyanide,Nitric oxide 會造成血壓下降。可以使用為外科手術的低血壓藥劑,及對突發性高血壓患者時,用作為改善心肌梗塞並提高心臟功能等 7 。其中探討較為深入為 Van Eldik等,利用光譜方法研究錯合物 $Fe(CN)_sNO^2$ ·與 L $\{L: 嘌呤(purine)\}$ 、嘧啶核鹼(pyrimidine nucleic bases)、核甘(nucleosides)、和 5^2 -單核甘酸(5^2 -mononucleotides) $\}$ 反應 8 ,pH>8 條件下照光,發現 $Fe(CN)_sNO^2$ - 蜡合物會同時氧化與解離,中間產物為 $Fe(CN)_sOH_2^2$,而同樣在光照

下,再與 L 繼續作用形成 $Fe(CN)_5L^{2-}$ 錯合物,皆為取代反應,反應式如(1)、(2)所示:

$$Fe^{II}(CN)_5NO^{2-} \xrightarrow{hv} Fe^{III}(CN)_5OH_2^{2-} + NO$$
 (1)

$$Fe^{III}(CN)_5OH_2^{2-} + L \longrightarrow Fe^{III}(CN)_5L^{2-} + H_2O$$
 (2)

此外 Fe(CN)₅NO²-錯合物另一有趣的現象在於加成反應上,如式 (3)所示:

$$Fe(CN)_5NO^{2-} + L^n \longrightarrow Fe(CN)_5NO(L)^{n-2}$$
 (3)

其中在右邊的(NO)(L)處表示,L 可能經由 N 或 O 鍵結,在加成反應探討中以 L=OH 作的最仔細,Cambi 和 Szegàö 最早以光譜方法 9 觀 測 $Fe(CN)_5NO^{2-}$ 錯合物在鹼性溶液中的穩定性,結果發現錯合物與 OH 作用,形成 $Fe(CN)_5NO_2^{4-}$ 產物,如式(4):

$$Fe(CN)_5NO^{2-} + 2OH^{-} \longrightarrow Fe(CN)_5NO_2^{4-} + H_2O$$
 (4)

之後其他實驗室分別就此反應進一步探討反應平衡常數 $^{10\text{-}12}$,結果雖然不完全相同,但彼此相當接近,其中以 Swinehart 結果最為完整 12 ,所得平衡常數為 $K=1.56\times10^6$ M^{-2} (25° C,1.0M NaCl), \triangle H°及 \triangle S°分別為-16.2 kcal-mole $^{-1}$ 及-26.1 eu。他們發現的結果所以與其他實驗室不同,主要是受電解質性質及離子強度不同因素影響,另外,Swinehart 比較式(4)與 NO^+ — OH^- 系統 2 ,式(5):

$$NO^{+} + 2OH^{-} \stackrel{K}{\rightleftharpoons} NO_{2}^{-} + H_{2}O$$
 (5)

結果發現式(5)平衡常數為 $2.3\times10^{31}\,\mathrm{M}^{-2}\,(20^\circ\mathrm{C})^2$,較式(4)的 K 值相差大了 25 次幕,可見在 $\mathrm{Fe}(\mathrm{CN})_5\mathrm{NO}^2$ -錯合物中,由於 $\mathrm{Fe}(\mathrm{II})\to\mathrm{NO}^+$ 之回饋鍵結減低了 $\mathrm{NO}^+\mathrm{L}\,\mathrm{N}$ 之親電子性,而使 $\mathrm{Fe}(\mathrm{CN})_5\mathrm{NO}^2$ -錯合物提供低酸性溶液中探討 NO^+ 性質的機會,但式(5)平衡常數太大, NO_2^- 必須在極高的 $[\mathrm{H}^+]$ 濃度,方能形成足夠偵測的 NO^+ 濃度。

Fe(CN)₅NO₂⁴錯合物在水溶液中並不穩定,形成之後將會繼續進 行解離反應,如式(6)所示:

$$Fe(CN)_5NO_2^{4-}+H_2O$$
 \Longrightarrow $Fe(CN)_5OH_2^{3-}+NO_2^{-}$ (6) 式(6)平衡常數為 $3.0\times10^{-4}\,\mathrm{M}^{-2}$ 。在 ^{18}O 同位素實驗 13 及 IR 光譜結果 14 均顯示 NO_2^{-} 乃透過 N 與 $Fe(II)$ 鍵結,顯示式(4)反應中 OH 直接接於 $Fe(CN)_5NO^{2-}$ 上之 N,此乃反應速率決定步驟。

由於 $Fe(CN)_5NO^2$ -錯合物的光譜及化學性質主要深受 NO^+ 配位之影響,所以其錯合物的電子結構及晶體構造也特別被重視。在 1963年, $Na_2[Fe(CN)_5NO] \cdot 2H_2O$ 的晶體結構已被鑑定出來 16 ,屬斜方晶體(Orthorhombic), P_{nnmm} 空間群。而 Fe-N 的鍵距為 1.63 ± 0.02 Å,在這相當短的 Fe-N 鍵裡面,顯示具有相當程度之三鍵特性。N-O 鍵距為 1.13 ± 0.02 Å;五個 C-N 的鍵距 1.16 ± 0.02 Å,Fe-C 的鍵距

為 1.90 ± 0.02 Å, 這表示位在 axial 上的一個 CN 與位在 equatorial 上的四個 CN,在結構上難以分辨。N-Fe-C equatorial 的鍵角為 96° ; Fe-N-O axial 的鍵角為 $178.3\pm1.3^\circ$,幾乎成一直線,相較於 Fe-C,Fe-N 顯得極短的鍵距,顯示此應為 $Fe\equiv NO$ 的電子結構。此三鍵是由一個空的金屬 do 軌域和 N 的孤對電子對形成 σ 鍵,設 Fe-N 一 O 為 Z 軸,則 do 主要來自於 d_z^2 ,另有兩個 π 鍵則是利用 π^*_{NO} 軌域和 轨域作用形成 Fe=NO 性質的鍵結,根據此電子結構可預測 Fe-N-O 鍵角應為 180° ,與從晶體結構所得到的結果一致。

雖然有不少文獻中報導 $Fe(CN)_5NO^2$ -在吸收光譜的結果,但對光譜的解釋並不明確 $^{17\text{-}29}$,有相當大的爭論,而最主要的爭論在於軌域能階 $(d_{xy} \cdot d_{yz} \cdot d_{xz} \cdot d_{z^2} \cdot d_{x^2 \cdot y^2} \cdot \pi^*_{NO})$ 的順序上。Manoharan 和 Gray針對 $Fe(CN)_5NO^2$ -利用 SCCC-MO (Self-Consistent Charge and Configuration)計算 30 ,圖一為所得分子軌域圖,兩個基態的最高填滿分子軌域(HOMO)為 6e 和 $2b_2$, $(6e)^4(2b_2)^2$,6e 軌域主要為 d_{xz} 和 d_{yz} ,其中含有 24.8%是來自於 π^*_{NO} 軌域,有少部份是來自於 $\pi_{CN} \cdot \pi^*_{CN}$ 和 σ_{CN} ; $2b_2$ 有 84.5%為 d_{xy} , 13.9%的 π_{CN} 和 1.6%的 π^*_{CN} 。最低未填滿分子軌域(LUMO)7e,包含有 72.5%的 π^*_{NO} 和少數 $d_{xy} \cdot d_{yz} \cdot d_{xz} \cdot \sigma_{CN} \cdot \pi^*_{CN}$ 軌域的貢獻。下兩個高分子軌域的主要貢獻來自 $d_{x^2-y^2}$ 和 d_{z^2} 軌

域。因此,對於 $Fe(CN)_5NO^2$ -的軌域能階順序應為 d_{xz} 、 d_{yz} < d_{xy} < π^*_{NO} < $d_{x^2-y^2}$ < d_{z^2} ,從 SCCC-MO 計算結果得知 $Fe\equiv NO$ 上的 π 鍵主要來 自於 d_{xz} 及 d_{yz} (6e)與 π^*_{NO} (7e)之金屬至配位回饋鍵結(back-bonding)。 $Fe(CN)_5NO^2$ -錯合物在 $\lambda=200$ nm 有一強烈吸收,屬於 $2b_2(d_{xy}) \rightarrow 8e(\pi^*_{CN})$ 之吸收,另在 $\lambda=394$ nm 處有一肩形吸收,則為 $6e \rightarrow 7e$ 之 MLCT 吸收。

圖一、Fe(CN)₅NO²⁻的分子軌域能階圖

後來 Swinehart 嘗試以 Fe(CN)5NO2-錯合物與過量的 H2S 作用 31, 發現溶液會變紫紅色,然後紫紅色逐漸轉為紅色,此紅色溶液可以維 持一段時間的穩定,最後顏色逐漸消失,並有沉殿產生。根據所觀察 的結果, Swinehart 推測反應機構為:

$$H_2S = H^+ + SH^- \tag{8}$$

$$(NC)_{5}FeNO^{2-} + SH^{-} \longrightarrow (NC)_{5}FeN \longrightarrow SH$$

$$(NC)FeN \longrightarrow (NC)_{5}FeN \longrightarrow (NC)_{5}FeN \longrightarrow H_{2}O$$

$$(NC)_{5}FeN \longrightarrow Fe(CN)_{5}OH_{2}^{3-} + NOS^{-}$$

$$(11)_{5}FeN \longrightarrow (NC)_{5}FeN \longrightarrow (NC)_{5}OH_{2}^{3-} + NOS^{-}$$

$$(NC)FeN \underset{SH}{\overset{O}{\stackrel{3}{\sim}}} + OH^{-} \longrightarrow (NC)_{5}FeN \underset{S}{\overset{O}{\stackrel{4}{\sim}}} + H_{2}O \qquad (10)$$

Swinehart 接著又將反應延伸至有機酮 32,以丙酮嘗試,發現在 鹼性條件下,與 H_2S 反應相似,溶液也會變成紅色,只是較 $L=H_2S$ 為慢。中間紅色產物為 Fe(CN)5NO[=CHC(=O)CH3]4, 反應機構幾乎

$$Fe(CN)_{5}NO^{2-} + CH_{3}CCH_{2}^{-} \longrightarrow Fe(CN)_{5}NO[=CHCCH_{3}]^{4-} + H^{+}$$

$$Fe(CN)_{5}NO[=CHCCH_{3}]^{4-} \longrightarrow \begin{cases} O \\ || \\ Fe(CN)_{5}OH_{2}^{3-} + CH_{3}CCH=NO^{-} \\ || \\ Fe(CN)_{5}OH_{2}^{3-} + CH_{3}CCH=NOH \end{cases}$$

$$(14)$$

由過去文獻報告,可發現 $Fe(CN)_5NO^2$ -錯合物為一個很好的硝化試劑 (nitrosating agent), NO^+ 配位上的 N 有很強的親電子性,即使很弱的親核分子也可以接上,像丙酮如此弱親核性都可與 $Fe(CN)_5NO^2$ -進行加成反應,可惜的是,過去有關這方面的熱力學及動力學雖有報導,但並不完整,以致在機構上的了解,卻不夠深入,最近在我們探討 $Ru(NH3)_5L^{2+}$ ($L:NCCH_2CN,NCCH_2CONH_2$) 錯合物氧化反應中,我們發現 L 中之- CH_2 -基在水溶液中,氫離子易於和水中質子進行交換,如式(15)、(16)所示:

$$NCCH_2R \stackrel{H_2O}{\longrightarrow} NCCHR + H^+ \qquad (R = -CN, -CONH_2)$$
 (15)

二者氫離子交換速率皆已超過 1 H-NMR 之時間尺度 33 ,因此我們認為將會是很好的模型,用以探討 $Fe(CN)_5NO^2$ -錯合物硝化加成反應之反應機構。本文就 $Fe(CN)_5NO^2$ -與 $L(L:NCCH_2CN,NCCH_2CONH_2)$ 之反應動力學,來探討硝化加成反應之可能反應機構。

二、實驗部份

1. 主要藥品

英文名	中文名	化學式	來源
Sodium hydroxide	氫氧化納	NaOH	Merck
Sodium chloride	氯化鈉	NaCl	Merck
Sodium perchlorate	過氯酸鈉	NaClO ₄	Merck
Nitroprusside	五氰鐵鈉鹽	$Na_2[Fe(CN)_5NO] \cdot 2H_2O$	Merck
Malononitrle	丙二腈	NCCH ₂ CN	Merck
Cyanoacetamide	氰基乙醯胺	NCCH ₂ CONH ₂	Merck
Hydrochloric acid	鹽酸	HCl · 37%	Merck
Zinc , granular	鋅粒	Zn	Merck
Mercuric chloride	氯化汞	$HgCl_2$	Merck
Deuterium oxide	重水	D ₂ O	Merck

2. 溶液之配製

(1) 亞鉻溶液的配製

將 24g [Cr(H₂O)₆]Cl₃ (Hexaquochromium(III) chloride, Merck) 溶於 300 ml, 0.1 M 的 HClO₄ 的溶液中,加入數克鋅汞齊,並不斷通以 氫氣,直到所有鉻離子 Cr(III)完全還原成 Cr(II)為止,此時溶液會由 深綠色變成鮮藍色。此溶液目的在抓取氫氣中所含少量的氧氣。

(2) 鋅汞齊(Zine/mercury amalgam)

將鋅粒以 6M 鹽酸浸洗數次,以去除表面的氧化物,再加入氯化汞飽和溶液(含 0.1 M 硫酸溶液)汞化,即可得到閃亮的鋅汞齊,以二度水與酒精洗後,再以 Kimwipe 拭鏡紙拭乾,所製得的鋅汞齊必須立即使用,以防被空氣氧化。

3. 蒸餾水系統

自來水經由三隻活性碳過濾脫色處理,並經由離子交換樹脂處理,以 Christ Ministil P-12 作去離子純化,然後直接通入 Aries Osmonic 反滲透裝置,再純化得二次去離子水。本實驗室之加成反應製備緩衝溶液溶液及金屬錯合物溶液的配製,均採用此二次去離子水。

4. Fe^{II}(CN)₅NO²-錯合物溶液之製備

所有五氰鐵二價錯合物溶液均以適量的 $Na_2[Fe(CN)_5NO] \cdot 2H_2O$ 直接加入含離子強度(Ionic strength)的水溶液中($\mu = 1.0$ M NaCl),此為金屬錯合物水溶液瓶(Metal 瓶);於適當濃度的配位基溶液,其濃度至少為 Fe(II)之濃度的十倍以上,再加入適當的 NaOH 濃度以控制不同 pH 值之條件,此瓶溶液為配位水溶液瓶(Ligand 瓶)。然後從 Metal 瓶與 Ligand 瓶吸取等比例的量,直接打入儀器中混合反應,以進行光譜及動力學之測量。

因 Fe(II)對空氣敏感,故在配製過程中需在去氧的氮氣系統下進行,先將尚未加入 $Na_2[Fe(CN)_5NO] \cdot 2H_2O$ 的 Metal 溶液瓶與配製好的 Ligand 溶液瓶通以氮氣十分鐘,才再加入 $Na_2[Fe(CN)_5NO] \cdot 2H_2O$ 於 Metal 瓶,繼續在氮氣下作用 $3\sim5$ 分鐘,最後以去氧法取等比例的量打入儀器中,以確保空氣完全去除且反應完全。反應過程均在暗處進行,以防止錯合物溶液可能發生的光解反應(Photolysis reaction)。

5. 去氧處理

由於 Fe(II)錯合物對空氣中之氧非常敏感,所有錯合物溶液之配 製與反應過程,均需維持在飽和氮氣下操作,氮氣系統如圖二,本系

統去氧方法分有二種:

(1) 隔氧處理系統

如圖三所示,主要由鋼瓶內氫氣,跟兩組氣體抓取瓶(Scrubbing tower),和一支密閉玻璃管及數條氣泡管(Universal bubble tubing)所組成。氮氣經由二組洗滌瓶作除氧處理,其中一組洗滌瓶裝有亞鉻(II)溶液及數克鋅汞齊,用以去除氫氣中的所含少量的氧氣;另一組洗滌瓶裝有二次去離子水,以防止亞鉻(II)溶液與鋅汞齊直接與空氣接觸而被氧化,並用以平衡反應瓶內之水氣含量。

(2) 注射器轉移法

錯合物取測時,可利用注射轉移法來達到隔氧目的。如圖三,先將配製好溶液之兩組血清瓶,瓶口蓋以血清塞(Serum cap),並插入一長一短的不銹鋼針(Stainless-steel needle),其中一長針沒入液中為氮氟入口,而另一短針則懸於液面上,為氮氣出口。再將整組玻璃導管製成的隔氧系統,以針筒銜接於血清塞上之長針,通以氮氣。另取二支針筒及二支長針銜接好後,分別插入 Metal 瓶及 Ligand 瓶內,吸取適量溶液於針筒內,拔掉長針,將針筒安置或打入於截流儀器裝置(stopped-flow)上,如圖四 A、B處(A處為 Metal 瓶溶液入口,B處為Ligand 瓶溶液入口)。

圖二、氮氣系統 $(N_2$ -line)

圖三、注射器轉移錯合物之裝置

圖四、儀器注射口裝置圖

6. 分析儀器與方法

(1) 微量稱量:

a. 三位天平: Chausts 400D

b. 四位天平: Precisa 125A

c. 五位天平: Mettler AE240

(2) 酸鹼測量:

a. Orion 420A pH-meter,以玻璃電極 Orion 91-57 為指示電極。

b. Cyber Scan pH 1000 桌上型 pH / °C / mV 酸鹼度計。

每次測量前,均採用 Merck 之 pH = 4、7、10 的標準溶液校正。

(3) 吸收光譜分析:

紫外-可見光(UV-vis)光譜以 Hewlett-Parckard HP 8453 光譜儀進 行測量,且使用 1 cm 光徑的石英 cell。對於所有錯合物光譜資料(吸收度),利用 Beer's law ($A=\epsilon bc$),求得消光係數, ϵ_{max} 。

7. 動力學測量

使用 Photal RA 401 Stopped Flow Spectrophotometer 來測量,所得之結果直接輸入與儀器連線的 NEC-9801 VX 微電腦進行處理,並由 Photal MC-920 繪圖機畫出吸收度與時間關係圖,如圖五所示,反應溫度以 Hotech Model 631-P 恆溫槽控制。

Fe(CN) $_5$ NO 2 -L (L:NCCH $_2$ CN、NCCH $_2$ CONH $_2$)的反應動力學, 於以 Fe(CN) $_5$ NO 2 -與 L 在適當[OH $^-$]濃度中直接混合量測,離子強度維 持在 μ = 1.0 M (NaCl),錯合物濃度在金屬錯合物溶液部份維持在 2×10^{-4} M,反應之 pH、離子強度均控制在配位溶液部份,因本實驗都在 高[OH $^-$]濃度條件下進行反應,故直接在 NaOH 溶液中進行。

反應的變化由 HP8453 UV-vis Spectrophotometer 模擬產物吸收峰的形成來獲得。所有反應過程以配位 L 為過量,使其在偽一級條件下進行,反應隨時間的變化而呈現單指數關係, $\ln |A_t-A_i|$ 與時間呈現良好線性關係,如圖六所示。偽一級反應觀測速率常數 k_{obs} ,可利用 Lotus 1-2-3 Release linear regression 與 Graphics Program 軟體以線性最小平方差(linear least-square fit)來分析,從 $\ln |A_t-A_i|$ 對時間作圖之斜率中求得。

圖五、Fe(CN)₅NO²- - NCCH₂CONH₂之生成反應圖 ^a

a. [Fe(CN)₅NO²⁻] = 2×10^{-4} M · [NCCH₂CONH₂] = 2.00×10^{-3} M · [OH⁻] = 0.05M · μ = 1.0 M NaCl · T=25°C · λ_{obs} = 490 nm

三、結果

1、pKa值測量

雖然 $NCCH_2CN$ 之 pK_a 值已有文獻報導 ³⁴,但都不夠準確。由於 我們 $Fe(CN)_5NO^{2-}$ — $NCCH_2R$ 的反應對溶液 pH 值相當敏感,因此需要求得準確的 pK_a 值,可利用下式來求得 pK_a 值:

$$HA + OH^{-} \stackrel{K_a}{\rightleftharpoons} A^{-} + H_2O$$
 (16)

配製[HA] = 0.01 M (HA = $\text{NCCH}_2\text{CN} \cdot \text{NCCH}_2\text{CONH}_2$),取 450.0 ml 於錐形瓶中,每次以 1.0 ml 的[OH] = 2.0 M 滴定,測量每次滴定 之 pH 值,並分別求出[HA]及[A]值,由式(16)可得 pK_a值:

$$pK_{a} = pH + log \left\{ \frac{[HA] - [H^{+}]}{[A^{-}] + [H^{+}]} \right\}$$
 (17)

其中 $[H^{+}]$ = 10 e^{-pH}

得到結果列於表一與表二,所得之 pK_a 值加以平均後求得 $NCCH_2CN$ 與 $NCCH_2CONH_2$ 之 pK_a 分別為 11.15 及 11.80,其中 $NCCH_2CN$ 之 pK_a 值跟文獻值 pK_a = 11~12 相等。

表一、NCCH₂CN之pK_a測量^a

[OH ⁻] (ml)	рН	[HA]	$[A^{-}]$	$[H^{+}]$	$\frac{\left(\left[HA\right]-\left[H^{^{+}}\right]\right)}{\left(\left[A^{^{-}}\right]+\left[H^{^{+}}\right]\right)}$	log of column	pK _a
0.0	5.83						
1.0	9.26	9.35×10^{-3}	4.65×10 ⁻⁴	6.92×10^{-10}	20.10	1.30	10.56
2.0	9.61	8.89×10^{-3}	9.28×10 ⁻⁴	3.16×10^{-10}	9.57	0.98	10.59
3.0	9.95	8.43×10^{-3}	1.39×10^{-3}	1.51×10^{-10}	6.06	0.78	10.73
4.0	10.29	7.97×10^{-3}	1.85×10^{-3}	5.13×10 ⁻¹¹	4.31	0.63	10.92
5.0	10.46	7.51×10^{-3}	2.31×10^{-3}	3.47×10^{-11}	3.26	0.51	10.97
6.0	10.59	7.06×10^{-3}	2.76×10^{-3}	2.57×10^{-11}	2.56	0.41	11.00
7.0	10.78	6.60×10^{-3}	3.21×10^{-3}	1.66×10^{-11}	2.05	0.31	11.09
8.0	10.92	6.15×10^{-3}	3.67×10^{-3}	1.20×10^{-11}	1.68	0.22	11.14
9.0	11.02	5.70×10^{-3}	4.11×10^{-3}	9.55×10^{-12}	1.39	0.14	11.16
10.0	11.14	5.26×10^{-3}	4.56×10^{-3}	7.24×10^{-12}	1.15	0.06	11.20
11.0	11.28	4.81×10^{-3}	5.01×10^{-3}	5.25×10^{-12}	0.96	-0.02	11.26
12.0	11.35	4.37×10^{-3}	5.45×10^{-3}	4.47×10^{-12}	0.80	-0.10	11.25
13.0	11.39	3.93×10^{-3}	5.89×10^{-3}	4.07×10^{-12}	0.67	-0.18	11.21
14.0	11.48	3.49×10^{-3}	6.33×10^{-3}	3.31×10^{-12}	0.55	-0.26	11.22
15.0	11.56	3.05×10^{-3}	6.77×10^{-3}	2.75×10^{-12}	0.45	-0.35	11.21
16.0	11.64	2.61×10^{-3}	7.20×10^{-3}	2.29×10^{-12}	0.36	-0.44	11.20
17.0	11.69	2.18×10^{-3}	7.64×10^{-3}	2.04×10^{-12}	0.29	-0.54	11.15
18.0	11.75	1.75×10^{-3}	8.07×10^{-3}	1.78×10^{-12}	0.22	-0.66	11.09
19.0	11.81	1.32×10^{-3}	8.50×10^{-3}	1.55×10^{-12}	0.15	-0.81	11.00
20.0	11.85	8.88×10^{-4}	8.93×10 ⁻³	1.41×10 ⁻¹²	0.10	-1.00	10.85

a. $[OH^{-}] = 2.0 \text{ M}$; $[NCCH_{2}CN] = 0.01 \text{ M}$

表二、 $NCCH_2CONH_2$ 之 pK_a 測量 a

[OH ⁻] (ml)	рН	[HA]	$[A^{-}]$	$[H^{+}]$	$\frac{\left(\left[HA\right]-\left[H^{^{+}}\right]\right)}{\left(\left[A^{^{-}}\right]+\left[H^{^{+}}\right]\right)}$	log of column	pK _a
0.0	6.33						
1.0	10.53	9.54×10^{-3}	4.66×10 ⁻⁴	2.95×10 ⁻¹¹	20.49	1.31	11.84
2.0	10.88	9.08×10^{-3}	9.29×10 ⁻⁴	1.32×10^{-11}	9.77	0.99	11.87
3.0	11.06	8.61×10^{-3}	1.39×10^{-3}	8.71×10^{-12}	6.19	0.79	11.85
4.0	11.20	8.16×10^{-3}	1.85×10^{-3}	6.31×10^{-12}	4.41	0.64	11.84
5.0	11.30	7.70×10^{-3}	2.31×10^{-3}	5.01×10^{-12}	3.34	0.52	11.82
6.0	11.38	7.24×10^{-3}	2.76×10^{-3}	4.17×10 ⁻¹²	2.62	0.42	11.80
7.0	11.45	6.79×10^{-3}	3.22×10^{-3}	3.55×10^{-12}	2.11	0.32	11.77
8.0	11.50	6.34×10^{-3}	3.67×10^{-3}	3.16×10^{-12}	1.73	0.24	11.74
9.0	11.54	5.89×10^{-3}	4.12×10^{-3}	2.88×10^{-12}	1.43	0.16	11.70
10.0	11.58	5.44×10^{-3}	4.57×10^{-3}	2.63×10^{-12}	1.19	0.08	11.66
11.0	11.62	4.99×10^{-3}	5.01×10^{-3}	2.40×10^{-12}	1.00	0.00	11.62
12.0	11.66	4.55×10^{-3}	5.46×10^{-3}	2.19×10^{-12}	0.83	-0.08	11.58
13.0	11.70	4.11×10^{-3}	5.90×10^{-3}	2.00×10^{-12}	0.70	-0.16	11.54
14.0	11.72	3.67×10^{-3}	6.34×10^{-3}	1.91×10^{-12}	0.58	-0.24	11.48
15.0	11.75	3.23×10^{-3}	6.78×10^{-3}	1.78×10^{-12}	0.48	-0.32	11.43
16.0	11.78	2.79×10^{-3}	7.21×10^{-3}	1.66×10^{-12}	0.39	-0.41	11.37
17.0	11.80	2.36×10^{-3}	7.65×10^{-3}	1.58×10^{-12}	0.31	-0.51	11.29
18.0	11.82	1.93×10^{-3}	8.08×10^{-3}	1.51×10^{-12}	0.24	-0.62	11.20
19.0	11.84	1.50×10^{-3}	8.51×10^{-3}	1.45×10^{-12}	0.18	-0.75	11.09
20.0	11.85	1.07×10^{-3}	8.94×10^{-3}	1.41×10 ⁻¹²	0.12	-0.92	10.93

a. $[OH^{-}] = 2.0 \text{ M}$; $[NCCH_{2}CONH_{2}] = 0.01 \text{ M}$

2、電子吸收光譜

(1) $Fe(CN)_5NO^{2-} - OH^{-}$

當 $Fe(CN)_5NO^2$ -溶於鹼性溶液時, $Fe(CN)_5NO^2$ -之吸收會迅速消失,而在 $\lambda_{max}=399$ nm 處會有新的吸收波峰相對生成,根據文獻此 波峰為 $Fe(CN)_5NO_2^{4-}$ 之吸收,且該收到達最大值時,可維持一定時間 $(0.1M\ [OH\]$ 時可達 $20\ Plane > 0$)的穩定,然後逐漸消失,當吸收為最大值時,求得 $\epsilon_{max}=2.58\times10^3\ M^{-1}cm^{-1}$,如圖八所示。

圖七、Fe(CN) $_5$ NO 2 -之吸收光譜圖 a a. [Fe(CN) $_5$ NO 2 -] = 4.00×10^{-4} M, μ = 1.0 M NaCl,T = 25° C

圖八、Fe(CN) $_5$ NO $_2$ ⁴之吸收光譜圖 a a. [Fe(CN) $_5$ NO 2 -] = 2.00×10⁻⁴ M,[OH-] = 0.1 M, μ = 1.0 M NaCl ,T = 25°C

(2) $Fe(CN)_5NO^{2-} - NCCH_2CN$

Fe(CN) $_5$ NO 2 -與 NCCH $_2$ CN 在 pH ≤ 8 混合時,UV-Vis 光譜仍維持 與 Fe(CN) $_5$ NO 2 -錯合物一樣在 300 ~ 600 nm 之間沒有明顯的吸收峰,當 pH ≥ 9.0 時,在 $\lambda_{max} = 505$ nm 處可見有一吸收峰逐漸形成,如圖九 (a)所示,該吸收波峰為 Fe(CN) $_5$ NO 2 -NCCH $_2$ CN 反應後所形成錯合物吸收位置。當此吸收到達最大值時($\epsilon_{max} = 5.29 \times 10^3$ M 1 cm $^{-1}$),可維持一小段時間,然後再度消失與 Fe(CN) $_5$ NO 2 -OH 系統相似,只是消失速度較為快,在 $\lambda_{max} = 399$ nm 處生成吸收峰,隨時間逐漸增強,如圖九(b)。當 pH 值升高時,其吸收峰隨著明顯,反應速率也增快,但相對地形成的產物也較為不穩定。

(3) $Fe(CN)_5NO^{2-} - NCCH_2CONH_2$

NCCH₂CONH₂與 NCCH₂CN 同屬 NCCH₂R 類型,而 Fe(CN)₅NO²-與 NCCH₂CONH₂於中性 (pH \leq 8.0) 下沒有任何吸收變化,甚至在鹼性條件下,如果[OH]濃度不夠高,雖然有反應吸收峰生成,但吸收變化相當很小。當[OH]濃度增加時,在 λ_{max} = 490 nm 處才呈現有較大吸收變化,但形成的產物會很不穩定,而繼續反應很快解離消失。在 λ_{max} = 399 nm 處亦有較強吸收峰生成,明顯地為 Fe(CN)₅NO₂⁴⁻之吸收,如圖十(a)所示。此外,可以發現 λ_{max} = 399 nm 處生成吸收峰隨時間逐漸增強,而 λ_{max} = 490 nm 處會相對減弱,如圖十(b)所示。

圖九、Fe(CN)5NO²⁻-NCCH₂CN的吸收光譜圖

- (a) [Fe(CN)₅NO²⁻] = 2.00×10^{-4} M \cdot [NCCH₂CN] = 1.00×10^{-2} M \cdot [OH⁻] = 0.03 M \cdot μ = 1.0 M NaCl \cdot T = 25° C
- (b) 為(a)過一段時間後,在 $λ_{max}$ = 399 nm 會上升與 505 nm 會下降的波峰變化趨勢圖。

圖十、Fe(CN)₅NO²--NCCH₂CONH₂之吸收光譜圖

- (a) $[Fe(CN)_5NO^{2-}] = 5.00 \times 10^{-4} \text{ M}$, $[NCCH_2CONH_2] = 5.00 \times 10^{-3} \text{ M}$, $pH = 9.1 \ (NH_3/NH_4^+ \ buffer)$, $\mu = 1.0 \ M \ NaCl$, $T = 25^{\circ}C$
- (b) (a)過一段時間後,在 $\lambda_{max} = 399 \text{ nm}$ 會上升與 490 nm 會下降的波峰 變化趨勢圖。

3、動力學

(1) Fe(CN)₅NO²⁻ - OH⁻反應

雖然 Fe(CN)₅NO²-OH 反應動力學過去已有完整探討 ¹²,但由 於反應條件不太相同,且本實驗和其它配位之反應皆都在鹼性條件下 進行,互相形成競爭關係。因此 Fe(CN)₅NO²-OH 反應將會影響反 應速率之觀察,所以必需確定其反應速率常數,以了解在不同[OH] 濃度對其它配位加成反應的影響。

表三、Fe(CN)₅NO²-與OH⁻反應之 k_{obs} 值 ^a

[OH ⁻], (M)	$k_{obs}, (M^{-1}s^{-1})$
0.1	0.0544
0.2	0.0829
0.3	0.1244
0.4	0.1883
0.5	0.2362
0.6	0.2614

a. [Fe(CN)₅NO²⁻] = 4.00×10⁻⁴ M , μ =1.0 M NaCl , T=25°C

圖十一、 $Fe(CN)_5NO^{2-}$ — OH^- 反應速率常數 k_{obs} v.s $[OH^-]$ 作圖 b b. $[Fe(CN)_5NO^{2-}] = 4 \times 10^{-4}$ M, μ =1.0 M NaCl,T=25 $^{\circ}$ C

(2) Fe(CN)₅NO²⁻ - NCCH₂CN 反應

反應藉由在 $pH \ge 11$ 條件下模擬 $\lambda_{max} = 505$ nm 的形成來觀察,表四為 $Fe(CN)_5NO^2$ 與 $NCCH_2CN$ 反應之觀測速率常數 (k_{obs}) 值。由表五可知,當 $[NCCH_2CN]$ 濃度增加時, k_{obs} 會隨之增加,以 k_{obs} v.s $[NCCH_2CN]$ 作圖,如圖十二,均呈現線性關係,以單參數最小平方差分析所得之 k 值列於表五。從表五得知 k 值隨 pH 不同而改變,當 pH 增加時,k 值亦變大,以 k 對 [OH] 作圖,該二者呈非線性關係,如圖十三中(a)所示,但以 1/k 對 1/[OH] 作圖時,則會發現有良好線性關係,如圖十三中(b)。因此 k 與 [OH] 關係應為

$$k = \frac{a [OH^{-}]}{1 + b [OH^{-}]}$$
 (18)

以非線性最小平方差(non-linear least square fit)方法分析所得數據,結果得到 $a=(2.52\pm0.10)\times10^6~M^{-1}s^{-1}$; $b=(44.0\pm1.8)~M^{-1}$ 。

表四、Fe(CN)5NO²⁻-NCCH2CN 反應速率 kobs 值 a

рН	NCCH ₂ CN	k_{obs}
12.57	1.00×10^{-3}	6.13
	3.00×10^{-3}	18.0
	5.00×10^{-3}	29.2
	7.00×10^{-3}	41.1
	9.00×10^{-3}	50.9
12.45	1.00×10^{-3}	4.76
	3.00×10^{-3}	15.7
	5.00×10^{-3}	25.9
	7.00×10^{-3}	37.3
	9.00×10^{-3}	46.8
12.32	1.00×10 ⁻³	4.20
	3.00×10^{-3}	13.9
	5.00×10^{-3}	22.7
	7.00×10^{-3}	30.6
	9.00×10^{-3}	38.0
12.09	1.00×10 ⁻³	3.00
	3.00×10^{-3}	9.65
	5.00×10^{-3}	14.9
	7.00×10^{-3}	20.6
	9.00×10^{-3}	26.7
11.71	1.00×10^{-3}	1.97
	3.00×10^{-3}	5.48
	5.00×10^{-3}	8.48
	7.00×10^{-3}	12.1
	9.00×10 ⁻³	14.6

a. [Fe(CN)₅NO²⁻] = 2×10^{-4} M , μ = 1.0 M NaCl , T = 25°C

圖十二、 $Fe(CN)_5NO^{2-}-NCCH_2CN$ 反應之 $k_{obs} \ v.s \ [NCCH_2CN]$

+ : pH = 12.57

• : pH = 12.09

 \times : pH = 12.45

 \Box : pH = 11.71

 \circ : pH = 12.32

表五、Fe(CN)₅NO²⁻-NCCH₂CN 反應在不同 pH 下之 k 值

рН	k, (M ⁻¹ s ⁻¹)
12.57	$(5.77 \pm 0.06) \times 10^3$
12.45	$(5.23 \pm 0.03) \times 10^3$
12.32	$(4.34 \pm 0.04) \times 10^3$
12.09	$(2.97 \pm 0.03) \times 10^3$
11.71	$(1.68 \pm 0.03) \times 10^3$

(a)

(b)

圖十三、
$$Fe(CN)_5NO^{2-}$$
 — $NCCH_2CN$ 之反應圖 (a) $[OH^-]$ v.s k

(b) 1/[OH⁻] v.s 1/k

(3) Fe(CN)₅NO²⁻ - NCCH₂CONH₂ 反應

表七 $Fe(CN)_5NO^2-NCCH_2CONH_2$ 反應之觀測速率常數,乃藉 模擬 $\lambda_{max}=490$ nm 的形成來觀察,反應速率隨[OH]濃度增加而增 快。由於在鹼性條件下進行, $Fe(CN)_5NO^2-OH$ 反應也會影響反應 速率之觀測,但因為 $k_{OH}[OH]$ 遠小於 $Fe(CN)_5NO^2-NCCH_2CONH_2$ 反應之觀測速率常數 k_{obs} ,二者相差約二次幕,故可忽略 $k_{OH}[OH]$ 使 其通過原點作圖,如圖十四所示,是為 k_{obs} v.s $[NCCH_2CONH_2]$ 圖,與 $Fe(CN)_5NO^2-NCCH_2CN$ 系統相似,都呈線性關係,以單參數最小 平方差分析所得之 k 值列於表八。

從表八得知 k 值隨[OH]濃度不同而改變,當[OH]濃度增加時,k 值亦變大,但二者呈非線性關係,如圖十五中(a)所示,但若以 1/k 對 1/[OH]作圖,則有良好線性關係,如圖十五中(b),因此我們認為 k 與[OH]關係應為:

$$k = \frac{a [OH^{-}]}{1 + b [OH^{-}]}$$
 (19)

以非線性最小平方差(non-linear least square fit)方法分析所得數據,結果得到 $a = (3.28 \pm 0.20) \times 10^4 \,\text{M}^{-1}\text{s}^{-1}$; $b = (1.12 \pm 0.10) \times 10 \,\text{M}^{-1}$ 。

表六、 $Fe(CN)_5NO^{2-}-NCCH_2CONH_2$ 反應之 k_{obs} 值 a

[OH ⁻]	[L], (M)	$k_{obs}, (s^{-1})$
0.05	2.00×10^{-3}	2.50
	4.00×10^{-3}	4.71
	6.00×10^{-3}	6.45
	8.00×10^{-3}	7.92
	1.00×10^{-2}	9.78
0.08	2.00×10^{-3}	3.26
	4.00×10^{-3}	5.77
	6.00×10^{-3}	7.78
	8.00×10^{-3}	10.4
	1.00×10 ⁻²	13.5
0.10	2.00×10^{-3}	3.71
	4.00×10^{-3}	6.96
	6.00×10^{-3}	10.0
	8.00×10^{-3}	13.1
	1.00×10 ⁻²	16.1
0.15	2.00×10 ⁻³	4.43
	4.00×10^{-3}	8.30
	6.00×10^{-3}	10.9
	8.00×10^{-3}	15.2
	1.00×10 ⁻²	17.6
0.20	2.00×10 ⁻³	5.31
	4.00×10^{-3}	9.61
	6.00×10^{-3}	12.2
	8.00×10^{-3}	16.3
	1.00×10 ⁻²	19.9
0.25	2.00×10^{-3}	5.41
	4.00×10^{-3}	10.2
	6.00×10^{-3}	13.1
	8.00×10^{-3}	17.5
	1.00×10 ⁻²	20.0

0.3	2.00×10^{-3}	6.11
	4.00×10^{-3}	10.8
	6.00×10^{-3}	14.0
	8.00×10^{-3}	17.9
	1.00×10^{-2}	21.4

a. [Fe(CN)₅NO²⁻] = 2×10^{-4} M , μ = 1.0M NaCl , T = 25°C

圖十四、 $Fe(CN)_5NO^2$ — $NCCH_2CONH_2$ 反應之 $k_{obs} \ v.s \ [NCCH_2CONH_2]$

 $+ : [OH^{-}] = 0.05 \text{ M}$ $\Box : [OH^{-}] = 0.30 \text{ M}$

 \times : $[OH^{-}] = 0.08 \text{ M}$ \blacksquare : $[OH^{-}] = 0.40 \text{ M}$

 \circ : [OH⁻] = 0.10 M \triangle : [OH⁻] = 0.50 M

• : $[OH^{-}] = 0.20 \text{ M}$

表七 、 $Fe(CN)_5NO^{2-}$ $-NCCH_2CONH_2$ 反應在不同 $[OH^-]$ 下之 k 值

[OH ⁻], (M)	k, (M ⁻¹ s ⁻¹)
0.05	$(1.02 \pm 0.03) \times 10^3$
0.08	$(1.34 \pm 0.03) \times 10^3$
0.10	$(1.64 \pm 0.02) \times 10^3$
0.20	$(1.84 \pm 0.05) \times 10^3$
0.30	$(2.05 \pm 0.07) \times 10^3$
0.40	$(2.13 \pm 0.08) \times 10^3$
0.50	$(2.26 \pm 0.09) \times 10^3$

圖十五、Fe (CN)₅NO²⁻ — NCCH₂CONH₂之反應圖

(a) [OH-] v.s k

(b) 1/[OH⁻] v.s 1/k

四、討論

根據光譜觀察的結果,相較於一般自由配位基,Fe(CN)5NO2-錯 合物之 NO⁺的確有極強的硝化能力,但加成反應所生成產物不穩定, 會繼續進行解離反應,這也是我們無法分離出此中間產物原因之一。 所幸該解離反應遠較硝化加成反應為慢,至少反應速率相差夠大到足 以讓我們得以探討 Fe(CN)₅NO²⁻-L(L:NCCH₂CN、NCCH₂CONH₂) 系統之硝化加成反應動力學。

依照我們所得動力學結果,Fe(CN)₅NO²⁻-L的硝化加成反應機 構應為:

$$Fe(CN)_5NO^{2-} + 2OH^{-} \xrightarrow{k_{OH^{-}}} Fe(CN)_5NO_2^{4-}$$
(22)

根據此反應機構,反應速率式為

$$-\frac{d[Fe(CN)_5NO^{2-}]}{dt} = k_{obs}[Fe(II)]$$
 (23)

$$k_{obs} = \frac{k_L K [OH^-][L]_0}{1 + K [OH^-]} + 2k_{OH}[OH^-]$$
 (24)

由於 $k_{OH} = 0.450 \,\mathrm{M}^{-1} \mathrm{s}^{-1}$,且在本實驗裡 $[OH^{-}] \leq 0.10 \,\mathrm{M}$, $k_{OH}[OH^{-}] \leq$ $4.50 \times 10^{-2} \, \text{s}^{-1}$,遠小於所得 k_{obs} 值,因此可以忽略, k_{obs} 可簡化為

$$k_{obs} = \frac{k_L K [OH^-][L]_0}{1 + K [OH^-]}$$
 (25)

或
$$k = \frac{k_L K[OH^*]}{1 + K[OH^*]}$$
 (26)

根據動力學計算所得的式(26),和前面推測的關係式(18)、(19)相符, 從所得之 a、b 值,可求得 $k_L = (9.0 \pm 0.1) \times 10^3 \, \text{M}^{\text{-1}} \text{s}^{\text{-1}}$, $K = (44 \pm 2) \, \text{M}^{\text{-1}}$ ($L = NCCH_2CN$), $k_L = (2.9 \pm 0.1) \times 10^3 \, \text{M}^{\text{-1}} \text{s}^{\text{-1}}$, $K = (11 \pm 1) \, \text{M}^{\text{-1}}$ ($L = NCCH_2CONH_2$)。

由 NCCH₂CONH₂與 Fe(CN)₅NO²· 反應中,和 NCCH₂CN 系統相較之下顯得比較慢,可知在 NCCH₂CONH₂上 C—H 鍵應該較不易脫落。而不易脫落之原因,應是在強鹼下造成酮位置上鹼催化成烯醇離子型態(enolate ion)的互變異構現象(tautomerization)所致,所以必須透過在高[OH]濃度條件下,方才能去掉在烯醇式型態中醇上之氫,因此式(20)之去質子過程事實上應以式(27)~(29)表示:

從 $Fe(CN)_5NO^2$ -錯合物與 $NCCH_2CN$ 及 $NCCH_2CONH_2$ 的反應結果中,我們發現有趣且相當重要的現象, $NCCH_2R$ 形式的配位雖然可藉由去質子化,與 Fe(II)錯合物進行硝化加成反應;但 $NCCH_2CN$ 的 $pK_a=11.15$,其加成反應在 $pH \geq 9$ 下就可進行。反觀 $NCCH_2CONH_2$ 的 $pK_a=11.80$,卻要在高[OH]濃度條件與 $Fe(CN)_5NO^2$ 反應中,才會有明顯吸收變化。因此我們認為配位之 pK_a 並非是影響反應的決定性因素,換句話說,熱力學條件並非反應進行的決定因素,而是要看動力學條件變化,亦即 $\alpha-CH_2$ 上之氫與溶劑交換速率,才是真正決定反應是否進行的主要因素。

Fe(CN)₅NO²-錯合物反應雖有應用在生物系統上,但都是以核鹼之反應為主,並未見有以胺基酸為模型的報導,由於大部分胺基酸均有α-CH₂基,而胺基酸在水溶液中會離子化,可作為酸或鹼。胺基酸之酸鹼性質的知識對於瞭解許多蛋白質的性質很重要,甚至在決定蛋白質的胺基酸組成和序列時,有關於分離、鑑定和定量不同的氨基酸的技術,都是基於它們的酸鹼特性。未來我們擬嘗試以α-胺基酸為配位,尋找適當條件,使之與Fe(CN)₅NO²-錯合物作用,探討兩者可能的反應性質,將反應延伸至藥品工業與生物系統之應用上。

五、結論:

- 1. NCCH₂R (R = CN、CONH₂)與 Fe(CN)₅NO²-在進行反應之前,-CH₂-上之氫必需先行去質子化。而 R 為 CONH₂ 時,在強鹼環境下會催化成烯醇離子型態,必須要在高[OH]濃度條件下,才能去質子化。
- 2. $Fe(CN)_5NO^2$ -與 $NCCH_2R$ 的硝化加成反應,由動力學結果我們可看出,其影響反應的主要因素乃決定於 $\alpha-CH_2$ 上氫與溶劑之交換速率,而在配位之 pK_a 方面並無太大之影響。

參考文獻

- 1. R. M. Izatt, J.J. Christensen, and J. H. Rytting, *Chem. Rev.*, <u>71</u>, 439 (1971).
- 2. J. H. Swinehart, *Coord. Chem. Rev.*, <u>2</u>, 385 (1967).
- 3. L. Playfair, Proc. Roy. Soc. (London), 5, 846 (1849); Phil. Mah., 36, 197 (1850).
- 4. L. Cambi, Atti. Acad. Nazl. Lincei, 24, 434 (1915); Chem. Abstr., 31, 1351 (1916).
- 5. G. Scagliarmi, Atti. V. Congr. Nazl. Chim. Pura. Appli. Rome, 1935, Part I.
- 6. M. T. Beck and L. Dorza, *Bioinorg. Chem.*, <u>7</u>, 1 (1977).
- 7. A. R. Butler and Ch. Glidewell, Chem. Soc. Rev., 16, 361 (1987).
- 8. G. Stovhel and R. Van Eldik, *Inorg. Chim. Acta*, <u>174</u>, 217 (1990).
- 9. L. Cambi and L. Szegö, *Atti. Accad. Nazl. Lincei*, <u>5</u>, 737 (1927); *Gazz. Chim. Ital.*, <u>58</u>, 64, 71 (1928); *Chem. Abstr.*, <u>22</u>, 2722 (1928).
- 10. I. M. Kithoff and P. E. Toren, J. Am. Chem. Soc., <u>75</u>, 1197 (1953).
- 11. P. Zuman and M. Kabat, *Chem. Listy*, <u>48</u>, 358 (1954).
- 12. J. H. Swinehart and P. A. Rock, *Inorg. Chem.*, <u>5</u>, 573 (1966).
- 13. D. X. West, Dissertation Abstr., 25, 5552 (1965).
- 14. D. X. West, J. Inorg. Nucl. Chem., 29, 1163 (1967).
- 15. Enemark, J. H.; Feltham. R. D. J. Am. Chem. Soc. <u>96</u>, 5002 (1974).
- 16. P. T. Manogaran and W. C. Hamilton, *Inorg. Chem.*, <u>2</u>, 1043 (1963).
- 17. L. E. Orgel, *J. Inorg. Nucl. Chem.*, <u>2</u>, 315 (1956).
- 18. I. Bernal and S. E. Hanison, J. Chem. Phys., <u>34</u>, 102 (1961).
- 19. H. B. Gray and C. J. Ballhausen, J. Chem. Phys., <u>36</u>, 1151 (1962).
- 20. H. B. Gray, I. Bernal and E. Billig, J. Am. Chem. Soc, <u>84</u>, 3404 (1962).
- 21. H. B. Gray, P. I. Monoharan, J. Perlman and R. E. Riley, *Chem. Comm. (London)*, 62 (1965).
- 22. Y. J. Israeli, *Bull. Soc. Chim, France*, <u>5</u>, 1145 (1964).
- 23. D. A. C. McNeil, J. B, Raynor and M. C. R. Symons, Proc. Chem. Soc. (London), 364 (1964).
- 24. D. A. C. McNeil, J. B. Raynor and M. C. R. Symons, J. Chem. Soc., 410 (1965).
- 25. B. Jezowska-Trzebiatowska, J. Ziolkowski and W. Wojciechowski, *Bull. Acad. Polon. Sci., Ser. Sci. Chim.*, 11, 567 (1963); *Chem. Abstr.*, <u>60</u>, 11499 (1964).
- 26. H. A. Kuska and M. T. Rogers, J. Chem. Phys., 40, 910 (1964).
- 27. J. Danon, J. Chem. Phys., 41, 3378 (1964).
- 28. J. Danon, P. A. Muniz. And H. Panapucci, J. Chem. Phys., 41, 3651 (1964).
- 29. B. Jezowska-Trzebiatowska and J. Ziolkowski, *Chem. Zvesti*, <u>19</u>, 177 (1965); *Chem, abstr.*, 63, 1464 (1965).
- 30. P. T. Mano haran and H. B. Gray, J. Am. Chem. Soc., <u>87</u>, 3340 (1965).

- 31. P. A. Rock and J. H. Swinehart, *Inorg. Chem.*, <u>5</u>, 6, 1078 (1966).
- 32. J. H. Swinehart and W. G. Schmidt, *Inorg. Chem.*, <u>6</u>, 232 (1967).
- 33. S. Huang, S. Wang and A. Yeh, Preparation for submission.
- 34. R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc., 75, 2439 (1953).