東海大學統計學系碩士班

碩士論文

指導教授:沈葆聖教授

ESTIMATION OF THE TRUNCATION PROBABILITY

WITH LEFT-TRUNCATED AND RIGHT-CENSORED DATA

研究生:許躍耀

中華民國九十三年七月

ESTIMATION OF THE TRUNCATION PROBABILITY WITH LEFT-TRUNCATED AND RIGHT-CENSORED DATA

Yueh-Yao Hsu Dept. of Statistics Tunghai University Taichung, 40704 Taiwan, R. O. C.

July 6, 2004

Contents

ABSTRACT	2
1. INTRODUCTION	3
2. The α_n and $\hat{\alpha}_n$ Estimator	4
3. THE EQUIVALENCE OF α_n AND $\hat{\alpha}_n$	9
4. DISCUSSION	16
BIBLIOGRAPHY	17

ABSTRACT

Let (U_i^*, C_i, V_i^*) be i.i.d. random vectors such that (C_i, V_i^*) is independent of U_i^* . Let F, Q and G denote the common distribution function of U_i^* , C_i and V_i^* , respectively. For left-truncated and right-censored data, one can observe nothing if $U_i^* < V_i^*$ and observe (X_i^*, δ_i^*) , with $X_i^* = \min(U_i^*, C_i)$ and $\delta_i^* = I_{[U_i^* \le C_i]}$. In this note, we consider the estimation of the truncation probability $\alpha = P(U^* \ge V^*)$. A proper estimate of α is $\alpha_n = \int G_n(s) dF_n(s)$, where F_n and G_n are nonparametric maximum likelihood estimate (NPMLE) of the distributions F and G, respectively. When the largest observation is not censored, we obtain an alternative representation $\hat{\alpha}_n$ for α_n . For the special case of $C_i = \infty$, the results are reduced to those obtained by He and Yang (1998).

Key Words: Left truncation, right censoring, truncation probability.

1. INTRODUCTION

Let (U_i^*, C_i, V_i^*) be i.i.d. random vectors such that (C_i, V_i^*) is independent of U_i^* . It will be assumed throughout this section that $C_i \ge V_i^*$. Let F, Q and G denote the common distribution function of U_i^* , C_i and V_i^* , respectively. For left-truncated and right-censored data, one can observe nothing if $U_i^* < V_i^*$ and observe (X_i^*, δ_i^*) , with $X_i^* = \min(U_i^*, C_i)$ and $\delta_i^* = I_{[U_i^* \le C_i]}$, if $U_i^* \ge V_i^*$. For any distribution function H denote the left and right endpoints of its support by $a_H = \inf\{t : H(t) > 0\}$ and $b_H = \inf\{t : H(t) = 1\}$, respectively. Woodroofe (1985) pointed out that if $a_G \le \min(a_F, a_Q)$ and $b_G \le \min(b_F, b_Q)$, then F, Q and G are all identifiable. Data of this kind often arise in epidemiology, individual follow-up study (see Wang (1991), Wang, Jewell and Tsai (1987), Tsai, Jewell and Wang (1987)) and possibly in other fields. Consider the following application.

Example:

In hemophilia AIDS-data sets the time of infection T_s can be quite accurately determined. A database will cover patients from, say 1978, till 1995, and hence a patient with a longer survival time will have a larger probability of being part of the sample than a patient with a short survival time. Let U_i^* be the time between T_s and death and let $V_i^* = 1978 - T_s$ if $T_s < 1978$ and $V_i^* = 0$ if $T_s \ge 1978$. Then a patient will only be part of the sample if $U_i^* \ge V_i^*$. Let $C_i = 1995 - T_s$ denote the the time from T_s to the end of study. Hence, $P(C_i > V_i^*) = 1$ and U_i^* is subject to censoring due to termination of study.

In this note, under the assumption that $P(C_i^* > V_i^*) = 1$, we consider the estimation of the truncation probability $\alpha = P(U_i^* \ge V_i^*)$.

2. The α_n and $\hat{\alpha}_n$ Estimator

2.1. Notations

Let $(X_1, \delta_1, V_1), \ldots, (X_n, \delta_n, V_n)$ denote the left-truncated and right-censored sample.

Let $U_{(1)} < U_{(2)} < \cdots < U_{(r)}$ be the distinct ordered failure times and d_s be the number of failure times at $U_{(s)}$ for $s = 1, \ldots, r$.

Similarly, let $V_{(1)} < V_{(2)} < \cdots < V_{(q)}$ be the distinct ordered truncation times and e_t be the number of truncation times at $V_{(t)}$ for $t = 1, \ldots, q$.

Let $C_{(1)} < C_{(2)} < \cdots < C_{(h)}$ be the distinct ordered censoring times and c_l be the number of censoring times at $C_{(l)}$ for $l = 1, \ldots, h$.

For each $V_{(t)}$ (t = 1, ..., q), let $C_{(1(t))} < C_{(2(t))} < \cdots < C_{(h(t))}$ be the distinct ordered censoring times and $c_{l(t)}$ be the number of censoring times at $C_{(l(t))}$ for l = 1, ..., h(t).

2.2. The NPMLE of F, G and Q

Let $Q(x|v) = P(C_i \leq x|V_i^* = v)$ denote the conditional distribution function of C given $V^* = v$. Let dF(x) = F(x) - F(x-), dG(x) = G(x) - G(x-), and dQ(x|v) = Q(x|v) - Q(x-|v).

The likelihood function L can be decomposed into three factors (see Wang (1991), Gross and Lai (1996)), yielding

$$L = \prod_{i=1}^{n} \left\{ dF(X_i) dG(V_i) [1 - Q(X_i - |V_i)] / \alpha \right\}^{\delta_i} \times \prod_{i=1}^{n} \left\{ dQ(X_i | V_i) dG(V_i) [1 - F(X_i)] / \alpha \right\}^{1 - \delta_i}$$
$$= \left\{ \prod_{i=1}^{n} \frac{[F(X_i)]^{\delta_i} [1 - F(X_i)]^{1 - \delta_i}}{1 - F(V_i -)} \right\} \times \left\{ \prod_{t=1}^{q} \left[\frac{dG(V_{(t)}) [1 - F(V_{(t)} -)]}{\alpha} \right]^{e_t} \right\}$$

$$\times \left\{ \prod_{t=1}^{q} \left[\prod_{V_i = V_{(t)}} [1 - Q(X_i - |V_{(t)})]^{\delta_i} [dQ(X_i|V_{(t)})]^{1 - \delta_i} \right] \right\} = L_1 L_2 L_3,$$

where L_1 , L_2 , and L_3 represent the likelihoods in the first, second, and third brace, respectively.

Let $R_n(u) = n^{-1} \sum_{i=1}^n I_{[V_i \le u \le X_i]}$ and $N_F(u) = \sum_{i=1}^n I_{[X_i \le u, \delta_i = 1]}$. A necessary and sufficient condition for the existence of the nonparametric maximum likelihood estimate (NPMLE) of L_1 is $nR_n(U_{(s)}) > d_s = [N_F(U_{(s)}) - N_F(U_{(s)})]$ for $s = 1, \ldots, r$ (see Wang (1987)). Under this regularity condition, the NPMLE of F(x) from L_1 is uniquely determined and given by

$$F_n(x) = 1 - \prod_{u \le x} \left[1 - \frac{dN_F(u)}{nR_n(u)} \right] = 1 - \prod_{U(s) \le x} \left[1 - \frac{d_s}{nR_n(U_{(s)})} \right],$$

where $dN_F(u) = N_F(u) - N_F(u)$.

where

Based on L_2 , the NPMLE of G(y) is uniquely determined and given by

$$G_n(y) = \left[\sum_{t=1}^q \frac{e_t}{1 - F_n(V_{(t)})}\right]^{-1} \sum_{t=1}^q \frac{e_t I_{[V_{(t)} \le y]}}{1 - F_n(V_{(t)})}$$

Based on F_n and G_n , a proper estimator of α is $\alpha_n = \int G_n(s) dF_n(s)$.

Next, let $R_n^t(u) = n^{-1} \sum_{i=1}^n I_{[V_i \le u \le X_i, V_i = V_{(t)}]}$ and $N_Q^t(u) = \sum_{i=1}^n I_{[X_i \le u, \delta_i = 0, V_i = V_{(t)}]}$. For each $V_{(t)}$, a necessary and sufficient condition for the existence of the NPMLE of $Q(x|V_{(t)})$ is $R_n^t(C_{(l(t))}) > c_{l(t)} = N_Q^t(C_{l(t)}) - N_Q^t(C_{l(t)})$ for $l = 1, \ldots, h(t)$. Under these regularity conditions, the NPMLE of $Q(x|V_{(t)})$ from L_3 is uniquely determined and given by

$$Q_n(x|V_{(t)}) = 1 - \prod_{u \le x} \left[1 - \frac{dN_Q^t(u)}{nR_n^t(u)} \right] = 1 - \prod_{C_{l(t)} \le x} \left[1 - \frac{c_{l(t)}}{nR_n^t(C_{l(t)})} \right],$$
$$dN_Q^t(u) = N_Q^t(u) - N_Q^t(u-).$$

When $Q_n(x|V_{(t)})$ exists for all $V_{(t)}$'s, the NPMLE of Q (denoted by Q_n) can be written as

$$Q_n(x) = \sum_{t=1}^q Q_n(x|V_{(t)}) [G_n(V_{(t)}) - G_n(V_{(t-1)})].$$

Note that when the bivariate distribution of (C_i, V_i^*) is continuous, we have $nR_n^t(C_{l(t)}) = c_{l(t)} = 1$, and the NPMLE of $Q(x|V_{(t)})$ does not exist. To circumvent this difficulty, Shen (2003) considered the inverse-probability-weighted estimators by simultaneously estimating F, G and Q. Let $\hat{F}_e(x)$, $\hat{G}_e(x)$ and $\hat{Q}_e(x)$ be given by

$$\hat{F}_{e}(x) = \left[\sum_{i=1}^{n} \frac{\delta_{i}}{\hat{G}_{e}(X_{i}) - \hat{Q}_{e}(X_{i}-)}\right]^{-1} \sum_{i=1}^{n} \frac{\delta_{i}I_{[X_{i} \leq x]}}{\hat{G}_{e}(X_{i}) - \hat{Q}_{e}(X_{i}-)}$$

$$= \left[\sum_{s=1}^{r} \frac{d_{s}}{\hat{G}_{e}(U_{(s)}) - \hat{Q}_{e}(U_{(s)}-)}\right]^{-1} \sum_{s=1}^{r} \frac{d_{s}I_{[U_{(s)} \leq x]}}{\hat{G}_{e}(U_{(s)}) - \hat{Q}_{e}(U_{(s)}-)}, \qquad (2.1)$$

$$\hat{G}_{e}(x) = \left[\sum_{i=1}^{n} \frac{1}{1 - \hat{F}_{e}(V_{i}-)}\right]^{-1} \sum_{i=1}^{n} \frac{I_{[V_{i} \leq x]}}{1 - \hat{F}_{e}(V_{i}-)}$$

$$= \left[\sum_{t=1}^{q} \frac{e_{t}}{1 - \hat{F}_{e}(V_{(t)}-)}\right]^{-1} \sum_{t=1}^{q} \frac{e_{t}I_{[V_{(t)} \leq x]}}{1 - \hat{F}_{e}(V_{(t)}-)}, \qquad (2.2)$$

and

$$\hat{Q}_{e}(x) = \left[\sum_{i=1}^{n} \frac{1}{1 - \hat{F}_{e}(V_{i}-)}\right]^{-1} \sum_{i=1}^{n} \frac{(1 - \delta_{i})I_{[X_{i} \le x]}}{1 - \hat{F}_{e}(X_{i}-)}$$
$$= \left[\sum_{t=1}^{q} \frac{e_{t}}{1 - \hat{F}_{e}(V_{(t)}-)}\right]^{-1} \sum_{l=1}^{h} \frac{(c_{l})I_{[C_{(l)} \le x]}}{1 - \hat{F}_{e}(C_{(l)}-)}.$$
(2.3)

The justification of using \hat{F}_e , \hat{G}_e , and \hat{Q}_e is given as follows. We consider the subdistribution function

$$W_F(x) = P(X_i \le x, \delta_i = 1) = P(U_i^* \le x, U_i^* \le C_i | U_i^* \ge V_i^*)$$
$$= \alpha^{-1} P(U_i^* \le x, V_i^* \le U_i^* \le C_i) = \alpha^{-1} \int_{a_F}^x P(V_i^* \le u \le C_i) dF(u)$$

 $= \alpha^{-1} \int_{a_F}^{x} [G(u) - Q(u-)] dF(u)$. Thus, we have $dF(x) = \alpha \frac{dW_F(x)}{G(x) - Q(x-)}$. When G(x), Q(x-) and α are known, F(x) can be estimated by

$$n^{-1}\alpha \sum_{i=1}^{n} \frac{\delta_{i}I_{[X_{i} \leq x]}}{G(X_{i}) - Q(X_{i}-)}.$$
 Let $x = \infty$. It follows that α can be estimated by $n\left[\sum_{i=1}^{n} \frac{\delta_{i}}{G(X_{i}) - Q(X_{i}-)}\right]^{-1}.$ This justifies the use of the estimator $\hat{F}_{e}(x).$

The justification of using $\hat{G}_e(x)$ can be obtained by considering the subdistribution function $W_G(x) = P(V_i \leq x)$. When 1 - F(x) and α are known, G(x) can be estimated by $n^{-1}\alpha \sum_{i=1}^{n} \frac{I_{[V_i \leq x]}}{1 - F(V_i -)}$. Let $x = \infty$. It follows that α can be estimated by $n \left[\sum_{i=1}^{n} \frac{1}{1 - F(V_i -)} \right]^{-1}$. This justifies the use of the estimator $\hat{G}_e(x)$.

Similarly, the justification of using $\hat{Q}_e(x)$ can be obtained by considering the subdistribution function $W_Q(x) = P(X_i \leq x, \delta_i = 0) = P(C_i^* \leq x, C_i^* \leq U_i^* | U_i^* \geq V_i^*)$ = $\alpha^{-1} \int_0^x [1 - F(u -)] dQ(u)$. When 1 - F(u -) and α are known, Q(x) can be estimated by $n^{-1}\alpha \sum_{i=1}^n \frac{(1 - \delta_i)I_{[X_i \leq x]}}{1 - F(X_i -)}$.

Shen (2003) showed the equivalence of F_n and \hat{F}_e , and hence, the equivalence of G_n and \hat{G}_e . However, the equivalence of Q_n and \hat{Q}_e does not hold.

Based on the arguments above, two alternative estimators of α are

$$n\left[\sum_{i=1}^{n} \frac{\delta_{i}}{\hat{G}_{e}(X_{i}) - \hat{Q}_{e}(X_{i}-)}\right]^{-1}$$
 and $n\left[\sum_{i=1}^{n} \frac{1}{1 - \hat{F}_{e}(V_{i}-)}\right]^{-1}$.

Instead, under the assumption (C_i, V_i^*) is independent of U_i^* and $P(C_i > V_i^*) = 1$, we have

$$R(x) = P(V_i \le x \le X_i) = P(V_i^* \le x \le \min\{U_i^*, C_i\} | V_i^* \le U_i^*)$$
$$= P(V_i^* \le x, C_i \ge x) P(U_i^* \ge x) / \alpha = [P(V_i^* \le x) - P(C_i < x)] P(U_i^* \ge x) / \alpha$$
$$= [G(x) - Q(x-)] [1 - F(x-)] / \alpha.$$

For all x such that $nR_n(x) > 0$, we can obtain another estimator for α as $\hat{\alpha}_n(x) = [G_n(x) - \hat{Q}_e(x-)][1 - F_n(x-)]/R_n(x)$. In the following section, we will establish the equivalence of all the estimators suggested above.

3. THE EQUIVALENCE OF α_n **AND** $\hat{\alpha}_n$

To derive the explicit relationship between α_n and $\hat{\alpha}_n(x)$, we consider the estimation of $\alpha_d = P(V_i^* \leq U_i^* \leq C_i)$. Note that $\alpha = \alpha_d + \alpha_c$, where $\alpha_c = P(C_i < U_i^*)$. Let $\tilde{\alpha}_d = \int [G_n(x) - \hat{Q}_e(x-)] dF_n(x)$. For $R_n(x) > 0$, let

$$\hat{\alpha}_d(x) = \frac{n_d}{n} \hat{\alpha}_n(x) = \frac{n_d}{n} [G_n(x) - \hat{Q}_e(x-)] [1 - F_n(x-)] / R_n(x),$$

where $n_d = \sum_{i=1}^r d_i$ denotes the number of death.

Lemma 3.1.

Suppose that $nR_n(U_{(i)}) > 0$ for i = 1..., r. Then $\tilde{\alpha}_d = \hat{\alpha}_d(U_{(i)})$ for all i = 1, ..., r.

Proof:

By (2.1), we have

$$\tilde{\alpha}_{d} = \int [G_{n}(x) - \hat{Q}_{e}(x-)] dF_{n}(x) = \sum_{i=1}^{r} [\hat{G}_{e}(U_{(i)}) - \hat{Q}_{e}(U_{(i)})] [\hat{F}_{e}(U_{(i)}) - \hat{F}_{e}(U_{(i-1)})]$$

$$= \left[\sum_{i=1}^{r} \frac{d_{i}}{\hat{G}_{e}(U_{(i)}) - \hat{Q}_{e}(U_{(i)}-)} \right]^{-1} \sum_{i=1}^{r} [\hat{G}_{e}(U_{(i)}) - \hat{Q}_{e}(U_{(i)}-)] \frac{d_{i}}{[\hat{G}_{e}(U_{(i)}) - \hat{Q}_{e}(U_{(i)}-)]}$$

$$= n_{d} \left[\sum_{i=1}^{r} \frac{d_{i}}{\hat{G}_{e}(U_{(i)}) - \hat{Q}_{e}(U_{(i)}-)} \right]^{-1}.$$
(3.1)

Since $\hat{F}_e(U_{(i)}) - \hat{F}_e(U_{(i-1)}) = F_n(U_{(i)}) - F_n(U_{(i-1)})$, we have

$$\left[\sum_{i=1}^{r} \frac{d_i}{\hat{G}_e(U_{(i)}) - \hat{Q}_e(U_{(i)})}\right]^{-1} \frac{d_i}{\left[\hat{G}_e(U_{(i)}) - \hat{Q}_e(U_{(i)})\right]} = \frac{d_i[1 - F_n(U_{(i-1)})]}{nR_n(U_{(i)})}.$$

Hence,

$$\tilde{\alpha}_d = n_d \frac{[\hat{G}_e(U_{(i)}) - \hat{Q}_e(U_{(i)})][1 - \hat{F}_e(U_{(i-1)})]}{nR_n(U_{(i)})} = \hat{\alpha}_d(U_{(i)}).$$

The proof is completed.

Lemma 3.2.

Suppose that $R_n(U_{(i)}) > 0$ for $i = 1 \dots, r$.

Then
$$\hat{\alpha}_n(U_{(i)}) = \hat{\alpha}_n(U_{(1)}) = n \left[\sum_{i=1}^r \frac{d_i}{\hat{G}_e(U_{(i)}) - \hat{Q}_e(U_{(i)})} \right]^{-1}$$
 for $i = 2, \dots, r$.

Proof:

From Lemma 3.1, for $i = 1, \ldots, r$, we have

$$\hat{\alpha}_n(U_{(i)}) = \frac{n}{n_d} \hat{\alpha}_d(U_{(i)}) = \frac{n}{n_d} \tilde{\alpha}_d = n \left[\sum_{i=1}^r \frac{d_i}{\hat{G}_e(U_{(i)}) - \hat{Q}_e(U_{(i)})} \right]^{-1}.$$

The proof is completed.

Lemma 3.3.

When the last observation is not censored, we have

$$\alpha_n = n \left[\sum_{i=1}^n \frac{\delta_i}{\hat{G}_e(X_i) - \hat{Q}_e(X_i)} \right]^{-1} = n \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_i)} \right]^{-1}$$

Proof:

First, it is easily shown that when the largest observation is not censored, $\int G_n(x)dF_n(x) = \int (1 - F_n(x-))dG_n(x)$ and $\int \hat{Q}_e(x)dF_n(x) = \int (1 - F_n(x-))d\hat{Q}_e(x)$. Hence, we have $\tilde{\alpha}_d = \int [G_n(x) - \hat{Q}_e(x-)]dF_n(x) = \int (1 - F_n(x-))d[G_n(x) - \hat{Q}_e(x-)]$ $= \int [1 - \hat{F}_e(x-)]d[\hat{G}_e(x) - \hat{Q}_e(x)] = \int [1 - \hat{F}_e(x-)]d\hat{G}_e(x) - \int [1 - \hat{F}_e(x-)]d\hat{Q}_e(x)$ $= \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_{i-1})}\right]^{-1} \left\{\sum_{t=1}^q [1 - \hat{F}_e(V_{(t-1)})] \frac{e_t}{1 - \hat{F}_e(V_{(t-1)})} - \sum_{l=1}^h [1 - \hat{F}_e(C_{(l-1)})] \frac{c_l}{1 - \hat{F}_e(C_{(l-1)})}\right\} = \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_{i-1})}\right]^{-1} \left[\sum_{t=1}^q e_t - \sum_{l=1}^h c_l\right]$

$$= (n - n_c) \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_i)} \right]^{-1} = n_d \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_i)} \right]^{-1}$$

By (3.1), it follows that

$$\tilde{\alpha}_d = n_d \left[\sum_{i=1}^r \frac{d_i}{\hat{G}_e(U_{(i)}) - \hat{Q}_e(U_{(i-1)})} \right]^{-1} = n_d \left[\sum_{i=1}^n \frac{\delta_i}{\hat{G}_e(X_i) - \hat{Q}_e(X_i)} \right]^{-1}$$

Note that

$$\alpha_n = \int G_n(x) dF_n(x) = \int (1 - F_n(x - i)) dG_n(x)$$
$$= \int (1 - F_e(x - i)) dG_e(x) = n \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_i - i)} \right]^{-1}$$

This completes the proof.

Lemma 3.4.

Suppose that the largest observation is not censored; $R_n(U_{(i)}) > 0$ and $R_n(V_{(j)}) > 0$ for i = 1, ..., r and j = 1, ..., t. Then $\hat{\alpha}_n(U_{(i)}) = \hat{\alpha}_n(V_{(j)})$ for i = 1, ..., r and j = 1, ..., t.

Proof:

Let us denote by $V_{(1)}^* < V_{(2)}^* < \cdots < V_{(h)}^*$ the distinct ordered values of V_j in $[U_{(i-1)}, U_{(i)}]$, i.e.,

$$U_{(i-1)} < V_{(1)}^* < V_{(2)}^* < \dots < V_{(m)}^* < U_{(i)}$$

Let $A(x) = \hat{G}_e(x) - \hat{Q}_e(x-)$ and $B(x) = [1 - \hat{F}_e(x-)]/R_n(x)$.

For any $V_{(j)}^*$ in $[U_{(i-1)}, U_{(i)}]$, we have

$$\hat{\alpha}_n(U_{(i)}) - \hat{\alpha}_n(V_{(j)}^*) = A(U_{(i)})B(U_{(i)}) - A(V_{(j)}^*)B(V_{(j)}^*)$$
$$= [A(U_{(i)}) - A(V_{(j)}^*)]B(V_{(j)}^*) + A(U_{(i)})[B(U_{(i)}) - B(V_{(j)}^*)].$$

Note that for any V_k in $[V_{(j)}^*, U_{(i)}]$, $1 - \hat{F}_e(V_k -) = 1 - \hat{F}_e(U_{(i-1)})$. Similarly, for any X_k in $[V_{(j)}^*, U_{(i)}]$, $1 - \hat{F}_e(X_k -) = 1 - \hat{F}_e(U_{(i-1)})$.

Hence, by (2.2) and (2.3), we have

$$[A(U_{(i)}) - A(V_{(j)}^*)]B(V_{(j)}^*) = \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_i - i)}\right]^{-1} \frac{\sum_{k=1}^n (I_{[V_{(j)}^* < V_k \le U_{(i)}]} - I_{[V_{(j)}^* \le X_k < U_{(i)}]})}{nR_n(V_{(j)}^*)}.$$

Note that

$$\sum_{k=1}^{n} \left(I_{[V_{(j)}^{*} < V_{k} \le U_{(i)}]} - I_{[V_{(j)}^{*} \le X_{k} < U_{(i)}]} \right)$$
$$= \sum_{k=1}^{n} \left(I_{[V_{k} \le U_{(i)}]} - I_{[X_{k} < U_{(i)}]} \right) - \sum_{k=1}^{n} \left(I_{[V_{k} \le V_{(j)}^{*}]} - I_{[X_{k} < V_{(j)}^{*}]} \right)$$
$$= \sum_{k=1}^{n} I_{[V_{k} \le U_{(i)} \le X_{k}]} - \sum_{k=1}^{n} I_{[V_{k} \le V_{(j)}^{*} \le U_{k}]} = nR_{n}(U_{(i)}) - nR_{n}(V_{(j)}^{*}).$$

Hence,

$$[A(U_{(i)}) - A(V_{(j)}^*)]B(V_{(j)}^*) = \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_i - i)}\right]^{-1} [R_n(U_{(i)}) - R_n(V_{(j)}^*)]/R_n(V_{(j)}^*).$$

Next,

$$A(U_{(i)})[B(U_{(i)}) - B(V_{(j)}^*)] = [\hat{G}_e(U_{(i)}) - \hat{Q}_e(U_{(i)} -)][1 - \hat{F}_e(U_{(i-1)})] \frac{R_n(V_{(j)}^*) - R_n(U_{(i)})}{nR_n(V_{(j)}^*)R_n(U_{(i)})}.$$
Note that

Note that

$$[1 - \hat{F}_e(U_{(i-1)})]/nR_n(U_{(i)}) = [1 - F_n(U_{(i-1)})]/nR_n(U_{(i)}) = [F_n(U_{(i)}) - F_n(U_{(i-1)})]/d_i$$
$$= [\hat{F}_e(U_{(i)}) - \hat{F}_e(U_{(i-1)})]/d_i = \left[\sum_{i=1}^n \frac{\delta_i}{\hat{G}_e(X_i) - \hat{Q}_e(X_i-)}\right]^{-1} \frac{1}{\hat{G}_e(U_i) - \hat{Q}_e(U_i-)}.$$

Hence,

$$A(U_{(i)})[B(U_{(i)}) - B(V_{(j)}^*)] = \left[\sum_{i=1}^n \frac{\delta_i}{\hat{G}_e(X_i) - \hat{Q}_e(X_i)}\right]^{-1} [R_n(V_{(j)}^*) - R_n(U_{(i)})] / R_n(V_{(j)}^*).$$

By Lemma 3.3, it follows that

$$[A(U_{(i)}) - A(V_{(j)}^*)]B(V_{(j)}^*) + A(U_{(i)})[B(U_{(i)}) - B(V_{(j)}^*)] = 0.$$

The proof is completed.

Lemma 3.5.

Suppose that the largest observation is not censored, $nR_n(U_{(i)}) > 0$ and $nR_n(C_{(l)}) > 0$ for i = 1, ..., r

and l = 1, ..., h. Then $\hat{\alpha}_n(U_{(i)}) = \hat{\alpha}_n(C_{(l)})$ for i = 1, ..., r and l = 1, ..., h.

Proof:

The proof is similar to that of Lemma 3.4 and is omitted.

Lemma 3.6.

Suppose that the largest observation is not censored, $nR_n(U_{(i)}) > 0$, $nR_n(V_{(t)}) > 0$

and $R_n(C_{(l)}) > 0$ for i = 1, ..., r, and t = 1, ..., q and l = 1, ..., h. Then $\hat{\alpha}_n(x)$ is constant for all $x \in [V_{(1)}, U_{(r)}]$, and

$$\hat{\alpha}_n(x) = \alpha_n = n \left[\sum_{i=1}^n \frac{\delta_i}{\hat{G}_e(X_i) - \hat{Q}_e(X_i)} \right]^{-1} = n \left[\sum_{i=1}^n \frac{1}{1 - \hat{F}_e(V_i)} \right]^{-1}$$

Proof:

Note that the jumps of $\hat{\alpha}_n(x)$ occur at the distinct order statistics $U_{(i)}$'s, $V_{(t)}$'s and $C_{(l)}$'s. By Lemma 3.2, 3.4 and 3.5, $\hat{\alpha}_n(U_{(i)}) = \hat{\alpha}_n(V_{(t)}) = \alpha_n(C_{(l)})$ for $i = 1, \ldots, r$, $t = 1, \ldots, q$ and all $C_{(l)} \leq U_{(r)}$, it follows that $\hat{\alpha}_n(x)$ is constant for any $x \in [V_{(1)}, U_{(r)}]$. By (3.1) and Lemma 3.3, whence the result.

Under the condition $P(C_i > V_i^*) = 1$, Wang (1991) show that $\sqrt{n} \{n [\sum_{i=1}^n 1/(1 - 1)] \}$

$$\hat{F}_{e}(V_{i}-))]^{-1} - \alpha \} = \sqrt{n}(\alpha_{n} - \alpha) \text{ converges weakly to } N(0, \sigma_{\alpha_{n}}^{2}), \text{ where} \sigma_{\alpha_{n}}^{2} = \alpha^{3} \int_{a_{G}}^{b_{G}-} \frac{1}{S(s-)} dG(s) + \alpha^{2} \int_{a_{G}}^{b_{G}-} \frac{(1 - G(s))^{2} dF(s)}{R(s)S(s-)} - \alpha^{2},$$
(3.2)
where $S(s) = 1 - F(s).$

When $C_i^* = \infty$, U_i^* is only subject to left-trucation, i.e., left-truncated data (see Lynden-Bell (1971), Woodroofe (1985)). In that case, He and Yang (1998), showed the equivalence of α_n and $\hat{\alpha}_n$. Their approaches are different from those presented in this note. Besides, they showed that $\sqrt{n}(\hat{\alpha}_n(x) - \alpha)$ converges weakly to $N(0, \sigma_{\hat{\alpha}_n(x)}^2)$, where

$$\sigma_{\hat{\alpha}_n(x)}^2 = \alpha^2 \int_{a_G}^x \frac{dW_F(s)}{R^2(s)} + \alpha^2 \int_x^{b_G -} \frac{dW_G(s)}{R^2(s)} - \alpha^2 \frac{1}{R(x)} + 2\alpha^3 - \alpha^2$$
(3.3)

for $x \in (a_G, b_G)$, is a constant, where $W_F(s) = P(X_i \leq s, \delta_i = 1)$ and $W_G(s) = P(V_i \leq s)$. The following Lemma shows the equivalence of the two expressions.

Lemma 3.7.

When $C_i = \infty$, we have $\sigma_{\alpha_n}^2 = \sigma_{\hat{\alpha}_n(x)}^2$ for all $x \in (a_G, b_G)$.

Proof:

It suffices to show that

$$\underbrace{\int_{a_G}^{b_G-} \frac{(1-G(s))^2}{R(s)S(s-)} dF(s)}_{(3.2.1)} + \underbrace{\alpha \int_{a_G}^{b_G-} \frac{1}{S(s-)} dG(s)}_{(3.2.2)} = \underbrace{\int_{a_G}^x \frac{dW_F(s)}{R^2(s)}}_{(3.3.1)} + \underbrace{\int_x^{b_G-} \frac{dW_G(s)}{R^2(s)}}_{(3.3.2)} - \frac{1}{R(x)} + 2\alpha.$$

First,

$$(3.2.1) = \underbrace{\int_{a_G}^{b_G^-} \frac{1}{R(s)S(s-)} dF(s)}_{(3.2.1.1)} + \underbrace{\int_{a_G}^{b_G^-} \frac{G^2(s)}{R(s)S(s-)} dF(s)}_{(3.2.1.2)} - \underbrace{\int_{a_G}^{b_G^-} \frac{2G(s)}{R(s)S(s-)} dF(s)}_{(3.2.1.3)} .$$

$$(3.2.1.1) = \underbrace{\int_{a_G}^x \frac{1}{R(s)S(s-)} dF(s)}_{(3.2.1.1)} + \underbrace{\int_x^{b_G^-} \frac{1}{R(s)S(s-)} dF(s)}_{(3.2.1.2)} .$$

Since $dF(s) = \alpha \frac{1}{G(s)} dW_F(s)$ and $R(s) = \alpha^{-1}G(s)S(s-)$, we have $(3.2.1.1.1) = \int_{a_G}^x \frac{\alpha}{R(s)G(s)S(s-)} dW_F(s) = \int_{a_G}^x \frac{1}{R^2(s)} dW_F(s) = (3.3.1).$ Next, $(3.2.1.2) = \int_{a_G}^{b_G-} \frac{\alpha G(s)}{S^2(s-)} dF(s) = \alpha \int_{a_G}^{b_G-} G(s)d[\frac{1}{S(s)}],$ $(3.2.1.3) = -2\alpha \int_{a_G}^{b_G-} 1d[\frac{1}{S(s-)}] = 2\alpha - 2\alpha \frac{1}{S(b_G-)}, \text{ and } (3.2.2) = \alpha \frac{1}{S(b_G-)} - (3.2.1.2).$

It follows that $(3.2.1) + (3.2.2) = (3.3.1) + 2\alpha - \alpha \frac{1}{S(b_G)} + (3.2.1.1.2).$

Next, since $dW_G(s) = \alpha^{-1}S(s-)dG(s)$, we have

$$(3.3.2) = \alpha^{-1} \int_{x}^{b_{G}-} \frac{S(s-)}{R^{2}(s)} dG(s) = \int_{x}^{b_{G}-} \frac{1}{R(s)G(s)} dG(s) = -\alpha \int_{x}^{b_{G}-} \frac{1}{S(s-)} d\left[\frac{1}{G(s)}\right] = -\alpha \frac{1}{S(b_{G}-)} + \frac{1}{R(x)} + \alpha \int_{x}^{b_{G}-} \frac{1}{G(s)} d\left[\frac{1}{S(s)}\right].$$

Since $\alpha \int_{x}^{b_{G}-} \frac{1}{G(s)} d\left[\frac{1}{S(s)}\right] = \int_{x}^{b_{G}-} \frac{1}{R(s)S(s-)} dF(s) = (3.2.1.1.2)$, we have $(3.3.2) - \frac{1}{R(x)} + \alpha \int_{x}^{b_{G}-} \frac{1}{G(s)} d\left[\frac{1}{S(s)}\right] = \int_{x}^{b_{G}-} \frac{1}{R(s)S(s-)} dF(s) = (3.2.1.1.2)$, we have $(3.3.2) - \frac{1}{R(x)} + \alpha \int_{x}^{b_{G}-} \frac{1}{G(s)} d\left[\frac{1}{S(s)}\right] = \int_{x}^{b_{G}-} \frac{1}{R(s)S(s-)} dF(s) = (3.2.1.1.2)$

 $2\alpha = (3.2.1) + (3.2.2)$. The proof is completed.

4. DISCUSSION

For the case where no assumption is made on the distribution of V_i^* and C_i , the truncation probability is defined as $\alpha = P(\min(U_i^*, C_i) \ge V_i^*)$ and

$$R(x) = P(V_i \le x \le X_i) = P(V_i^* \le x \le \min\{U_i^*, C_i\} | V_i^* \le \min(U_i^*, C_i))$$
$$= P(V_i^* \le x, C_i \ge x) P(U_i^* \ge x) / \alpha = K(x) [1 - F(x -)] / \alpha,$$

where $K(x) = P(V_i^* \le x \le C_i)$. Note that for this general case, when $a_G \le \min(a_F, a_Q)$ and $b_G \le \min(b_F, b_G)$, the product limit estimator F_n is still a consistent estimator of F (see Tsai, Jewell and Wang (1987)). Hence, given K(x), for all x such that $R_n(x) > 0$, we can obtain an estimator for α as $\hat{\alpha}_n(x) = K(x)[1-F_n(x-)]/R_n(x)$. However, K(x) cannot be estimated from the data since there is no distributional assumption on V_i^* and C_i (see He and Yang (2000)).

BIBLIOGRAPHY

Gross, S. T. and Lai, T. L. Boostrap methods for truncated data and censored data. Statist. Sinica, **1996**, *6*, 509-530.

He, S. and Yang, G. L. Estimation of the truncation probability in the random truncation model. Ann. Statist., **1998**, *26*, 1011-1027.

He, S. and Yang, G. L. On the strong convergence of the product-limit estimator and its integrals under censoring and random truncation. Statis. & Probab. Lett. **2000**, 49, 235-244.

Lynden-Bell, D. A method of allowing for known observational selection in small samples applied to 3CR quasars. Mon. Not. R. Astr. Soc. **1971**, *155*, 95-118.

Robins, J. M. and Rotnitzky, A. Rocovery of information and adjustment for dependent censoring using surrogate markers, in AIDS Epidemiology-Methodological Issues, eds. N. Jewell, K. Dietz, and V. Farewell, Boston: Birkhauser, **1992**, pp. 297-331.

Satten, G. A. and Datta S. The Kaplan-Meier estimator as an inverse-probability-ofcensoring weighted average. Amer. Statist. Ass., **2001**, *55*, 207-210.

Shen, P.-S. The product-limit estimates as an inverse-probability-weighted average. Communi. in Statist., Part A- Theory and Methods, **2003**, *32*, 1119-1133.

Tsai, W.-Y., Jewell, N. P. and Wang, M.-C. A note on the product-limit estimate under right censoring and left truncation. Biometrika, **1987**, *74*, 883-886. Wang, M.-C.; Jewell, N. P.; Tsai, W.-Y. Asymptotic properties of the product-limit estimate under random truncation. Ann. Statist., **1986**, *14* 1597-1605.

Wang, M.-C. Product-limit estimates: a generalized maximum likelihood study. Communi. in Statist., Part A- Theory and Methods, **1987**, *6*, 3117-3132.

Wang, M.-C. Nonparametric estimation from cross-sectional survival data. J. Amer. Statist. Ass., **1991**, **86**, 130-143.

Woodroofe, M. Estimating a distribution function with truncated data. Ann. Statist., **1985**, *13*, 163-167.