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ABSTRACT

Let (Uf,C;, V) be iid. random vectors such that (C;, V;*) is independent of
Ur. Let F', Q and G denote the common distribution function of U}, C; and V*,
respectively. For left-truncated and right-censored data, one can observe nothing if
Uy < V;* and observe (X7, 6;), with X; = min(U;, ;) and 0; = Ijy=<c;- In this note,
we consider the estimation of the truncation probability « = P(U* > V*). A proper
estimate of v is o, = [ G,,(s)dF,(s), where F,, and G,, are nonparametric maximum
likelihood estimate (NPMLE) of the distributions F' and G, respectively. When the
largest observation is not censored, we obtain an alternative representation &, for «,,.

For the special case of C; = 0o, the results are reduced to those obtained by He and

Yang (1998).

Key Words: Left truncation, right censoring, truncation probability.



1. INTRODUCTION

Let (U}, C;, V;*) be i.i.d. random vectors such that (C;, V;*) is independent of U;.
It will be assumed throughout this section that C; > V*. Let F', () and G denote
the common distribution function of U}, C; and V;*, respectively. For left-truncated
and right-censored data, one can observe nothing if U < V;* and observe (X/,d),
with X = min(U;, C;) and 6} = Ijy:<c,), if U7 > V;*. For any distribution function
H denote the left and right endpoints of its support by ag = inf{t : H(t) > 0}
and by = inf{t : H(t) = 1}, respectively. Woodroofe (1985) pointed out that if
ac < min(arp,ag) and bg < min(bp,bg), then F, ) and G are all identifiable. Data
of this kind often arise in epidemiology, individual follow-up study (see Wang (1991),
Wang, Jewell and Tsai (1987), Tsai, Jewell and Wang (1987)) and possibly in other

fields. Consider the following application.

Example:

In hemophilia AIDS-data sets the time of infection Ty can be quite accurately
determined. A database will cover patients from, say 1978, till 1995, and hence a
patient with a longer survival time will have a larger probability of being part of the
sample than a patient with a short survival time. Let U be the time between T and
death and let V;* = 1978 — Ty if T, < 1978 and V;* = 0 if Ty > 1978. Then a patient
will only be part of the sample if U* > V*. Let C; = 1995 — T, denote the the time
from T} to the end of study. Hence, P(C; > V;*) = 1 and U} is subject to censoring

due to termination of study.

In this note, under the assumption that P(C; > V;*) = 1, we consider the estima-

tion of the truncation probability a = P(U} > V).



2. The «,, and &, Estimator

2.1. Notations

Let (X1,61, V1), ..., (Xn,dn, Vi) denote the left-truncated and right-censored sample.

Let Uy < Uy < -+ < Uy be the distinct ordered failure times and d, be the

number of failure times at U, for s =1,...,r.

Similarly, let V(1) < V{g) < --+ < V| be the distinct ordered truncation times and e,

be the number of truncation times at Vi) fort =1,...,¢q.

Let Cqy < Cg) < -+ < Oy be the distinct ordered censoring times and ¢; be the

number of censoring times at C) for [ =1,...,h.

For each Viy) (t =1,...,q), let Cay) < Crayy < -+ < Cey) be the distinct ordered

censoring times and ¢;;) be the number of censoring times at Cyyy for I = 1,... h(t).

2.2. The NPMLE of F, G and @

Let Q(z|v) = P(C; < z|V* = v) denote the conditional distribution function
of C given V* = v. Let dF(z) = F(z) — F(z—), dG(z) = G(z) — G(z—), and
dQ(z[v) = Q(z|v) — Qz — |v).

The likelihood function L can be decomposed into three factors (see Wang (1991),
Gross and Lai (1996)), yielding

L = [[{arpacnn-eu—m/a} < [T{aQuican-Fex)/a}

B F(X; 6i1—FXz. 1-6; et
:{HH R }X{H }

dG(Vip)[1 = F(Viy—)]

=1 t=1




% {H[ IT - e - Vi)™ [dQ(Xi“/(t))]l_&] } = L1LyLs,

t=1 LVi=Vy)
where L, Lo, and Ls represent the likelihoods in the first, second, and third brace,

respectively.

Let R, (u) = n ' >0 Ijvi<u<x,) and Np(u) = 30 Iix,<us,=1)- A necessary and
sufficient condition for the existence of the nonparametric maximum likelihood esti-
mate (NPMLE) of L, is nR,(Ux)) > ds = [Np(Us)) = Np(Ugy—)] for s =1,...,r
(see Wang (1987)). Under this regularity condition, the NPMLE of F(x) from L, is
uniquely determined and given by

F”(x)zl_H[l_ijfg:EZ;] - 1 [1_an6§3 ’

u<zw Ui)<z (5))

where dNp(u) = Np(u) — Np(u—).

Based on Ly, the NPMLE of G(y) is uniquely determined and given by

Zq: el v, <y
1- Fn(‘/(t)_)'

t=1

q -1

e

n

Based on F,, and G, a proper estimator of v is oy, = [ G, (s)dF,(s).

Next, let Ry (u) =n~' 30 Tvicusx, vimv,) and No(u) = 3700 Tix,<usi=0,vi=v,)-
For each V{3, a necessary and sufficient condition for the existence of the NPMLE
of Q(z|Viyy) is RL(Caqy) > awy = No(Ciy) — No(Ciy—) for I =1,...,h(t). Under
these regularity conditions, the NPMLE of Q(z|V{y)) from L is uniquely determined

and given by

B dNg(u)y 0
Qn(x|Viy) =1 - H[l - nR;(u)] =1- 11 [1 ~ nRL(Cyp) )

u<z Cup <z

where dN§(u) = N§(u) — No(u—).



When Q,,(x|V(y)) exists for all Vj;)’s, the NPMLE of @) (denoted by @,,) can be written

as

ZQn 2Vi)[Gn (Vi) — Ga(Vie—)]-

Note that when the bivariate distribution of (Cj, V;*) is continuous, we have
nRL(Cyy) = @ = 1, and the NPMLE of Q(z|V{y)) does not exist. To circumvent
this difficulty, Shen (2003) considered the inverse-probability-weighted estimators by
simultaneously estimating F', G and Q). Let Fe(.CE), Ge(:v) and Qe(x) be given by

n

i=1 Ge(Xi) - Qe(Xz_) i=1 Ge(Xi) - Qe(Xi_)
1
- d dsliy,, <«
_ _ ds/\ Z § [U(s)< } : (2 1)
= Ge(Us) = Qe(U)—) | = GelUps)) — Qe(Us)—)
-1
A - 1 n IVZ<$
Ge(z) = _ [A <z]
i=1 1 _F€<‘/Z_) i=1 1_Fe V;_)
q -1 q
e .
=[>— S e (2.2)
=1 1~ Fe(v(t)_) = 1 — Fe(V(t)—)
and
A - 1 = 62 I[X <z]
e\T) =
Q() [;1 Fe(v;_) i=1 1_Fe z_)

(Cl)][c(z)ﬁx]
= 1= Fe(Co—-)

The justification of using F,, G, and Q. is given as follows. We consider the subdis-

(2.3)

tribution function
We(x)=P(X; <z,6=1)=PUS <z,Uf <C|U: > V)

= o 'P(Uf <a,Vy <Ur <C)=a' [ P(Vy < u< C)dF(u)



= a ! axF[G(u) — Q(u—)]dF (u). Thus, we have dF(z) = aG(;”;/—x When G(z),

Q(z—) and « are known, F'(z) can be estimated by

ntad g ; §XQ<(“”] - Let 2 = oo. It follows that a can be estimated by
-1 .
n[ZZL . W . This justifies the use of the estimator F,(z).

The justification of using G, (x) can be obtained by considering the subdistribution
function Wg(z) = P(V; < x). When 1 — F(z) and « are known, G(z) can be

estimated by n™ta Y " il I[;(Tf 7 Let x = oo. It follows that « can be estimated by

-1
n[Z?:l m] . This justifies the use of the estimator G, (z).

Similarly, the justification of using Qe(:v) can be obtained by considering the
subdistribution function Wy (z) = P(X; < x,0; =0) = P(C} < z,C; < U} |U; > V;¥)
=o' [[1—-F(u—)]dQ(u). When 1—F(u—) and a are known, Q(x) can be estimated

(1 6)]
byn O[Zl 1T_§).

Shen (2003) showed the equivalence of F,, and F,, and hence, the equivalence of

G, and G.. However, the equivalence of @), and Qe does not hold.

Based on the arguments above, two alternative estimators of « are

—1 -1
n & n 1
P> W] and 1 lzil 1Fe<w>] '

Instead, under the assumption (C;, V;*) is independent of U} and P(C; > V*) =1

we have
R(z)=P(V; <z < X;) =PV <z <min{U;, C;}|V]" <U;)
=PV <z, C>x)PU >x)/a=[P(V;<z)— P(C; <x)|P(U > z)/a

= [G(z) = Q@)1 — F(z—)]/a.



For all x such that nR,(z) > 0, we can obtain another estimator for « as &, (x) =
[Go(z) — Qe(z—)][1 — F,(z—)]/Rn(x). In the following section, we will establish the

equivalence of all the estimators suggested above.



3. THE EQUIVALENCE OF «, AND &,

To derive the explicit relationship between «,, and &, (), we consider the estima-
tion of ag = P(V* < U < (). Note that o = ag + a, where a. = P(C; < U}). Let
ag = [[Gn(z) — Q.(x—)|dF,(x). For R,(z) > 0, let

Galw) = “an(2) = “[Gn(@) = Qula—)]L = Fula—)]/Rula).

n

where ng = Y _, d; denotes the number of death.

Lemma 3.1.

Suppose that nR,(Uy)) > 0for i =1...,r. Then ag = Gq(Uy)) for alli =1,... 7.
Proof:

By (2.1), we have

The proof is completed.
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Lemma 3.2.

Suppose that R, (Ug;) > 0 fori = 1.

-1
~ oA . r dl .
Then &, (Uy)) = an(Uqy) =n {Zizl Ge(U(i))—Qe(U@)—)] fori=2,...,r.
Proof:
From Lemma 3.1, forz = 1,...,r, we have
N —1
an(Uw) = ——aaUn) = —ad = n{
N z:: QG(U@—)

The proof is completed.

Lemma 3.3.

When the last observation is not censored, we have

-1

Proof:

First, it is easily shown that when the largest observation is not censored, [ G,,(z)dE,(z) =
[(1 = Fu(2=))dGn(z) and [ Q.(x)dF,(x) = [(1 — F,(z—))dQ.(x). Hence, we have

joN
&
|

— [16ule) = Quae-NdFu (@) = [(1= Fua=)dlGo(w) = Qula-)

- / 11— Eue)d[Cu() - Ou(x)] = / 1— Fu(a—)dGu(z) - / 1 — Fu(z—)]dQ.(x)
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1
:(n_HC)[ZT(‘/L—)

By (3.1), it follows that

&d:nd [Zé ' _diA

Note that

-1

o = / Go(2)dF(z) = / (1= Fy(z—))dCn ()

n -1

- /(1 — Fo(z—))dGe(z) =n [Z #(V_)

=1

This completes the proof.

Lemma 3.4.

Suppose that the largest observation is not censored; R, (Uy)) > 0 and R,(V{;)) > 0
fori =1,...,r and j = 1,...,t. Then &,(Uy)) = &n(V(;) for i = 1,...,r and
j=1,... .t

Proof:

Let us denote by V(’j) < Vé) < e < V(}:) the distinct ordered values of V; in
[U(l;l), U(Z)], i.e.,
Uii—1) < Vi) < Vg < < Vi, < Ugp.
Let A(z) = Go(x) — Qe(z—) and B(z) = [1 — F.(z—)]/Ru(z).
For any V(j) in [Ui—1y, U], we have

in(Us) — @nl(V3) = A(U) B(Usy) — A(VE)) BVE))

7) 7)

= [A(U(i)) — A(VG))]BG/(;)) + A(U(i))[B(U(i)) - B(V(*' )l

J)
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A A

Note that for any V} in [V(’;.), Ual, 1 = Fo(Vi—) = 1 — F.(U;—1y). Similarly, for any
Xy in [Vi), U, 1= Fo(Xe=) = 1= Fo(U-ny).

Hence, by (2.2) and (2.3), we have

71 n
Zk:l (I[VG)<V1€§U(1)} - [[V{;) SXk<U(¢)})

=1 Fe(‘/z_> an(Vv(jQ
Note that
Z([[‘/G)<VkSU(¢)] - I[V(’;)Sxk<U(i)])
k=1
= > UImzv) = Ixucv) = D Hvisvey) — fixieve)
k=1 k=1
= I[VkSU(i)SXk] - Z [[VkSV(’})SUk} = an(U(i)) - an(V(j))
k=1 k=1
Hence,
n 1 -1
[A(Uw) — AVG)IB(VG) = [ R (R (Ugiy) — Ra(Vi)/ Ru(VG))-
i=1 e\Vei™
Next,

A(U@)[B(Uw) = B(V;)] = [Ge(Ugiy) = Qe(Uay=)][L = Fu(Ugi—ny)]

Note that

[1 = Fo(U-)]/nBa(Usy) = [1 = Fu(Uq-1)l/nRu(Ugiy) = [Fa(Ug) = Fu(Ui-1))]/ds

n 51 -1
zz_; é6<Xl) - Qe(Xz_)] ée(Ui) - Qe(Ui_).
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The proof is completed.

Lemma 3.5.

Suppose that the largest observation is not censored, nR,(U;)) > 0 and nR,(C)) > 0

fori=1,...,r

and [ =1,...,h. Then 6, (Uy)) = G, (Cpy) fori=1,...,rand I =1,... h.
Proof:

The proof is similar to that of Lemma 3.4 and is omitted.

Lemma 3.6.
Suppose that the largest observation is not censored, nR,(Uy)) > 0, nR,(Viyy) >0

and R,(Cpy) >0fori=1...,r,and ¢t =1,...,gand [ = 1,... h. Then &,(z) is

constant for all € [V(1), U], and

an(x) =, =n i - 5iA

Proof:

Note that the jumps of &, (z) occur at the distinct order statistics Ugy’s, Viy)’s and
Cuy’s. By Lemma 3.2, 3.4 and 3.5, 4, (Upy)) = 6,(Viy)) = an(Cyy) for i =1,...,r,
t=1,...,qand all Oy < Ugy, it follows that G, (x) is constant for any x € [V(1), Ug)].

By (3.1) and Lemma 3.3, whence the result.

Under the condition P(C; > Vi*) = 1, Wang (1991) show that /n{n[> " 1/(1 —
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A

F.(Vi=)]' = a} = V/n(a, — @) converges weakly to N (0,02 ), where

2 _ 3 et 1 ) 4+ a2 bo~ (1_G(3))2dF(5)_a2
Tan = / HEmEi / R(5)5(s) - 32

where S(s) =1 — F(s).

When C} = oo, U} is only subject to left-trucation, i.e., left-truncated data (see
Lynden-Bell (1971), Woodroofe (1985)). In that case, He and Yang (1998), showed
the equivalence of «,, and &,,. Their approaches are different from those presented in
this note. Besides, they showed that /n(d,(z) —a) converges weakly to N(0, 07 (@)

where

g

T dWr(s) /bc dWg(s) 1
2 2 2 2
dn@‘“/a R Y ) R Y RE
<

for x € (ag,bq), is a constant, where Wg(s) = P(X;

+20° — o? (3.3)

G

s,0; = 1) and Wg(s) =

P(V; < s). The following Lemma shows the equivalence of the two expressions.

Lemma 3.7.
When C; = oo, we have o, =02, for all x € (ag, bg).
Proof:

It suffices to show that

/abG_ A=COF ips) +a / N @dc;(s): / JuiGtan /b Wole) __L_ 12,

Jag R(s)S(s—) L Jag . RZ(S)J R*(s)  R(x)

(3.2.1) (3.2.2) (3.3.1) (3.3.2)

First,

(1 T G(s) T 2G(s)
(3.2.1)_\/%3 mdF(siJr/ac WdF(s)—lg A,

(3:2.1.1) (32.1.2) (32.1.3)

x 1 ba— 1
(3.2.1.1>_/ac R(S)S(S_)dF(s)Jr/x et A0

(3.2.1.1.1) (3.2.1.1.2)
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Since dF(s) = aﬁdWF(s) and R(s) = a™1G(s)S(s—), we have

(3:2.1.1.1) = [ raten @We(s) = [, mmdWe(s) = (3.3.1).
Next, (3.2.1.2) = fcf’g‘* S";C(’( = af”G s)d[5t5)
bo—
(3.2.1.3) = =20 [,77 1d[5r,5] = 20 — 2055, and (3.2.2) = agpo — (3.2.1.2).
It follows that (3.2.1) +(3.2.2) = (3.3.1) + 2a — agg— + (3.2.1.1.2).
Next, since dWg(s) = a~1S(s—)dG(s), we have
be= S(s—) b~ 1
32)=a! = - =
(3.32) =« /m RZ(5) dG(s) L R(s)G(s)dG(S)
bem 1 1 1 1 bem 1 1
—a —d[——] = -« + +a ——d[—].
[ seolem = see trate ) eoils
. bo— bes—
Since o [ G%S)d[ﬁs)] =/c R(S)S(S reseT 4 (s) = (3.2.1.1.2), we have (3.3.2) — % +

2a = (3.2.1) + (3.2.2). The proof is completed.
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4. DISCUSSION

For the case where no assumption is made on the distribution of V* and Cj, the

truncation probability is defined as o = P(min(U}, C;) > V;*) and
R(z) =PV, <z < X;) =PV <z <min{U},C;}|V;" <min(U;, C;))

=PV <z,C>x)PU’ >2)/a=K(z)l - F(z—)]/a,

where K(z) = P(V} < z < ;). Note that for this general case, when ag <
min(ar, ag) and bg < min(bg, be), the product limit estimator £, is still a consistent
estimator of F' (see Tsal, Jewell and Wang (1987)). Hence, given K (z), for all « such
that R, (z) > 0, we can obtain an estimator for a as &, () = K(z)[1—F,(z—)]/R.(z).
However, K (x) cannot be estimated from the data since there is no distributional as-

sumption on V;* and C; (see He and Yang (2000)).
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