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ABSTRACT

Let (U∗
i , Ci, V

∗
i ) be i.i.d. random vectors such that (Ci, V

∗
i ) is independent of

U∗
i . Let F , Q and G denote the common distribution function of U∗

i , Ci and V ∗
i ,

respectively. For left-truncated and right-censored data, one can observe nothing if

U∗
i < V ∗

i and observe (X∗
i , δ∗i ), with X∗

i = min(U∗
i , Ci) and δ∗i = I[U∗i ≤Ci]. In this note,

we consider the estimation of the truncation probability α = P (U∗ ≥ V ∗). A proper

estimate of α is αn =
∫

Gn(s)dFn(s), where Fn and Gn are nonparametric maximum

likelihood estimate (NPMLE) of the distributions F and G, respectively. When the

largest observation is not censored, we obtain an alternative representation α̂n for αn.

For the special case of Ci = ∞, the results are reduced to those obtained by He and

Yang (1998).

Key Words: Left truncation, right censoring, truncation probability.
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1. INTRODUCTION

Let (U∗
i , Ci, V

∗
i ) be i.i.d. random vectors such that (Ci, V

∗
i ) is independent of U∗

i .

It will be assumed throughout this section that Ci ≥ V ∗
i . Let F , Q and G denote

the common distribution function of U∗
i , Ci and V ∗

i , respectively. For left-truncated

and right-censored data, one can observe nothing if U∗
i < V ∗

i and observe (X∗
i , δ∗i ),

with X∗
i = min(U∗

i , Ci) and δ∗i = I[U∗i ≤Ci], if U∗
i ≥ V ∗

i . For any distribution function

H denote the left and right endpoints of its support by aH = inf{t : H(t) > 0}

and bH = inf{t : H(t) = 1}, respectively. Woodroofe (1985) pointed out that if

aG ≤ min(aF , aQ) and bG ≤ min(bF , bQ), then F , Q and G are all identifiable. Data

of this kind often arise in epidemiology, individual follow-up study (see Wang (1991),

Wang, Jewell and Tsai (1987), Tsai, Jewell and Wang (1987)) and possibly in other

fields. Consider the following application.

Example:

In hemophilia AIDS-data sets the time of infection Ts can be quite accurately

determined. A database will cover patients from, say 1978, till 1995, and hence a

patient with a longer survival time will have a larger probability of being part of the

sample than a patient with a short survival time. Let U∗
i be the time between Ts and

death and let V ∗
i = 1978− Ts if Ts < 1978 and V ∗

i = 0 if Ts ≥ 1978. Then a patient

will only be part of the sample if U∗
i ≥ V ∗

i . Let Ci = 1995− Ts denote the the time

from Ts to the end of study. Hence, P (Ci > V ∗
i ) = 1 and U∗

i is subject to censoring

due to termination of study.

In this note, under the assumption that P (C∗
i > V ∗

i ) = 1, we consider the estima-

tion of the truncation probability α = P (U∗
i ≥ V ∗

i ).
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2. The αn and α̂n Estimator

2.1. Notations

Let (X1, δ1, V1), . . . , (Xn, δn, Vn) denote the left-truncated and right-censored sample.

Let U(1) < U(2) < · · · < U(r) be the distinct ordered failure times and ds be the

number of failure times at U(s) for s = 1, . . . , r.

Similarly, let V(1) < V(2) < · · · < V(q) be the distinct ordered truncation times and et

be the number of truncation times at V(t) for t = 1, . . . , q.

Let C(1) < C(2) < · · · < C(h) be the distinct ordered censoring times and cl be the

number of censoring times at C(l) for l = 1, . . . , h.

For each V(t) (t = 1, . . . , q), let C(1(t)) < C(2(t)) < · · · < C(h(t)) be the distinct ordered

censoring times and cl(t) be the number of censoring times at C(l(t)) for l = 1, . . . , h(t).

2.2. The NPMLE of F , G and Q

Let Q(x|v) = P (Ci ≤ x|V ∗
i = v) denote the conditional distribution function

of C given V ∗ = v. Let dF (x) = F (x) − F (x−), dG(x) = G(x) − G(x−), and

dQ(x|v) = Q(x|v)−Q(x− |v).

The likelihood function L can be decomposed into three factors (see Wang (1991),

Gross and Lai (1996)), yielding

L =
n∏

i=1

{
dF (Xi)dG(Vi)[1−Q(Xi−|Vi)]/α

}δi

×
n∏

i=1

{
dQ(Xi|Vi)dG(Vi)[1−F (Xi)]/α

}1−δi

=

{
n∏

i=1

[F (Xi)]
δi [1− F (Xi)]

1−δi

1− F (Vi−)

}
×

{
q∏

t=1

[
dG(V(t))[1− F (V(t)−)]

α

]et
}
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×

{
q∏

t=1

[ ∏
Vi=V(t)

[1−Q(Xi − |V(t))]
δi [dQ(Xi|V(t))]

1−δi

]}
= L1L2L3,

where L1, L2, and L3 represent the likelihoods in the first, second, and third brace,

respectively.

Let Rn(u) = n−1
∑n

i=1 I[Vi≤u≤Xi] and NF (u) =
∑n

i=1 I[Xi≤u,δi=1]. A necessary and

sufficient condition for the existence of the nonparametric maximum likelihood esti-

mate (NPMLE) of L1 is nRn(U(s)) > ds = [NF (U(s)) − NF (U(s)−)] for s = 1, . . . , r

(see Wang (1987)). Under this regularity condition, the NPMLE of F (x) from L1 is

uniquely determined and given by

Fn(x) = 1−
∏
u≤x

[
1− dNF (u)

nRn(u)

]
= 1−

∏
U(s)≤x

[
1− ds

nRn(U(s))

]
,

where dNF (u) = NF (u)−NF (u−).

Based on L2, the NPMLE of G(y) is uniquely determined and given by

Gn(y) =

[
q∑

t=1

et

1− Fn(V(t)−)

]−1 q∑
t=1

etI[V(t)≤y]

1− Fn(V(t)−)
.

Based on Fn and Gn, a proper estimator of α is αn =
∫

Gn(s)dFn(s).

Next, let Rt
n(u) = n−1

∑n
i=1 I[Vi≤u≤Xi,Vi=V(t)] and N t

Q(u) =
∑n

i=1 I[Xi≤u,δi=0,Vi=V(t)].

For each V(t), a necessary and sufficient condition for the existence of the NPMLE

of Q(x|V(t)) is Rt
n(C(l(t))) > cl(t) = N t

Q(Cl(t)) − N t
Q(Cl(t)−) for l = 1, . . . , h(t). Under

these regularity conditions, the NPMLE of Q(x|V(t)) from L3 is uniquely determined

and given by

Qn(x|V(t)) = 1−
∏
u≤x

[
1−

dN t
Q(u)

nRt
n(u)

]
= 1−

∏
Cl(t)≤x

[
1−

cl(t)

nRt
n(Cl(t))

]
,

where dN t
Q(u) = N t

Q(u)−N t
Q(u−).
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When Qn(x|V(t)) exists for all V(t)’s, the NPMLE of Q (denoted by Qn) can be written

as

Qn(x) =

q∑
t=1

Qn(x|V(t))[Gn(V(t))−Gn(V(t−1))].

Note that when the bivariate distribution of (Ci, V
∗
i ) is continuous, we have

nRt
n(Cl(t)) = cl(t) = 1, and the NPMLE of Q(x|V(t)) does not exist. To circumvent

this difficulty, Shen (2003) considered the inverse-probability-weighted estimators by

simultaneously estimating F , G and Q. Let F̂e(x), Ĝe(x) and Q̂e(x) be given by

F̂e(x) =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1 n∑
i=1

δiI[Xi≤x]

Ĝe(Xi)− Q̂e(Xi−)

=

[
r∑

s=1

ds

Ĝe(U(s))− Q̂e(U(s)−)

]−1 r∑
s=1

dsI[U(s)≤x]

Ĝe(U(s))− Q̂e(U(s)−)
, (2.1)

Ĝe(x) =

[
n∑

i=1

1

1− F̂e(Vi−)

]−1 n∑
i=1

I[Vi≤x]

1− F̂e(Vi−)

=

[
q∑

t=1

et

1− F̂e(V(t)−)

]−1 q∑
t=1

etI[V(t)≤x]

1− F̂e(V(t)−)
, (2.2)

and

Q̂e(x) =

[
n∑

i=1

1

1− F̂e(Vi−)

]−1 n∑
i=1

(1− δi)I[Xi≤x]

1− F̂e(Xi−)

=

[
q∑

t=1

et

1− F̂e(V(t)−)

]−1 h∑
l=1

(cl)I[C(l)≤x]

1− F̂e(C(l)−)
. (2.3)

The justification of using F̂e, Ĝe, and Q̂e is given as follows. We consider the subdis-

tribution function

WF (x) = P (Xi ≤ x, δi = 1) = P (U∗
i ≤ x, U∗

i ≤ Ci|U∗
i ≥ V ∗

i )

= α−1P (U∗
i ≤ x, V ∗

i ≤ U∗
i ≤ Ci) = α−1

∫ x

aF
P (V ∗

i ≤ u ≤ Ci)dF (u)
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= α−1
∫ x

aF
[G(u) − Q(u−)]dF (u). Thus, we have dF (x) = α dWF (x)

G(x)−Q(x−)
. When G(x),

Q(x−) and α are known, F (x) can be estimated by

n−1α
∑n

i=1

δiI[Xi≤x]

G(Xi)−Q(Xi−)
. Let x = ∞. It follows that α can be estimated by

n
[∑n

i=1
δi

G(Xi)−Q(Xi−)

]−1

. This justifies the use of the estimator F̂e(x).

The justification of using Ĝe(x) can be obtained by considering the subdistribution

function WG(x) = P (Vi ≤ x). When 1 − F (x) and α are known, G(x) can be

estimated by n−1α
∑n

i=1

I[Vi≤x]

1−F (Vi−)
. Let x = ∞. It follows that α can be estimated by

n
[∑n

i=1
1

1−F (Vi−)

]−1

. This justifies the use of the estimator Ĝe(x).

Similarly, the justification of using Q̂e(x) can be obtained by considering the

subdistribution function WQ(x) = P (Xi ≤ x, δi = 0) = P (C∗
i ≤ x, C∗

i ≤ U∗
i |U∗

i ≥ V ∗
i )

= α−1
∫ x

0
[1−F (u−)]dQ(u). When 1−F (u−) and α are known, Q(x) can be estimated

by n−1α
∑n

i=1

(1−δi)I[Xi≤x]

1−F (Xi−)
.

Shen (2003) showed the equivalence of Fn and F̂e, and hence, the equivalence of

Gn and Ĝe. However, the equivalence of Qn and Q̂e does not hold.

Based on the arguments above, two alternative estimators of α are

n

[∑n
i=1

δi

Ĝe(Xi)−Q̂e(Xi−)

]−1

and n

[∑n
i=1

1

1−F̂e(Vi−)

]−1

.

Instead, under the assumption (Ci, V
∗
i ) is independent of U∗

i and P (Ci > V ∗
i ) = 1,

we have

R(x) = P (Vi ≤ x ≤ Xi) = P (V ∗
i ≤ x ≤ min{U∗

i , Ci}|V ∗
i ≤ U∗

i )

= P (V ∗
i ≤ x, Ci ≥ x)P (U∗

i ≥ x)/α = [P (V ∗
i ≤ x)− P (Ci < x)]P (U∗

i ≥ x)/α

= [G(x)−Q(x−)][1− F (x−)]/α.
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For all x such that nRn(x) > 0, we can obtain another estimator for α as α̂n(x) =

[Gn(x) − Q̂e(x−)][1 − Fn(x−)]/Rn(x). In the following section, we will establish the

equivalence of all the estimators suggested above.
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3. THE EQUIVALENCE OF αn AND α̂n

To derive the explicit relationship between αn and α̂n(x), we consider the estima-

tion of αd = P (V ∗
i ≤ U∗

i ≤ Ci). Note that α = αd + αc, where αc = P (Ci < U∗
i ). Let

α̃d =
∫

[Gn(x)− Q̂e(x−)]dFn(x). For Rn(x) > 0, let

α̂d(x) =
nd

n
α̂n(x) =

nd

n
[Gn(x)− Q̂e(x−)][1− Fn(x−)]/Rn(x),

where nd =
∑r

i=1 di denotes the number of death.

Lemma 3.1.

Suppose that nRn(U(i)) > 0 for i = 1 . . . , r. Then α̃d = α̂d(U(i)) for all i = 1, . . . , r.

Proof:

By (2.1), we have

α̃d =

∫
[Gn(x)− Q̂e(x−)]dFn(x) =

r∑
i=1

[Ĝe(U(i))− Q̂e(U(i))][F̂e(U(i))− F̂e(U(i−1))]

=

[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1 r∑
i=1

[Ĝe(U(i))− Q̂e(U(i)−)]
di

[Ĝe(U(i))− Q̂e(U(i)−)]

= nd

[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1

. (3.1)

Since F̂e(U(i))− F̂e(U(i−1)) = Fn(U(i))− Fn(U(i−1)), we have[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1
di

[Ĝe(U(i))− Q̂e(U(i)−)]
=

di[1− Fn(U(i−1))]

nRn(U(i))
.

Hence,

α̃d = nd

[Ĝe(U(i))− Q̂e(U(i)−)][1− F̂e(U(i−1))]

nRn(U(i))
= α̂d(U(i)).

The proof is completed.
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Lemma 3.2.

Suppose that Rn(U(i)) > 0 for i = 1 . . . , r.

Then α̂n(U(i)) = α̂n(U(1)) = n

[∑r
i=1

di

Ĝe(U(i))−Q̂e(U(i)−)

]−1

for i = 2, . . . , r.

Proof:

From Lemma 3.1, for i = 1, . . . , r, we have

α̂n(U(i)) =
n

nd

α̂d(U(i)) =
n

nd

α̃d = n

[ r∑
i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1

.

The proof is completed.

Lemma 3.3.

When the last observation is not censored, we have

αn = n

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1

= n

[
n∑

i=1

1

1− F̂e(Vi−)

]−1

.

Proof:

First, it is easily shown that when the largest observation is not censored,
∫

Gn(x)dFn(x) =∫
(1− Fn(x−))dGn(x) and

∫
Q̂e(x)dFn(x) =

∫
(1− Fn(x−))dQ̂e(x). Hence, we have

α̃d =

∫
[Gn(x)− Q̂e(x−)]dFn(x) =

∫
(1− Fn(x−))d[Gn(x)− Q̂e(x−)]

=

∫
[1− F̂e(x−)]d[Ĝe(x)− Q̂e(x)] =

∫
[1− F̂e(x−)]dĜe(x)−

∫
[1− F̂e(x−)]dQ̂e(x)

=

[
n∑

i=1

1

1− F̂e(Vi−)

]−1{ q∑
t=1

[1− F̂e(V(t−1))]
et

1− F̂e(V(t−1))
−

h∑
l=1

[1− F̂e(C(l−1))]
cl

1− F̂e(C(l−1))

}
=

[
n∑

i=1

1

1− F̂e(Vi−)

]−1

[

q∑
t=1

et −
h∑

l=1

cl]
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= (n− nc)

[
n∑

i=1

1

1− F̂e(Vi−)

]−1

= nd

[
n∑

i=1

1

1− F̂e(Vi−)

]−1

.

By (3.1), it follows that

α̃d = nd

[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i−1))

]−1

= nd

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1

.

Note that

αn =

∫
Gn(x)dFn(x) =

∫
(1− Fn(x−))dGn(x)

=

∫
(1− Fe(x−))dGe(x) = n

[
n∑

i=1

1

1− F̂e(Vi−)

]−1

.

This completes the proof.

Lemma 3.4.

Suppose that the largest observation is not censored; Rn(U(i)) > 0 and Rn(V(j)) > 0

for i = 1, . . . , r and j = 1, . . . , t. Then α̂n(U(i)) = α̂n(V(j)) for i = 1, . . . , r and

j = 1, . . . , t.

Proof:

Let us denote by V ∗
(1) < V ∗

(2) < · · · < V ∗
(h) the distinct ordered values of Vj in

[U(i−1), U(i)], i.e.,

U(i−1) < V ∗
(1) < V ∗

(2) < · · · < V ∗
(m) < U(i).

Let A(x) = Ĝe(x)− Q̂e(x−) and B(x) = [1− F̂e(x−)]/Rn(x).

For any V ∗
(j) in [U(i−1), U(i)], we have

α̂n(U(i))− α̂n(V ∗
(j)) = A(U(i))B(U(i))− A(V ∗

(j))B(V ∗
(j))

= [A(U(i))− A(V ∗
(j))]B(V ∗

(j)) + A(U(i))[B(U(i))−B(V ∗
(j))].
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Note that for any Vk in [V ∗
(j), U(i)], 1 − F̂e(Vk−) = 1 − F̂e(U(i−1)). Similarly, for any

Xk in [V ∗
(j), U(i)], 1− F̂e(Xk−) = 1− F̂e(U(i−1)).

Hence, by (2.2) and (2.3), we have

[A(U(i))−A(V ∗
(j))]B(V ∗

(j)) =

[
n∑

i=1

1

1− F̂e(Vi−)

]−1∑n
k=1(I[V ∗

(j)
<Vk≤U(i)] − I[V ∗

(j)
≤Xk<U(i)])

nRn(V ∗
(j))

.

Note that
n∑

k=1

(
I[V ∗

(j)
<Vk≤U(i)] − I[V ∗

(j)
≤Xk<U(i)]

)
=

n∑
k=1

(
I[Vk≤U(i)] − I[Xk<U(i)]

)
−

n∑
k=1

(
I[Vk≤V ∗

(j)
] − I[Xk<V ∗

(j)
]

)
=

n∑
k=1

I[Vk≤U(i)≤Xk] −
n∑

k=1

I[Vk≤V ∗
(j)
≤Uk] = nRn(U(i))− nRn(V ∗

(j)).

Hence,

[A(U(i))− A(V ∗
(j))]B(V ∗

(j)) =

[
n∑

i=1

1

1− F̂e(Vi−)

]−1

[Rn(U(i))−Rn(V ∗
(j))]/Rn(V ∗

(j)).

Next,

A(U(i))[B(U(i))−B(V ∗
(j))] = [Ĝe(U(i))− Q̂e(U(i)−)][1− F̂e(U(i−1))]

Rn(V ∗
(j))−Rn(U(i))

nRn(V ∗
(j))Rn(U(i))

.

Note that

[1− F̂e(U(i−1))]/nRn(U(i)) = [1− Fn(U(i−1))]/nRn(U(i)) = [Fn(U(i))− Fn(U(i−1))]/di

= [F̂e(U(i))− F̂e(U(i−1))]/di =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1
1

Ĝe(Ui)− Q̂e(Ui−)
.

Hence,

A(U(i))[B(U(i))−B(V ∗
(j))] =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1

[Rn(V ∗
(j))−Rn(U(i))]/Rn(V ∗

(j)).

By Lemma 3.3, it follows that

[A(U(i))− A(V ∗
(j))]B(V ∗

(j)) + A(U(i))[B(U(i))−B(V ∗
(j))] = 0.
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The proof is completed.

Lemma 3.5.

Suppose that the largest observation is not censored, nRn(U(i)) > 0 and nRn(C(l)) > 0

for i = 1, . . . , r

and l = 1, . . . , h. Then α̂n(U(i)) = α̂n(C(l)) for i = 1, . . . , r and l = 1, . . . , h.

Proof:

The proof is similar to that of Lemma 3.4 and is omitted.

Lemma 3.6.

Suppose that the largest observation is not censored, nRn(U(i)) > 0, nRn(V(t)) > 0

and Rn(C(l)) > 0 for i = 1 . . . , r, and t = 1, . . . , q and l = 1, . . . , h. Then α̂n(x) is

constant for all x ∈ [V(1), U(r)], and

α̂n(x) = αn = n

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1

= n

[
n∑

i=1

1

1− F̂e(Vi−)

]−1

.

Proof:

Note that the jumps of α̂n(x) occur at the distinct order statistics U(i)’s, V(t)’s and

C(l)’s. By Lemma 3.2, 3.4 and 3.5, α̂n(U(i)) = α̂n(V(t)) = αn(C(l)) for i = 1, . . . , r,

t = 1, . . . , q and all C(l) ≤ U(r), it follows that α̂n(x) is constant for any x ∈ [V(1), U(r)].

By (3.1) and Lemma 3.3, whence the result.

Under the condition P (Ci > V ∗
i ) = 1, Wang (1991) show that

√
n{n[

∑n
i=1 1/(1 −
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F̂e(Vi−))]−1 − α} =
√

n(αn − α) converges weakly to N(0, σ2
αn

), where

σ2
αn

= α3

∫ bG−

aG

1

S(s−)
dG(s) + α2

∫ bG−

aG

(1−G(s))2dF (s)

R(s)S(s−)
− α2, (3.2)

where S(s) = 1− F (s).

When C∗
i = ∞, U∗

i is only subject to left-trucation, i.e., left-truncated data (see

Lynden-Bell (1971), Woodroofe (1985)). In that case, He and Yang (1998), showed

the equivalence of αn and α̂n. Their approaches are different from those presented in

this note. Besides, they showed that
√

n(α̂n(x)−α) converges weakly to N(0, σ2
α̂n(x)),

where

σ2
α̂n(x) = α2

∫ x

aG

dWF (s)

R2(s)
+ α2

∫ bG−

x

dWG(s)

R2(s)
− α2 1

R(x)
+ 2α3 − α2 (3.3)

for x ∈ (aG, bG), is a constant, where WF (s) = P (Xi ≤ s, δi = 1) and WG(s) =

P (Vi ≤ s). The following Lemma shows the equivalence of the two expressions.

Lemma 3.7.

When Ci = ∞, we have σ2
αn

= σ2
α̂n(x) for all x ∈ (aG, bG).

Proof:

It suffices to show that∫ bG−

aG

(1−G(s))2

R(s)S(s−)
dF (s)︸ ︷︷ ︸

(3.2.1)

+ α

∫ bG−

aG

1

S(s−)
dG(s)︸ ︷︷ ︸

(3.2.2)

=

∫ x

aG

dWF (s)

R2(s)︸ ︷︷ ︸
(3.3.1)

+

∫ bG−

x

dWG(s)

R2(s)︸ ︷︷ ︸
(3.3.2)

− 1

R(x)
+2α.

First,

(3.2.1) =

∫ bG−

aG

1

R(s)S(s−)
dF (s)︸ ︷︷ ︸

(3.2.1.1)

+

∫ bG−

aG

G2(s)

R(s)S(s−)
dF (s)︸ ︷︷ ︸

(3.2.1.2)

−
∫ bG−

aG

2G(s)

R(s)S(s−)
dF (s)︸ ︷︷ ︸

(3.2.1.3)

.

(3.2.1.1) =

∫ x

aG

1

R(s)S(s−)
dF (s)︸ ︷︷ ︸

(3.2.1.1.1)

+

∫ bG−

x

1

R(s)S(s−)
dF (s)︸ ︷︷ ︸

(3.2.1.1.2)

.
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Since dF (s) = α 1
G(s)

dWF (s) and R(s) = α−1G(s)S(s−), we have

(3.2.1.1.1) =
∫ x

aG

α
R(s)G(s)S(s−)

dWF (s) =
∫ x

aG

1
R2(s)

dWF (s) = (3.3.1).

Next, (3.2.1.2) =
∫ bG−

aG

αG(s)
S2(s−)

dF (s) = α
∫ bG−

aG
G(s)d

[
1

S(s)

]
,

(3.2.1.3) = −2α
∫ bG−

aG
1d

[
1

S(s−)

]
= 2α− 2α 1

S(bG−)
, and (3.2.2) = α 1

S(bG−)
− (3.2.1.2).

It follows that (3.2.1) + (3.2.2) = (3.3.1) + 2α− α 1
S(bG−)

+ (3.2.1.1.2).

Next, since dWG(s) = α−1S(s−)dG(s), we have

(3.3.2) = α−1

∫ bG−

x

S(s−)

R2(s)
dG(s) =

∫ bG−

x

1

R(s)G(s)
dG(s) =

−α

∫ bG−

x

1

S(s−)
d
[ 1

G(s)

]
= −α

1

S(bG−)
+

1

R(x)
+ α

∫ bG−

x

1

G(s)
d
[ 1

S(s)

]
.

Since α
∫ bG−

x
1

G(s)
d
[

1
S(s)

]
=

∫ bG−
x

1
R(s)S(s−)

dF (s) = (3.2.1.1.2), we have (3.3.2)− 1
R(x)

+

2α = (3.2.1) + (3.2.2). The proof is completed.
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4. DISCUSSION

For the case where no assumption is made on the distribution of V ∗
i and Ci, the

truncation probability is defined as α = P (min(U∗
i , Ci) ≥ V ∗

i ) and

R(x) = P (Vi ≤ x ≤ Xi) = P (V ∗
i ≤ x ≤ min{U∗

i , Ci}|V ∗
i ≤ min(U∗

i , Ci))

= P (V ∗
i ≤ x, Ci ≥ x)P (U∗

i ≥ x)/α = K(x)[1− F (x−)]/α,

where K(x) = P (V ∗
i ≤ x ≤ Ci). Note that for this general case, when aG ≤

min(aF , aQ) and bG ≤ min(bF , bG), the product limit estimator Fn is still a consistent

estimator of F (see Tsai, Jewell and Wang (1987)). Hence, given K(x), for all x such

that Rn(x) > 0, we can obtain an estimator for α as α̂n(x) = K(x)[1−Fn(x−)]/Rn(x).

However, K(x) cannot be estimated from the data since there is no distributional as-

sumption on V ∗
i and Ci (see He and Yang (2000)).
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