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Abstract

We revisit the relationship between inflation and inflation uncertainty by a nonlinear

flexible regression model of four economies in East Asia, that is, Taiwan, Hong Kong,

Singapore, and South Korea. Two hypothesis will be examined. One hypothesis is

proposed by Friedman (1977). He argued that increased inflation could raise infla-

tion uncertainty. The other hypothesis is provided by Cukierman and Meltzer (1986),

they argued that high level of inflation uncertainty will cause higher rate of inflation.

We find overwhelming statistical evidences in favor of Friedman’s hypothesis except

for Hong Kong. The nonlinearity displays an U shape pattern, implying that high

rate of inflation or deflation will cause high inflation uncertainty. On the other hand,

Cukierman-Meltzer’s hypothesis is also evidenced for all four economies. Hong Kong,

Singapore, and South Korea have a positive relation in favor of Cukierman-Meltzer’s

hypothesis, while Taiwan has an inverted-U shape.

Key Words: Inflation, Inflation Uncertainty, Nonlinear, Flexible Regression Model

JEL Classification: C22, E31
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Chapter 1

Introduction

Inflation is always an important issue in economics. Many economists try to explore

what inflation matters. A well-known Philips curve explains the negative relationship

between inflation and economic output.

Okun (1971) was the first to argue that inflation is positively associated with in-

flation uncertainty. He found that countries experience higher inflation rate will have

larger standard deviation of inflation. Friedman (1977) also argued that, in his Nobel

address, higher rate of inflation invokes higher inflation uncertainty. High inflation

uncertainty will reduce economic efficiency via the distortion of price signal, such dis-

tortions may exert negative impacts on the efficiency of resource allocation and the level

of real economic activity. Ball (1992) formalized Friedman’s hypothesis and provided a

theoretical foundation for the positive relationship between inflation and inflation un-

certainty. In his model, there are two type of policymakers who stochastically alternate

in power, and the public knows that only one type is willing to bear the economic costs

of disinflation. During periods of low inflation, the monetary authorities are willing

to keep it low to lower inflation uncertainty. On the contrary, during periods of high

inflation, the public does not know for how long it will last before an anti-inflation

policy makers come in power.

On the other hand, Cukierman and Meltzer (1986) claimed a reverse direction

which is contrast to Friedman’s hypothesis that higher inflation uncertainty will raise

the rate of inflation. In their model, in the absence of a commitment mechanism,

the monetary authorities may engage in discretionary policy. Therefore, the public

becomes uncertain about the monetary policy, there is an incentive for the central

1
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bankers to act opportunistically in terms of seeking to attain higher short-term eco-

nomic growth. Therefore higher inflation uncertainty will raise average inflation rate.

On the contrary, Holland (1995) argued that, under assumptions of Friedman’s hy-

pothesis hold and negative effect of inflation uncertainty on growth, the monetary au-

thorities have a motive to stabilize inflation when uncertainty rises.

Many empirical studies provide mixing conclusions about this issue. For exam-

ple, Grier and Perry (1998) investigated the linkage between inflation and inflation

uncertainty in the G7 countries. They provided evidences in favor of Friedman’s hy-

pothesis for all G7 countries. On the other hand, Japan and France are in favor of

Cukierman-Meltzer’s hypothesis, while for the U.S., UK and Germany, Holland’s hy-

pothesis is accepted. Tevfik and Perry (2000) also found strong evidences in favor of

Friedman’s hypothesis for Turkey. But the evidence of Cukierman and Meltzer’s hy-

pothesis is mixed. Fountas (2001) used a long series of UK inflation data and provided

strong evidence in favor of the hypothesis that inflationary periods are associated with

high inflation uncertainty, and also indicated that more inflation uncertainty leads to

lower output.

Engle (1982) and Bollerslev (1986) estimated ARCH and GARCH model for the

U.S. inflation and found that higher rate of inflation does not essentially imply higher

inflation uncertainty. Ball and Cecchetti (1990) investigated the relationship between

inflation and inflation uncertainty in US at short and long horizon. They decomposed

the movements in inflation into shifts in trend inflation and temporary deviations from

trend, and employed the variance of deviation from the trend as a proxy of uncertainty

measurement. Their empirical results found that a rise in the level of inflation has only

little effect on the variance of deviations. They also found that inflation had much

larger effects on uncertainty at long horizons.

Cosimano and Jansen (1988) also fitted the ARCH model for the U.S. inflation

series and found that Friedman’s hypothesis was rejected. Baillie et al. (1996) examined

ten countries by ARFIMA-GARCH model where the fractionally integrated process

allows to provide more insight for macroeconomists on the persistence of shocks. They

found only three high-inflation countries (Argentina, Brazil, and Israel) are in favor of

Cukierman-Meltzer’s hypothesis. They also provided the clear evidences for the G7

countries that although inflation shocks have long memory they are nevertheless mean

reverting.



3

Hua (2000) examined the linkage between inflation and inflation uncertainty in

six countries in Asia. All six countries are intended to accept Friedman’s hypothe-

sis. She also found that inflation uncertainty causes inflation in other five countries

(Philippines, South Korea, Thailand, Malaysia, and Singapore) except for Taiwan. Chiu

(2003) investigated the interrelationships between inflation, inflation uncertainty, and

output growth in Taiwan using bivariate-GARCH model. She provided the evidence

that current and lags of inflation all have positive influence on inflation uncertainty.

An increase in real output growth uncertainty is evident to lead to an increase in both

output growth and inflation.

In spite of aboundant literature on the inflation and inflation uncertainty, most of

them are based on the GARCH-type model and a shortcoming of this model is that it

extracts only linear relationship between inflation and inflation uncertainty. It over-

looks the nonlinear relationship if it really exit in the data. We have no reasons to

exclude, whatsoever, other possible functional forms for describing such a relation. In

this study, we revisit Friedman’s and Cukierman and Meltzer’s hypotheses in terms of

Hamilton (2001) flexible regression model. The merit of this approach is that we can

simultaneously detect linear and nonlinear relationships of the data.

Within the flexible nonlinear inference, the nonlinear tests are based on the Largrange-

multiplier test. The null hypothesis is absence of nonlinearity, while the alternative

hypothesis allows for a broad class of deterministic nonlinear function. Following

Hamilton (2001), Dahl and Gonzále-Rivera (2003) also developed various nonlinear

test statistic.

We use monthly data of the consumer price index (CPI) of four East Asian economies,

that is, Taiwan, Hong Kong, Singapore, and South Korea. In our empirical results, we

find that Taiwan, Singapore, and South Korea are in favor of Friedman’s hypothesis

while Hong Kong fails to support it. In details, the patterns of the effect of inflation

on inflation uncertainty show the U shape in these three economies. The nonlinear

patterns suggest that inflation uncertainty appear to increase in inflationary and defla-

tionary period.

Moreover, these four economies all accept Cukierman-Meltzer’s hypothesis, imply-

ing that high level of inflation uncertainty will raise higher rate of inflation. Hong

Kong, Singapore, and South Korea show a absolutely positive and nonlinear relation

in favor of Cukierman-Meltzer’s hypothesis. The results imply that the central banker
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of these economies are intended to behave opportunistic policies to create inflation

surprises to rise economic output. Interestingly, Taiwan has inverted-U relation of the

effect of inflation uncertainty on inflation. It implies that the monetary authorities

only act opportunistic policy under a specific level of inflation uncertainty.

The outline of the paper is as follows: In Chapter 2, we will review the flexible

regression model and nonlinear test of the model. Chapter 3 presents our empirical

results of four Asian economies. Conclusion are offered in Chapter 4.



Chapter 2

Flexible Regression Model

Hamilton (2001) proposed a new approach, flexible regression model, to detect the

nonlinearity of the data. He employed the concept of random field to describe the

nonlinear component of the model. Consider the following econometric model

yt = µ(xt) + εt , (2.1)

where

µ(xt) = α0 + α′xt + λm(g ⊙ xt). (2.2)

for yt and xt are stationary and ergodic process. In this model, the symbol ⊙ denotes

the element-by-element multiplication, and m(·) is outcome of the random field. In

equation (2.1), it contains the linear component α0 + α′xt and the nonlinear compo-

nent λm(g ⊙ xt), where m(·) is latent and unseen. Term λ makes a contribution to the

nonlinearity and g controls the curvature.

In section 2.1, we introduce the concept of random field. Section 2.2 describes how

to infer the conditional mean E(yt | xt) = µ(xt). Section 2.3 discusses the associated

nonlinear tests.

2.1 Random Field

2.1.1 Euclidean Distance

We divide this section into two part. The former is on single explanatory variable case,

and this will give us clear concept on the random field. The latter, we extend the model

5
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into k explanatory variables, this could generalize mathematical expressions.

Single Explanatory Variable

We first describe a latent stochastic process m(x) which will be used to characterize

the conditional expectation function µ(x). Consider an interval [a, b] in ℜ1. ω is a pa-

rameter described shortly, and partition the interval [a −ω, b+ω] as {x1, x2, . . . , xN },

where x1 = a − ω, xN = b + ω, and xi = xi−1 + 1N for i = 2, . . . , N . Each node xi

on the interval generates a Standard Normal variable e(xi ) with mutual independence.

Furthermore, for each node xi such that a 6 xi 6 b,1 we construct a random variable

m N (xi ), called random field, which is the proportionality of the value of e(xi ) summed

for all x j whose distance from xi is less than or equal to ω to the square root of the

number of e(xi ). That is

m N (xi ) = (1 + 2ω/1N )−1/2
ω/1N
∑

j=−ω/1N

e(xi+ j ), (2.3)

where (1 + 2ω/1N ) could be the number of e(xi ), and m N (xi ) ∼ N (0, 1) with mov-

ing average representation. An example is given below in Example 1 and illustrates in

Figure 2.1 and Figure 2.2.

Example 1. In the case of ω = 1, 1N = 1, and N = 12. Consider an interval [a, b] in

ℜ1 and partition the interval as {x1, x2, . . . , x12} where xi = xi−1+1 for i = 2, . . . , 12.

Equation (2.3) can be written as

m(xi ) = 1√
3

1
∑

j=−1

e(xi− j )

for a ≤ xi ≤ b. For instance,

m(x2) = 1√
3

[e(x1) + e(x2) + e(x3)],

m(x3) = 1√
3

[e(x2) + e(x3) + e(x4)].

1For xi < a and xi > b, m(xi ) cannot be obtained.
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xi

e(xi )

x1 x2 x3 x4 x5 x6 x7 x8 x9

a − ω

(a − 1)

a b + ω

(b + 1)

b

1N = 1

e(x1)
e(x2)

e(x3)

e(x4)

e(x7)

e(x8)

e(x9)

� -

Figure 2.1: Illustration of interest {x1, x2, . . . , x9} on interval [a − ω, b + ω] in which nodes

generates random variable e(xi ) for i = 1, . . . , 9 in case of ω = 1 and 1N = 1.

As for the covariance (correlation) between m(xi ) and m(x j ), it is

E[m(xi )m(x j )] =
{

1 − |xi − x j |/2ω if |xi − x j | 6 2ω,

0 otherwise.
(2.4)

In the case of example 1, the correlation E[m(xi )m(x j )] is 1/2. In detail, it is the ratio of

the volume of the overlap of the unit-distance lines to the unit-distance line. As shown

in Figure 2.2, the correlation between any pair of nodes is, for example, as follows

E[m(x2)m(x3)] = BC/AB = 1/2,

or

E[m(x7)m(x8)] = E F/DF = 1/2.

In continuous condition, N → 0 and 1N → 0, a single realization of this process

associates each x ∈ [a, b] with a value m(x) ∈ ℜ1. We can characterize the function as

m(x) = (2ω)−1/2[W (x + ω) − W (x − ω)], (2.5)

where W (·) is a standard Wiener process. Note that any given realization of m(·) is

continuous in x but not differentiable.
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xi

m(xi )

x1 x2 x3 x4 x5 x6 x7 x8 x9

m(x2)

A B C

m(x3)

m(x4)

m(x7)

D E F

m(x8)

Figure 2.2: Illustration of the correlation between random fields. It is the ratio of the volume of

the overlap of unit-distance lines to the unit-distance line. The case of ω = 1 and 1N = 1.

K Explanatory Variables

We here extend single explanatory variable to K explanatory variables. Analogous to

the previous section, define a grid in ℜk by the nodes {x(i1, i2, . . . , ik)} where the index

i j ∈ {1, . . . , N } for j = 1, . . . , k. Let AN be the set consisting of the N k distinct points

in ℜk covered by this grid. For each x ∈ AN generates random variable e(x) ∼ N (0, 1)

which is independent of e(z) for x 6= z. In similar fashion, define BN ⊂ AN which the

Euclidean distance from x is less or equal to one 2

BN (x) = {z ∈ AN : (x − z)′(x − z) 6 1}. (2.6)

To reiterate (2.3) in the same way, we can obtain

m N (x) = [nN (x)]−1/2
∑

z∈BN(x)

e(z)

where nN (x) indicates the number of points in BN (x). Undoubtedly, m(x), continu-

ous form, is also distributed N (0, 1) with moving average representation.

As for the correlation E[m(x)m(z)] = Hk(h), it exhibits as

Hk(h) =
{

Gk−1(h, 1)/Gk−1(0, 1) if h 6 1,

0 if h > 1,
(2.7)

2We normalize the distance parameter ω = 1 for convenience.
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x(1)

x(2)

1

−1

−1

1

A

B

C

D

E F

G

H

I

m1 m2

m1 = m1(x1 = 0, x2 = 0)

m2 = m2(x1 = 0, x2 = 1.5)

-

6

Figure 2.3: Illustration of the covariances based L1 norm and L2 norm respectively in the case

of k = 2.

where

Gk(h, r) =
∫ r

h
(r2 − z2)k/2 dz

for r = 1, h ≡ (1/2)[(x − z)′(x − z)]1/2 based on Euclidean distance, and dimension-

ality k. Precise to say, it is the ratio of the volume of the overlap of k-dimensional unit

spheroids centered at x and z to the volume of a single k-dimensional unit spheroid.

Figure 2.3 demonstrates that k = 2, and the correlation between m1 and m2 can denote

as

E[m1m2] = Superficial area of DEFG

Superficial area of unit shperiods
.

2.1.2 Minkowski Distance

In Appendix A, we clarify the difference between Euclidean and Minkowski distance.

Here we discuss the random field under Manhattan distance (or L1 norm). Analogous

to the equation (2.6), under the L1 norm we redefine the set B∗
N denoted as

B∗
N (x) = {z ∈ AN : |x − z|′1 6 1},
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where 1 is a k-dimensional weighting coefficient vector consisting of ones in each entry

and let m∗
N (x) be the moving average representation

m∗
N (x) = n∗

N (x)1/2
∑

z∈B∗
N(x)

e(z), (2.8)

where n∗
N (x) denotes the number of points in B∗

N (x). Also m∗(x) is the continuous

form of the random field under L1 norm. In the same way, the correlation H∗
k between

m∗(x) and m∗(z) is given by the ratio of the volume of a k-dimensional unit orthogons

centered at x and z to the volume of a k-dimensional unit orthogon. That is

H∗
k (h∗) =

{

G∗
k−1(h

∗, 1)/G∗
k−1(0, 1) if h∗ 6 1,

0 if h∗ > 1,
(2.9)

where

G∗
k(h

∗, r) =
∫ r

h∗
(r − |z|)k dz

for r = 1 and h∗ = (1/2)|x − z|′1. Figure 2.3 shows the correlation of the random

filed under L1 norm and L2 norm, respectively. Notice that in the case of k = 1 the

L2 norm and L1 norm will provide identical covariance functions E F/AF , and in the

case of k = 2 based on L1 norm is

E[m∗
1m∗

2] = Orthogon area of EFHI

Orthogon area of ABCF
.

Differ from the L2 norm, the disadvantage of the random field with a moving av-

erage representation in L1 norm is that the field is not isotropic.3 With that, Dahl and

Gonzále-Rivera (2003) propose a permissible covariance function with isotropy in the

basis of L1 norm, that is

C∗
k (h∗) =

{

(1 − h∗)2k if h∗ 6 1,

0 if h∗ > 1,
(2.10)

where C∗
k satisfies the positive semidefiniteness condition, that is q ′C∗q , for all q 6= 0T ,

which ensures that the random field is homogenous. Another advantage of permissible

3A scalar random field is said to be Gaussian and it is completely determined by its mean function

µ(x) = E[m(x)] and its covariance function with typical element C(x, z) = E[(m(x) − µ(x))(m(z) −
µ(z))]. The random field is said to be homogenous or stationary if µ(x) = µ and the covariance

function depends only on the difference vector x − z and we write C(x, z) = C(x − z). Furthermore,

the random field is said to be isotropic if the covariance function depends on d(x, z), where d(·) is a

scalar measure of distance.
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covariance function is that we can firstly derive covariance function and then derive its

corresponding random field due to the Khinchin (1934) theorem and Bochner (1959)

theorem. On the contrary, Hamilton firstly proposes a moving average representation

of the random field and derives its covariance function.

2.2 Inference of Conditional Mean

In equation (2.1), Hamilton uses a moving average representation random field to de-

scribe the nonlinearity of the data, where the random field is a Gaussian, homogenous,

and isotropic. The goal, in this section,is to infer the condition mean E(yt | xt) =
µ(xt) and describes the data’s characteristics.

2.2.1 Maximum Likelihood Estimation

Let us imagine how we could form an ‘optimal’ inference about the unseen conditional

expectation function µ(xt). Hamilton used a recursive formulation, like the Kalman

filter, to accomplish the estimation work.

Consider the evaluating function µ(xt) with observed xt = τ1, τ2, . . . , τN , such

that

µ =















µ(τ1)

µ(τ2)
...

µ(τN )















.

From equations (2.2) and (2.7), it follows that

µ ∼ N (ξ0, P0) (2.11)

where the i th element of ξ0 is given by α0 + α′τi , and the row i , column j element of

P0 is given by

p(0)
i j =

{

λ2 Hk(hi j ) if hi j < 1,

0 if hi j ≥ 1,

for

hi j = 1

2
{[(g ⊙ τi ) − (g ⊙ τ j )]′[(g ⊙ τi ) − (g ⊙ τ j )]}1/2.
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We further consider a model

yt = i ′tµ+ εt , (2.12)

where xt = τ jt , εt ∼ N (0, σ 2) and it denotes column jt of the (N × N ) identity

matrix. Given the earlier result (2.11), and then

y1 | x1 ∼ N (i ′1ξ0, i ′1 P0 i1 + σ 2),

so that4

µ | y1, x1 ∼ N (ξ1, P1) (2.13)

where

ξ1 = ξ0 + P0 i1(y1 − i ′1ξ0)

i ′1 P0 i1 + σ 2
,

P1 = P0 −
P0 i1i ′1 P0

i ′1 P0 i1 + σ 2
.

By the same token, we can inferµ conditional on Yt−1 = (y1, x ′
1, y2, x ′

2, . . . , yt−1, x ′
t−1)

′,

that is

µ | Yt−1 ∼ N (ξt−1, Pt−1). (2.14)

We furthermore assume that xt is exogenous to the µ(·), so that

µ | xt , Yt−1 ∼ N (ξt−1, Pt−1). (2.15)

By the principle of iteration, like (2.13) to (2.14) , we can get the result

µ | Yt ∼ N (ξt , Pt ) (2.16)

where

ξt = ξt−1 + Pt−1it (yt − i ′tξt−1)

i ′t Pt−1 it + σ 2
,

Pt = Pt−1 − Pt−1it i ′t Pt − 1

i ′t Pt−1it + σ 2
,

Yt = (yt , x ′
t, yt−1, x ′

t−1, . . . , y1, x ′
1)

′.

4For more detail, readers are referred to Hamilton (2001) Lemma 3.1 fro more details
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From the above descriptions, Hamilton uses iteration method to derive the condition

mean gradually. Finally, as show in (2.16), he uses all the data to derive the latent µ.

But there still exists some unknown population parameters (α,α′, σ, g′, λ)′ needed to

be estimated. We can obtain them by MLE. It follows that from (2.12) and (2.15), and

yields

yt | xt, Yt−1 ∼ N (i ′tξt−1, i ′t Pt−1it + σ 2).

So, we can calculate the conditional log-likelihood of the t th observation from

ln f (yt | xt, Yt−1; α,α′, σ, g′, λ) = −1

2
ln(2π)−1

2
ln(i ′t Pt−1 it+σ 2)−1

2

(yt − i ′tξt−1)
2

i ′t Pt−1it + σ 2
,

and estimate the unknown population parameters (α,α′, σ, g′, λ)′ by maximizing

T
∑

t=1

ln f (yt | xt, Yt−1; α,α′, σ, g′, λ). (2.17)

Thus, we can get (α̂, α̂′, σ̂ , ĝ′, λ̂)′ and then infer the estimated conditional mean µ̂.

2.2.2 GLS Representation

We can not infer the conditional meanµ and the unknown parameters (α,α′, σ, g′, λ)′

since the random field m(·) is unseen and latent. So Hamilton represents the model as

GLS form to circumvent this problem. In other word, we separate unknown part into

residual. That is to say, we represent it as















y1

y2
...

yt















=















1 x ′
1

1 x ′
2

...
...

1 x ′
T















[

α0 α′
]

+















λm(g ⊙ x1) + ε1

λm(g ⊙ x2) + ε2
...

λm(g ⊙ xT ) + εT















.

To simplify it as

y = Xβ + u, (2.18)

where y ∼ N (Xβ, P0 + σ 2 IT ), and u is the residual, the part of nonlinear and latent

component, which helps us to avoid confirming the unknown stochastic process m(·).

For more details, when estimating (α,α′, σ, g′, λ)′, we first classify the model (2.1)

into two component: linear (known) component α0 + α′
t , and nonlinear (unknown)
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component λm(g ⊙ xt) + εt . Second, we rewrite it as GLS form (2.18). Third, we

calculate the log likelihood of y:

ln f (y;ψ, θ) = −T

2
ln(2π) − T

2
ln σ 2 − 1

2
ln |W(X; θ)|

− 1

2σ 2
(y − Xβ)′W(X; θ)−1(y − Xβ)

where

W(X; θ) ≡ ζ 2 H(g) + IT

for ζ ≡ λ/σ , linear parameters ψ = (α0,α
′, σ 2), nonlinear parameters θ = (g′, ζ )′,

and H(g) denoted as (T × T ) matrix of Hk(·) in (2.7). Given the nonlinear part θ , we

can obtain the linear part ψ of the model consisting of β and σ 2 as

β̃(θ) = [X ′W(X; θ)−1X]−1[X ′W(X; θ)−1 y], (2.19)

σ̃ 2(θ) = [y − Xβ̃(θ)]′W(X; θ)−1[y − Xβ̃(θ)]/T . (2.20)

Thus we can write the concentrated log likelihood function as

η(θ; y, X) = −T

2
ln(2π) − T

2
ln σ̃ 2(θ) − 1

2
ln |W(X; θ)| − T

2
(2.21)

Given the equation (2.21), we can estimate nonlinear component θ̂ by maximizing it.

Inserting θ̂ into (2.19) and (2.20) to get ψ̂ .

Hamilton estimates the unknown population parameters ψ and θ in different way

from subsection 2.2.1. Indeed, it circumvents the problem of unseen stochastic process

m(·), and instead he uses GLS representation to separate it into the residual which helps

us to simplify the complexity of calculations.

2.3 Nonlinearity Test

In the framework of (2.1) and (2.2), it is easy to observed that we can test the linearity

either by λ or vector g, which makes contribution to the nonlinearity and curvature,

respectively. Dahl and Gonzále-Rivera (2003) denote them as λ-test and g-test. When

proceeding the test, there exists a nuisance parameter problem, where a set of parame-

ter are unidentified under the null hypothesis. For more details: (i) In the case of null

hypothesis H0 : λ2 = 0, the parameter vector g will become unidentified under the
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null and the number of unidentified parameters increases with the dimensionality of

the model. (ii) In the case of null hypothesis H0 : g = 0k , only one λ will become

unidentified whatever dimensionality of model increases, and the stochastic process

becomes nonergodic, where the ergodicity is critical assumption for the law of the large

number to hold. Nonergodicity imply that the nonlinearity test based on g may not

have a well defined asymptotic distribution under the null. Hence Hamilton deals with

the problem in the first case by fixing g, and Dahl and Gonzále-Rivera (2003) redefine

the random field m(x) as Minikoski distance instead of Euclidean distance to circum-

vent the nuisance problem. We here rewrite a general function of (2.18), that is

y ∼ N (Xβ, λ2Ck + σ 2 IT ), (2.22)

where Ck is generic covariance function determines its corresponding random field

uniquely. Ck can be Hamilton’s in (2.7) based on L2 norm, or be that of Dahl and

González-Rivera’s in (2.9) based on L1 norm, or be permissible covariance in (2.10).

Further we can calculate the model’s log-likelihood function

ℓ(β, λ2, g, σ 2) = −T

2
log(2π) − 1

2
log |λ2Ck + σ 2 IT |

− 1

2
(y − Xβ)′(λ2Ck + σ 2 IT )−1(y − Xβ), (2.23)

which is the basis for the LM tests for nonlinearity Under the null hypothesis H0 :
ϑ = ϑ̃ with ϑ̃ = (ϑ0

1
′
, ϑ̃ ′

2)
′, the Lagrange multiplier statistic is given by L M =

s(ϑ̃)′I−1s(ϑ̃) where s(ϑ̃) is score function, and I means the information matrix.

Hamilton’s λ-test, denoted λE

H
, is base on Hessian log-likelihood function information

matrix IH. Dahl and González-Rivera’s λ-test, denoted λA

OP
, is based on outer-product

of the score function IOP information matrix. The L M statistic is χ2 ∼ (q) where q

equals the number of restrictions under the null.

2.3.1 λ-test

λ test based on known covariance functions

There will be a unidentified nuisance problem when proceeding λ test under the null

H0 : λ2 = 0. Hamilton deals with this by fixing g. In other word, he assumes

the complete knowledge of covariance matrix associated with the random field, when



16

calculating the L M statistic. That is to say, we must fully know the covariance to

the random filed by assumption. Due to the L2 norm, the model (2.22) shows that

y ∼ N (Xβ, λ2 Hk + σ 2 IT ) and yields the log-likelihood function (2.23) for Ck = Hk .

Furthermore, the score function is

∂ ℓ(β, λ2, g, σ 2)

∂λ2

∣

∣

∣

∣

λ2=0,g;Ck =Hk

= 1

2σ 4

[

u′ HT u − σ 2tr(HT )

]

,

and Hessian type information matrix IH can be expressed as

IH =









(2σ 4)−1tr(H2
T ) (2σ 4)−1tr(HT ) 0′

(2σ 4)−1tr(HT ) (2σ 4)−1T 0′

0 0 σ−2 X ′X









.

So that, the λE

H
statistic, which is based on Euclidean distance and Hessian type infor-

mation matrix, can be calculate as

λE

H
(g) = û′ HT û − σ̃ 2

T tr(MT HT MT )
(

2tr
{

[MT HT MT − (T − k − 1)−1 MT tr(MT HT MT )]2
})1/2

∼ χ2(1),

(2.24)

where M = IT − X(X ′X)−1 X ′.

Dahl and González-Rivera propose an alternative λ-test, λE

OP
, based on IOP, and de-

rive it as T R2 version statistic conditional on fully known covariance function. Fixing

g likewise and calculate score function under the null, they are

s(λ2)

∣

∣

∣

λ2=0,g
= ∂ℓ(β, λ2, g, σ 2)

∂λ2

∣

∣

∣

∣

λ2=0,g
= − 1

2σ 2
x̃ ′

1κ,

s(σ 2)

∣

∣

∣

λ2=0,g
= ∂ℓ(β, λ2, g, σ 2)

∂σ 2

∣

∣

∣

∣

λ2=0,g
= − 1

2σ 2
x̃ ′

2κ,

where x̃1 = vec(Ck), x̃2 = vec(IT ), and κ = vec(IT − uu′/σ 2). Since κ ′κ/T 2 p−→ 1,

the TR2 version of the LM statistic is

λE

OP
(g) = T 2

2

κ ′ x̃(x̃ ′ x̃)x̃κ
κ ′κ

∼ χ2(1), (2.25)

where x̃ = (x̃1 : x̃2). We can obtain the statistic by the following procedure: (1) Esti-

mate the model under the null and compute û = y − (X ′X)−1 X ′ y and σ̂ 2 = u′u/T .

(2) Obtain the least squares estimate of ν, denoted ν̂, from the auxiliary regression

κ̂ = φ1 x̃1 + φ2 x̃2 + ν, using κ̂ = vec(IT − ûû′/σ̂ 2). (3) Obtain the uncentered R2 as

R2 = 1 − ν̂′ν̂/κ̂ ′κ̂ . (4) Finally, the LM statistic exhibits as λE

OP
= T 2 R2/2.
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λ-test based on unknown covariance functions

If the parameterized covariance function is unknown, then Dahl and González-Rivera

suggest that approximate the covariance function by Taylor expansion. In addition, we

need to reassume the the random field to the covariance m(·) is continuous and dif-

ferentiable with homogeneities and Gaussianness, and consider the permissible covari-

ance function C∗
k in (2.10) where C∗

k (h∗
ts) = (1−h∗

ts)
2k1(h∗

ts6 1) for h∗
ts = (1/2)dL1(g⊙

xt, g ⊙ xs) = (1/2)r ′
ts g, and rts = {|xt1 − xs1|, |xt2 − xs2|, . . . , |xtk − xsk |}′. Then

take the Taylor expansion on x̃1 = vec(Ck) from auxiliary regression, and rewrite it as

κ̂ts = φ1 x̃ts,1 + φ2 x̃ts,2 + νts

= φ1





2k
∑

j=0

(

2k

j

)

h∗ j

ts (−1) j



 1(h∗
ts6 1) + φ2 x̃ts,2 + νts .

The aim is to avoid the nuisance problem on g, when proceeding the λ-test. So that,

under the assumption of L1 norm, we can measure the nuisance parameter g as a linear

function. And we replace the indicator function 1(h∗
ts6 1) with a smooth function, like

logistic function 1(h∗
ts6 1) ≈ (1 + exp(−γ (1 − h∗

ts))
−1 for fixed γ ≫ 0. Furthermore,

we can restate the auxiliary regression as

κ̂ts = φ̄0 + φ̄1

k
∑

i=1

girts,i + φ̄2

k
∑

i=1

k
∑

j>i

gi g jrts,irts, j

+ φ̄3

k
∑

i=1

k
∑

j>i

k
∑

l> j

gi g j glrts,irts, jrts,l + . . .

+ φ̄2k+2

k
∑

i=1

k
∑

j>i

· · ·
k

∑

m

gi g j . . . gmrts,irts, j . . . rts,m + φ2 x̃2,ts + vts, (2.26)

where φ̄ j is proportional to φ1, that is φ̄ j = c j φ1 with c j being the proportionality pa-

rameter. The subindex ts attached to the vectors κ̂, x̃2, and ν means the tsth entry/row

in the respective vector for t, s = 1, 2, . . . , T , and gi and rts,i denote the i th entry

in the vector g and rst , respectively. By the new auxiliary regression (2.26), φ1 = 0

implies that κ̂ts = φ̄0.5 To rephrase it, φ1 = 0 eliminates the g component from the

auxiliary regression, and circumvents the identification of g under the null. Finally we

5Since φ̄ j is directly proportional to φ1.
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construct analogously the new λ-test

λA

OP
= T 2 R2 ∼ χ2(q∗)

where q∗ = 1 +
∑2k+2

j=1

(k+ j−1
k−1

)

.

2.3.2 g-test

Under the null hypothesis H0 : g = 0k , we have mentioned that λ can not be identified

and stochastic processes become nonergodic, which is the crucial to the law of large

number.6 We modify the model (2.1) in different way, that is yt = α0 +α′xt +λm̃(g ⊙
xt)+εt , where m̃(x) = m(x)−m(0k). Notice that m̃(0k) = 0 and m̃(x) obeys Gaussian

distribution, the model under the null becomes yt = α0 + α′xt which restores the

ergodicity of yt . The key of restoring the ergodicity is m̃(x), thus the covariance C̃k to

the modified random field m̃(x) is worthy to be discussed. Let C̃k = E[m̃(x)m̃(z)] be

the covariance function that uniquely determines the random field m̃(x). Calculate the

C̃k as

C̃k(x, z) = E[m(x)m(0k)][m(z)m(0k)]
= E[m(x)m(z)] + E[m(0k)m(0k)] − E[m(x)m(0k)] − E[m(z)m(0k)]
= Ck(x, z) + Ck(0k, 0k) − Ck(x, 0k) − Ck(0k, z), (2.27)

which C̃k is called structure function, and is permissible.

Analogous to the λA

OP
, we also want to propose a new g-test, based on L1 norm and

denoted as gOP, which is free of the nuisance problem of λ parameter under the null. As

the same token, we keep λ fixed and calculate its score function under the null. They

are

s(gi )|λ2,g=0 = − λ2

2σ 2
x̃ ′

iκ, i = 1, 2, . . . , k, (2.28)

s(σ 2)

∣

∣

∣

λ2,g=0
= − 1

2σ 2
x̃ ′

k+1κ, (2.29)

6Consider the model (2.1) under the null yt = α0 + α′xt + λm(0k), where m(0k) ∼ N (0, 1). It

becomes apparent that the model will be linear on xt , but yt will be nonergodic since

E(yt yt−s) =
{

λ2 + σ 2 for s = 0,

λ2 for s > 0.
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where x̃i = ∂ vec(C̃k)/∂gi |g=0, x̃k+1 = vec(IT ), and κ = vec(IT − uu′/σ 2). By the

score function (2.28) and (2.29), we can derive the TR2 version LM statistic of g-test

with the auxiliary regression

κ̂ts =
k

∑

i=1

φ̃1r̃ts,i + φ̃k+1 x̃k+1,ts + ν̃ts, (2.30)

where r̃ts,i = −k(|xti − xsi | − |xti | − |xsi |), for t, s = 1, 2, . . . , T . So that, the LM

statistic is given as gOP = T 2 R2 ∼ χ2(k).



Chapter 3

Empirical Study

3.1 Data Description and Uncertainty Measurement

We use monthly data of consumer price index (CPI) of the Four Dragon of East Asia,

that is, Taiwan, Hong Kong, Singapore, and South Korea, to investigate the relation-

ships between inflation and inflation uncertainty. The sample period are 1980:01∼2002:12,

1985:01∼2003:07, 1977:01∼2003:07, and 1965:01∼2003:08 for Taiwan, Hong Kong,

Singapore, and South Korea, respectively. The data source comes from Taiwan Educa-

tion AREMOS Data Bank.

Preliminarily we need to solve a problem that how to measure the inflation uncer-

tainty? The traditional approach to investigate this issue is by the GARCH-type models.

The merit of this model is that the inflation uncertainty is automatically constructed by

the conditional heteroscedasticity estimate of the GARCH model. Because the flexible

regression model cannot generate the conditional variance as the GARCH model, we

need to construct a specific measure for the inflation uncertainty. Following Arize et al.

(2000), we instead take the measurement of moving average standard deviation as our

proxy for the inflation uncertainty.1 The inflation uncertainty measurement is defined

1A fundamental problem of this measurement is that it is a “generated regressor variable” which

might understate the true inflation uncertainty. However, Lo and Piger (2003) presents the estimated

results between generated and ungenerated variables and find little difference between them. Hamilton’s

approach is a trad-off because GARCH model cannot catch the nonlinear relationships between inflation

rate and inflation uncertainty, though, it avoids the generated regressor problem inherently.

20
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as follows.

Jt+m =
[

1

m

m
∑

i=1

(Rt+i−1 − Rt+i−2)
2

]1/2

, (3.1)

where R is the nature logarithm of CPI, and m is the order of the moving average. In

this study, we employ the order m = 7. Figure 3.1 graphs the inflation and inflation

uncertainty of these economies.

3.2 Econometric Model

We employ Hamilton’s flexible regression model to find the relationships between in-

flation rates and inflation uncertainty. We focus on two hypotheses. The first is “Fried-

man’s hypothesis”, that is, does higher rates of inflation increase higher inflation uncer-

tainty? Another hypothesis is “Cukierman-Meltzer’s hypothesis” which examines does

higher inflation uncertainty cause higher level of inflation rates? As discuss in previ-

ous chapter on model specification, the empirical models for the two hypotheses are as

follows

σπt = β0 +
q

∑

j=1

β jσπt− j + ϕπt + λσ m(k ⊙ zt ) + νt , (3.2)

πt = α0 +
p

∑

i=1

αiπt−i + φσπt + λπm(g ⊙ xt) + εt , (3.3)

where zt = {σπt−1, σπt−2, . . . , σπt−q , πt}, xt = {πt−1, πt−2, . . . , πt−p, σπt }. Terms πt

and σπt denote the inflation and inflation uncertainty, respectively. Terms q and p de-

note the optimal lag length of equation (3.2) and (3.3), respectively. If the estimate of

ϕ in equation (3.2) is significantly different from zero, then it provides evidence that

the inflation rates have linear effect on the inflation uncertainty. By the same token,

if the estimate of φ is significantly different from zero, then the inflation uncertainty

will exert effect on inflation rates. Instead of linear relation between inflation rates and

inflation uncertainty, we catch the nonlinear relationships between them by Hamil-

ton’s flexible regression model. We show the detail empirical results in the following

paragraphs.

Before estimation, we select the optimal lag lengths of regressors in equations (3.2)

and (3.3) by the Schwarz Bayesian criterion (SBC) instead of Akaike information cri-
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(a) Taiwan’s inflation and inflation uncertainty (b) Hong Kong’s inflaiton and inflation uncertainty

(c) Singapore’s inflation and inflation uncertainty (d) Korea’s inflation and inflation uncertainty

Figure 3.1: Figures of inflation and inflation uncertainty in four economies
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Table 3.1: The results of the optimal lag lengths of regressors selected by SBC

Taiwan Hong Kong Singapore South Korea

σπ t−1 −12.588 −12.547 −14.540 −12.654
σπ t−2 −12.592∗ −12.556∗ −14.606∗ −12.744∗

σπ t−3 −12.590 −12.539 −14.597 −12.730
σπ t−4 −12.569 −12.514 −14.583 −12.720

πt−1 0.031∗ −0.216 −1.208 0.418
πt−2 0.039 −0.211 −1.306 0.247
πt−3 0.059 −0.391∗ −1.389∗ 0.103∗

πt−4 0.057 −0.380 −1.371 0.105

Symbol * denotes the best selection by SBC

terion. The reason is based on Dahl and Gonzále-Rivera (2003), they mentioned that

“moderate number of lags is recommended to guard against dynamic misspecification.”

Table 3.1 reports the results from AR(1) to AR(4). According to parsimonious princi-

ple, the final chosen model is picked up by choosing the minimum value of SBC. For

equation (3.2), the optimal lags are two for all economies. As for equation (3.3), the

optimal lags for Hong Kong, Singapore, and South Korea are three, while for Taiwan it

is unity.

3.3 Empirical Analysis

3.3.1 Taiwan

Panel A in Table 3.2 presents the empirical results of equation (3.2) i.e., Friedman’s

hypothesis, and the nonlinear tests statistics. Several observations can be extracted

from it. First, if the linear hypothesis λ = 0 is not rejected, then the regression (3.2)

turns out to be linear since the nonlinear part in equation (3.2) disappears. From the

table, it is clear that the λE

H
, λE

OP
, and λA

OP
statistics significantly reject the linear null

hypothesis in favor of the nonlinear alternative. As a result, we may conclude that the

relation is nonlinear. Second, the linear estimate of πt is not significant at 5% level,

it seems that Friedman’s hypothesis does not hold for linear relation. Third, as for

the nonlinear component, we can observe that the estimates of σ TW

πt−1
and σ TW

πt−2
are
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Table 3.2: The estimated results of the linkage between inflation and inflation uncertainty in the case of Taiwan

(A) Friedman’s hypothesis: σπt = β0 +
∑q

j=1 β j σπt− j + ϕπt + σ [ζm(k ⊙ zt ) + νt ]

β0 β1 β2 ϕ σ ζ k1 k2 k3 λE
H λE

OP λA
OP gOP

0.004∗∗∗ 0.825∗∗∗ −0.030 3.8e−4 0.001∗∗∗ 1.025∗∗∗ −43.926 11.872 0.539∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.001) (0.078) (0.063) (2.2e−4) (7.9e−5) (0.303) (26.650) (22.593) (0.073)

(B) Cukierman-Meltzer’s hypothesis: πt = α0 +
∑p

i=1 αiπt−i + φσπt + σ [ζm(g ⊙ xt ) + εt ]

α0 α1 φ σ ζ g1 g2 λE
H λE

OP λA
OP gOP

−0.693 0.019 78.946∗∗ 0.860∗∗∗ −0.921 1.157∗∗∗ 215.451∗∗∗ 0.004∗∗∗ 0.028∗∗ 0.002∗∗∗ 0.024∗∗

(0.592) (0.140) (39.416) (0.108) (0.716) (0.067) (16.251)

Rejection of null hypothesis at 1%, 5%, and 10% level is indicated by ***, **, and *, respectively. The number in parenthesis is the standard error.

Table 3.3: The estimated results of the linkage between inflation and inflation uncertainty in the case of Hong Kong

(A) Friedman’s hypothesis: σπt = β0 +
∑q

j=1 β j σπt− j + ϕπt + σ [ζm(k ⊙ zt ) + νt ]

β0 β1 β2 ϕ σ ζ k1 k2 k3 λE
H λE

OP λA
OP gOP

0.001 1.027∗∗∗ −0.189∗∗∗ −2.5e−5 0.002∗∗∗ 1.027 97.323 55.030 2.383 0.735 0.672 0.027∗∗ 0.132

(4.6e−4) (0.068) (0.069) (1.9e−4) (9.0e−5) (0.203) (245.590) (456.070) (2.062)

(B) Cukierman-Meltzer’s hypothesis: πt = α0 +
∑p

i=1 αiπt−i + φσπt + σ [ζm(g ⊙ xt ) + εt ]

α0 α1 α2 α3 φ σ ζ g1 g2 g3 g4 λE
H λE

OP λA
OP gOP

−0.266 0.658∗∗∗ −0.530∗∗∗ 0.433∗∗∗ 38.323 0.539∗∗∗ 1.511∗∗∗ 0.261∗∗ 0.591∗∗∗ 0.839∗∗∗ 77.892∗∗∗ 0.005∗∗∗ 0.102 0.001∗∗∗ 0.002∗∗∗

(0.456) (0.111) (0.127) (0.127) (32.283) (0.059) (0.416) (0.113) (0.175) (0.185) (28.032)

Rejection of null hypothesis at 1%, 5%, and 10% level is indicated by ***, **, and *, respectively. The number in parenthesis is the standard error.
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Figure 3.2: The effect of inflation on inflation Uncertainty—Taiwan.

insignificantly different from zero, in other words, σ TW

πt−1
and σ TW

πt−2
play no roles in the

nonlinearity. By contrast, the nonlinear estimate of π TW

t is statistically and significantly

different from zero, suggesting that the nonlinearity seems to be mainly contributed by

the π TW

t variable. The result is evidenced by the linear test gOP is significantly rejected.

As addressed in Hamilton (2001), given values of ϑ = {β0, β1, β2, ϕ, ζ, k1, k2, k3, σ },

we can calculate a value for equation (3.2) for any z∗ of interest, which represents the

econometrician’s inference as the value of the conditional mean µ(z∗) when the ex-

planatory variables take on the value represented by z∗ and when the parameters are

known to take on these specified values. For example, Figure 3.2(a) plots the condi-
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Figure 3.3: The effect of inflation uncertainty on inflation rate—Taiwan.

tional expectation function with respective to σ TW

t−1 holding σ TW

t−2, and π TW

t constant,

i.e., the figure plots Ê[µ(σ TW

t−1, σ̄ TW

t−2, π̄ TW

t ) | YT ] as a function of σ TW

t−1 for σ̄ TW

t−2, π̄ TW

t the

sample mean for variable σ TW

t−2, π TW

t , and YT the given sample observations on σ TW

t ,

σ TW

t−1, σ TW

t−2, and π TW

t . Solid line is the posterior mean with N = 5, 000 Monte Carlo

draws for specification. Dashed lines are the 95% confidence intervals. Figures 3.2(b)

and (c) also plot the conditional expectation functions with respective to σ TW

t−2 and π TW

t ,

respectively.

It is no doubt that the relationship between σ TW

t and σ TW

t−1 is positive but linear,

while the relationship between σ TW

t and σ TW

t−2 is negative and linear but not significant,

entirely consistent with the insignificant nonlinear estimates of k1 and k2 given in panel

A of Table 3.2. Moreover, the functional form between σ TW

t and π TW

t (Figure 3.2(c)) dis-

plays the U shape, suggesting a nonlinear effect of the inflation on inflation uncertainty.

A fact is that if deflation rates increase (π TW

t < 0), then the deflation uncertainty will

increase. Likewise, if inflation rates increase (π TW

t > 0), then the inflation uncertainty

will increase. Furthermore, inflation uncertainty is more sensitive to inflation in infla-

tionary period than that in deflationary period, since the slope is asymmetric. Another

interesting observation is that minimum level of inflation is at around 0.8%, suggesting

that the best inflation target level to minimize the inflation uncertainty for the mone-

tary authority is to set inflation rate at about 0.8%.

Overall, the linear estimate suggests that higher inflation rates have no effect on in-
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flation uncertainty because ϕ is not significantly different from zero. However, from the

estimate of nonlinear component k3, the inflation rates exert significantly and positive

effect on inflation uncertainty, suggesting that Friedman’s hypothesis is supportable.

This result provides evidence that we might make a bias conclusion if we ignore the

important nonlinear component of the data.

Panel B of Table 3.2 summarizes the results of equation (3.3), which allow us to

examine the reverse relationship that does higher inflation uncertainty cause higher

rate of inflation (Cukierman-Meltzer’s hypothesis)? First note that, again, the linear

null hypothesis is significantly rejected by the λ test statistics at 5% level in favor of

nonlinearity. Second, the linear estimate of φ is significantly and positively different

from zero, suggesting that the inflation uncertainty has linear effect on inflation rates.

If we pay attention to the nonlinear component estimates, then we can find that

the estimates of π TW

t−1 and σ TW

t are significantly different from zeros. The results are

consistent with the rejection of the gOP test, and also evidenced by Figure 3.3(a) and

3.3(b), respectively. The effect of π TW

t−1 on π TW

t displays an ambiguous pattern but does

show the nonlinear relationships. The more interesting graphs is Figure 3.3(b), the ef-

fect of σ TW

t on π TW

t shows the inverted-U shape, suggesting a nonlinear effect of inflation

uncertainty on inflation rates. It is interesting to note that there is a positive relation be-

tween inflation uncertainty and inflation rate (Cukierman-Meltzer’s hypothesis holds)

at a specific level of inflation uncertainty σ TW

πt
= 0.012. When the level of inflation

uncertainty is higher that 0.012, then the pattern shows a negative relation in favor of

Holland’s hypothesis.

3.3.2 Hong Kong

The empirical results for Hong Kong are summarized in panel A of Table 3.3. The

linear null hypothesis cannot be rejected by the λE

H
, λE

OP
, and gOP statistics, but can be

rejected by λA

OP
. The conflict consequences induce a difficulty in judging the nonlinear

property of the data. For conservative reason, we double check the individual nonlinear

component estimates, that is, k1, k2, and k3. The estimates show that they are not

significantly different from zero, which is consistent with the linear test result of gOP. We

conclude that there is no strong nonlinear evidence to support Friedman’s hypothesis

in Hong Kong.
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Figure 3.4: The effect of inflation on inflation uncertainty—Hong Kong.

From panel A, it is no doubt that the linear estimate of σ HK

t−1 and σ HK

t−2 are positive

and negative significantly different from zeros, respectively. While for the linear esti-

mate of πHK

t , it is insignificantly different from zero, suggesting that the inflation rate

does not have linear effect on the inflation uncertainty in Hong Kong. The graphs of

the conditional expectation functions with respective to σ HK

t−1, σ HK

t−2, and πHK

t are put

in Figure 3.4.The conditional expectation function of σ HK

t−1 on σ HK

t is obviously positive

linear sloped, while the condition expectation functions of σ HK

t−2 and πHK

t on σ HK

t are

negative sloped and relative flat, respectively. Although they are not obvious straight,

according to last paragraph expositions, we think them do not have nonlinear charac-
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Figure 3.5: The effect of inflation uncertainty on inflation rate—Hong Kong.

teristics.

Turning our attention to the Cukierman-Meltzer’s hypothesis, empirical results are

summarized in the panel B of Table 3.3. Two of the linear null hypothesis, λ-test (λE

H

and λA

OP
) and g-test, are significantly rejected at 1% level, suggesting there is nonlin-

ear property in the data. However, the insignificant linear estimate of φ provides no

evidence that higher inflation uncertainty will exert linear effect on higher inflation

rates.

The linear test of gOP is also rejected, which is consistent with the significant non-

linear component estimates of {g1, . . . , g4}. Observe the conditional expectation func-
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tion of πHK

t with respectively to πHK

t−1, πHK

t−2, πHK

t−3, and in Figure 3.5(a)–(c), they show

the appearance of nonlinear relations. Figure 3.5(d) demonstrates that the Cukierman-

Meltzer’s hypothesis is held, that is, the higher inflation uncertainty raises higher rate

of inflation.

Overall, the Friedman’s hypothesis is not necessarily supportable in our model. By

contrast, Cukierman-Meltzer’s hypothesis is accepted for both linear and nonlinear

components in Hong Kong.

3.3.3 Singapore

Panel A of Table 3.4 presents empirical results of equation (3.2) in the case of Sin-

gapore. First, the nonlinear test λE

H
, λA

OP
, and gOP all reject the null hypothesis of the

linearity of the model. We conclude that the relationship of equation (3.2) is non-

linear. Second, the linear estimate of πt is not significant, implying that Friedman’s

hypothesis is not supportable. Third, as for the nonlinear component, estimates of

k̂ = (413.886, 331.397, 2.245)′ are statistically significant and different from zeros,

indicating that all regressors including inflation πt have nonlinear and positive effect

on inflation uncertainty σt . We here find the nonlinear evidence that inflation does

cause inflation uncertainty.

Analogously, Figure 3.6 displays the conditional expectation function of each vari-

ables. From Figure 3.6(a) and (b), the relationship between σ SIG

t−1 and σ SIG

t is positive

sloped; the relationship between σ SIG

t−2 and σ SIG

t is negative sloped. Shed light on the

relationship between inflation and inflation uncertainty, Figure 3.6(c) shows a slight U

shape pattern where the higher inflation or deflation will exert higher inflation uncer-

tainty.

Panel B of Table 3.4 summaries the results for equation (3.3). First, nonlinearity

tests λE

H
, λA

OP
, and gOP all reject the null hypothesis of linearity of the model at 1% sig-

nificant level. It is intended to accept the nonlinear relation in equation (3.3). Second,

the linear estimate of φ is significantly different from zero at 10% significant level, sug-

gesting that weaker linear effect of inflation uncertainty affect rate of inflation.

By contrast, the nonlinear component estimate of σ SIG

t is statistically and signifi-

cantly different from zero, indicating that higher inflation uncertainty will have non-

linear effect on rate of inflation, i.e., Cukierman-Meltzer’s hypothesis holds. Illustrate
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Table 3.4: The estimated results of the linkage between inflation and inflation uncertainty in the case of Singapore

(A) Friedman’s hypothesis: σπt = β0 +
∑q

j=1 β j σπt− j + ϕπt + σ [ζm(k ⊙ zt ) + νt ]

β0 β1 β2 ϕ σ ζ k1 k2 k3 λE
H λE

OP λA
OP gOP

0.001∗∗ 1.126∗∗∗ −0.261∗∗∗ 2.7e−4 5.2e−4∗∗∗ 1.287∗∗∗ 413.886∗∗∗ 331.397∗∗ 2.245∗∗∗ 0.036∗∗ 0.806 0.025∗∗ 0.001∗∗∗

(4.4e−4) (0.096) (0.091) (2.1e−4) (3.9e−5) (0.317) (121.436) (132.434) (0.351)

(B) Cukierman-Meltzer’s hypothesis: πt = α0 +
∑p

i=1 αiπt−i + φσπt + σ [ζm(g ⊙ xt ) + εt ]

α0 α1 α2 α3 φ σ ζ g1 g2 g3 g4 λE
H λE

OP λA
OP gOP

−0.534 0.777∗∗∗ −0.493∗∗∗ 0.055 126.262∗ 0.337∗∗∗ 1.861∗∗∗ 0.210∗∗∗ 0.432∗∗ 0.091 399.728∗∗∗ 0.002∗∗∗ 0.093∗ 0.001∗∗∗ 0.001∗∗∗

(0.533) (0.113) (0.163) (0.077) (72.703) (0.034) (0.668) (0.092) (0.162) (0.064) (38.033)

Rejection of null hypothesis at 1%, 5%, and 10% level is indicated by ***, **, and *, respectively. The number in parenthesis is the standard error.

Table 3.5: The estimated results of the linkage between inflation and inflation uncertainty in the case of South Korea

(A) Friedman’s hypothesis: σπt = β0 +
∑q

j=1 β j σπt− j + ϕπt + σ [ζm(k ⊙ zt ) + νt ]

β0 β1 β2 ϕ σ ζ k1 k2 k3 λE
H λE

OP λA
OP gOP

0.003∗∗∗ 1.255∗∗∗ −0.434∗∗∗ 2.6e−4∗ 0.001∗∗∗ 0.981∗∗∗ 173.555∗∗∗ 175.302∗∗∗ 0.232∗∗∗ 0.041∗∗ 0.671 0.019∗∗ 0.130

(0.001) (0.097) (0.095) (1.4e−4) (8.2e−5) (0.323) (65.841) (32.954) (0.073)

(B) Cukierman-Meltzer’s hypothesis: πt = α0 +
∑p

i=1 αiπt−i + φσπt + σ [ζm(g ⊙ xt ) + εt ]

α0 α1 α2 α3 φ σ ζ g1 g2 g3 g4 λE
H λE

OP λA
OP gOP

−0.828∗∗∗ 0.842∗∗∗ −0.647∗∗∗ 0.060 155.938∗∗∗ 0.243∗∗∗ 4.153∗∗∗ 0.747∗∗∗ 1.903∗∗∗ −1.797∗∗∗ 120.757∗∗∗ 0.002∗∗∗ 0.017∗∗∗ 0.001∗∗∗ 0.002∗∗∗

(0.211) (0.062) (0.073) (0.060) (16.994) (0.098) (1.855) (0.105) (0.267) (0.345) (26.764)

Rejection of null hypothesis at 1%, 5%, and 10% level is indicated by ***, **, and *, respectively. The number in parenthesis is the standard error.
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Figure 3.6: The effect of inflation on inflation uncertainty—Singapore.

again, Figure 3.7 displays the conditional expectation functions for each variables. Fig-

ure 3.7(a) and (c) demonstrate that the effect of π SIG

t−1 and π SIG

t−3 on π SIG

t are both positive

and nonlinear, respectively while Figure 3.7(b) exhibits that the effect of π SIG

t−2 on π SIG

t

is negative and nonlinear. Focusing on Figure 3.7(d), it shows that the relationship be-

tween inflation uncertainty and inflation is positive and nonlinear. In other words, it

provides the evidence to support Cukierman-Meltzer’s hypothesis that higher inflation

uncertainty causes higher inflation uncertainty.
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Figure 3.7: The effect of inflation uncertainty on inflation rate—Singapore.

3.3.4 South Korea

Panel A in Table 3.5 reports the empirical results of Friedman’s hypothesis. A mix-

ing result of linearity test is found. The λA

OP
and λH

E
reject linear hypothesis, while

the λE

OP
and gOP accept the linear null hypothesis. It becomes difficult for us to judge

whether the variables contribute to nonlinearity. However, the nonlinear estimates

k̂ = (173.555, 175.302, 0.232)′ are all significantly different from zero, suggesting that

there is the nonlinear properties in the model. Figure 3.8(a) and (b) plot that σ KR

πt−1
and

σ KR

πt−2
have nonlinear positive and negative effect on σ KR

πt
, respectively. As for Friedman’s



34

Inflation Uncertainty (t − 1)

I
n
f
l
a
t
i
o
n

U
n
c
e
r
t
a
i
n
t
y

(
t)

(a) Effect of σ KR
t−1 on σ KR

t

Inflation Uncertainty (t − 2)

I
n
f
l
a
t
i
o
n

U
n
c
e
r
t
a
i
n
t
y

(
t)

(b) Effect of σ KR
t−2 on σ KR

t

Inflation

I
n
f
l
a
t
i
o
n

U
n
c
e
r
t
a
i
n
t
y

(c) Effect of πKR
t on σ KR

t

Figure 3.8: The effect of inflation on inflation uncertainty—South Korea

hypothesis, significance of nonlinear estimates of inflation provide the evidence in fa-

vor of it even though it is insignificant in linear estimate. Figure 3.8(c) plots the U shape

relation between inflation and inflation uncertainty where the best target inflation rate

to minimize inflation uncertainty is about 1%. Park (1995) examines Friedman’s hy-

pothesis using South Korea CPI and also find out the U-shaped relation between infla-

tion and inflation uncertainty. He suggests that, under the assumption that inflation

uncertainty has a negative effect on real economy, the policymaker should conduct the

inflation policy in the range of the threshold level to prevent economic damage from

inflation uncertainty
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Figure 3.9: The effect of inflation uncertainty on inflation rate—South Korea

In Panel B, it reports that the linear tests all reject the null hypothesis in favor of

nonlinearity alternative. Furthermore, the linear and nonlinear estimates of inflation

uncertainty both significantly and positively different from zero, indicating that in-

creased inflation uncertainty raises inflation in favor of Cukierman-Meltzer’s hypoth-

esis. Figures 3.9(a) and (b) show positive and negative relationships between π KR

t−1 and

π KR

t , and π KR

t−2 and π KR

t , respectively. Figure 3.9(c) shows that π KR

t−3 affects π KR

t positively

and nonlinearly. But the slope is more flatter relative to 3.9(a). Furthermore, Figure

3.9(d) shows the positive relation about Cukierman-Meltzer’s hypothesis, consistent

with our empirical results.
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Table 3.6: The summary of empirical results of the relationship between inflation and inflation

uncertainty

Friedman’s hypothesis Cukierman-Meltzer’s hypothesis

Linear Nonlinear Pattern Linear Nonlinear Pattern

Taiwan × © U © © Inverted-U

Hong Kong × × Flat × © Positive sloped

Singapore × © U × © Positive sloped

South Korea × © U © © Positive sloped

3.4 Empirical Illustration and Policy Discussion

Table 3.6 illustrates a summary of our empirical study. In the linear estimates, Fried-

man’s hypothesis is rejected for these four economies. After applying flexible nonlinear

inference, we succeed to capture the nonlinear components to support Friedman’s hy-

pothesis except for Hong Kong. Furthermore, the relationships between inflation and

inflation uncertainty all show an U shape. It can help the monetary authorities to tar-

get an specific level of rate of inflation to minimize inflation uncertainty to prevent

economic damage. Another phenomenon from the U-shaped pattern is that the effect

of inflation on inflation uncertainty is asymmetric.

On the other hand, by using the nonlinear inference, four economies provide over-

whelming evidences in favor of Cuikerman-Meltzer’s hypothesis. Three economies

(Hong Kong, Singapore, and South Korea) show the positive effect of inflation uncer-

tainty on inflation. Interestingly, Taiwan has a dramatic nonlinear pattern, inverted-U,

in describing the relationship between inflation uncertainty and inflation. The effect of

inflation uncertainty on inflation is, in general, positive. In details, under the specific

(threshold) level of inflation uncertainty, the result supports Cuikerman-Meltzer’s hy-

pothesis; Instead, over the threshold level of inflation uncertainty, Cukierman-Meltzer’s

hypothesis is not accepted but in favor of Halland’s hypothesis. The implications are

that the monetary authorities of these three economies (Hong Kong, Singapore, and

South Korea) prefer to behave a opportunistic policy to rise their economic growth (po-

litically motivated expansionary policy). By contrast, the monetary authorities of Tai-

wan seem to prefer a discretionary policy. The Taiwan central bank will behave stabi-

lizing policy to reduce economic harm when inflation uncertainty exceeds a threshold

level.



Chapter 4

Conclusion

In this paper, we apply Hamilton (2001) flexible regression model to investigate the

relationship between inflation and inflation uncertainty for four economies in the East

Asia (Taiwan, Hong Kong, Singapore, and South Korea). Two hypothesis will be ex-

amined. One hypothesis is proposed by Friedman (1977), he argued that increased

inflation could raise inflation uncertainty. The other hypothesis is provided by Cukier-

man and Meltzer (1986), they argued that high level of inflation uncertainty will cause

higher rate of inflation. We find overwhelming statistical evidences that Friedman’s

hypothesis is hold except for Hong Kong. Interestingly, the nonlinearities look like U

shape, implying that higher rates of inflation and deflation will raise inflation uncer-

tainty. The pattern can help us to find a target rate of inflation to minimize inflation

uncertainty and to reduce economic harm.

On the other hand, Cukierman-Meltzer’s hypothesis is also evidenced for all four

economies. Three economies (Hong Kong, Singapore, and South Korea) display posi-

tive relation in favor of Cukierman-Meltzer’s hypothesis, while Taiwan has an inverted-

U shape. Positive relation of Cukierman-Meltzer’s hypothesis indicates that the mon-

etary authorities prefer the opportunistic behavior to promote economic growth. On

the contrary, in the case of Taiwan, under a specific level of inflation uncertainty, the

Taiwan monetary authorities prefer opportunistic policy to rise economic growth. How-

ever, over a specific level of inflation uncertainty, Taiwan’s monetary authorities alter-

natively behave an stabilizing policy to prevent economic damage from inflation uncer-

tainty.
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Appendix A

Distance Difinition

Li et al. (2003) mentioned and summarized Minkowski metric definition. The distance

defined as Minkowski Distance (function) is such that

dρ(X, Y ) =
[

k
∑

i=1

|xi − yi |ρ
]1/ρ

(A.1)

where X and Y are presented by two ρ dimensional vectors (x1, x2, . . . , xk) and (y1, y2, . . . , yk),

respectively. ρ in (A.1) is the Minkowski factor for the norm. ρ = 2 is so-called Eu-

clidean Distance, it is

dL2(X, Y ) =

√

√

√

√

k
∑

i=1

(xi − yi )
2. (A.2)

When ρ is set as 1, it is Manhattan distance (or L1 Norm). A variant Minikowski

function, the weighted Minkowski distance function, shows that

dw
ρ (X, Y ) =

[

k
∑

i=1

wi |xi − yi |ρ
]1/ρ

(A.3)

where wi (i = 1, . . . , k) is weighting coefficient.
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