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中文摘要 

全球所建置的網路數目正與日劇增，而在這些持續增加的網路中，許多都

是直接或間接的連接上網際網路。凡是與網際網路連線的系統，在資料存取、商

業行為以及生產力等方面，都創造了令人振奮的新契機。然而連線也使得該網路

面臨了資料被竊取或遭受危害的危險。有心人士會透過作業系統原有的漏洞或網

際網路協定本身的缺陷，攻擊網路主機、植入木馬程式、竊取商業機密、篡改資

料，甚至阻斷服務，造成企業形象受損或實質上的財務損失。如何有效地確保網

路安全，並遏止網路犯罪，已成為刻不容緩的問題。為了加強網路的安全，防火

牆及入侵偵測系統的出現正是因應之道。 

主機式入侵偵測系統在入侵偵測系統的發展過程當中，扮演著非常重要的

腳色。它是藉由檢查作業系統或應用程式所產生出來的稽核檔案來偵測作業系統

是否遭到入侵，然而這一種偵測方式通常必須花費相當多的電腦資源，如：處理

器的時間及記憶體，及相當長的時間來完成，另一項缺點是無法即時偵測。此外

如何將使用者的操作模式及使用行為轉換成數位的資料記錄下來，仍然是一個很

難達成的目標。為了改善這些問題，我們提出一個改良式的主機入侵偵測系統，

稱為主機式人類行為學入侵偵測系統，Host-based forensic intrusion detection 

system (HFIDS)。我們也設計了一個中介層，稱為 Intelligent Monitor (IM)，並把

它安裝在作業系統的核心及使用者操作介面（例如：Shell）之間，用來蒐集使用

者的一切輸入資料。IM 係即時地監測使用者的活動，再藉由統計使用者的習慣，

迅速地發現使用者的誤用情形或網路的異常情形。我們不只可以找出那個帳號被

盜用，更能找到真正的入侵者。並且 HFIDS 是不需要不斷更新入侵資料庫的，

因為它有自我組織及訓練的能力。此外我們更能藉由資料探勘及人類行為學的技

術即時地發現協同式攻擊，也就是同時有兩個以上入侵者的搭配攻擊。 

逆向追蹤的技術則是本研究的另一個重點，傳統的逆向追蹤技術需要比較
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多的系統資源，並且會增加網路的負載，本研究乃是研製一個輕量型入侵偵測器

（Lightweight Intrusion Detector, LID），除了追蹤由 IM 所發現的入侵攻擊路徑

外，更能提供許多有效的資訊給 HFIDS，例如入侵者的攻擊路徑、弱點電腦的

分布…等，俾即時(Real-Time)地反應。藉由封包浮水印的技術，在可疑的連線封

包中加上一組資訊，以逆向追蹤的方式找出完整的攻擊路徑，讓跳板主機或攻擊

主機無所循形。我們亦採用隱形技術，有效防止駭客攻擊 LID 等。 

HFIDS 的主要偵測步驟，包含前處理、分類、特徵化及探勘四個步驟。我

們成功地將指令的特性導入頻率域，也就是較常出現的指令給予較低的分數，不

常出現及有危險性的指令給予較高的分數，將指令區分成危險、警告及正常三個

等級。而前處理階段就是使用 IM 監視使用者鍵入的指令，比較指令的分數及使

用者是否曾經使用過該指令，以決定是否讓該指令通過審核而進入作業系統，以

降低主機遭受立即性危險的可能性。在 HFIDS 的特徵化階段，除了一邊更新指

令的分數外，同時建立及更新使用者的指令集。指令集包含了該使用者曾經使用

的歷史指令集，以及他的使用習慣。而分類階段則是藉由偵測使用者的習慣（如：

使用指令的習慣），並對照其他使用者以找出其特徵俾強化偵測率。在探勘階段

我們使用資料探勘及統計的技術，同步偵測所有使用者的即時資料，藉以找出協

同式攻擊。 

關鍵字：入侵偵測系統、智慧型監視器、鑑識科學、浮水印、即時偵測 
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Abstract 

As the rapid growing of network system especially in the quantities and the sizes, 

those directly or indirectly connecting to the Internet have brought completely new 

and tremendous opportunities to their owners both on data access, e-commerce as 

well as productivities. But these connections, on the contrary, may also conduct the 

threats of data leaking and attacks. By using the vulnerabilities of operating systems 

or the defects of network protocols, someone may attack the hosts or install a Trojan 

for stealing business secret, fiddling the data and even issuing denial of services. 

These activities have seriously hurt the enterprise both in profit and reputation. 

Currently how to enhance the security to protect a network system and it resources 

from the threats and attacks has become the most important issue in recent network 

security researches. 

Generally, Host-based detection methods play an important role in developing 

an Intrusion Detection System (IDS). One of the major concerns of the development 

is the latency delay. A Host-based IDS system inspecting log files provided by 

operating systems or applications needs much more time and demand a large number 

of computer resources, such as CPU time and memory to analyze its log content. 

Besides, there still a crucial problem of how to quantify human behavior so as risk 

measurement of a system can be easily performed by simply comparing the quantities 

derived. In order to improve the problem we propose a forensic-based IDS, called 

Host-based Forensic Intrusion Detection System (HFIDS), and design a middle layer, 

called Intelligent Monitor (IM), locating between the operating system kernel and its 

applications (e.g., shells), in order to gather the inputs submitted by a user for a 

further analysis. IM on Windows platform is technically implemented by software 

interrupts (e.g., int 21h), while IM on Linux platform can be implemented with Linux 

Loadable Kernel Modules. Of course, different platforms have different 

implementation ways. IM monitors users’ activities in a real-time aspect. By defining 

user profiles previously, it can easily find out the anomalies and malicious accesses 

instantly. With the help of user profiles, we can not only uncover which account has 

been misused, but also realize who the true intruder is. There is no need to update the 

knowledge databases of HFIDS manually. In fact, it is a self-organized and 

self-training system. Furthermore, we can discover cooperative attacks simultaneously 

submitted by users as well by using data mining and forensic techniques as the attacks 
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are performing. 

So far, DDoS attacks have focally attracted both research and industry 

communities’ attention. They can be done automatically by using viruses and worms 

on the Internet. The methods of raising a DDoS attack evolve fast for recent years. 

Also, it is not easy for a system to find out the intrusion and the infecting paths with 

traditional security devices, e.g., packet filter, firewall and application proxy, since 

Viruses, worms and intruders often conceal their identities in the distributed or 

disguised attacks. This article proposes a framework for tracing the intruding and the 

infecting paths so that the vulnerabilities on the devices and hosts along the paths can 

be easily discovered and repaired. As new network device called Lightweight 

Intrusion Detector (LID) used to figure out these paths quickly is designed and 

developed. LID traces the intruder in real-time without increasing the network load 

heavily. It can not only trace the paths of attacks founded by IM, but also provide 

more information to HFIDS for intrusion analysis. 

The working process of HFIDS comprises four phases that are preprocessing, 

classifying, characterizing and mining phases. The commands of a system are divided 

into denial, monitor and normal levels ranking by scores. The preprocessing phase is 

involved to reduce the harm on the systems protected by listening to the keystrokes 

commands that users have so far typed in, and calculating the commands with the 

frequency for generating the Commands Score Table (CST). Namely, IM monitors 

users’ activities in a real-time aspect by using the CST. In the characterizing phase, we 

create profiles for users with Biological and forensic techniques. Lots of attributes are 

helpful, such as typing habit, the time of a day, typing speeds, commands they have 

often submitted, commands they have never used, etc. The classifying phase is to 

recognize and divide them into groups based on their characteristics. In the mining 

phase, words typed by different users are put together to explore their relationship by 

involving data mining techniques and statistics techniques. By accumulating scores, 

we can easily realize who the users having cooperatively initiated an attack are. Are 

they trying to hurt our system？ 

Keywords ： Intrusion Detection System, Intelligent Monitor, Forensic, 

Watermark, real-time detection 
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1 Introduction 

As having been prosperously and rapidly developed, network technologies 

recently have brought to us a whole new life and shopping experience. Also, business 

transactions on the Internet have so far attracted enterprises’ and users’ attention since 

it has brought completely new and tremendous opportunities to their owners on data 

access, e-commerce and productivity to force them becoming invaluable tools so with 

which enterprises can share information and conduct business from online partners. 

But security and cyber crimes consideration on the contrary slow down the speed of 

the market development. Due to the fact that lots of intrusion and attacks causing 

huge financial losses and data damage comes from the Internet. For example, Feb. 10, 

2000 is not a peaceful day for e-companies: eBay, Yahoo, Amazon, CNN and 

Washington Post had been attacked one by one by Distributed Denial of Service 

(DDoS). They lost not only the benefit from temporarily stopping their services 

provided, but also damaged the reliable image established before. According to the 

survey issued by CSI (Computer Security Institute) and FBI (Federal Bureau of 

Investigation) [1] in 2003, only 30% of enterprises are willing to report their injuries 

and only 47% have the ability to quantify their damage. Please refer to Fig. 1.1. 

Particularly, the total amount of money lost is about 201 million US dollars. The 

reasons that people are not willing to report their losses are two folds. First, company 

reputation will be hurt. Second, some of its customers will move to the competitors 

due to their insufficient confidence. So, hiding the intrusion events is another way to 

protect the company itself. 

As hackers have learned to use the network/system vulnerabilities and 

imperfection to access private networks and their resources, studies have shown that 

many organizations have suffered from external and internal network intrusions, 

especially those resulting in sizable losses of money. When penetrating systems by 

taking advantage of bugs or by acquiring passwords, hackers can not only raise the 

Denial of Service (DoS) and fiddle the homepages, but also steal some sensible data, 

such as the commerce secrete and military deployment. Both of them can cause the 

unimaginable consequence, e.g., the patent violation, the raises of a war and even the 

world war. 
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Fig.1.1 2003 CSI/FBI Computer Crime and Security Survey 

Encrypted Login, Firewalls, Reusable Passwords, Anti-virus Software, 

Encrypted Files, Biometrics and Access Control, etc, see Fig.1.2. So far many 

organizations have forced to protect their systems and networks from infection, 

intrusion and attacks by using anti-virus software and firewalls. Viruses are some 

special programs written for infecting a system in order to destroy it or make the 

system work abnormally. They are often pretty small in size and can be a piece of 

assembly language, C language, VBscript code, or even a standalone program. Some 

viruses have the ability to clone themselves and infect other normal programs. Their 

objective is to play a trick with their end users, stealing their private and secret 

information or even destroying the operation systems to paralyze the computers. The 

main functions of Anti-virus software are to scan and remove these special programs 

or just isolate the programs that have been infected. 

As one of the most popular devices/applications for solving network security 

problems, a firewall protects its network and the hosts in the network by checking 

some of the fields in the packets that go through it to see if the packets are legal or not. 

An illegal packet will be discarded and its network connection will be disconnected. 

The fields checked include the source IP, destination IP, Type of services, ports…etc. 
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The administrators have to decide what kinds of services we may have, and what 

kinds of connections whose IP should be checked. We call these activities and 

behavior that a firewall is requested to do the security policy. 

Fig.1.2 Security Technologies Used 

The term physical security, though, is arguably broad. Some people interpret it 

as simply asking whether the office premises as a whole are locked after hours or not, 

while others may quite justifiably interpret it as if there are some specific facilities 

(e.g., special alarms or locked areas) designed to protect computers and network 

assets or not. 
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Generally, access control is a well-known protection mechanism and is often 

implemented by checking password and user ID both of which usually are 

alphanumeric data and often are not long enough to protect the systems safely. Some 

principles of evaluating if the generation and the usage of a password is good enough 

or not have been raised [2]. First, the password must be long enough. More than eight 

characters are recommended. Second, it must be a combination of digits and letters. 

Third, if possible avoid using name, birthday, phone number…etc., as the passwords. 

Finally, change the password frequently. 

On the other hand, intrusion detection systems (IDS) acting like a firewall have 

grown rapidly in recent years. Both of the two devices can be implemented either by 

software or hardware. They play almost the same role, detecting unusual activities and 

intuiting alarms. But often IDS is cleverer in that firewall can only follow the policies 

that the administrators submit, and then block the illegal connections. However, an 

IDS rejects or terminates these connections according to what the users have done. 

For example, an ordinary user is not allowed to delete any system file. However, if 

one user successfully connects to the host by using someone’s legal account, i.e., the 

super user’s account, firewall will do nothing even he/she tries to delete a system file. 

But an IDS analyzes the users’ behaviors to judge their illegalities. When some 

suspicion is discovered, it can terminate the connection and issue an alarm to the 

administrators. 

Imagine that there is a strange person standing in front of our house, looking 

around, investigating the surroundings, then approaching the front door and trying to 

turn the door handle. However, the door is locked. He moves to the nearby window 

and gently tries to open it. It is locked, too. It seems that our house is secure. So why 

do we install a guarding system in the house? The similar question is often raised. If 

firewalls are already established, operating systems have been immediately patched 

once patching programs are available, and passwords have been properly checked, 

why do we redundantly set up an IDS? The answer is simple: because intrusions do 

not disappear. Just as people sometimes, for example, forget to lock a window, the 

administrators occasionally forget to update the rule sets of the firewalls administrated 

or due to some reasons postpone the update. 

Even with the most advanced protection systems, no one dares to say the 
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network and the system being protected is one hundred percent secure. In fact, most 

computer security experts agree that, as providing user-desired features such as 

network connectivity, we’ll never achieve a completely secure system. According to 

the conclusion concluded above, clever intrusion detection techniques and systems for 

discovering and reacting computer attacks and intrusions need to be urgently 

developed. 

In this article, we bring up a new IDS, called Host-based Forensic Intrusion 

Detection System (HFIDS), which is developed with Forensics, Biometrics, data 

mining and watermark techniques. We use the Forensic technique to profile the user 

behavior in order to automate the maintenance of user profiles, data mining technique 

to find out the cooperative attack, and watermark technique to trace back the hackers 

or intruders. The goal of our system is to detect the intrusion real-time, effectively and 

efficiently. 

The rest of this article is organized as follows: Chapter 2 surveys the IDS 

history and the approaches used. Chapter 3 brings up the framework of the improved 

IDS. In Chapter 4, we explain the steps, algorithms and some formulas for detecting 

hackers. Chapter 5 concludes and state the future works. 
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2 History and Motivation 

2.1 History 

At the very beginning, the administrators of a system detect intrusions by sitting 

in front of the console monitoring user activities to see if their system works in a legal 

and normal status or not. Here, we give two abnormal examples. A user being going 

on his/her vacation locally logs in the system or a seldom-used service unusually 

becomes active. Although effective enough at that time, this early approach was 

special and infeasible since the administrators can not go away or out focus from the 

console at all the time. 

The next stage of the detection process, from late ‘70s to early ’80, was to 

inspect the logs. System administrators traditionally printed the audit logs on paper, 

which were often stacked up to four to five feet high by the end of a week, and then 

search the evidence of hacker behavior, an unusual and/or malicious activity, in such a 

stack. It was obviously very time-consuming. With this overabundance of information 

and manual analysis, the administrators mainly used the log content as a forensic data 

to identify the cause of a particular security incident after the incident happened. 

James P. Anderson [3] was the first one proposing the guidelines of transforming the 

requirements of auditing data into documents automatically. He wrote a research plan 

in 1980 for U.S. air force and announced the “Reference Monitor (RF)”, which helped 

a lot in developing intrusion detection techniques in the past years. The inspection 

upon the logs was first carried out. He also suggested that we should transform the 

data collected, by the auditing mechanism, into useful information to reduce the 

redundant and unnecessary security audit data before the administrators start tracing 

the hacker behaviors. 

As storage media becomes cheaper, currently logs are audited and researchers 

also start to develop programs to analyze the log data. An early abstract model of 

typical IDS was provided by Dorothy Denning and Peter Neumann and finally 

adopted by the research plan, supported by “Space and Naval Warfare Systems 

Command (SPAWARS)” of the U.S. navy, to realize the prototype of a real-time 

intrusion detection system, named “Intrusion Detection Expert System (IDES)” [4-6]. 

The working principle of the IDES was to define and uncover the relationship 
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between an abnormal behavior and its corresponding misusage based on previously 

established profiles, a data structure involving a statistical matrix and model to 

describe the behavior among system objects. Activity rules are specified in the profile 

when the behaviors are legally allowed. The abnormal behavior in the project was 

defined as the activities that are rare and unusual and essential portion in usage from 

statistics viewpoint. The definition was wildly used as the fundamental of intrusion 

detection researches in 1980s. In 1987 Denning announced a paper which was 

considered as the milestone in the area of developing intrusion detection systems [7]. 

Besides, IDES uses a kind of hybrid skeleton, an integration of an anomaly 

detector and an expert system to assist the defection of hacker behavior. The former 

uses the statistics skills to characterize the abnormal behaviors, while the latter 

invokes the rule-based approach to detect the known violating activities and is capable 

of helping the anomaly detector to reduce the system risks since an intruder with high 

patience can change his/her actions smoothly in order to hide the intrusion activities 

from the discovery by the anomaly detector. However, the expert system can fit up the 

drawback. 

After the announcement of the IDES, a lot of prototypes of IDS have been  

developed, such as Audit Analysis Project [8] which analyzes the UNIX shell data, 

Discovery expert system [9] which is designed special for use of a database system, 

Haystack [10] which detects the features, (ex: the period of time of every session, the 

number of file being opened, CPU resources used…etc) of an abnormal behavior, 

Multics Intrusion Detection and Alerting System (MIDAS) [11] which uses its system 

information to expand the traditional audit data into session profiles, Network Audit 

Director and Intrusion Reporter (NADIR) [12] which is the first network-based 

intrusion detection system (NIDS), The Network System Monitor (NSM) [13] which 

invokes the matrix-based methodology to analyze the hacker behavior, Wisdom and 

Sense [14] which chooses statistics and rule-based approach to analyze log data and 

Distribution Intrusion Detection System (DIDS) [15] which is the first distributed 

system integrating the Host-based IDS (HIDS) and NIDS. However, most of their 

analyses are comparatively slow and computationally intensive. Therefore, intrusion 

detection programs are usually run at midnight when the systems’ loads are light. In 

other words most intrusions are detected afterward. 
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In the early ‘90s, researchers had developed real-time intrusion detection 

systems that inspected audit data as produced. That is, they detected attacks and 

attempting attacks immediately enabling the real-time response, and, in some cases, 

attacks prevention. 

Recent intrusion detection efforts have centered on the development of the 

products that can be effectively deployed in a large network. There is no easy task. If 

we attempt to increase security concerns, encounter new detecting techniques, and 

compromise with the continuous changes of the surrounding computing environments, 

much more efforts are needed. 

2.2 An overview upon Intrusion detection 

The key task of intrusion detection is seemingly simple, i.e., detecting intrusions. 

However, the task is difficult since an IDS does not detect intrusions directly. What it 

does is identifying the evidence of an intrusion either when the intrusion is in progress 

or at some time after the intrusion is completely performed. 

Such evidence is sometimes considered as an attack’s “manifestation.” If there is 

no manifestation, if the manifestation supports insufficient information, or if the 

information is untrustworthy, then the intrusion is not able to be detected. For 

example, suppose a house monitoring system is analyzing a camera picture showing 

that a person is standing quietly in front of our door. The picture is the manifestation 

of an intrusion. However, if the camera lens is dirty or out of focus, the system will be 

unable to judge whether the person is a burglar or the owner of the house. 

Generally, there are two types of IDSs: NIDS and HIDS. An HIDS (e.g. MIDAS 

[11]) as stated above uncovers attacks by investigating system events recorded in log 

files precisely. So fewer false alarms will be generated and more types of intrusions 

can be detected. Its drawback is that illegal behaviors can be discovered only after 

attacks are performed, not instantly. An HIDS often consumes a large amount of 

computer resources, such as CPU time and memory. On the contrary, an NIDS (e.g., 

NADIR [12]) can find out attacks immediately and response appropriately. Its key 

drawback is the detecting coverage. What it can detect is usually the abnormal 

behaviors below the session layer of the OSI Model. But an application Proxy which 
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can analyze activities of the application layer is an exception. NIDS sometimes also 

slows down the network transmission speed and consumes part of network bandwidth. 

An application Proxy, providing a broader view than a NIDS by inspecting the 

data of each connection, is basically an enhanced NIDS. It uses content-aware 

technique to detect the attacks or intrusions carefully. It can also trace the intrusion 

paths in simple ways (e.g. audit the source IP and destination IP). But as the network 

environments become much more complex, the efficiency will be lower. In this paper, 

we improve this weakness by using watermarked packets and sniffing techniques, 

lightly scarifying the load of existent networks, to explore the true intrusion paths and 

point out the vulnerable network devices, hosts and applications located along the 

paths. 

2.2.1 Data Collection 

 In order to accurately detect network intrusions, enough reliable data concerning 

the activities of the target system is needed. However, collecting reliable data is a 

complex issue due to the fact that an operating system, a router and a firewall often 

provide some forms of audit in their logs for different kinds of users. The contents are 

frequently limited to either the security-relevant events, such as some failed login 

attempts, or a complete report of the system calls invoked by all the processes. The 

information contained in these logs is often very simple, such as the beginning and the 

end of a network connection, or a complete record of the packets that go through the 

system. 

The amount of information that a system collects for its system activities is a 

trade-off between the overhead and the effectiveness. An information system that 

records its system events in detail may have substantially degraded its performance 

and consumed enormous disk storage. For example, a complete log of 100-Mbit 

network with Ethernet links demands hundreds of Gbytes of disk space for its daily 

traffic. 

Collecting information is expensive. Collecting the right information is 

important. Determining what information should be logged and where the information 

can be collected is an open problem. An example is that monitoring the ID of the user 
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to record who logs in some workstation does not help the detection of intruder, i.e., 

stepping stone and masquerade. On the other hand, if the audit data includes the 

content of users input, monitoring the users’ ID may be reasonable. 

2.2.2 Detection Techniques 

There are two main kinds of intrusion detection techniques that are anomaly 

detection and misuse detection. 

Anomaly detection using profiles to gather the normal behaviors for its users 

and/or applications are performed under the assumption that the 

instructions/commands that intruders send are different from those recorded in the 

profiles [16]. For example, we profile certain user activities quite precisely. Suppose a 

particular user routinely logs in the system around 8 a.m., reads the mails by invoking 

PINE, writes documents with VI, and has very few file access errors…etc. If the 

system notices that the same user logs in at 1 a.m., starts using compilers and 

debugging tools, and has numerous file access errors, we can conclude that 

suspiciously there is a threat upon the system. 

The main advantage is that, by defining what “normal” is, they can discriminate 

whether a violation is a part of the threat model or not, even a previously unknown 

attack. However, the payment of detecting an unknown attack is bringing up a high 

false-alarm rate. Also, the training process in a highly dynamic environment is hard to 

accurately perform. 

Contradictorily, a misuse detection system (MDS) essentially defines what the 

wrong is in a database, containing attack/intrusion patterns/signatures, and compares 

them with the current audit data to look for the evidence of the corresponding attacks 

[17] [18]. For example, if an ordinary user uses a special URL link to access some 

websites developed on the IISMicrosoft [19] and executes a privileged application (e.g., 

CMD.EXE) to do something with no limitation [20], exploiting the lack of file access 

checks, an MDS can detect such an intrusion. 

The main advantage of an MDS is that it focuses the analysis of the audit data 

and typically produces few false alarms. Their main disadvantage is only capable of 
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detecting known attacks with well-defined signatures. As a new attack is discovered, 

the developers have to manually model its features and add then to the 

pattern/signature database. 

We can also phenomenally classify IDSs based on what they behave. An NIDS 

inspects packets entering or coming out from a network segment, typically the one 

serving an enterprise or the major portion of an intranet, and is able to simultaneously 

monitor several hosts. However, such an NIDS often suffers poor performance, 

especially with increasing network speeds. Many NIDSs make pathologies as a packet 

is fragmented and suffer from resource exhaustion problems when they must maintain 

the information of the attacks for many hosts attacked over a long period of time. In 

spite of these deficiencies, they are still popular because they not only are easily to be 

deployed and managed as standalone components, but also have little or even no 

impact on the performance of the system protected. 

An HIDS operates on the host protected, inspecting the audit or log data to 

detect intrusion activities. A variety of log and audit functions can serve to drive IDS 

algorithms; these can be supplemented by sensors that monitor the interaction of 

applications with the host operating system. An HIDS can monitor specific 

applications in the ways that are difficult or impossible to be performed for an NIDS 

and then detect intrusion activities without creating externally observable behavior. 

However, they substantially affect performance. Also, successful intrusions that gain 

high levels of privilege might be able to disable HIDSs and remove the tracks of their 

operations. An Intrusion that installs UNIX root kits is a typical example. 

2.2.3 Response 

When detecting an intrusion, an IDS responds to the system administrator the 

degree of danger with a previously defined form which is different in different IDS 

due to the fact that some IDSs provide more aggressive information, such as paging 

the administrator, giving an alarm siren, or even raising a counterattack, than others. 

Of course, some attributes including an alert and a description of the intrusion 

detected are commonly in use. 

A counterattack may send back messages to the hacker, notifying his/her ISP, 
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and/or reconfiguring the router of our network to block the packets received from the 

hacker by checking if the hacker’s IP address is the source IP of the packet. However, 

an aggressive response may be dangerous due to the launch of the messages against 

the innocent victim V if the hacker’s IP is spoofed. For example, a hacker attacks a 

network using a spoofed connection, a connection with the victims IP as the source IP. 

If the IDS detects the attack and blocks the traffic from that spoofed address, it would 

effectively be a DoS attack to prohibit the service provided by V. 

2.2.4 Open Issues 

Although intrusion detection techniques have evolved rapidly in the past few 

years, many important issues remain unchanged. First, an IDS must be effectively 

enough to detect a wider range of attacks with fewer false alarms. Second, an IDS 

must keep pace with the development of the modern networks in the aspects of 

increasing sizes, speeds, and dynamics. Finally, we need much more analysis 

techniques especially those capable of identifying the attacks against the whole 

network. In this article, we try to solve this issues by involved some new techniques. 

Some techniques were the first time that been used to intrusion detection researches, 

and the others were the first time that been proposed. 

2.3 New Technique Involved 

Recently, more and more techniques are involved in the development of 

intrusion detection system such as HMM (Hidden Markov Model) [21], Feedback 

control [22], Fuzzy [23] and Data mining [24]. Most of them are based on the 

statistics theory. The most particular one is the forensic technique (i.e. Biometrics) 

[25]. Forensic science is any science used for legislation or lawfulness purposes, and 

therefore provides impartial scientific evidence for use in the courts of law and in a 

criminal investigation and trial. Forensic science is a multidisciplinary subject, 

drawing principally not only from chemistry and biology, but also from physics, 

geology, psychology, social science, etc. Examples of forensic science applications 

include face recognition, fingerprint analysis and handwriting recognition helping the 

identifying of human being (See Fig.2.1). 
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Fig.2.1 Forensic Technology 

In this article, we invoke Forensic technique to identify human behaviors, such 

as the typing habit, typing speed, error rates and the commands/applications used. We 

profile the user operation behaviors and quantize them into numbers in order to 

analyze them detailedly. We will describe more about it in the next chapter. 
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3 System framework 

In order to overcome the defects of traditional IDSs, we propose an improved 

architecture by using host-based, forensic and data mining techniques to detect 

intrusions. Also we propose a tracing method to enhance the system by uncovering the 

intrusion paths, so that the stepping stones and the hosts with vulnerabilities or 

network protocol detects can be easily identified. 

3.1 The Framework of HFIDS 

IM, a middle layer subsystem, locating between the kernel of an operating 

system and its applications (e.g., shells, graphics user interfaces), is designed to gather 

inputs and activities that a user submits. It can not only reveal which account has been 

penetrated, but also prevent the system protected in real time from an immediate 

damage initiated by the intruders (See Fig.3.1).  

The role of PMS module is to collect the data and commands what a user has so 

far entered as the user’s profile and then compute the statistic data relationships 

among the profile data. So that we can find out the user’s behaviors and carry out 

his/her forensic heuristics. That is, user profiles are generated and developed to easily 

and instantly uncover the abnormal and malicious accesses. Furthermore, we can 

discover cooperative attacks submitted by several users with data mining techniques. 

Actually, two kinds of profiles are used in this research: commands set profile (CSP) 

and Characteristics Profile (CP). A CSP collecting the command sets that a user has 

ever submitted is used by IM to detect the immediately attacks. A CP consisting of the 

users’ features including the typing behavior extracted from his/her CSP can help 

PMS to detect the intruders. 

LID is a virtual device because it can be installed in an operating system, in a 

router and or even a standalone network device. It can be widely deployed to trace the 

intrusion behavior from network viewpoint. The main functions of LID have two 

folds: mixing the suspicious packets with a special watermark and tracing the 

intrusion paths by checking the routes that watermarked packets go through.  
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3.1.1 User Profiles 

User profiles, widely used in different domains, can be implemented with 

different data structures. But their purposes, describing the objects of a system or the 

behaviors of a user, are the same. A NIDS of the early stage used profiles to record 

network activities, such as bit-rates, session information, packet types and protocols 

used and so on. Profiles in a HIDS are invoked to keep the information of the system 

resources, such as the statuses of CPU usage and memory allocation and the 

information of a system crash. 

Fig. 3.1 System framework 

In forensic medicine, the forensics are defined as the things, such as teeth, DNA 

sequence and et al, that can uniquely identify a person. We design a profile technique 

to represent the features of a person, such as what commands they have typed, what 
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programs they have run and even what habits they have ever performed, and invoke 

PMS to uncover the user’s habits, such as John likes to enter the Internet, Mary enjoys 

writing articles and Joe is a software engineer. So user behaviors in detail, such as 

his/her typing rates, error rates, intrusion models and sequence patterns of commands, 

can be clearly identified. 

In our early research, we kept all the words a user has typed. The size of a profile 

then increased rapidly and it finally became unmanageable and not maintainable. 

However, Y. Okazaki, I. Sato and S. Goto [26] raise a way to transform system calls 

into numerical data, and we got some idea on it [27]. In the following, we state the 

way to create CSP and CP and their main function in detail. 

We classify commands into different levels and quantify commands with values 

(see Table 3.1). One with a smaller value shows that the command appears frequently 

and is less dangerous, while others with larger values represent that they rarely occur 

and may be dangerous. We rank each command C with a three-stage process. First, 

calculate the frequency that C has been submitted. Second, refer to the frequency of 

each command and then assign C a value (ex. Table 3.2). Finally, replace C with some 

relative high scores if it is a dangerous command. We now give each user U an 

average command score (ACS) which is derived from his/her own profile, indicating 

if U is dangerous or not. We categorize the commands into three levels: normal, 

monitor and denial. Commands of Normal mode are those frequently used by almost 

all the users. So we give them the scores lower than 50. It is fine for users running 

those commands (e.g., cp). Commands of Monitor mode are those invoked by a few 

people and are in an fuzzy situation. These commands are usually deployed by 

engineers, programmers and super-user of the system. We delay the commands until 

HFIDS finishes its security checking by comparing them with the user’s CSP. 

Commands belonging to denial mode are those rarely used ones. Only the 

administrator of the system invokes them to rebuild or maintain (e.g., kill) the system. 

In this article, a command may be either a shell command of user level or a system 

call of system level. If one should be addressed and emphasized, we will particularity 

describe it. 
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Table 3.1 Dangerous levels 

Level Score 

Normal 1 < S < 50 

Monitor 50 < S < 100 

Denial S > 100 

Table 3.2 Examples of command ranking 

command score Command Score

cp 10 Adduser 78 

mkdir 5 Cd 2 

kill 101 Mv 12 

ps 56 telnet 25 

su 95 Chmod 48 

3.1.2 Intelligent Monitor 

In order to improve the weakness and latency delay of an HIDS, IM monitors 

users’ activities in a real-time aspect and gathers users’ inputs for further analysis. IM 

on Windows platform is technically implemented by software interrupts (e.g., int 21h) 

and is loaded with booting batch files. On Linux platform, IM also is implemented 

with software interrupts (e.g., int 03h) but loaded with Linux Loadable Kernel 

Modules. Of course, different platforms may have different implementation ways and 

loading time. 

IM has three working phases. In phase 1, it ranks each command C that a user 

enters by looking up CST. If C is privileged (S > 50), it will be temporarily held until 

the second phases finished for preventing the host computer from an immediately 

attack. CST can be pre-estimated from history files or periodically calculated from 

online data. Once a user μ submits at least one privilege command, μ’s score 

should be in its monitor level, IM will moveμ to its next phase. In phase 2, IM 

compares the commands thatμ entered, say UCS, with those in the U’s CSP (UCSP 

in short) to see weather UCS matches some of the command set in the UCSP. If yes, 

IM passes UCS to the operating system kernel. If not, UCS will be held up, and a 
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logout command will be submitted if necessary. For example, UCS are the 

commands/applications, such as KILL, FORMAT and FDISK, that will immediately 

hurt the system. This phase may reduce false alarms due to the checking of UCSP. 

Phase 3 updates μ’s profile (both CP and CSP) and requests PMS to re-calculate the 

statistics for a future identification of user behaviors and habits. The purpose of this 

phase is to realize the ideas derived from forensic viewpoint and to establish a 

knowledge accumulation feedback mechanism. 

3.1.3 Profile for Mining Server 

After collecting the online data, we can transform the data into the frequency 

domain as a graph G based on the command sequence currently entered for human 

visualization. Fig. 3.2 gives an example. Of course, we can compare G with the set of 

graphs GS transformed from the users’ profiles (CP + CSP) by shifting G in each 

element of the GS, so that the possible user who submits the UCS can then be easily 

identified. Fig. 3.2 shows that the current user may be an intruder. We will discuss 

more details about it in Chapter 3.4.5. 
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Fig.3.2 An example of a profile represented by graphs in frequency domain 
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Here we propose some ideas to explore and mine one user’s behaviors and habits 

from his/her history data by identifying the specific features which is often the best 

way to differentiate a user from others. A feature often consists of several commands 

with their execution sequence. 

In an enterprise, people of different positions often play different roles and do 

different jobs. But the same position, such as a secretary, often does the same or the 

similar things. In this article we propose a mining algorithm to find out the differences. 

We partition a user’s history file into fragments each of them contains the commands 

submitted within the period of time from his/her login to the corresponding logout. 

With these fragments we can reconstruct the user’s behaviors. For example, everyday 

at the beginning of the office hours, secretary A likes to receive mails (e.g., pine, elm) 

first. Thereafter all day long she runs the program periodically, once for every thirty 

minutes. Secretary B likes to enter the Internet first by the browser Netscape [28] to 

collect orders for goods and then receives mails from web-mail servers. Now their 

forensic features can be carried out by the PMS. We will discuss more details about it 

in Chapter 4. 

3.2 Lightweight Intrusion Detector 

LID is an intrusion tracer located somewhere in a network, such as on the 

routers, server hosts and even the gateways, to help the network protection. LID does 

not use the standard transmission mechanism, since it does not provide any port 

service. Also we turn on the network adapter’s Promiscuous Mode for LID in order to 

receive all the packets that flow through. That is why LIDs are invisible but still 

capable of tracing intrusion paths. Unlike the traditional NIDSs tracing the anomalous 

connections with their own working resources (e.g., CPU time, memory), we use 

“Watermark” [29] to silently find out the intrusion paths and avoid heavily increasing 

network load. A LID is always in its sleepy mode while nothing happens. When one 

IDS of the network system discovers that there is an intrusion, it wakes up the LIDs 

that the nearest by using LIDP to request a tracing service. Then the nearest LID 

becomes the Mater LID (MLID) which is in charge of mixing the specific passing 

packets with watermarks. All the LID will monitor the packets that flow through them 

to see if there is a watermark or not. Namely, all the connection paths of an intrusion 

or several intrusions will be monitored simultaneously. In order to hide the LIDs, we 
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use LIDP (LID Protocol) instead of general transmission mechanism for an indirect 

communication. A LIDP packet is constructed bytes data appended to the normal 

ICMP packet to carry the control messages of a trace. Please refer to Fig. 3.3. 

 

Fig.3.3 A LIDP Packet 

Watermark Packets: Currently, most of the network applications and Internet 

services use TCP and UDP, conveyed by IP protocol, as the transport layer network 

protocols. Figure 3.4 shows the structure of an IP packet. We hide the watermarks in 

the “options” field which is 32bits in length. So there are up to a total of 232 possible 

watermarks, each representing a network connection. 

Version (4) Internet Header Length (4) Type of Service (8) Total Length (16) 

Identification (16) Flags (3) Fragment Ost (13) 

Time To Live (8) Protocol (8) Header check (16) 

Source Address (32) 

Destination Address (32) 

Options (Variable) Padding (0-24) 

 Data.... 

Fig.3.4 Structure of IP packet 

A watermark consisting of two fields, LIDid (LID’s identifier) and serial numbers, as 

illustrated in Fig.3.5 is designed to avoid duplicated ambiguous. The LIDid is the 

identity of an LID, while the serial number is generated to distinguish different 

connections. 

LIDid Serial Num 

Fig.3.5 The structure of a watermarked packet in option field of an IP packet 

 

 

IP Head ICMP Ctrl message
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LID:  A LID has two main functions: 

1. Checking watermarks: if yes, the LID records the watermark and the routing 

paths, consisting of the source and destination IPs and MACs of the 

connection. 

2. Checking control messages: there are two types of control messages the 

tracing command and the report command, as shown in Table 3.3. If a packet 

issued by an IDS passes through with a specific source IP and destination IP, 

MLID will mix the corresponding watermark with the packet. A control 

message is composed of three fields that are the message type (i.e., the control 

code), the target and the argument. A message with 01 as its control code 

request the LID specified in the target field to starts mixing the watermark 

with the specific packet flowing through. 

When a report command arrives with a certain watermark, say ω, the LID returns 

all of its records concerningω  no matterω is found in a out-bounded or an 

in-bounded packet back to HFIDS. So we can now identify the real intrusion paths 

and the war zone. 

Ctrl code Target Arguments 

01 (Trace) Nearest LID Source IP / destination IP 

02 (Report) All LIDs Watermark (LIDid + Serial) 

Table 3.3 LID control message 

Processing a packet involves several components, such as the Network Interface Card 

(NIC) Driver and the OS, which are not strictly part of the capture architecture. The 

cost associated with the intervention of such components, in terms of the time they 

require to process a packet, is called external processing cost. Fortunately, there are 

some techniques can help to reduce the overheads. LID implement in software can 

speedup by using some technique, such as Just In Time (JIT) engine and Memory 

Copies. Besides, LID implement in hardware can use the pipeline technique to 

improve the performance. With the architecture that Fig.3.6, an LID can execute at 

most three parallel instructions per cycle. 
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Fig.3.6 A recommended pipeline machine to improve system performance of an LID 

3.3 Intrusion Scenario  

Often, workstations in intranet play an important role in an intrusion or attack as 

the stepping stones or the inner intruders. Based on the figure 3.7, we give a scenario 

that may exist and happen in most enterprises and universities that provide servers 

and hosts, such as Web Server, Mail Server, FTP Server…etc, to service their users. 
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Fig.3.7 Intrusion Scenario 
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One day afternoon, the IDS installed on the Web server has issued an alarm as 

being intruded. It decides to request a tracing service for collecting the intrusion paths 

and then sends a tracing command with LIDP. Now we finish the first step of 

detecting the intrusion paths. When the nearest LID, say LID1, catch the packet which 

contain the control message type “01” , then it changes it’s rules to act as a MLID and 

starts to mix the packets with watermark 0101 from specific source and destination 

IPs. Now, we finished the second step. Following, the watermarked packets start to 

travel around our Intranet. When one LID find that a packet with watermark, say 0101, 

which means that the packets with serial number 01 sent by LID1 pass through, the 

LID records the watermark and routing paths. Of course, the source IP of the packet is 

our web server and the destination IP is one of our workstations in another net 

segment. Then the packet continues its travel to some host/device, say workstation 1. 

It means that the intruder tries to hide his location by the stepping stones. After tracing 

a period of time, the IDS decides to reconstruct the intrusion paths in order to 

terminate the intrusion. It sends a LIDP packet of type 2 to trigger MLID to collect the 

records LID1 broadcasts a command 020101 to all the LIDs to request them returning 

their records.  

After the sequence of works, by locating the records collected on the topology 

that is previously established we can find the intrusion paths that start from 

workstation 1, going through some workstations as the stepping stones and then 

attempting to intrude the web server. 

3.4 Algorithms 

Our early research used rule-based and pattern-based databases to identify 

hackers. The concepts for identifying hackers are not hard to understand. The 

intrusion detections were sensitive. But as mentioned above, data grew quickly and 

databases became not maintainable. Query cost was higher time after time. In this 

article, we develop five algorithms, categorization, sequence analysis, characteristic, 

mining and comparing to improve the performance of our system by invoking some 

numerical analysis. 
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3.4.1 Categorization algorithm 

The algorithm “Categorization” realizes the real-time host based system since we 

collect commands from all the users of the system and give each command C a weight 

)(Cf , 

)1(　        
users  theallby  usedappear  Ci command   timesthe

users  theallby  usedappear  C command  timesthe)(        
∑
∈

=

NCi

Cf  

where N is the set of commands of an operating system or an application system. Now 

each command C has its own representative weight with which all the commands 

concerned can be classified into two classes, frequently and rarely used. One 

belonging to the latter may be dangerous. 

We sort commands of the system addressed on )(Cf  and assign each command 

a score, say S(C), which is an integer. The smaller the )(Cf  is, the higher the S(C) 

will be. S(C) is an integer ranging from 1 to 50 representing that C is a normal 

command. Duplicated may occur within those commands with lower S(C). Once S(C) 

is lower than a threshold (e.g., 50), C becomes less important since it is used almost 

by all the users. Finally, a fixed high score, e.g., 101, is assigned to all dangerous 

commands, e.g., su, to replace their original scores. Table 3.4 lists some examples of 

command scores. 

Table 3.4 Examples for score table on IM 

Command Score 

ELM 3 

popd 30 

nslookup 1 

mount 14 

passwd 14 

copy 5 

su 40  101 
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3.4.2 Sequence algorithm 

This algorithm is developed to find the sequential-command set (SCS) 

frequently submitted by a user. A SCS consists of two to five contiguous commands in 

time sequence. For example, a user U has keyed in three commands “ls  cpine  

exit”, i.e., an SCS. Then we look for U’s history file to see if the SCS is a highly 

repeated pattern or not. If yes, the SCS could be a signature S of U. Furthermore, in 

U’s history file if there exists a pattern P containing S and S in P do follow S’s 

original time sequence, e.g., ls  telnet  cpine  ftp  exit, P is also regarded as 

an S. Please refer to Fig.3.8. In fact, U’s CP is composed of the SCSs submitted by U. 

Algorithm identifying-SCS  

Threshold t1, t2;  //a number of consecutive commands, t1 is the lower bound, 

and t2 the upper bound 

Threshold t3;  // a counter that counts the quantity of commands located 

between two consecutive commands in the underlying SCS 

Recursively Combine (current command sets) 

Nested for loop i := 0 to t3 // nested from t1 to t2 

Finding commands set(CS) with i separated characters 

Combination (CS)  //recursively finding the commands belonging to the same 

set in the user’s history files to calculate scores 

Fig.3.8 Sequential command sets algorithm 

3.4.3 Characterization algorithm 

This algorithm assigns a value to each SCS identified as its signature score. 

When the SCSs of a user have been uncovered, some of them may also exist in other 

users’ CPs. This may reduce the recognition accuracy. We solve this problem by 

involving a formula, frequently used in information retrieval for assigning a term a 

weight [30], to calculate the weight for each SCS. Suppose there is a set of CPs, say D 

= {CP1, CP2, …, CPN}, where N is the number of the CPs of the system addressed, 
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and T = {S1, S2, …, SMi} is the set of SCSs derived from D, where Mi indicates the 

total number of Si in D, i.e., |T| = Mi. The weight jiW ,  of iS , TSi ∈ , in CPj, 

DCSPj ∈ , is 
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Where ji,sf  is the frequency of iS  appearing in jCSP  and jns  the total number of 

SCSs in jCSP . ( )jnsAVG  is the average number of SCSs for each CSP in D and 

( ) ( )1N/log0.5/MNlog i ++  the ICPF (inverse characteristics profile frequency). A 

signature score jiS , the score of iS  in jCSP , can be obtained by the following 

formula. 

   (3)                                                                            10000 *                       ,j jii WS =  

By calculating scores, we can find the relatively important SCSs, and then keep 

the significant parts and remove the useless based on the threshold given. For each 

user, the most important SCSs with their scores are stored in his/her own CP (recall, 

Characteristics Profile) as his/her signatures with which the user can be identified 

precisely. In our early research, it is hard to decide how many signatures should be 

kept and how many duplicated portions should be removed. That means, tuning the 

system to fit different usages and different environments is hard. Now, tuning work 

becomes more easily and efficiently. 

3.4.4 Mining algorithm 

The mining algorithm is to compare the users’ inputs with their profiles. We 

need CSP and CP to calculate their similarity with the following formula.  

)4(　                                                         　
CP
inputsuser 

21 ppBSIM ×+×=  

where B is a binary variable. When the user’s input exists in his/her own CSP, then B 
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is 1, otherwise, B is 0. p1 and p2 are the regulatory probabilities. The higher an SIM 

is, the more similar the SCS and the CP concerned will be. Now a threshold is needed 

to determine weather the user is suspected as an intruder or not. All the data, including 

CSPs, CPs and history files are installed into a data warehouse as the data sources. 

The history files can be collected from an Operating System, e.g., Sun Solaris System, 

which record the commands that send by users. The arguments submitted for a query 

are the sessions and commands collected on line and the command sets stored in CSP 

and CP. Then by invoking the OLAP, we can find the cooperative intrusions. From the 

SCS enters and CP, we can not only find if the account P logs in have been misused or 

not, but also realize who the true intruder is by comparing the SCS with all the users’ 

CPs. Of course, all the CSPs and CPs should be collected and analyzed beforehand. 

3.4.5 Comparing algorithm 

 In these chapter, we discuss some method invoke to compare the user behavior 

and explain how we can find out the different between hackers and users using graph. 

First we propose a new method Delayed Sequence (DS) Matching method to 

overcome the comparison with delayed command sequence. 

DS Matching method 

If an input pattern A is a vector whose i-th element is ai (i = 1, 2… I). And an 

input pattern B is a vector bj whose j-th element is bj (j = 1, 2… J). That is, 

A = a1, a2… ai… aI 

B = b1, b2…bj…bJ                                                (5) 

The correspondence of characteristic parameters of A and B in A-B plane are shown 

in Figure 3.9. Let F be the sequence of points Ck (ii, jk) on the grid. 

F = C1, C2…Ck…CK                                              (6) 
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Fig.3.9 Correspondence of characteristic parameters 

a1 and b1, a2, a3, a4 and b2, a5, a6 and b3 are corresponding point that represent the 

matching point. This line is called a path. When a matching of pattern A and B is 

given by a path ω(i(k); j(k)), k = 1, 2,…, the distance of two elements ai(k) and bj(k) is 

represented as d(ai(k); bj(k)). The distance of two patterns D(A, B; ω) will be 

calculated Formula 7: 

( ) ( ) ( )( ) (7)                                                                             b,ad   wB; A,D
1k

kjki∑
=

=  

Finding the best matching means finding a path ω which minimizes the value of 

D(A, B; ω). In other words, Formula 8 gives the smallest distance D(A, B) when we 

take the best matching. 

D(A, B) = min[D(A, B; ω)]                                       (8) 

If we define g(I, j) as shown in Formula 9 and 10 and calculate g(i, j) iteratively, 

the distance between two patterns D(A, B) can be obtained from g(I, J), where I and J 

are the length of pattern A and pattern B, respectively. 
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g(i, j) = min[g(I, j; ω)]                                           (9) 

g(i, j; ω) is the accumulation of paths from (1, 1) to (i, j) whenω((i(1),  

j(1)), …, (i(k), j(k)) is given. If g(i-1, j), g(i-1, j-1), g(I, j-1) are the minimum value of 

paths for the grids (i-1, j), (i-1, j-1), (i, j-1), the minimum value g(i; j) of the path to (i, 

j) can be found as follows Formula 10. 

g(i, j) = min
( ) ( )
( ) ( )
( ) ( ) 
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Figure 3.10 illustrates Formula 10. 

 

Fig.3.10 Minimum accumulated distance 

By adding initial value of g(1, 1) = d(a1, b1), formula 10 can be calculated 

recursively. We can find the optimal matching path g(I, J) of two patterns. 
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4 The experiments 

In order to evaluate if PMS is feasible, we collect some history files to do the 

experiments which have three steps, profile generation, user recognition and an 

advanced test. 

4.1 Profile generation 

We gather data from a Sun Solaris System that provides mail, web, telnet and ftp 

services to the graduate students of Tunghai University. There are a total of 4785 

students that have frequently used the system. Each student has his/her own home 

directory and disk quota. When a student U logins for receiving mails or doing some 

other work, the system records the commands that U has so far entered one by one in 

a so-called “history” file, in which a record for the command C has two fields. Please 

refer to Table4.1. The first keeps the time that C is entered with a long integer format, 

whereas the second is the command itself. In the following experiments, we 

pre-process the data in order to eliminate the useless of the original data so that the 

performance can be improved. The pre-process has two phases. The first phase gets 

rid of the first line of each record, i.e., the time, and segments a “session” by 

identifying login command and its corresponding exit command. Often several 

commands can be found in a “session”. The second phase discards the segments with 

less than ten commands and samples the data from the remaining histories. After that, 

a CSP is created for each user. 

Table 4.1 An example of history file on Solaris 

#+1058386787 

exit 

#+1058713621 

ver 

#+1058713626 

man ver 

#+1058713636 

…. 
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4.2 User Recognition 

  The procedure of recognizing a user from his/her inputs and profiles has four steps. 

Step 1: Each command C is given a score, S(C), by invoking the algorithm 

“Categorization”. A score table is then created and the scores of the dangerous 

commands, as mentioned above, are replaced with some fixed high scores, which are 

often higher than 100. Please refer to Table 3.1. 

Step 2: This step explores the feature of a command set and creates a CSP for each 

user based on the score table constructed in step 1 and the algorithm “Sequence 

analysis”. About 80% of the user’s history data are used to create user profiles. The 

remaining 20% will be the test data in step 3 for an accurate evaluation of the 

recognition accuracy.  

Step 3: We assign each SCS in the CSP a score also with the algorithm 

“Characterization”. SCSs now become signatures. Table 4.2 gives an example of a CP 

in which each line is a signature. The commands are the corresponding SCS. The rear 

value is the SCS relatively important score. Now, the recognition efficiency can be 

dramatically improved due to the quantified value in stead of string comparisons. 

Table 4.2 An example of CP 

 

Table 4.2.1 shows that “cpine” (pine command of traditional Chinese version) appears 

in all of the lines indicating that the user prefers invoking mail services. That is, this 

user frequently logins the mail server, receives mails, then logouts. Besides, telnet, 

quot, vi and exit are the commands he/ she has ever used.  

telnet -> cpine -> exit = 598 

telnet -> cpine -> telnet -> telnet ->  exit = 5187 

cpine -> quot -> exit = 660 

cpine -> vi -> cpine -> vi -> exit = 2660 

……. 

droped 

cpine -> exit = 56 

telnet -> exit = 89 
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Step 4: This step is to evaluate the accuracy of recognition. We use the mining 

algorithm and DNA comparison algorithm to calculate the similarity. We use the 20% 

of the user’s history data to simulate the user inputs and compare them with all the 

user profiles and finally sort the result with the similarity values. There are 292,010 

commands in our 4785 samples. The recognition rate is 75.64% in average. The 

specifications of the hardware platform are listed in Table 4.4. 

Table 4.3 The time required to finish the experiment (A total of 292,010 commands 

from 4785 users). 

Programs Time (min) Efficiency (Sec/User) 

Pre-Processing 0.165 0.002 

step 1 0.188 - 

step 2 12.166 0.342 

step 3 21.286 0.683 

step 4 42.217 1.187 

Now, please refer to Table 4.3 The pre-processing gets rid of the unsuitable data (e.g., 

commands that less then 10). Step1 generates the score table. Step2 generating a CSP  

and the test file for each user only takes 12 minutes for 2134 users, i.e., 0.342 second 

/per user. Step3 characterizing each user’s CP takes only 21 minutes for 2134 users, 

i.e., 0.683 second/person. Step 4 uses the users’ test file to test against the CP files for 

recognition. 42 minutes are needed for 2134 users, i.e., 1.187 second/per user. 

Hackers of cooperative attacks are also explored in this step. 

Table 4.4 Specifications of the hardware platform 

component description 

CPU AMD ATHON XP 1.7G 

RAM 512MB DDR400 

HDD Seagate barracuda IV 80G

OS Windows .net server 2003

Software j2sdk1.4.2 
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4.3 Recognition trend with number of commands 

  We choose different number of commands in history file for each user and find out 

that the trend of the recognition rate against the change of commands. Please refer to 

Figure 4.1 Without invoking pre-processing, the test data come from 4785 users. The 

recognition rate is 75.64%. After pre-processing is performed, 2134 users remain, 

each with at least 10 commands. The recognition rate is 78.84%. We remove those 

users with less than 50 commands. Now 1177 users satisfy the limitation and the 

recognition rate is 91.82%. When raising to at least 100 commands. Only 751 users 

fulfill the constraint and the recognition rate is 93.18%. Finally, 307 users each has at 

least 200 commands generate a 95% recognition rate. Please refer to Table 4.5 and Fig 

4.1 

Recognition Rate with commands of each user
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Fig.4.1 The trend of recognition rate with the minimum commands for each user 
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Table 4.5 The detail of recognition rate with the minimum commands for each user 

 users Recognition rate

All 4785 75.64% 

10 2134 78.84% 

50 1177 91.82% 

100 751 93.18% 

200 307 95% 

4.4 Recognition trend with number of users 

  Fig.4.2 shows the trend of recognition rate with the growing of users. We can see 

that the trend decrease slowly. Comparing with that in Fig.4.1, the recognition rate of 

our system is more sensitive with the commands per user than with the number of 

users. 

Recognition Rate with Users
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Fig.4.2 The trend of recognition rate with the growing of users 
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4.5 Recognition rate with specific clusters 

  We choose the undergraduate students that study in computer science and 

information engineering (CSIE) for test as the second experiment. There are 440 

students with 95631 commands. The average commands per user (ACPU) is 217. The 

recognition rate is 84.84%. Please refer to Table 4.6, 

Table 4.6 Recognition rate with CSIE students 

Item Value 

users 440 

commands 95631 

ACPU 217 

Recognition rate 84.84% 

The third experiment is performed upon the students major in mathematics. There 

are a total of 160 students with 9096 commands. ACPU is 56.625. The recognition 

rate is 73.55%. Please refer to Table 4.7, 

Table 4.7 Recognition rate with Math students 

Item Value 

Users 160 

Commands 9096 

ACPU 56.625 

Recognition rate 73.55% 

The fourth experiment is performed upon the students studying in Industrial 

Engineering Department. There are 139 students with 7257 commands. ACPU is 

52.21. The recognition rate is 74.89%. Please refer to Table 4.8, 
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Table 4.8 Recognition rate with Industrial Engineering Department 

item Value 

users 139 

commands 7257 

ACPU 52.21 

Recognition rate 74.89% 

The results show that the recognition rates are much more sensitive with the 

ACPU than with the number of users or with some specific domain. 

4.6 An advanced Test 

We choose two users, A and B, who use almost the same commands/programs to 

do their works (e.g., telnet, elm, pine…), i.e., their CSPs are almost the same, for an 

advanced test. A’s history file is invoked as the inputs to test B’s CP and CSP and vice 

versa. Let p1 = 30 and p2 = 70 for formula (4). The recognition rates of user A is 

90.91% and User B is 98.03%. It means that each has his/her own habits which are 

quite different from the other one’s. The similarity calculated by formula (4) is 

35.54%. It means that CP works and can uniquely identify one person with the other 

similar one. Fig. 4.3 shows the comparison with A and B in human visualization. 

 
Fig. 4.5 Comparison with user A and B in Graph 
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5 Conclusion 

In this research, we propose an approach to collect users usage histories and 

evaluate each command for giving it a score. Then catch the features of a user from 

the commands he/she was used to submit. The main idea is about transforming the 

text into numbers, then we can deal with those data efficiently. In order to prove our 

ideas and algorithms, several experiments has been done. First, we left the data 

originally without any processing and the recognition rate is only 75%. One of the 

main reasons is that there are lot of the user may only login once. The others maybe 

due to the wrong commands and the poor kinds of commands that have ever been 

send. By doing some pre-process to the data, droping those users who use less then 

fifty commands. The recognition rate raise to 90%. The result is expectable and  

acceptable. We have successfully found out the differences between users. Besides, 

we did future tests by choosing three different domain users to evaluate whether the 

algorithm is sensitive to the kinds of commands or the number commands that have 

been send. The result show that it is more depend on the ACPU rather then the 

number of users or the kinds of commands been send. Another test is done in order to 

prove the algorithm can find out the habit of the user. We choose two similar users, 

who have almost the same CSP. It means that they use the same command to finish 

their jobs. And the result is that we can still find out their difference only by their 

using habits. The performance is also acceptable. 

In the advanced researches, we will try to use different technologies to improve 

the recognizing rates, such as regressive function, DNA algorithm, neural networks 

and artificial intelligent. Regressive function can help us to find out the intrusion 

models. DNA algorithm can helps us to do the sequence analysis because the 

algorithm can deal with the data that have no directions. Neural networks can help 

PMS to recognition the user in another way. Finally, the AI can help RFIDS to decide 

more precisely and decrease the false alarm rates. But the efficiency and latency delay 

may be the problems to be solved.  
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