東海大學

應用數學研究所

碩士論文

計算偏微分方程之頻譜配點法

On Spectral Collocation Method Applied in Solving

Partial Differential Equations

指導教授:李天佑博士

中華民國九十三年六月

誌 謝

首先要感謝我的指導教授李天佑教授,在這兩年半來不厭其煩的指 導與細心照顧,帶領我認識Linux系統和C程式語言,使我能順利完成本 論文。另外也要感謝口試委員:簡澄陞教授、洪子倫教授及鄧宗禹教授對 於本論文的批評與指導,有您們的寶貴意見,本論文才能更臻完善。也謝 謝陪我一起成長努力的同窗好友文儀、詩舫、偉辰、小兵、淑燕、威志、 佳潢、193、阿達、靜慧等人,感謝你們的鼓勵與砥礪,是你們讓我的研 究所生活能多采多姿。最要感謝的是我最摯愛的家人們,謝謝您們的栽培 與照顧,有了您們,我才能全心的完成我的學業。也感謝女友紋惠的加油 與打氣,使在我遇到挫折時能繼續努力。最後,希望把這篇論文與所有我 最摯愛的人一起分享。

> 陳駿逸 謹誌 東海大學 2004年7月

摘要

偏微分方程(PDE)無論在數學或物理上都佔有十分重要的地位。通常 其解不易求出,一般常使用數值方法求其近似解。傳統多採用有限差分 法(Finite difference method)或有限元素法(Finite element method)。近年 來由於正交多項式(orthogonal polynomial)的廣泛應用,頻譜法(Spectral method)逐漸受到重視。本論文是採用頻譜法搭配配點法(Collocation Method),使用C程式語言,研究求解一維、二維、三維偏微分方程式。

第一章介紹頻譜配點法的背景;第二章介紹頻譜配點法的基本原 理、Fourier級數、Chebyshev多項式、邊界處理、座標轉換與相關數值方 法;第三章以Poisson方程式測試頻譜配點法求解不同維度的邊界條件問 題(Boundary Value Problem);第四章以wave方程式測試頻譜配點法求解 線性波方程式;第五章以Burgers方程式測試頻譜配點法求解不同維度的 非線性波方程式;第六章為結論。 目錄

訖	謝		i
摘	要		ii
目	錄		iii
回回	目錄		vi
表	日錄		vii
1	緒部		1
	1.1	前言	1
	1.2	研究方法與目的	2
2	頻調	普配點法之介紹	3
	2.1	基本原理	3
	2.2	Fourier級數	5
	2.3	Chebyshev級數	9
	2.4	邊界處理	17
	2.5	相關數值方法	22

	2.6	座標轉	專換	24
3	頻調	普配點	站法之應用(一)邊界值問題	26
	3.1	1D Po	bisson equation	27
		3.1.1	Dirichlet Boundary Condition	28
		3.1.2	Robin Boundary Condition	31
		3.1.3	Neumann Boundary Condition	34
	3.2	2D Po	bisson equation in a square	37
		3.2.1	Dirichlet Boundary Condition	38
		3.2.2	Robin Boundary Condition	41
		3.2.3	Neumann Boundary Condition	44
	3.3	2D Po	bisson equation in a circle	47
		3.3.1	Dirichlet Boundary Condition	48
		3.3.2	Robin Boundary Condition	51
		3.3.3	Neumann Boundary Condition	54
	3.4	3D Po	bisson equation in a cube	57
		3.4.1	Dirichlet Boundary Condition	58
		3.4.2	Robin Boundary Condition	61

		3.4.3	Neumann Boundary Condition	. 64
	3.5	3D Po	isson equation in a cylinder	. 67
		3.5.1	Dirichlet Boundary Condition	. 68
		3.5.2	Robin Boundary Condition	. 73
		3.5.3	Neumann Boundary Condition	. 78
4	頻調	普配點	钻法之應用(二) 線性波	83
5	頻調	普配點	钻法之應用(三) 非線性波	86
	5.1	1D Bu	rgers equation	. 87
	5.2	2D Bu	rgers equation in a square	. 94
	5.3	2D Bu	rgers equation in a circle	. 101
	5.4	3D Bu	rgers equation in a cube	. 108
	5.5	3D Bu	rgers equation in a cylinder	. 115
6	結	淪		122
分	;考J	文獻		123

圖目錄

1	一維Chebyshev格點示意圖	17
2	二維Chebyshev格點矩形定義域示意圖	18
3	二維Chebyshev格點圓形定義域示意圖	19
4	三維Chebyshev格點立方體定義域示意圖	20
5	三維Chebyshev格點圓柱定義域示意圖	21
6	tensor product 格點	22
7	lexicographic順序	23
8	極座標所對應之矩陣示意圖	24
9	非線性波傳頻譜配點法誤差圖	85

表目錄

1	1D Poisson with Dirichlet B.C.	28
2	1D Poisson with Dirichlet B.C. and LU Method	29
3	1D Poisson with Dirichlet B.C. and BCR Method	30
4	1D Poisson with Robin B.C.	31
5	1D Poisson with Robin B.C. and LU Method	32
6	1D Poisson with Robin B.C. and BCR Method	33
7	1D Poisson with Neumann B.C	34
8	1D Poisson with Neumann B.C. and LU Method	35
9	1D Poisson with Neumann B.C. and BCR Method	36
10	2D Poisson in a square with Dirichlet B.C	38
11	2D Poisson in a square with Dirichlet B.C. and LU Method	39
12	2D Poisson in a square with Dirichlet B.C. and BCR Method	40
13	2D Poisson in a square with Robin B.C.	41
14	2D Poisson in a square with Robin B.C. and LU Method	42
15	2D Poisson in a square with Robin B.C. and BCR Method	43
16	2D Poisson in a square with Neumann B.C	44
17	2D Poisson in a square with Neumann B.C. and LU Method \hdots	45
18	2D Poisson in a square with Neumann B.C. and BCR Method $\ . \ . \ . \ .$	46
19	2D Poisson in a circle with Dirichlet B.C	48
20	2D Poisson in a circle with Dirichlet B.C. and LU Method	49
21	2D Poisson in a circle with Dirichlet B.C. and BCR Method $\ldots \ldots \ldots$	50
22	2D Poisson in a circle with Robin B.C.	51
23	2D Poisson in a circle with Robin B.C. and LU Method	52
24	2D Poisson in a circle with Robin B.C. and BCR Method	53
25	2D Poisson in a circle with Neumann B.C.	54

26	2D Poisson in a circle with Neumann B.C. and LU Method	55
27	2D Poisson in a circle with Neumann B.C. and BCR Method	56
28	3D Poisson in a cube with Dirichlet B.C.	58
29	3D Poisson in a cube with Dirichlet B.C. and LU Method	59
30	3D Poisson in a cube with Dirichlet B.C. and BCR Method	60
31	3D Poisson in a cube with Robin B.C.	61
32	3D Poisson in a cube with Robin B.C. and LU Method	62
33	3D Poisson in a cube with Robin B.C. and BCR Method	63
34	3D Poisson in a cube with Neumann B.C.	64
35	3D Poisson in a cube with Neumann B.C. and LU Method	65
36	3D Poisson 3D in a cube with Neumann B.C. and BCR Method $\ . \ . \ .$.	66
37	3D Poisson in a cylinder with Dirichlet B.C.	68
38	3D Poisson in a cylinder with Dirichlet B.C. (1) and LU Method	69
39	3D Poisson in a cylinder with Dirichlet B.C. (2) and LU Method	70
40	3D Poisson in a cylinder with Dirichlet B.C. (3) and LU Method	71
41	3D Poisson in a cylinder with Dirichlet B.C. and BCR Method	72
42	3D Poisson in a cylinder with Robin B.C	73
43	3D Poisson in a cylinder with Robin B.C. (1) and LU Method $\ldots \ldots \ldots$	74
44	3D Poisson in a cylinder with Robin B.C. (2) and LU Method $\ldots \ldots \ldots$	75
45	3D Poisson in a cylinder with Robin B.C. (3) and LU Method $\ldots \ldots \ldots$	76
46	3D Poisson in a cylinder with Robin B.C. and BCR Method $\ .$	77
47	3D Poisson in a cylinder with Neumann B.C	78
48	3D Poisson in a cylinder with Neumann B.C. (1) and LU Method $\ . \ . \ .$	79
49	3D Poisson in a cylinder with Neumann B.C. (2) and LU Method $\ . \ . \ .$	80
50	3D Poisson in a cylinder with Neumann B.C. (3) and LU \ldots	81
51	3D Poisson in a cylinder with Neumann B.C. and BCR Method $\ .\ .\ .$.	82
52	comparison of finite difference and spectral collcation	84

53	1D Burgers with Re =1.0 and LU Method $\ldots \ldots \ldots \ldots \ldots \ldots$	88
54	1D Burgers with Re =10.0 and LU Method	89
55	1D Burgers with Re =100 and LU Method $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	90
56	1D Burgers with Re =1.0 and GMRes Method	91
57	1D Burgers with Re =10.0 and GMRes Method $\ldots \ldots \ldots \ldots \ldots \ldots$	92
58	1D Burgers with Re =100 and GMRes Method $\ldots \ldots \ldots \ldots \ldots \ldots$	93
59	2D Burgers in a square with Re =1.0 and LU Method	95
60	2D Burgers in a square with Re =10.0 and LU Method $\ldots \ldots \ldots \ldots$	96
61	2D Burgers in a square with Re =100 and LU Method $\ldots \ldots \ldots \ldots$	97
62	2D Burgers in a square with Re =1.0 and GMRes Method $\ldots \ldots \ldots$	98
63	2D Burgers in a square with Re =10.0 and GMRes Method	99
64	2D Burgers in a square with Re =100 and GMRes Method $\ldots \ldots \ldots$	100
65	2D Burgers in a circle with Re =1.0 and LU Method $\ldots \ldots \ldots \ldots \ldots$	102
66	2D Burgers in a circle with Re =10.0 and LU Method	103
67	2D Burgers in a circle with Re =100 and LU Method $\ldots \ldots \ldots \ldots$	104
68	2D Burgers in a circle with Re =1.0 and GMRes Method $\ldots \ldots \ldots \ldots$	105
69	2D Burgers in a circle with Re =10.0 and GMRes Method $\ldots \ldots \ldots$	106
70	2D Burgers in a circle with Re =100 and GMRes Method	107
71	3D Burgers in a cube with Re =1.0 and LU Method	109
72	3D Burgers in a cube with Re =10.0 and LU Method $\ldots \ldots \ldots \ldots$	110
73	3D Burgers in a cube with Re =100 and LU Method $\ldots \ldots \ldots \ldots$	111
74	3D Burgers in a cube with Re =1.0 and GMRes Method $\ldots \ldots \ldots \ldots$	112
75	3D Burgers in a cube with Re =10.0 and GMRes Method	113
76	3D Burgers in a cube with Re =100 and GMRes Method $\ldots \ldots \ldots \ldots$	114
77	3D Burgers in a cylinder with Re =1.0 and LU Method	116
78	3D Burgers in a cylinder with Re =10.0 and LU Method $\ldots \ldots \ldots \ldots$	117
79	3D Burgers in a cylinder with $Re = 100$ and LU Method	118

- 80 3D Burgers in a cylinder with Re =1.0 and GMRes Method $\ldots \ldots \ldots 119$
- 81 3D Burgers in a cylinder with Re =10.0 and GMRes Method 120

1 緒論

1.1 前言

自然界有許多現象可藉由偏微分方程式(PDE)來表示,如熱傳方程 式,波動方程式。有意義而且影響深遠的偏微分方程式來源,主要是 物理與幾何。除了前面所列舉的方程式外,舉例來說,還有 Euler 以 及 Navier-Stokes 的流體力學方程式;愛因斯坦廣義相對論的愛因斯坦方 程式;量子力學中的 Schrödinger 方程式、Dirac 方程式;幾何上的測地 線方程式、最小曲面方程式等。因此偏微分方程式廣泛的被應用在科學、 工程、數值模擬和天氣預測等領域。然而,高階偏微分方程式的解一般不 容易求出,除非是很特殊的例子。偏微分方程式不易解出的原因乃在於其 解如黑盒子般,以人工方式幾乎不可能找出其解。由於廿世紀中期之後電 子計算機的發達,運用數值方法來求偏微分方程式的解,已經是一門相當 專門的學科。

在數值方法求解偏微分方程式的過程中,常使用到不同的技巧選擇 展開函數,包括有限元素法(finite element)、有限體積法(finite volume)、 有限差分法(finite difference)和近年來常用的頻譜法(spectral method)。頻 譜法、有限元素法和有限體積法,都與有限差分法有著密切的關係。 但以空間分割的觀念來分,有限差分法和有限體積法採取的是局部近 似(local approximation)的觀念,即均須將計算區域切分成許多小單元, 再進行空間微分的運算;而頻譜法和有限元素法則是採取整體近似(global approximation)的觀念。頻譜法的收斂速度是呈指數型的收斂,具有誤差 收斂速度快的好處。其誤差的大小為 $O(e^{-\alpha N})$, α 為一正數, N為基函 數自由度。

早期的頻譜法是應用於週期性的問題上[10],而非週期性的問題 則由 Orszag [4]於1971年,首先提出以 Chebyshve 多項式作為基函數

1

的各種頻譜法技巧後,逐漸發展才得以應用於非週期性的微分方程 式。1977年,Gottliet和Orszag [5]建立起頻譜法在數學上的數值理論 分析與應用方法,頻譜法才逐漸發展並應用於各類不同的問題。1980年 由 P.Moin和 J.Kim [6]應用擬頻譜法(Pseudospectral Method)於時變不可 壓縮黏性流的分析。1984年 Patera [7]發展出頻譜法搭配有限元素法的頻 譜元素法(Spectral Element Method)。1987年 Canuto [9]對各種頻譜法的 數值方法以及在流體力學的應用有詳細的説明。

1.2 研究方法與目的

在數值模擬的應用上,有限元素法、有限體積法、有限差分法已經有 相當悠久的歷史。頻譜法的應用,則開始於1970年代。頻譜法主要是利用 正交多項式來近似求解微分方程。正交多項式很早就出現於數學領域之 中,但一直未受矚目,直到最近三十年,多位學者以正交多項式的特性, 提出有效的代數方法。正交多項式主要的特性,乃是它能以有限的項數, 近似展開可連續微分的函數。另外,正交多項式具有的遞迴關係(1)係數 遞迴關係(2)微分遞迴關係,特別利於電腦數值執行,故此種數值方法漸 受國際學術界重視。利用上述遞迴關係,可推導出展開係數轉換矩陣、乘 積運算矩陣、積分運算矩陣及微分運算矩陣。因此近年來正交多項式被廣 泛地應用於不同領域。

本文乃是探討利用頻譜配點法,研究求解一維、二維、三維偏微分 方程式,在不同定義域下的初值問題與邊界值問題。本文之數值處理程 序,是先將偏微分方程及邊界配點後,得到在所選擇的點上,由未知數為 一維展開係數所構成的聯立代數方程組,最後以不同的方法求解此聯立代 數矩陣,即可得到配點上之近似值。

2

2 頻譜配點法之介紹

本研究所發展的方法是頻譜配點法(Spectral Collocation Method)。 本章的重點在於介紹本研究的基本原理、 Fourier 級數、 Chebyshev 級 數、邊界處理、座標轉換與相關數值方法。

2.1 基本原理

頻譜配點法處理的是空間微分項,時間導數仍使用有限差分法。頻譜 法的基本原理是利用一組特徵函數作展開,求得微分方程式的近似解。 使用函數展開的近似解並不會完全滿足原方程式,而存有誤差,稱為餘 量(residual)。因此要再利用加權餘量法(method of weighted residual)使誤 差達到最小。

假設u(x,t)為一已知邊界條件的可微分平滑函數,其方程式表示為

$$\begin{cases} P.D.E. : \quad L(u(x,t)) = f(x,t) \quad x \in \Omega \subset \mathbb{R}^d. \\ B.C. : \qquad B(u(y,t)) = 0 \qquad y \in \partial \Omega. \end{cases}$$

L與 B 為空間微分運算子。假設u(x,t)的近似解 $v^{N}(x,t)$ 落在 Hilbert 空間 H 中的一個有限子空間 P_{N} 中(通常取 L^{2} 空間),則 $v^{N}(x,t)$ 可以 由 P_{N} 空間中的基底函數 $(\phi_{0}, \phi_{1}, \dots, \phi_{N})$ 展開如下:

$$v^N(x,t) = \sum_{k=0}^N a_k(t)\phi_k(x).$$

其中, N 為基底函數的自由度; $\phi_k(x)$ 為在求解空間上相互正交的已知解 析函數, 一般稱為 trial functions ; $a_k(t)$ 為待定的展開係數, 是時間的 函數。則餘量定義如下:

$$R(x; a_0, a_1, ..., a_N) = L(v^N) - f(x, t)$$

$$= L(\sum_{k=0}^{N} a_k(t)\phi_k(x)) - f(x,t).$$

若函數 $(\chi_0, \chi_1, \ldots, \chi_N)$ 可利用 Hilbert 空間係數積使得餘量最小,即

$$(\chi_k, R) = 0 \quad \forall k \in 0, 1, \dots, N$$

,則 χ_k 稱為 test functions 。

加權餘量法(MWR)中最關鍵的就是 trial functions 與 test functions 的 選取。 trial functions 常用的選擇方法有有限元素法、有限體積法、有限 差分法和頻譜法等等。本論文採取的是頻譜法,因此 trial functions 是一 個 global smooth functions 。而頻譜法常用來選擇 test functions 的方法 有 Galerkin method 、 Tau method 和 Collocation(配點法) 。本論文採取 的是配點法。

頻譜法 trial functions 的選取特別重視下列三個條件:

- 1. 近似值 $v^N(x,t) = \sum_{k=0}^N a_k(t)\phi_k(x)$ 必須快速的收斂。
- 2. 若 $\frac{\partial}{\partial x} \left(\sum_{k=0}^{N} a_k(t) \phi_k(x) \right) = \sum_{k=0}^{N} b_k(t) \phi_k(x)$,則當 $a_k(t)$ 的值被給定時, $b_k(t)$ 的值必須容易被決定。
- 3. 當 $a_k(t)$ 改變時, $v(x_i)$ 的和在某些 x_i 的集合,必須相對快速的改變。

故在本論文中,對於有界(bounded)且週期格點(periodic grid)問題,採 用三角多項式(trigonometric polynomials)中的 Fourier 級數;而對於有 界(bounded)且非週期性格點(nonperiodic grid)問題,則採用正交多項 式(orthogonal polynomials)中的 Chebyshev 級數。

當 test functions $\chi_k(x)$ 與 trial functions $\phi_k(x)$ 選取相同函數的時後, 若 $\phi_k(x)$ 滿足邊界條件時,此方法稱為 Galerkin method ;若 $\phi_k(x)$ 不 滿足邊界條件時,此方法稱為 Tau method ;若 test functions $\chi_k(x)$ 是採 用 δ -function,即 $\chi_j(z) = \delta(z - z_j)$,其中 z_j 是 collocation points,此法 即為配點法。配點法一般不直接解出係數 $a_k(t)$,而是解出在配點上的近 似值。由於配點法的發展已經十分完備,且在處理邊界問題有很好的效 果,故在本論文中採用 collocation method。

2.2 Fourier級數

週期格點不一定是物理上的,也許是座標空間的,如極座標或球面座標。本論文是採用Fourier級數,應用在週期為 2π 的極座標上。

所謂三角多項式是

$$a_0 + \sum_{n=1}^N a_n \cos nx + b_n \sin nx,$$

形式的函數。其中 N 是一個正整數, x 是實數,並假設 a_n, b_n 也都是實數。很明顯的,三角多項式是一個以 2π 為週期的函數。由Euler identity

$$e^{i\theta} = \cos\theta + i\sin\theta, \qquad i = \sqrt{-1}.$$

可改寫

$$\cos nx = \frac{e^{inx} + e^{-inx}}{2}, \quad \sin nx = \frac{e^{inx} - e^{-inx}}{2}.$$

則三角多項式可寫成

$$\sum_{n=-N}^{N} c_n e^{inx}.$$

此時 x 是實數 , c_n 是複數。

若 u(x) 是一個以 2π 為週期的函數,則其 Fourier 級數展開可表示成

$$u(x) = \sum_{n = -\infty}^{\infty} u_n e^{inx},$$

則其 Fourier transform 和 inverse Fourier transform 公式可以表示成

$$\begin{aligned} \widehat{u}(k) &= \int_{-\infty}^{\infty} e^{-ikx} u(x) dx, \quad k \in \mathbb{R}. \\ u(x) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \widehat{u}(k) dk, \quad x \in \mathbb{R}. \end{aligned}$$

如果只考慮 $x \in h\mathbb{Z}$,因為空間的定義域是離散的,所以 k 的定義域 也不在是在 \mathbb{R} 整個空間上。因此,一個適當的有界定義域長度為 $\frac{2\pi}{h}$, 且合適的範圍選擇是 $\left[-\frac{\pi}{h}, \frac{\pi}{h}\right]$ 。若函數 v 的定義域為 $h\mathbb{Z}$,且在 x_j 點的 函數值為 v_j ,則其 semidiscrete Fourier transform 和 inverse semidiscrete Fourier transform 公式可以表示成

$$\widehat{v}(k) = h \sum_{j=-\infty}^{\infty} e^{-ikx_j} v_j, \quad k \in \left[-\frac{\pi}{h}, \frac{\pi}{h}\right]$$
$$v_j = \frac{1}{2\pi} \int_{-\frac{\pi}{h}}^{\frac{\pi}{h}} e^{ikx_j} \widehat{v}(k) dk, \quad j \in \mathbb{Z}.$$

令函數 $u(x) \in L^2$ 是一個以 2π 為週期的函數 $x \in [0, 2\pi]$ 。在本論 文中週期格點的格點數都取偶數 。因此 ,將 $[0, 2\pi]$ 等分成 N 等分 N 是 偶數 ,且每一段的長 $h = \frac{2\pi}{N}$ 。因為 k 的分部範圍在 $[-\frac{\pi}{h}, \frac{\pi}{h}]$,且 $\frac{\pi}{h} = \frac{N}{2}$, 所以 discrete Fourier transform 和 inverse discrete Fourier transform 公式 可以表示成

$$\widehat{u}_{k} = h \sum_{j=1}^{N} e^{-ikx_{j}} u_{j}, \quad k = -\frac{N}{2} + 1, \cdots, \frac{N}{2}$$
$$u_{j} = \frac{1}{2\pi} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} e^{ikx_{j}} \widehat{u}_{k}, \quad j = 1, \cdots, N.$$

取週期的 delta functions 為

$$\delta_j = \begin{cases} 1, \ j = 0 (modN) \\ 0, \ j \neq 0 (modN) \end{cases}$$

則由 discrete Fourier transform 可以得到 $\hat{\delta}_k = h$ for each k 。因為是週期 格點, 令 $p(x_j) = v_j$, $x \in [0, 2\pi]$

$$p(x) = \frac{h}{2\pi} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}} e^{ikx} = \frac{h}{2\pi} \left(\frac{1}{2} \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} e^{ikx} + \frac{1}{2} \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} e^{ikx}\right)$$
$$= \frac{h}{2\pi} \cos\left(\frac{x}{2}\right) \sum_{k=-\frac{N}{2}+\frac{1}{2}}^{\frac{N}{2}-\frac{1}{2}} e^{ikx}$$
$$= \frac{h}{2\pi} \cos\left(\frac{x}{2}\right) \frac{e^{i(-\frac{N}{2}+\frac{1}{2})x} - e^{i(\frac{N}{2}+\frac{1}{2})x}}{1 - e^{ix}}$$
$$= \frac{h}{2\pi} \cos\left(\frac{x}{2}\right) \frac{e^{-i(\frac{N}{2})x} - e^{i(\frac{N}{2})x}}{e^{-(\frac{ix}{2})} - e^{(\frac{ix}{2})}}$$
$$= \frac{h}{2\pi} \cos\left(\frac{x}{2}\right) \frac{sin(\frac{Nx}{2})}{sin(\frac{x}{2})}$$

由此可知對 delta functions 的插值(interpolant)。若週期的 sinc function $S_N(x) = \frac{\sin(\frac{\pi x}{h})}{(\frac{2\pi}{h})\tan(\frac{\pi}{2})}$,則對任意其他的函數的差值可表示如下:

$$p(x) = \sum_{m=1}^{N} S_N(x - x_m).$$

因為

$$S'_{N}(x_{j}) = \begin{cases} 0, & j = 0 (modN) \\ \frac{1}{2} (-1)^{j} cot(\frac{jh}{2}), & j \neq 0 (modN) \end{cases}$$

所以,一階 Fourier collocation derivative matrix D_N 如下:

$$(D_N)_{ij} = \begin{cases} 0, & j = 0 (modN) \\ \frac{1}{2} (-1)^j cot(\frac{jh}{2}), & j \neq 0 (modN) \end{cases}$$

又因為

$$S_N''(x_j) = \begin{cases} -\frac{\pi^2}{3h^2} - \frac{1}{6}, & j = 0 \pmod{N} \\ -\frac{(-1)^j}{2\sin^2(\frac{jh}{2})}, & j \neq 0 \pmod{N} \end{cases}$$

所以,二階 Fourier collocation derivative matrix D_N 如下:

$$(D_N^2)_{ij} = \begin{cases} -\frac{\pi^2}{3h^2} - \frac{1}{6}, & j = 0 \pmod{N} \\ -\frac{(-1)^j}{2\sin^2(\frac{jh}{2})}, & j \neq 0 \pmod{N} \end{cases}$$

Fourier spectral differentiation 的準確度可由下面的定理得知[1]:

定理 1 Accuracy of Fourier spectral differentiation

Let $u \in L^2(\mathbb{R})$ have a ν th derivative ($\nu \ge 1$) of bounded variation, and let w be the ν th spectral derivative of u on the grid hZ. The following estimates hold uniformly for all $x \in hZ$.

1. If u has p-1 continuous derivatives in $L^2(\mathbb{R})$ for some $p \ge \nu + 1$ and a pth derivative of bounded variation, then

$$|w_j - u^{\nu}(x_j)| = O(h^{p-\nu}) \quad as \ h \to \infty.$$

2. If u has infinitely many continuous derivatives in $L^2(\mathbb{R})$, then

$$|w_j - u^{\nu}(x_j)| = O(h^m) \quad as \ h \to \infty$$

for every $m \geq 0$.

3. If there exist a, c > 0 such that u can be extended to an analytic function in the complex strip |Imz| < a with ||u(· + iy)|| ≤ c uniformly for all y ∈ (-a, a), then

$$|w_j - u^{\nu}(x_j)| = O(e^{\frac{-\pi(a-\epsilon)}{h}}) \quad as \ h \to \infty$$

for every $\epsilon > 0$.

4. If u can be extended to an entire function and there exists a > 0 such that for $z \in \mathbb{C}$, $|u(z)| = o(e^{a|z|})as|z| \to \infty$, then, provided $h \leq \frac{\pi}{a}, w_j = u^{(\nu)}(x_j)$.

2.3 Chebyshev級數

k 次 Chebyshev 多項式定義為

 $T_k(x) = \cos(k \arccos x), \quad x \in [-1, 1].$

 $\theta = \arccos x, \quad \theta \in [0, \pi].$

在經過一獨立變數的轉換後,是一餘弦函數。由於此一特性,使 得 Chebyshev 多項式可用於解非週期性的邊界值問題,而具有類似餘弦 級數之 spectral accuracy 。

Chebyshev 多項式的特性如下:

$$|T_k(x)| \leq 1, \quad -1 \leq x \leq 1.$$

 $T_k(\pm 1) = (\pm 1)^k.$

根據三角恆等式 $\cos(k+1)\theta + \cos(k-1)\theta = 2\cos\theta\cos k\theta$ 可得 Chebyshev 多 項式的三項遞迴關係式:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x).$$

$$T_{0}(x) = 1,$$

$$T_{1}(x) = x,$$

$$T_{2}(x) = 2x^{2} - 1,$$

$$T_{3}(x) = 4x^{3} - 3x,$$

$$T_{4}(x) = 8x^{4} - 8x^{2} + 1,$$

$$\vdots$$

而 Chebyshev 多項式的正交關係為:

$$< T_i(x), T_j(x) > = \int_{-1}^{1} T_i(x) T_j(x) w(x) dx$$

 $= \begin{cases} 0, & i \neq j \\ \frac{\pi}{2}, & i = j \neq 0 \\ \pi, & i = j = 0 \end{cases}$

其中權重係數 $w(x) = \frac{1}{\sqrt{1-x^2}}$ 為 Chebyshev weight ,函數必須要乘上此一 特殊權重係數,才會得到正交關係。 Chebyshev 轉換公式如下:

$$u = \sum_{k=0}^{\infty} \hat{u}_k T_k(x),$$

由正交關係可知:

$$\hat{u}_{k} = \frac{2}{c_{k}\pi} \int_{-1}^{1} \frac{u(x)T_{k}(x)}{\sqrt{1-x^{2}}}$$
$$c_{k} = \begin{cases} 2, \ k = 0\\ 1, \ k > 0 \end{cases}$$

Chebyshev 離散轉換公式如下:

$$u = \sum_{k=0}^{N} \tilde{u}_k T_k(x),$$

由離散正交關係可知:

$$\tilde{u}_{k} = \frac{2}{\pi \bar{c}_{k}} \sum_{j=0}^{N} u(x_{j}) T_{k}(x_{j}) w_{j}$$
$$\bar{c}_{k} = \begin{cases} 2, & k = 0, N \\ 1, & k = 1, \dots, N-1 \end{cases}$$

所以,

$$u = \sum_{k=0}^{N} L_{N,k}(x)u(x_k)$$
$$L_{N,k}(x) = \prod_{\substack{l=0\\l \neq k}}^{N} \frac{x - x_l}{x_k - x_l}$$

其中, $L_{N,k}(x)$ 是 Lagrange 多項式,滿足 $L_{N,k}(x_l) = \delta_{kl}$ 。令 $L_{N,k}(x) = \psi_k(x) = \prod_{\substack{l=0 \ l \neq k}}^N \frac{x-x_k}{x_k-x_l}$ 。

常用的 collocation points 為 Chebyshev-Gauss point , 就是 Chebyshev 多項式 $T_{N+1}(x) = 0$ 的根:

$$x_j = \cos \frac{(2j+1)\pi}{2N+2}, \quad j = 0, 1, \dots, N.$$

但不含端點。為了使 collocation points 包含邊界點其一或其二,可作如下的改良:

$$q(x) = T_{N+1}(x) - T_N(x)$$
$$= \cos(N+1)\theta - \cos N\theta$$
$$= -2\sin\frac{2N+1}{2}\theta\sin\frac{\theta}{2}$$

,則當

$$\frac{2N+1}{2}\theta = j\pi, \quad j = 0, \pm 1, \pm 2, \dots$$

時, q(x) = 0 。為了滿足 $0 \le \theta \le \pi$,所以

$$\theta_j = \frac{2j\pi}{2N+1}, \quad j = 0, 1, \dots, N.$$

則 Chebyshev-Gauss-Radau points :

$$x_j = \cos \frac{2j\pi}{2N+1}, \quad j = 0, 1, \dots, N.$$

含一端點 x = 1 。 同理 ,

$$q(x) = T'_N(x)(1-x^2)$$
$$= \frac{N\sin N\theta}{\sin \theta}$$

則當

$$N\theta_j = j\pi, \quad j = 1, 2, \dots, N-1,$$

或

$$\theta_j = \frac{j\pi}{N}, \quad j = 1, 2, \dots, N-1$$

時, q(x) = 0 。為了包含兩端點 $x = \pm 1$,所以

$$\theta_j = \frac{j\pi}{N}, \quad j = 0, 1, 2, \dots, N.$$

則Chebyshev-Gauss-Lobatto points:

$$x_j = \cos \frac{j\pi}{N}, \quad j = 0, 1, 2, \dots, N.$$

含兩端點 $x = \pm 1$ 。通常,常微分方程式邊界值問題都採用 Chebyshev-Gauss-Lobatto points 。

已知 Chebyshev 多項式 $T_N(x) = \cos N\theta$, $\theta = \arccos x$, 則

$$\frac{d}{dx}T_N(x) = \frac{d\theta}{dx}\frac{d}{d\theta}\cos N\theta$$
$$= \frac{N\sin N\theta}{\sin \theta},$$

而

$$\frac{d^2}{dx^2}T_N(x) = \frac{d\theta}{dx}\frac{d}{d\theta}\left(\frac{N\sin N\theta}{\sin \theta}\right)$$
$$= -\frac{N^2\cos N\theta\sin\theta - N\sin N\theta\cos\theta}{\sin^3\theta}.$$

現在觀察 $T'_N(x)$ 與 $T''_N(x)$ 在 collocation points $x_j = \cos \frac{j\pi}{N}$ 上的值:

$$T'_{N}(x_{j}) = \begin{cases} 0, & j \neq 0, N \\ N^{2}, & j = 0 \\ (-1)^{N+1}N^{2}, & j = N \end{cases}$$
$$= \begin{cases} 0, & j \neq 0, N \\ (\pm 1)^{N+1}N^{2}, & j = 0, N \end{cases}$$

而

$$T_N''(x_j) = \begin{cases} \frac{(-1)^{j+1}N^2}{1-x_j^2}, & j \neq 0, N \\ (\pm 1)^N N^2 \left(\frac{N^2 - 1}{3}\right), & j = 0, N \end{cases}$$

同理,亦可推得 $T_N''(x)$ 在 collocation points $x_j = \cos \frac{j\pi}{N}$ 上的值:

$$T_N'''(x_j) = \begin{cases} \frac{(-1)^{j+1}3N^2x_j}{(1-x_j^2)^2}, & j \neq 0, N \\ (\pm 1)^{N+1}N^2\left(\frac{N^2-1}{3}\right)\left(\frac{N^2-4}{5}\right), & j = 0, N \end{cases}$$

Chebyshev collocation 導數可以矩陣形式

$$\mathcal{D}_N u(x_l) = \sum_{j=0}^N (D_N)_{lj} u(x_j), \quad l = 0, 1, \dots, N.$$

表之。其中 $\mathcal{D}_N u = (I_N u)'$ 。而 $(D_N)_{lj}$ 可藉由微分 Lagrange 多項式 ψ_j 得到,意即 $(D_N)_{lj} = \psi'_j(x_l)$ 。當使用 Chebyshev-Gauss-Lobatto 時,

$$\psi_k(x) = \prod_{\substack{l=0\\l\neq k}}^N \frac{x - x_l}{x_k - x_l}$$
$$= \frac{(-1)^{k+1}(1 - x^2)T'_N(x)}{\bar{c}_k N^2(x - x_k)}$$

則

$$(x - x_j)\psi_j(x) = \frac{(-1)^{j+1}}{\bar{c}_j N^2} (1 - x^2) T'_N(x).$$

等號兩邊微分,可得

$$\psi_j(x) + (x - x_j)\psi'_j(x) = \frac{(-1)^{j+1}}{\bar{c}_j N^2} \left[-2xT'_N(x) + (1 - x^2)T''_N(x) \right].$$

可分為以下四個部分討論:

1. 當 $l \neq j$ 時,

$$\psi_j(x_l) + (x_l - x_j)\psi'_j(x_l) = \frac{(-1)^{j+1}}{\bar{c}_j N^2} \left[-2x_l T'_N(x_l) + (1 - x_l^2) T''_N(x_l) \right]$$
$$= \frac{(-1)^{j+1}}{\bar{c}_j N^2} \begin{cases} -2(\pm 1)^N N^2 \\ (-1)^{l+1} N^2 \end{cases}$$
$$= \frac{(-1)^{j+1}}{\bar{c}_j N^2} \left[\bar{c}_l (-1)^{l+1} N^2 \right]$$
$$= \frac{\bar{c}_l (-1)^{l+j}}{\bar{c}_j}$$

因此, $\psi_j'(x_l) = rac{ar c_l(-1)^{l+j}}{ar c_j(x_l-x_j)}$ 。

2. 當 l = j = 0 時,意即 $x_j = x_l = 1$,則

$$\psi_j(x) = \frac{(-1)^{j+1}(1-x^2)T'_N(x)}{\bar{c}_j N^2(x-x_1)}$$
$$= \frac{(1+x)T'_N(x)}{2N^2}$$

那麼, $\psi'_j(x) = \frac{1}{2N^2} \left[T'_N(x) + (1+x)T''_N(x) \right]$ 。因此,

$$\psi'_0(x_0) = \psi'_0(x_1)$$

$$= \frac{1}{2N^2} [T'_N(1) + (1+1)T''_N(1)]$$

$$= \frac{1}{2N^2} \left[N^2 + \frac{2N^2(N^2 - 1)}{3} \right]$$

$$= \frac{2N^2 + 1}{6}$$

3. 當 l = j = N時,意即 $x_j = x_l = -1$,則

$$\psi_N(x) = \frac{(-1)^{N+1}(1-x)T'_N(x)}{2N^2}$$
$$= \frac{(-1)^{N+1}}{2N^2} [(1-x)T'_N(x)]$$

那麼 ,
$$\psi'_N(x) = \frac{(-1)^{N+1}}{2N^2} \left[-T'_N(x) + (1-x)T''_N(x) \right]$$
 。因此 ,
 $\psi'_N(-1) = \frac{(-1)^{N+1}}{2N^2} \left[-T'_N(-1) + 2T''_N(-1) \right]$
 $= \frac{(-1)^{N+1}}{2N^2} \left[(-1)^N N^2 + (-1)^N \frac{2N^2(N^2-1)}{3} \right]$
 $= -\frac{1}{2} \left[1 + \frac{2N^2 - 2}{3} \right]$
 $= -\frac{2N^2 + 1}{6}$
 $= -\psi'_0(1)$

4. 當 $l = j \neq 0, N$ 時,則

$$2\psi'_j(x) + (x - x_j)\psi''_j(x)$$

•

$$= \frac{(-1)^{j+1}}{\bar{c}_j N^2} \left[-2xT'_N(x) - 4xT''_N(x) + (1-x^2)T''_N(x) \right].$$

那麼, $x = x_l = x_j$ 代入上式得到:

$$\begin{aligned} 2\psi_j'(x_j) &= \frac{(-1)^{j+1}}{\bar{c}_j N^2} \left[-2T_N'(x_j) - 4x_j T_N''(x_j) + (1-x_j^2) T_N''(x_j) \right] \\ &= \frac{(-1)^{j+1}}{\bar{c}_j N^2} \left[\frac{-4x_j (-1)^{j+1} N^2}{1-x_j^2} + \frac{3x_j (-1)^{j+1} N^2}{1-x_j^2} \right] \\ &= \frac{-x_j}{1-x_j^2} \end{aligned}$$
所以, $\psi_j'(x_j) = \frac{-x_j}{2(1-x_j^2)}$ 。

所以,一階 Chebyshev collocation derivative matrix D_N 如下:

$$(D_N)_{ij} = \begin{cases} \frac{\bar{c}_i(-1)^{i+j}}{\bar{c}_j(z_i-z_j)}, & i \neq j, \\ \frac{-z_j}{2(1-z_j^2)}, & 1 \leq i = j \leq N-1, \\ \frac{2N^2+1}{6}, & i = j = 0, \\ -\frac{2N^2+1}{6}, & i = j = N, \end{cases}$$

其中 z_j (j = 0, 1, ..., N) 是 Gauss-Labotto collocation points , 而 $\bar{c}_k =$ 1 , 除了 $\bar{c}_0 = \bar{c}_N = 2$ 。二階 Chebyshev collocation derivative matrix D_N^2 可藉由平方一階 collocation derivative matrix D_N 得到。

Chebyshev spectral differentiation 的準確度可由下面的定理得知[1]:

定理 2 Accuracy of Chebyshev spectral differentiation

Suppose u is analytic on and inside the ellipse with foci ± 1 on which the Chebyshev potential takes the value ϕ_u , that is, the ellipse whose semimajor and semiminor axis lengths sum to $K = e^{\phi_u + \log 2}$. Let w be the vth Chebyshev spectral derivative of $u(\nu \geq 1)$. Then

$$|w_j - u^{(\nu)}(x_j)| = O(e^{-N(\phi_u + \log 2)}) = O(K^{-N}) \text{ as } N \to \infty.$$

2.4 邊界處理

頻譜配點法處理邊界條件有兩類基本的方法:

1. 重新建構原有的微分矩陣,使它滿足邊界條件。

2. 增加額外的方程式, 滿足邊界條件。

在本論文中是採取第一類方法來處理不同的邊界條件。

若是一維的題目(圖1),邊界只出現在兩端,微分矩陣的第一列與最後一列就是用來計算邊界的差值。因此要改變矩陣的第一列與最後一列, 滿足已知的邊界條件。

 $x_0 = -1 \qquad \qquad x_N = 1$

圖 1: 一維Chebyshev格點示意圖

若是二維的題目,且定義域是矩形,則邊界出現在矩形的四個 邊(圖2)。若 x 方向與 y 方向的自由度均為 N,則要改變矩陣的前 N 列 與末 N 列,滿足已知邊界條件的南北兩邊界;改變矩陣的第 M₁ 列,滿 足已知邊界條件的西邊邊界;改變矩陣的第 M₂ 列,滿足已知邊界條件的 東邊邊界。其中

> $M_1 = 1 + k * N,$ $M_2 = N + k * N,$ for $1 \le k \le N - 2$

更多的説明見2.5節。

圖 2: 二維Chebyshev格點矩形定義域示意圖

若是二維的題目,且定義域是圓形,則邊界出現在最外側圓形的圓 周上的點。(圖3) 若 θ 方向的自由度為 M,則要改變矩陣的前 M 列,滿 足已知的邊界條件。

圖 3: 二維Chebyshev格點圓形定義域示意圖

若是三維的題目,且定義域是立方體,則邊界出現在立方體的六個 面上的點(圖4)。若 x 方向與 y 方向與 z 方向的自由度均為 N ,則要 改變矩陣的前 N * N 列與末 N * N 列,滿足已知邊界條件的上下兩邊 界;改變矩陣的第 M₁ 列,滿足已知邊界條件的南邊邊界;改變矩陣的 第 M₂ 列,滿足已知邊界條件的北邊邊界;

改變矩陣的第 M₃ 列,滿足已知邊界條件的西邊邊界;改變矩陣的第 M₄ 列,滿足已知邊界條件的東邊邊界。其中

 $M_{2} = N * N * k + N * (N - 2) + i, \quad for \quad 1 \le i \le N,$ $M_{3} = N * N * k + 1 + j * N, \quad 1 \le j \le N - 2,$ $M_{4} = N * N * k + N + j * N, \quad 1 \le k \le N - 2.$

 $M_1 = N * N * k + i,$

圖 4: 三維Chebyshev格點立方體定義域示意圖

若是三維的題目,且定義域是圓柱,則邊界出現在最外側圓形的 圓周上的點與上下兩面的點。(圖5)若 r方向的自由度為 N, θ方向的 自由度為 M, z方向的自由度為 H,則要改變矩陣的前 N * M 列與 末 N * M 列,滿足邊界條件的上下兩邊界;改變矩陣的第 M₁ 列,滿足 最外側圓周上的邊界條件。

 $M_1 = M * N * k + j$, for $1 \le k \le H - 2, 1 \le j \le M$.

圖 5: 三維Chebyshev格點圓柱定義域示意圖

2.5 相關數值方法

以上的問題,都是 tensor product grid (見圖6)。

圖 6: tensor product 格點

要利用線性代數方法解決 tensor product grid ,可利用 Kronecker products 。兩矩陣A、B間的 Kronecker products 定義成 $A \otimes B$ 。假 如A、B矩陣的維度分別是 $p \times q$ 與 $r \times s$,則 $A \otimes B$ 矩陣的維度 是 $pr \times qs$,且有 $p \times q$ 個區塊。例如:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \otimes \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b & 2a & 2b \\ c & d & 2c & 2d \\ \hline 3a & 3b & 4a & 4b \\ 3c & 3d & 4c & 4d \end{pmatrix}$$

若以"lexicographic"順序(見圖7)來數二維的 tensor product grid ,則離散

的 Laplacian 是兩個 Kronecker procduct 的和:

$$L = I_1 \otimes D_N + D_M \otimes I2.$$

其中, $N \neq x$ 方向的自由度, $D_N \neq x$ 的一階偏微分矩陣; $M \neq y$ 方向的自由度, $D_M \neq y$ 的一階偏微分矩陣; $I_1 \neq (M+1) \times (M+1)$ 的單位矩陣, $I_2 \neq (N+1) \times (N+1)$ 的單位矩陣。

圖 7: lexicographic順序

若是以另一種順序來數二維的 tensor product grid (即先數 y 方向, 再數 x 方向),則離散的 Laplacian 是兩個 Kronecker procduct 的和:

$$L = I_1 \otimes D_M + D_N \otimes I2.$$

其中, $N \neq x$ 方向的自由度, $D_N \neq x$ 的一階偏微分矩陣; $M \neq y$ 方向的自由度, $D_M \neq y$ 的一階偏微分矩陣; $I_1 \neq (N+1) \times (N+1)$ 的單位矩陣, $I_2 \neq (M+1) \times (M+1)$ 的單位矩陣。三維以上的情形以此類推。

2.6 座標轉換

頻譜配點法可應用在許多定義域上。常用到的就是利用極座標(polar coordinates)轉換,將頻譜配點法應用在單位圓盤和圓柱上。離散化時, 使用週期的 Fourier 格點在角度 θ 上,使用非週期的 Chebyshev 格點在半徑 r 上。其中, $\theta \in [0, 2\pi]$, $r \in [-1, 1]$ 。

由於 (r, θ) 轉換到 (x, y) 是2-to-1,為了避免處理 (x, y) 在原點位置 的問題,在r方向的自由度N都取奇數。經過極座標轉換,原來的2維 偏微分方程式 $u_{xx} + u_{yy}$ 可以轉換成 $u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta}$ 。在 (r, θ) 空 間中有 $(N_r + 1) \times (N_{\theta})$ 個格點落在 (r, θ) 平面上,因此在這些格點離 散的 Laplacian 矩陣大小為 $((N_r + 1) \times (N_{\theta})) \times ((N_r + 1) \times (N_{\theta}))$ 。因 為 $u(r, \theta) = u(-r, (\theta + \pi)(mod2\pi))$,所以可以拋棄原矩陣第三和第四部 份(見圖8)。

圖 8: 極座標所對應之矩陣示意圖

$$D_r = \left(\begin{array}{c|c} r > 0 & r < 0 \\ \hline D_1 & D_2 \\ \hline D_3 & D_4 \end{array} \right) \quad r > 0 \quad \leftarrow added \ together \\ r < 0 \quad \leftarrow discarded$$

$$D_r^2 = \begin{pmatrix} D_1^2 & D_2^2 \\ \hline & D_3^2 & D_4^2 \end{pmatrix} \quad r > 0 \quad \leftarrow added \ together \\ r < 0 \quad \leftarrow discarded \end{cases}$$

因為對 r 方向作一次和二次偏微分矩陣 \tilde{D}_r^2 和 \tilde{D}_r 的大小,都 是 $(N_r + 1) \times (N_r + 1)$;且對 θ 方向作二次偏微分矩陣 D_{θ}^2 的大小, 是 $(N_{\theta}) \times (N_{\theta})$ 。所以, Laplacian 離散化後的矩陣 L 在極座標的表示為

$$L = (D_1^2 + RD_1) \otimes \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} + (D_2^2 + RD_2) \otimes \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} + R^2 \otimes D_{\theta}^2.$$

其中 I 是一個大小為 $\left(\frac{N_{\theta}}{2}\right) \times \left(\frac{N_{\theta}}{2}\right)$ 的單位矩陣; R 是一個對角線矩陣, 對角線元素為 r_j^{-1} , $0 \le j \le \frac{N_r-1}{2}$; \otimes 代表Kronecker products。三維以 上的情形以此類推。
3 頻譜配點法之應用(一)邊界值問題

本章將測試頻譜配點法應用於一維、二維、三維的Poisson方程式。 用不同的測試函數,在不同定義域與不同邊界條件下,先算出正確解的 答案,再和近似解比較,算出誤差。測試中採取直接解法的LU分解法, 與BCR(Bi-Conjugate Residual method)[11]迭代方法。

3.1 1D Poisson equation

一維的Poisson方程式: $u_{xx} = f$, $-1 \le x \le 1$. 設定基本参數:

- N : x 方向的自由度
- iter: 迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表1至表9可知,無論何種邊界條件,頻譜配點法都只用到少數的自 由度,即可快速且準確的逼近到正確答案。

3.1.1 Dirichlet Boundary Condition

使用LU分解法與BCR迭代法[11]解一維的Poisson方程式。 邊界值:

 $\cdot \quad u(-1). \\ \cdot \quad u(1).$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	1.0	x
3	2.0	x^2
4	6.0 * x	x^3
5	exp(x)	exp(x)
6	$-\pi^2 * sin(x)$	$sin(\pi * x)$
7	$-\pi^2 * \cos(x)$	$\cos(\pi * x)$

表 1: 1D Poisson with Dirichlet B.C.

eq	Ν	method	res_max	err_max	iter	cpu_t
1	5	LU	1.90e-15	4.44e-16	1	0.00
1	6	LU	3.18e-15	7.77e-16	1	0.00
2	5	LU	1.48e-15	2.78e-16	1	0.00
2	6	LU	6.82e-16	5.55e-16	1	0.00
3	5	LU	3.63e-16	3.75e-16	1	0.00
3	6	LU	4.44e-16	5.55e-16	1	0.00
4	5	LU	8.16e-16	2.84e-16	1	0.00
4	6	LU	8.22e-16	4.44e-16	1	0.00
5	12	LU	4.04e-14	1.64e-14	1	0.00
5	13	LU	5.08e-14	5.00e-15	1	0.00
6	17	LU	7.60e-15	4.62e-14	1	0.00
6	18	LU	1.03e-14	1.77e-14	1	0.00
7	17	LU	6.20e-14	2.26e-13	1	0.00
7	18	LU	9.08e-14	4.77e-15	1	0.00

 ${\ensuremath{\,\overline{x}}}$ 2: 1D Poisson with Dirichlet B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu₋t
5	12	BCR	3.57e-13	1.78e-14	14	0.00
5	13	BCR	9.70e-14	6.66e-15	14	0.00
6	17	BCR	5.97e-14	5.05e-14	13	0.00
6	18	BCR	6.88e-14	1.77e-14	14	0.00
7	17	BCR	1.10e-12	2.26e-13	15	0.00
7	18	BCR	2.13e-12	9.66e-15	16	0.00

 ${\ensuremath{\,\overline{x}}}$ 3: 1D Poisson with Dirichlet B.C. and BCR Method

3.1.2 Robin Boundary Condition

使用LU分解法與BCR迭代法[11]解一維的Poisson方程式。 邊界值:

> $\cdot \quad u(-1).$ $\cdot \quad u_x(1).$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	1.0	x
3	2.0	x^2
4	6.0 * x	x^3
5	exp(x)	exp(x)
6	$-\pi^2 * sin(x)$	$sin(\pi * x)$
7	$-\pi^2 * \cos(x)$	$cos(\pi * x)$

表 4: 1D Poisson with Robin B.C.

eq	Ν	method	res_max	err_max	iter	cpu_t
1	5	LU	2.01e-15	5.55e-16	1	0.00
1	6	LU	1.57e-15	8.88e-16	1	0.00
2	5	LU	1.23e-15	3.11e-15	1	0.00
2	6	LU	1.04e-15	3.44e-15	1	0.00
3	7	LU	1.29e-15	3.11e-15	1	0.00
3	8	LU	1.58e-15	9.10e-15	1	0.00
4	7	LU	3.63e-15	2.89e-15	1	0.00
4	8	LU	1.55e-15	7.77e-15	1	0.00
5	13	LU	4.09e-14	3.91e-14	1	0.00
5	14	LU	3.35e-14	6.13e-14	1	0.00
6	17	LU	9.06e-15	1.24e-11	1	0.00
6	18	LU	1.14e-14	5.79e-12	1	0.00
7	17	LU	1.22e-13	6.54e-11	1	0.00
7	18	LU	1.08e-13	1.08e-12	1	0.00

 ${\ensuremath{\,\overline{x}}}$ 5: 1D Poisson with Robin B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu₋t
5	13	BCR	2.47e-11	2.71e-12	19	0.00
5	14	BCR	9.33e-13	6.55e-13	16	0.00
6	17	BCR	6.88e-14	1.23e-11	16	0.00
6	18	BCR	5.37e-14	5.80e-12	17	0.00
7	17	BCR	2.42e-13	6.54e-11	17	0.00
7	18	BCR	6.03e-13	1.06e-12	18	0.00

 ${\ensuremath{\,\overline{x}}}$ 6: 1D Poisson with Robin B.C. and BCR Method

3.1.3 Neumann Boundary Condition

使用LU分解法與BCR迭代法[11]解一維的Poisson方程式。 邊界值:

 $\cdot \quad u_x(-1). \\ \cdot \quad u_x(1).$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	1.0	x
3	2.0	x^2
4	6.0 * x	x^3
5	exp(x)	exp(x)
6	$-\pi^2 * sin(x)$	$sin(\pi * x)$
7	$-\pi^2 * \cos(x)$	$\cos(\pi * x)$

表 7:1D Poisson with Neumann B.C.

eq	Ν	method	res_max	err_max	iter	cpu_t
1	4	LU	0.00e+00	0.00e+00	1	0.00
1	5	LU	0.00e+00	0.00e+00	1	0.00
2	4	LU	1.05e-15	3.72e-15	1	0.00
2	5	LU	6.02e-15	9.77e-15	1	0.00
3	6	LU	5.63e-16	1.33e-15	1	0.00
3	7	LU	7.69e-16	5.52e-16	1	0.00
4	6	LU	2.16e-15	7.73e-15	1	0.00
4	7	LU	2.63e-14	1.60e-14	1	0.00
5	13	LU	1.66e-13	1.40e-13	1	0.00
5	14	LU	1.20e-13	6.83e-15	1	0.00
6	17	LU	6.88e-14	1.23e-11	1	0.00
6	18	LU	1.12e-13	5.61e-12	1	0.00
7	17	LU	5.29e-10	3.67e-10	1	0.00
7	18	LU	8.01e-12	1.43e-11	1	0.00

 ${\ensuremath{\,\overline{x}}}$ 8: 1D Poisson with Neumann B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu_t
5	13	BCR	1.35e-12	3.49e-13	21	0.00
5	14	BCR	1.09e-13	2.58e-14	16	0.00
6	17	BCR	4.94e-14	1.24e-11	15	0.00
6	18	BCR	3.16e-14	5.79e-12	16	0.00
7	17	BCR	9.64e-10	1.21e-11	174	0.00
7	18	BCR	7.67e-12	4.04e-14	32	0.00

 ${\ensuremath{\,\overline{x}}}$ 9: 1D Poisson with Neumann B.C. and BCR Method

3.2 2D Poisson equation in a square

二維的Poisson方程式: $u_{xx} + u_{yy} = f$, $-1 \le x \le 1$, $-1 \le y \le 1$. 設定基本參數:

- N : x 方向與 y 方向的自由度
- iter: 迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表10至表18可知,無論何種邊界條件,頻譜配點法都只用到少數的 自由度,即可快速且準確的逼近到正確答案。

3.2.1 Dirichlet Boundary Condition

使用LU分解法與BCR迭代法[11]解二維的Poisson方程式。 邊界值:

$$\cdot u(-1, y), -1 < y < 1.$$

$$u(1, y), \quad -1 < y < 1.$$

$$\cdot \quad u(x,-1), \qquad -1 \le x \le 1.$$

$$\cdot \quad u(x,1), \qquad -1 \le x \le 1.$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	x
3	0.0	y
4	0.0	x + y
5	0.0	x * y + x + y
6	4.0	$x^2 + y^2 + x * y$
7	6.0 * x + 6.0 * y	$x^3 + y^3 + x * y$
8	2.0 * exp(x+y)	exp(x+y)
9	$-2.0*\pi^2*sin(\pi*x)*sin(\pi*y)$	$sin(\pi * x) * sin(\pi * y)$
10	$-2.0 * \pi^{2} * \cos(\pi * x) * \cos(\pi * y)$	$\cos(\pi * x) * \cos(\pi * y)$

表 10: 2D Poisson in a square with Dirichlet B.C.

eq	Ν	method	res_max	err_max	iter	cpu_t
1	7	LU	8.53e-15	1.22e-15	1	0.00
1	8	LU	1.22e-14	1.22e-15	1	0.00
2	7	LU	6.28e-15	8.88e-16	1	0.00
2	8	LU	9.36e-15	7.77e-16	1	0.00
3	7	LU	6.97e-15	9.99e-16	1	0.00
3	8	LU	9.32e-15	8.88e-16	1	0.00
4	7	LU	6.28e-15	2.00e-15	1	0.00
4	8	LU	8.50e-15	1.78e-15	1	0.00
5	7	LU	7.87e-15	1.33e-15	1	0.01
5	8	LU	1.59e-14	2.22e-15	1	0.00
6	7	LU	8.83e-15	2.66e-15	1	0.00
6	8	LU	1.47e-14	2.22e-15	1	0.00
7	7	LU	7.33e-15	1.11e-15	1	0.00
7	8	LU	1.30e-14	1.78e-15	1	0.00
8	12	LU	1.33e-13	5.60e-14	1	0.01
8	13	LU	1.60e-13	8.88e-15	1	0.02
9	15	LU	1.31e-14	9.99e-12	1	0.03
9	16	LU	1.20e-14	2.68e-12	1	0.05
10	17	LU	1.50e-13	2.88e-13	1	0.09
10	18	LU	1.72e-13	6.44e-15	1	0.13

 ${\ensuremath{\overline{\mathtt{R}}}}$ 11: 2D Poisson in a square with Dirichlet B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu_t
8	12	BCR	7.61e-13	5.77e-14	27	0.04
8	13	BCR	8.48e-13	1.27e-14	29	0.06
9	15	BCR	3.35e-13	9.99e-12	26	0.11
9	16	BCR	6.46e-14	2.68e-12	26	0.14
10	17	BCR	6.82e-13	2.88e-13	30	0.20
10	18	BCR	7.83e-13	6.66e-15	31	0.26

 ${\ensuremath{\,\overline{x}}}$ 12: 2D Poisson in a square with Dirichlet B.C. and BCR Method

3.2.2 Robin Boundary Condition

使用LU分解法與BCR迭代法[10]解二維的Poisson方程式。 邊界值:

$$\cdot u(-1, y), -1 < y < 1.$$

$$\cdot \quad u_y(1,y), \qquad -1 \le y < 1.$$

$$\cdot \quad u(x, -1), \quad -1 \le x < 1.$$

$$\cdot \quad u_x(x,1), \qquad -1 \le x \le 1.$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	x
3	0.0	y
4	1.0	$\frac{(x-1.0)^2}{2.0}$
5	-2.0 * x + 3.0	$\frac{-(x-1.0)^3}{3.0} + \frac{(x-1.0)^2}{2.0}$
6	$12.0 * x^2 - 4.0 + 12.0 * y^2 - 4.0$	$(x+1.0)^2 * (1.0-x)^2$
		$+(y+1.0)^2*(1.0-y)^2$
7	$2.0 * \pi^2 *$	$\sin(\pi*x)^2*\sin(\pi*y)^2$
	$(\cos(2.0*\pi*x)*\sin(\pi*y)^2)$	
	$+\cos(2.0*\pi*y)*\sin(\pi*x)^2)$	
8	$-0.5 * \pi^2 * \sin(\frac{\pi * x}{2.0}) * \sin(\frac{\pi * y}{2.0})$	$\sin(\frac{\pi * x}{2.0}) * \sin(\frac{\pi * y}{2.0})$

表 13: 2D Poisson in a square with Robin B.C.

eq	N	method	res_max	err_max	iter	cpu_t
1	5	LU	3.28e-15	2.33e-15	1	0.00
1	6	LU	3.65e-15	6.22e-15	1	0.00
2	5	LU	2.22e-15	8.88e-16	1	0.00
2	6	LU	3.21e-15	5.66e-15	1	0.00
3	5	LU	1.85e-15	2.00e-15	1	0.00
3	6	LU	3.90e-15	5.22e-15	1	0.00
4	5	LU	2.17e-15	1.72e-15	1	0.00
4	6	LU	4.86e-15	1.33e-15	1	0.00
5	5	LU	3.59e-15	3.86e-15	1	0.00
5	6	LU	1.19e-14	3.30e-15	1	0.00
6	5	LU	1.76e-15	9.72e-16	1	0.00
6	6	LU	2.97e-15	6.74e-15	1	0.00
7	17	LU	9.42e-15	3.26e-06	1	0.00
7	18	LU	8.95e-15	2.21e-07	1	0.00
8	17	LU	1.91e-13	2.92e-14	1	0.00
8	18	LU	1.72e-13	6.81e-14	1	0.00

 ${\ensuremath{\overline{\mathtt{R}}}}$ 14: 2D Poisson in a square with Robin B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu_t
7	20	BCR	3.29e-13	5.42e-09	75	0.91
7	21	BCR	1.38e-13	2.52e-09	80	1.23
8	20	BCR	1.84e-12	4.45e-14	91	1.12
8	21	BCR	2.83e-12	3.66e-14	105	1.53

 ${\ensuremath{\overline{\mathtt{R}}}}$ 15: 2D Poisson in a square with Robin B.C. and BCR Method

3.2.3 Neumann Boundary Condition

使用LU分解法與BCR迭代法[10]解二維的Poisson方程式。 邊界值:

$$\cdot u_y(-1, y), \quad -1 < y < 1.$$

$$u_y(1, y), \quad -1 < y < 1.$$

$$\cdot \quad u_x(x,-1), \qquad -1 \le x \le 1.$$

$$\cdot \quad u_x(x,1), \qquad -1 \le x \le 1.$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	x
3	0.0	y
4	$12.0 * x^2 - 4.0$	$(x - 1.0)^2 + (x + 1.0)^2$
5	$12.0 * y^2 - 4.0$	$(y - 1.0)^2 + (y + 1.0)^2$
6	$2.0 * \pi^2 *$	$\sin^2(\pi \ast x) \ast \sin^2(\pi \ast y)$
	$(\cos(2.0*\pi*x)*\sin^2(\pi*y))$	
	$+cos(2.0*\pi*y)*sin^{2}(\pi*x)$)	
7	$-2.0*\pi^{2}*\cos(\pi * x)*\cos(\pi * y)$	$\cos(\pi * x) * \cos(\pi * y)$

表 16: 2D Poisson in a square with Neumann B.C.

eq	Ν	method	res_max	err_max	iter	cpu_t
1	5	LU	0.00e+00	0.00e+00	1	0.00
1	6	LU	0.00e+00	0.00e+00	1	0.00
2	5	LU	4.27e-15	3.36e-15	1	0.00
2	6	LU	4.88e-15	8.55e-15	1	0.00
3	5	LU	4.32e-15	3.14e-15	1	0.00
3	6	LU	5.14e-15	9.12e-15	1	0.00
4	5	LU	1.57e-15	1.90e-15	1	0.00
4	6	LU	2.26e-15	9.99e-16	1	0.00
5	5	LU	6.86e-16	9.71e-16	1	0.00
5	6	LU	1.84e-15	9.44e-16	1	0.00
6	21	LU	1.30e-08	1.97e-09	1	0.38
6	22	LU	3.89e-10	1.67e-10	1	0.53
7	21	LU	2.73e-13	4.90e-14	1	0.40
7	22	LU	3.29e-13	9.57e-14	1	0.53

 ${\ensuremath{\,\overline{x}}}$ 17: 2D Poisson in a square with Neumann B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu_t
6	21	BCR	5.56e-08	4.90e-09	500	7.30
6	22	BCR	8.04e-08	4.01e-09	500	8.54
7	21	BCR	3.57e-11	2.81e-12	500	7.17
7	22	BCR	3.45e-12	1.28e-13	165	2.83

 ${\ensuremath{\overline{\times}}}$ 18: 2D Poisson in a square with Neumann B.C. and BCR Method

3.3 2D Poisson equation in a circle

二維的Poisson方程式:
$$u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta} = f$$
,
 $0 < r \le 1$, $0 < \theta \le 2\pi$.
 $u = u(r, \theta)$

設定基本參數:

- N: r 方向的自由度,取奇數
- M: θ 方向的自由度,取偶數
- iter: 迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表19至表27可知,無論何種邊界條件,頻譜配點法都只用到少數的 自由度,即可快速且準確的逼近到正確答案。

3.3.1 Dirichlet Boundary Condition

使用LU分解法與BCR迭代法[11]解二維的Poisson方程式。 邊界值:

 $\cdot \quad u(1,\theta), \qquad 0 < \theta \le 2\pi.$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	r * cos(t)
3	0.0	r * sin(t)
4	4.0	$r^2 * cos(t)^2 + r^2 * sin(t)^2$
5	2.0 * exp(r * cos(t) + r * sin(t))	exp(r * cos(t) + r * sin(t))
6	$4.0 * r^2 - 2.0$	$\frac{r^4}{4.0} - \frac{r^2}{2.0}$
7	$4.0 - \frac{2.0}{r}$	$r^2 - 2.0 * r$

表 19: 2D Poisson in a circle with Dirichlet B.C.

eq	N	М	method	res_max	err_max	iter	cpu₋t
1	3	8	LU	1.42e-15	1.22e-15	1	0.00
1	3	10	LU	3.05e-15	2.00e-15	1	0.00
1	5	8	LU	4.18e-15	1.78e-15	1	0.00
1	5	10	LU	5.27e-15	2.89e-15	1	0.00
2	3	8	LU	8.42e-16	4.44e-16	1	0.00
2	3	10	LU	7.57e-16	4.44e-16	1	0.00
2	5	8	LU	1.89e-15	6.11e-16	1	0.00
2	5	10	LU	2.14e-15	5.55e-16	1	0.00
3	3	8	LU	6.53e-16	2.78e-16	1	0.00
3	3	10	LU	8.89e-16	3.89e-16	1	0.00
3	5	8	LU	1.71e-15	4.44e-16	1	0.00
3	5	10	LU	1.87e-15	2.78e-16	1	0.00
4	3	8	LU	6.08e-16	3.05e-16	1	0.00
4	3	10	LU	7.82e-16	5.83e-16	1	0.00
4	5	8	LU	2.32e-15	6.66e-16	1	0.00
4	5	10	LU	1.88e-15	4.44e-16	1	0.00
5	3	8	LU	1.11e-16	4.69e-02	1	0.00
5	3	10	LU	2.29e-16	4.69e-02	1	0.00
5	5	8	LU	5.61e-16	1.94e-16	1	0.00
5	5	10	LU	6.42e-16	1.39e-16	1	0.00
6	11	22	LU	1.02e-13	1.02e-10	1	0.00
6	11	24	LU	1.22e-13	1.02e-10	1	0.00
6	13	22	LU	1.63e-13	4.66e-12	1	0.00
6	13	24	LU	1.55e-13	2.31e-13	1	0.01

 ${\ensuremath{\overline{\times}}}$ 20: 2D Poisson in a circle with Dirichlet B.C. and LU Method

eq	Ν	М	method	res_max	err_max	iter	cpu_t
6	11	18	BCR	5.62e-13	1.45e-09	34	0.02
6	11	20	BCR	3.02e-13	1.01e-10	34	0.02
6	11	22	BCR	3.68e-13	1.02e-10	36	0.03
6	13	18	BCR	7.24e-13	1.61e-09	33	0.03
6	13	20	BCR	8.75e-13	8.40e-11	35	0.04
6	13	22	BCR	5.76e-13	4.66e-12	36	0.04

 ${\ensuremath{\overline{\mathtt{z}}}}$ 21: 2D Poisson in a circle with Dirichlet B.C. and BCR Method

3.3.2 Robin Boundary Condition

•

使用LU分解法與BCR迭代法[11]解二維的Poisson方程式。 邊界值:

$$u_r(1,\theta), \quad 0 < \theta \le \pi.$$

$$\cdot \quad u(1,\theta), \qquad \pi < \theta \le 2\pi.$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	r * cos(t)
3	0.0	r * sin(t)
4	4.0	$r^2 * cos^2(t) + r^2 * sin^2(t)$
5	$4.0 * r^2 - 2.0$	$\frac{r^4}{4} - \frac{r^2}{2}$
6	2.0 * exp(r * cos(t) + r * sin(t))	exp(r * cos(t) + r * sin(t))

表 22: 2D Poisson in a circle with Robin B.C.

eq	N	М	method	res_max	err_max	iter	cpu_t
1	3	8	LU	1.36e-15	4.77e-15	1	0.00
1	3	10	LU	2.37e-15	7.55e-15	1	0.00
1	5	8	LU	3.25e-15	1.08e-14	1	0.00
1	5	10	LU	5.42e-15	2.55e-15	1	0.00
2	3	8	LU	4.86e-16	1.33e-15	1	0.00
2	3	10	LU	1.09e-15	1.44e-15	1	0.00
2	5	8	LU	1.58e-15	1.78e-15	1	0.00
2	5	10	LU	2.12e-15	1.89e-15	1	0.00
3	3	8	LU	3.63e-16	2.22e-15	1	0.00
3	3	10	LU	8.10e-16	1.11e-15	1	0.00
3	5	8	LU	1.41e-15	3.77e-15	1	0.00
3	5	10	LU	1.45e-15	2.89e-15	1	0.00
4	3	8	LU	7.45e-16	1.33e-15	1	0.00
4	3	10	LU	7.90e-16	1.80e-15	1	0.00
4	5	8	LU	1.44e-15	6.88e-15	1	0.00
4	5	10	LU	1.94e-15	4.44e-15	1	0.00
5	3	8	LU	4.78e-16	9.69e-01	1	0.00
5	3	10	LU	7.45e-16	9.81e-01	1	0.00
5	5	8	LU	5.09e-16	2.16e-15	1	0.00
5	5	10	LU	6.13e-16	1.14e-15	1	0.00
6	11	22	LU	9.27e-14	1.38e-09	1	0.00
6	11	24	LU	1.08e-13	1.34e-09	1	0.00
6	13	22	LU	1.78e-13	2.42e-11	1	0.00
6	13	24	LU	1.66e-13	4.47e-12	1	0.00

 ${\ensuremath{\,\overline{x}}}$ 23: 2D Poisson in a circle with Robin B.C. and LU Method

eq	Ν	М	method	res_max	err_max	iter	cpu_t
6	11	18	BCR	1.40e-11	6.24e-09	61	0.04
6	11	20	BCR	1.17e-12	1.36e-09	58	0.04
6	11	22	BCR	1.27e-12	1.38e-09	60	0.05
6	13	18	BCR	1.05e-12	5.34e-09	57	0.05
6	13	20	BCR	4.18e-12	3.09e-10	64	0.06
6	13	22	BCR	3.03e-11	2.39e-11	78	0.09

 ${\ensuremath{\overline{\mathtt{z}}}}$ 24: 2D Poisson in a circle with Robin B.C. and BCR Method

3.3.3 Neumann Boundary Condition

使用LU分解法與BCR迭代法[11]解二維的Poisson方程式。 邊界值:

 $\cdot u_r(1,\theta), \quad 0 < \theta \le 2\pi.$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	r * cos(t)
3	0.0	r * sin(t)
4	4.0	$r^2 * cos^2(t) + r^2 * sin^2(t)$
5	$4.0 * r^2 - 2.0$	$\frac{r^4}{4} - \frac{r^2}{2}$
6	2.0 * exp(r * cos(t) + r * sin(t))	exp(r * cos(t) + r * sin(t))

表 25: 2D Poisson in a circle with Neumann B.C.

eq	N	М	method	res_max	err_max	iter	cpu_t
1	3	8	LU	0.00e+00	0.00e+00	1	0.00
1	3	10	LU	0.00e+00	0.00e+00	1	0.00
1	5	8	LU	0.00e+00	0.00e+00	1	0.00
1	5	10	LU	0.00e+00	0.00e+00	1	0.00
2	3	8	LU	8.14e-16	2.89e-15	1	0.00
2	3	10	LU	1.19e-15	3.11e-15	1	0.00
2	5	8	LU	1.72e-15	4.11e-15	1	0.00
2	5	10	LU	4.39e-15	2.73e-15	1	0.00
3	3	8	LU	5.11e-16	2.00e-15	1	0.00
3	3	10	LU	7.53e-16	1.55e-15	1	0.00
3	5	8	LU	1.70e-15	3.44e-15	1	0.00
3	5	10	LU	5.14e-15	3.61e-15	1	0.00
4	3	8	LU	5.44e-16	1.11e-16	1	0.00
4	3	10	LU	3.85e-16	1.66e-16	1	0.00
4	5	8	LU	2.04e-15	8.05e-16	1	0.00
4	5	10	LU	1.14e-14	1.05e-14	1	0.00
5	3	8	LU	3.53e-01	7.81e-01	1	0.00
5	3	10	LU	2.43e-01	9.84e-01	1	0.00
5	5	8	LU	5.17e-16	2.43e-16	1	0.00
5	5	10	LU	2.25e-15	2.76e-15	1	0.00
6	11	22	LU	5.61e-09	9.63e-10	1	0.00
6	11	24	LU	4.79e-10	9.27e-10	1	0.00
6	13	22	LU	2.50e-12	3.00e-11	1	0.00
6	13	24	LU	6.32e-12	5.45e-12	1	0.00

 ${\ensuremath{\,\overline{x}}}$ 26: 2D Poisson in a circle with Neumann B.C. and LU Method

eq	Ν	М	method	res_max	err_max	iter	cpu_t
6	11	18	BCR	1.35e-06	4.76e-08	500	0.29
6	11	20	BCR	1.81e-05	1.46e-07	500	0.35
6	11	22	BCR	1.45e-07	6.41e-09	500	0.43
6	13	18	BCR	3.38e-11	6.48e-09	82	0.06
6	13	20	BCR	2.05e-09	4.21e-10	500	0.48
6	13	22	BCR	3.17e-08	3.25e-10	500	0.58

 ${\ensuremath{\,\overline{x}}}$ 27: 2D Poisson in a circle with Neumann B.C. and BCR Method

3.4 3D Poisson equation in a cube

三維的Poisson方程式:
$$u_{xx} + u_{yy} + u_{zz} = f$$
,
 $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 1$.

設定基本參數:

- N : x 方向與 y 方向與 z 方向的自由度
- iter: 迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表28至表36可知,無論何種邊界條件,頻譜配點法都只用到少數的 自由度,即可快速且準確的逼近到正確答案。

3.4.1 Dirichlet Boundary Condition

使用LU分解法與BCR迭代法[11]解三維的Poisson方程式。 邊界值:

$$\begin{array}{lll} \cdot & u(-1,y,z), & -1 < y < 1, & -1 \le z \le 1. \\ \cdot & u(1,y,z), & -1 < y < 1, & -1 \le z \le 1. \\ \cdot & u(x,-1,z), & -1 \le x \le 1, & -1 \le z \le 1. \\ \cdot & u(x,1,z), & -1 \le x \le 1, & -1 \le z \le 1. \\ \cdot & u(x,y,-1), & -1 < x < 1, & -1 < y < 1. \\ \cdot & u(x,y,1), & -1 < x < 1, & -1 < y < 1. \end{array}$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	x
3	0.0	y
4	0.0	z
5	0.0	x + y + z
6	0.0	x * y * z + x + y + z
7	6.0 * x + 6.0 * y + 6.0 * z	$x^3 + y^3 + z^3 + x * y * z$
8	3.0 * exp(x+y+z)	exp(x+y+z)
9	$3.0 * \pi^{2} * \sin(\pi * x) * \sin(\pi * y) * \sin(\pi * z)$	$sin(\pi * x) * sin(\pi * y) * sin(\pi * z)$
10	$3.0 * \pi^2 * \cos(\pi * x) * \cos(\pi * y) * \cos(\pi * z)$	$\cos(\pi * x) * \cos(\pi * y) * \cos(\pi * z)$

表 28: 3D Poisson in a cube with Dirichlet B.C.

eq	Ν	method	res_max	err_max	iter	cpu_t
1	6	LU	6.55e-15	1.11e-15	1	0.10
1	7	LU	1.15e-14	1.55e-15	1	0.47
2	7	LU	7.17e-15	1.22e-15	1	0.46
2	8	LU	1.18e-14	8.88e-16	1	1.36
3	7	LU	7.21e-15	1.22e-15	1	0.47
3	8	LU	1.45e-14	9.99e-16	1	1.40
4	7	LU	7.84e-15	1.11e-15	1	0.52
4	8	LU	1.45e-14	8.88e-16	1	1.53
5	6	LU	5.42e-15	1.78e-15	1	0.13
5	7	LU	1.21e-14	3.55e-15	1	0.56
6	6	LU	7.10e-15	2.22e-15	1	0.10
6	7	LU	1.64e-14	4.00e-15	1	0.46
7	6	LU	8.20e-15	1.78e-15	1	0.10
7	7	LU	8.92e-15	3.55e-15	1	0.46
8	12	LU	3.55e-13	1.63e-13	1	45.80
8	13	LU	3.84e-13	2.13e-14	1	87.80
9	12	LU	7.25e-15	3.23e-08	1	39.89
9	13	LU	7.65e-15	1.51e-09	1	86.39
10	12	LU	4.49e-14	2.51e-08	1	40.21
10	13	LU	6.15e-14	4.70e-09	1	94.58

 $\gtrsim~29:~3D$ Poisson in a cube with Dirichlet B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu_t
8	12	BCR	1.37e-12	1.67e-13	27	8.17
8	13	BCR	1.87e-12	2.13e-14	28	13.14
9	12	BCR	3.05e-14	3.23e-08	25	7.61
9	13	BCR	5.34e-14	1.51e-09	25	11.79
10	12	BCR	1.74e-13	2.51e-08	27	8.16
10	13	BCR	2.70e-13	4.70e-09	26	12.36

 ${\ensuremath{\overline{\mathtt{8}}}}$ 30: 3D Poisson in a cube with Dirichlet B.C. and BCR Method

3.4.2 Robin Boundary Condition

使用LU分解法與BCR迭代法[11]解三維的Poisson方程式。 邊界值:

$$\begin{array}{ll} \cdot & u(-1,y,z), & -1 < y < 1, & -1 \le z \le 1. \\ \cdot & u_y(1,y,z), & -1 \le y < 1, & -1 \le z \le 1. \\ \cdot & u(x,-1,z), & -1 \le x < 1, & -1 \le z \le 1. \\ \cdot & u_x(x,1,z), & -1 \le x \le 1, & -1 \le z \le 1. \\ \cdot & u(x,y,-1), & -1 < x < 1, & -1 < y < 1. \\ \cdot & u_z(x,y,1), & -1 < x < 1, & -1 < y < 1. \end{array}$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	x
3	0.0	y
4	0.0	z
5	-2.0 * x + 3.0	$-\frac{(x-1.0)^3}{3.0} + \frac{(x-1.0)^2}{2.0}$
6	$12.0 * x^2 + 12.0 * y^2 + 12.0 * z^2 - 12.0$	$(x+1.0)^2 * (1.0-x)^2$
		$+(y+1.0)^2*(1.0-y)^2$
		$+(z+1.0)^2*(1.0-z)^2$
7	$2.0 * \pi^2 *$	$sin^2(\pi * x)$
	$(cos(2.0*\pi*x)*sin^{2}(\pi*y)*sin^{2}(\pi*z)$	$*sin^2(\pi * y)$
	$+\cos(2.0*\pi*y)*\sin^2(\pi*x)*\sin^2(\pi*z)$	$*sin^2(\pi * z)$
	$+\cos(2.0*\pi*z)*\sin^2(\pi*x)*\sin^2(\pi*y))$	
8	$-\frac{3}{4} * \pi^2 * \sin(\frac{\pi * x}{2.0}) * \sin(\frac{\pi * y}{2.0}) * \sin(\frac{\pi * z}{2.0})$	$sin(\frac{\pi * x}{2.0}) * sin(\frac{\pi * y}{2.0}) * sin(\frac{\pi * z}{2.0})$

 ${\ensuremath{\overline{x}}}$ 31: 3D Poisson in a cube with Robin B.C.
eq	Ν	method	res_max	err_max	iter	cpu_t
1	5	LU	3.88e-15	1.33e-15	1	0.02
1	6	LU	5.95e-15	6.22e-15	1	0.11
2	5	LU	2.60e-15	3.11e-15	1	0.02
2	6	LU	4.15e-15	4.00e-15	1	0.11
3	5	LU	2.51e-15	1.11e-15	1	0.02
3	6	LU	4.27e-15	4.55e-15	1	0.10
4	5	LU	2.45e-15	2.89e-15	1	0.01
4	6	LU	5.00e-15	4.22e-15	1	0.10
5	5	LU	6.68e-15	4.62e-15	1	0.02
5	6	LU	1.44e-14	5.77e-15	1	0.12
6	6	LU	7.85e-15	1.09e-14	1	0.10
6	7	LU	1.17e-14	3.00e-15	1	0.48
7	15	LU	5.84e-15	4.91e-05	1	748.74
7	16	LU	6.57e-15	4.34e-06	1	2201.47
8	12	LU	5.86e-14	5.08e-10	1	40.24
8	13	LU	7.24e-14	3.78e-12	1	95.43

表 32: 3D Poisson in a cube with Robin B.C. and LU Method

eq	N	method	res_max	err_max	iter	cpu_t
7	15	BCR	2.95e-10	4.91e-05	80	83.55
7	16	BCR	1.22e-09	4.34e-06	80	126.58
8	12	BCR	6.29e-12	5.08e-10	80	23.41
8	13	BCR	8.26e-10	6.15e-10	80	36.52

表 33: 3D Poisson in a cube with Robin B.C. and BCR Method

3.4.3 Neumann Boundary Condition

使用LU分解法與BCR迭代法[11]解三維的Poisson方程式。 邊界值:

$$\begin{array}{ll} \cdot & u_y(-1,y,z), & -1 < y < 1, & -1 \le z \le 1. \\ \cdot & u_y(1,y,z), & -1 < y < 1, & -1 \le z \le 1. \\ \cdot & u_x(x,-1,z), & -1 \le x \le 1, & -1 \le z \le 1. \\ \cdot & u_x(x,1,z), & -1 \le x \le 1, & -1 \le z \le 1. \\ \cdot & u_z(x,y,-1), & -1 < x < 1, & -1 < y < 1. \\ \cdot & u_z(x,y,1), & -1 < x < 1, & -1 < y < 1. \end{array}$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	x
3	0.0	y
4	0.0	z
5	$12.0 * x^2 - 4.0$	$(x-1.0)^2 * (x+1.0)^2$
6	$12.0 * y^2 - 4.0$	$(y-1.0)^2 * (y+1.0)^2$
7	$12.0 * z^2 - 4.0$	$(z-1.0)^2 * (z+1.0)^2$
8	$2.0 * \pi^2 *$	$sin^2(\pi * x)$
	$(\cos(2.0*\pi*x)*\sin^2(\pi*y)*\sin^2(\pi*z))$	$*sin^2(\pi * y)$
	$+\cos(2.0*\pi*y)*\sin^2(\pi*x)*\sin^2(\pi*z)$	$*sin^2(\pi * z)$
	$+\cos(2.0*\pi*z)*\sin^2(\pi*x)*\sin^2(\pi*y))$	
9	$-3.0 * \pi^2$	$\cos(\pi * x)$
	$*\cos(\pi * x) * \cos(\pi * y) * \cos(\pi * z)$	$*cos(\pi * y)$
		$*cos(\pi * z)$

表 34: 3D Poisson in a cube with Neumann B.C.

eq	Ν	method	res_max	err_max	iter	cpu_t
1	6	LU	0.00e+00	0.00e+00	1	0.11
1	7	LU	0.00e+00	0.00e+00	1	0.47
2	6	LU	6.37e-15	1.24e-14	1	0.10
2	7	LU	1.50e-14	9.05e-15	1	0.46
3	6	LU	6.64e-15	1.09e-14	1	0.10
3	7	LU	1.73e-14	8.94e-15	1	0.47
4	6	LU	5.89e-15	5.33e-15	1	0.11
4	7	LU	1.88e-14	1.18e-14	1	0.50
5	6	LU	2.63e-15	1.55e-15	1	0.11
5	7	LU	3.94e-15	2.00e-15	1	0.48
6	6	LU	2.59e-15	2.00e-15	1	0.10
6	7	LU	3.73e-15	1.83e-15	1	0.46
7	6	LU	2.73e-15	2.89e-15	1	0.11
7	7	LU	6.40e-15	2.78e-15	1	0.46
8	15	LU	1.78e-04	1.81e-04	1	931.16
8	16	LU	6.05e-05	8.53e-06	1	2494.20
9	11	LU	3.12e-14	1.99e-05	1	18.78
9	12	LU	4.67e-14	7.51e-07	1	44.11

 ${\ensuremath{\,\overline{x}}}$ 35: 3D Poisson in a cube with Neumann B.C. and LU Method

eq	Ν	method	res_max	err_max	iter	cpu_t
8	15	BCR	2.08e-04	1.82e-05	80	80.80
8	16	BCR	2.03e-05	1.53e-06	80	114.24
9	11	BCR	9.52e-11	1.99e-05	80	14.38
9	12	BCR	1.13e-09	7.51e-07	80	23.29

 ${\ensuremath{\overline{\mathtt{8}}}}$ 36: 3D Poisson 3D in a cube with Neumann B.C. and BCR Method

3.5 3D Poisson equation in a cylinder

三維的Poisson方程式:
$$u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta} + u_{zz} = f$$
,
 $0 < r \le 1$, $0 < \theta \le 2\pi$, $-1 \le z \le 1$.
 $u = u(r, \theta, z)$

設定基本參數:

- N: r 方向的自由度,取奇數
- M: θ 方向的自由度,取偶數
- H: z 方向的自由度
- iter: 迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表37至表51可知,無論何種邊界條件,頻譜配點法都只用到少數的 自由度,即可快速且準確的逼近到正確答案。

3.5.1 Dirichlet Boundary Condition

使用LU分解法與BCR迭代法[11]解三維的Poisson方程式。 邊界值:

$$\cdot \quad u(1,\theta,z), \qquad 0 < \theta \le 2\pi, \qquad -1 \le z \le 1.$$

- $\cdot \quad u(r,\theta,-1), \qquad 0 < \theta \leq 2\pi, \qquad 0 < r < 1.$
- $\cdot \quad u(r,\theta,1), \qquad 0 < \theta \leq 2\pi, \qquad 0 < r < 1.$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	r * cos(t)
3	0.0	r * sin(t)
4	0.0	z
5	4.0	$r^2 * cos^2(t) + r^2 * sin^2(t)$
6	$4.0 * r^2 - 2.0$	$\frac{r^4}{4.0} - \frac{r^2}{2.0}$
7	8.0 * r * cos(t)	$(r^2 * cos^2(t) + r^2 * sin^2(t)) * r * cos(t)$
8	8.0 * r * sin(t)	$(r^2 * cos^2(t) + r^2 * sin^2(t)) * r * sin(t)$

表 37: 3D Poisson in a cylinder with Dirichlet B.C.

				-	-			
eq	N	М	Н	method	res_max	err_max	iter	cpu_t
1	3	6	5	LU	2.37e-15	2.00e-15	1	0.00
1	3	8	5	LU	2.66e-15	1.22e-15	1	0.00
1	5	6	5	LU	3.85e-15	2.44e-15	1	0.00
1	5	8	5	LU	4.85e-15	2.11e-15	1	0.00
1	3	6	6	LU	2.13e-15	1.55e-15	1	0.00
1	3	8	6	LU	4.50e-15	1.11e-15	1	0.00
1	5	6	6	LU	6.80e-15	2.66e-15	1	0.00
1	5	8	6	LU	5.63e-15	2.44e-15	1	0.01
2	3	6	5	LU	6.44e-16	6.66e-16	1	0.00
2	3	8	5	LU	9.42e-16	3.89e-16	1	0.00
2	5	6	5	LU	1.89e-15	7.49e-16	1	0.00
2	5	8	5	LU	1.79e-15	6.66e-16	1	0.00
2	3	6	6	LU	1.04e-15	6.66e-16	1	0.00
2	3	8	6	LU	1.09e-15	3.89e-16	1	0.00
2	5	6	6	LU	1.83e-15	8.60e-16	1	0.00
2	5	8	6	LU	2.29e-15	6.66e-16	1	0.01
3	3	6	5	LU	7.67e-16	4.44e-16	1	0.00
3	3	8	5	LU	9.95e-16	2.78e-16	1	0.00
3	5	6	5	LU	1.70e-15	6.16e-16	1	0.00
3	5	8	5	LU	2.34e-15	6.66e-16	1	0.00
3	3	6	6	LU	1.13e-15	4.38e-16	1	0.00
3	3	8	6	LU	1.02e-15	2.22e-16	1	0.00
3	5	6	6	LU	2.00e-15	5.75e-16	1	0.00
3	5	8	6	LU	2.31e-15	5.55e-16	1	0.01

 ${\ensuremath{\overline{x}}}$ 38: 3D Poisson in a cylinder with Dirichlet B.C. (1) and LU Method

eq	N	М	Н	method	res_max	err_max	iter	cpu_t
4	3	6	5	LU	1.55e-15	8.88e-16	1	0.00
4	3	8	5	LU	2.53e-15	5.55e-16	1	0.00
4	5	6	5	LU	3.06e-15	1.33e-15	1	0.00
4	5	8	5	LU	3.29e-15	6.66e-16	1	0.00
4	3	6	6	LU	2.37e-15	7.77e-16	1	0.00
4	3	8	6	LU	2.51e-15	5.55e-16	1	0.00
4	5	6	6	LU	4.02e-15	9.99e-16	1	0.00
4	5	8	6	LU	3.86e-15	6.66e-16	1	0.01
5	3	6	5	LU	5.94e-16	5.83e-16	1	0.00
5	3	8	5	LU	8.85e-16	3.05e-16	1	0.00
5	5	6	5	LU	1.85e-15	4.44e-16	1	0.00
5	5	8	5	LU	2.52e-15	6.66e-16	1	0.00
5	3	6	6	LU	1.06e-15	4.72e-16	1	0.00
5	3	8	6	LU	1.05e-15	2.78e-16	1	0.00
5	5	6	6	LU	2.32e-15	4.44e-16	1	0.00
5	5	8	6	LU	3.38e-15	6.66e-16	1	0.01
6	3	6	5	LU	2.16e-16	3.52e-02	1	0.00
6	3	8	5	LU	3.41e-16	3.52e-02	1	0.00
6	5	6	5	LU	7.15e-16	1.39e-16	1	0.00
6	5	8	5	LU	8.55e-16	2.22e-16	1	0.00
6	3	6	6	LU	3.45e-16	3.77e-02	1	0.00
6	3	8	6	LU	4.10e-16	3.77e-02	1	0.00
6	5	6	6	LU	1.11e-15	1.39e-16	1	0.00
6	5	8	6	LU	1.09e-15	2.01e-16	1	0.01

 ${\ensuremath{\overline{x}}}$ 39: 3D Poisson in a cylinder with Dirichlet B.C. (2) and LU Method

eq	Ν	М	Н	method	res_max	err_max	iter	cpu_t
7	3	6	5	LU	3.84e-16	1.94e-16	1	0.00
7	3	8	5	LU	4.67e-16	1.11e-16	1	0.00
7	5	6	5	LU	1.98e-15	2.22e-16	1	0.00
7	5	8	5	LU	1.15e-15	4.44e-16	1	0.00
7	3	6	6	LU	3.92e-16	1.73e-16	1	0.00
7	3	8	6	LU	5.00e-16	1.11e-16	1	0.00
7	5	6	6	LU	1.98e-15	2.22e-16	1	0.00
7	5	8	6	LU	1.49e-15	3.89e-16	1	0.01
8	3	6	5	LU	2.89e-16	1.25e-16	1	0.00
8	3	8	5	LU	4.36e-16	8.33e-17	1	0.00
8	5	6	5	LU	1.05e-15	3.33e-16	1	0.00
8	5	8	5	LU	1.57e-15	4.44e-16	1	0.00
8	3	6	6	LU	3.83e-16	1.10e-16	1	0.00
8	3	8	6	LU	5.99e-16	6.94e-17	1	0.00
8	5	6	6	LU	1.07e-15	2.78e-16	1	0.00
8	5	8	6	LU	1.54e-15	3.33e-16	1	0.01

表 40: 3D Poisson in a cylinder with Dirichlet B.C. (3) and LU Method

eq	N	M	H	method	res_max	err_max	iter	cpu_t
6	3	6	5	BCR	3.11e-15	3.52e-02	19	0.01
6	3	8	5	BCR	1.75e-15	3.52e-02	22	0.01
6	5	6	5	BCR	5.68e-15	6.66e-16	24	0.01
6	5	8	5	BCR	3.59e-15	4.44e-16	26	0.03
6	3	6	6	BCR	8.01e-16	3.77e-02	22	0.01
6	3	8	6	BCR	3.25e-14	3.77e-02	22	0.02
6	5	6	6	BCR	1.72e-14	8.33e-16	24	0.02
6	5	8	6	BCR	6.00e-15	2.50e-16	26	0.04
7	3	6	5	BCR	1.03e-14	1.06e-15	19	0.01
7	3	8	5	BCR	1.82e-14	1.64e-15	22	0.01
7	5	6	5	BCR	2.17e-14	1.28e-15	23	0.01
7	5	8	5	BCR	4.23e-15	5.55e-16	27	0.03
7	3	6	6	BCR	1.67e-14	9.44e-16	20	0.01
7	3	8	6	BCR	4.11e-15	2.73e-16	22	0.02
7	5	6	6	BCR	8.80e-15	6.66e-16	25	0.02
7	5	8	6	BCR	8.13e-15	9.99e-16	27	0.04
8	3	6	5	BCR	5.73e-15	7.33e-16	19	0.01
8	3	8	5	BCR	1.26e-14	1.40e-15	21	0.01
8	5	6	5	BCR	1.25e-14	8.68e-16	24	0.01
8	5	8	5	BCR	1.41e-14	9.99e-16	26	0.03
8	3	6	6	BCR	6.01e-15	4.30e-16	21	0.01
8	3	8	6	BCR	5.35e-15	3.61e-16	22	0.01
8	5	6	6	BCR	5.58e-15	5.55e-16	25	0.02
8	5	8	6	BCR	1.07e-14	6.14e-16	26	0.04

 ${\ensuremath{\overline{\times}}}$ 41: 3D Poisson in a cylinder with Dirichlet B.C. and BCR Method

3.5.2 Robin Boundary Condition

使用LU分解法與BCR迭代法[11]解三維的Poisson方程式。 邊界值:

$$u_r(1,\theta,z), \quad 0 < \theta \le \pi, \quad -1 \le z \le 1.$$
$$u(1,\theta,z), \quad \pi < \theta \le 2\pi, \quad -1 \le z \le 1.$$

·
$$u_z(r, \theta, -1)$$
, $0 < \theta \le 2\pi$, $0 < r < 1$.

$$\cdot \quad u_z(r,\theta,1), \qquad 0 < \theta \le 2\pi, \qquad 0 < r < 1.$$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	r * cos(t)
3	0.0	r * sin(t)
4	0.0	z
5	4.0	$r^2 * cos^2(t) + r^2 * sin^2(t)$
6	$4.0 * r^2 - 2.0$	$\frac{r^4}{4.0} - \frac{r^2}{2.0}$
7	8.0 * r * cos(t)	$(r^2 * cos^2(t) + r^2 * sin^2(t)) * r * cos(t)$
8	8.0 * r * sin(t)	$(r^2 * cos^2(t) + r^2 * sin^2(t)) * r * sin(t)$

 ${\ensuremath{\overline{x}}}$ 42: 3D Poisson in a cylinder with Robin B.C.

eq	N	M	H	method	res_max	err_max	iter	cpu_t
1	3	6	5	LU	2.21e-15	7.77e-15	1	0.00
1	3	8	5	LU	2.26e-15	8.33e-15	1	0.00
1	5	6	5	LU	4.11e-15	3.77e-15	1	0.00
1	5	8	5	LU	4.09e-15	1.68e-14	1	0.00
1	3	6	6	LU	3.54e-15	7.77e-15	1	0.00
1	3	8	6	LU	2.98e-15	5.00e-15	1	0.00
1	5	6	6	LU	4.57e-15	4.44e-15	1	0.00
1	5	8	6	LU	5.65e-15	1.35e-14	1	0.01
2	3	6	5	LU	6.88e-16	2.44e-15	1	0.00
2	3	8	5	LU	9.83e-16	2.33e-15	1	0.00
2	5	6	5	LU	1.89e-15	2.00e-15	1	0.00
2	5	8	5	LU	1.65e-15	4.11e-15	1	0.01
2	3	6	6	LU	1.20e-15	2.78e-15	1	0.00
2	3	8	6	LU	1.14e-15	1.67e-15	1	0.00
2	5	6	6	LU	2.56e-15	2.05e-15	1	0.00
2	5	8	6	LU	1.77e-15	2.22e-15	1	0.01
3	3	6	5	LU	6.40e-16	9.99e-16	1	0.00
3	3	8	5	LU	6.13e-16	4.11e-15	1	0.00
3	5	6	5	LU	1.52e-15	2.66e-15	1	0.00
3	5	8	5	LU	2.12e-15	7.66e-15	1	0.00
3	3	6	6	LU	6.42e-16	1.22e-15	1	0.00
3	3	8	6	LU	1.27e-15	2.55e-15	1	0.00
3	5	6	6	LU	2.01e-15	1.67e-15	1	0.00
3	5	8	6	LU	2.31e-15	5.77e-15	1	0.01

 ${\ensuremath{\overline{x}}}$ 43: 3D Poisson in a cylinder with Robin B.C. (1) and LU Method

eq	N	М	Н	method	res_max	err_max	iter	cpu_t
4	3	6	5	LU	1.49e-15	2.78e-15	1	0.00
4	3	8	5	LU	1.95e-15	3.11e-15	1	0.00
4	5	6	5	LU	2.06e-15	2.00e-15	1	0.00
4	5	8	5	LU	2.48e-15	5.11e-15	1	0.00
4	3	6	6	LU	2.70e-15	3.77e-15	1	0.00
4	3	8	6	LU	2.36e-15	2.66e-15	1	0.00
4	5	6	6	LU	3.70e-15	3.33e-15	1	0.00
4	5	8	6	LU	4.36e-15	5.55e-15	1	0.01
5	3	6	5	LU	5.41e-16	1.78e-15	1	0.00
5	3	8	5	LU	6.11e-16	2.33e-15	1	0.00
5	5	6	5	LU	1.54e-15	3.77e-15	1	0.00
5	5	8	5	LU	2.23e-15	1.05e-14	1	0.00
5	3	6	6	LU	8.79e-16	1.78e-15	1	0.00
5	3	8	6	LU	1.10e-15	1.44e-15	1	0.00
5	5	6	6	LU	2.23e-15	2.89e-15	1	0.00
5	5	8	6	LU	2.61e-15	8.66e-15	1	0.01
6	3	6	5	LU	3.55e-16	6.00e-01	1	0.00
6	3	8	5	LU	8.49e-16	9.69e-01	1	0.00
6	5	6	5	LU	6.20e-16	1.11e-15	1	0.00
6	5	8	5	LU	6.56e-16	3.39e-15	1	0.00
6	3	6	6	LU	4.85e-16	6.00e-01	1	0.00
6	3	8	6	LU	1.26e-15	9.69e-01	1	0.00
6	5	6	6	LU	8.31e-16	6.94e-16	1	0.01
6	5	8	6	LU	9.90e-16	2.66e-15	1	0.01

表 44: 3D Poisson in a cylinder with Robin B.C. (2) and LU Method

eq	Ν	М	Η	method	res_max	err_max	iter	cpu_t
7	3	6	5	LU	3.86e-16	8.88e-16	1	0.00
7	3	8	5	LU	4.13e-16	7.77e-16	1	0.00
7	5	6	5	LU	1.25e-15	9.99e-16	1	0.00
7	5	8	5	LU	1.31e-15	2.89e-15	1	0.01
7	3	6	6	LU	5.66e-16	8.88e-16	1	0.00
7	3	8	6	LU	3.77e-16	5.55e-16	1	0.00
7	5	6	6	LU	2.09e-15	9.44e-16	1	0.00
7	5	8	6	LU	1.32e-15	1.83e-15	1	0.01
8	3	6	5	LU	3.29e-16	3.33e-16	1	0.00
8	3	8	5	LU	4.24e-16	1.33e-15	1	0.00
8	5	6	5	LU	1.23e-15	2.11e-15	1	0.00
8	5	8	5	LU	1.33e-15	5.11e-15	1	0.00
8	3	6	6	LU	3.50e-16	2.22e-16	1	0.00
8	3	8	6	LU	3.90e-16	8.88e-16	1	0.00
8	5	6	6	LU	1.55e-15	1.55e-15	1	0.00
8	5	8	6	LU	1.53e-15	4.00e-15	1	0.01

表 45: 3D Poisson in a cylinder with Robin B.C. (3) and LU Method

eq	N	M	Н	method	res_max	err_max	iter	cpu_t
6	3	6	5	BCR	3.37e-15	6.00e-01	37	0.01
6	3	8	5	BCR	2.09e-14	9.69e-01	44	0.02
6	5	6	5	BCR	4.84e-15	2.19e-15	45	0.03
6	5	8	5	BCR	6.32e-15	4.19e-15	51	0.05
6	3	6	6	BCR	1.47e-14	6.00e-01	42	0.02
6	3	8	6	BCR	9.99e-15	9.69e-01	46	0.03
6	5	6	6	BCR	2.11e-14	5.55e-15	47	0.04
6	5	8	6	BCR	8.74e-15	3.14e-15	57	0.09
7	3	6	5	BCR	1.44e-14	2.42e-14	37	0.01
7	3	8	5	BCR	9.80e-15	4.00e-15	40	0.02
7	5	6	5	BCR	1.48e-14	5.00e-15	43	0.03
7	5	8	5	BCR	2.54e-14	9.55e-15	50	0.06
7	3	6	6	BCR	2.89e-15	1.17e-15	43	0.02
7	3	8	6	BCR	1.04e-14	2.41e-15	46	0.03
7	5	6	6	BCR	1.60e-14	1.17e-15	48	0.04
7	5	8	6	BCR	2.07e-14	6.39e-15	54	0.08
8	3	6	5	BCR	1.56e-14	7.33e-15	36	0.01
8	3	8	5	BCR	1.01e-14	7.88e-15	40	0.02
8	5	6	5	BCR	2.13e-14	8.10e-15	43	0.03
8	5	8	5	BCR	2.12e-14	4.11e-15	49	0.06
8	3	6	6	BCR	2.41e-15	2.00e-15	44	0.02
8	3	8	6	BCR	1.32e-14	6.66e-15	46	0.03
8	5	6	6	BCR	2.57e-14	5.11e-15	47	0.04
8	5	8	6	BCR	1.01e-14	2.55e-15	55	0.08

表 46: 3D Poisson in a cylinder with Robin B.C. and BCR Method

3.5.3 Neumann Boundary Condition

使用LU分解法與BCR迭代法[11]解二維的Poisson方程式。 邊界值:

$$\cdot u_r(1,\theta), \quad 0 < \theta \le 2\pi.$$

- · $u_z(r, \theta, -1)$, $0 < \theta \le 2\pi$, 0 < r < 1.
- · $u_z(r, \theta, 1), \quad 0 < \theta \le 2\pi, \quad 0 < r < 1.$

case	RHS function of PDE	exact solution
1	0.0	1.0
2	0.0	r * cos(t)
3	0.0	r * sin(t)
4	0.0	z
5	4.0	$r^2 * cos^2(t) + r^2 * sin^2(t)$
6	$4.0 * r^2 - 2.0$	$\frac{r^4}{4.0} - \frac{r^2}{2.0}$
7	8.0 * r * cos(t)	$(r^2 * cos^2(t) + r^2 * sin^2(t)) * r * cos(t)$
8	8.0 * r * sin(t)	$(r^2 * cos^2(t) + r^2 * sin^2(t)) * r * sin(t)$

表 47: 3D Poisson in a cylinder with Neumann B.C.

eq	N	М	Н	method	res_max	err_max	iter	cpu_t
1	3	6	5	LU	0.00e+00	0.00e+00	1	0.00
1	3	8	5	LU	0.00e+00	0.00e+00	1	0.00
1	5	6	5	LU	0.00e+00	0.00e+00	1	0.01
1	5	8	5	LU	0.00e+00	0.00e+00	1	0.00
1	3	6	6	LU	0.00e+00	0.00e+00	1	0.00
1	3	8	6	LU	0.00e+00	0.00e+00	1	0.00
1	5	6	6	LU	0.00e+00	0.00e+00	1	0.00
1	5	8	6	LU	0.00e+00	0.00e+00	1	0.01
2	3	6	5	LU	1.05e-15	1.25e-15	1	0.00
2	3	8	5	LU	1.13e-15	5.77e-15	1	0.00
2	5	6	5	LU	4.24e-15	7.22e-15	1	0.00
2	5	8	5	LU	1.73e-15	8.55e-15	1	0.00
2	3	6	6	LU	1.64e-15	1.65e-15	1	0.00
2	3	8	6	LU	1.18e-15	4.11e-15	1	0.00
2	5	6	6	LU	4.04e-14	4.52e-14	1	0.00
2	5	8	6	LU	2.49e-15	5.11e-15	1	0.01
3	3	6	5	LU	5.79e-16	2.11e-15	1	0.00
3	3	8	5	LU	8.83e-16	4.77e-15	1	0.00
3	5	6	5	LU	2.14e-15	4.33e-15	1	0.00
3	5	8	5	LU	2.04e-15	7.44e-15	1	0.01
3	3	6	6	LU	1.41e-15	2.44e-15	1	0.00
3	3	8	6	LU	1.24e-15	3.00e-15	1	0.00
3	5	6	6	LU	5.71e-15	7.68e-15	1	0.00
3	5	8	6	LU	2.03e-15	4.55e-15	1	0.01

 ${\ensuremath{\overline{x}}}$ 48: 3D Poisson in a cylinder with Neumann B.C. (1) and LU Method

	eq	Ν	М	Н	method	res_max	err_max	iter	cpu_t
	4	3	6	5	LU	1.77e-15	7.22e-15	1	0.00
	4	3	8	5	LU	1.65e-15	6.88e-15	1	0.00
ĺ	4	5	6	5	LU	2.80e-15	3.89e-15	1	0.00
	4	5	8	5	LU	2.62e-15	1.27e-14	1	0.00
	4	3	6	6	LU	1.86e-15	7.66e-15	1	0.00
	4	3	8	6	LU	2.37e-15	5.77e-15	1	0.00
	4	5	6	6	LU	1.35e-14	1.67e-14	1	0.00
	4	5	8	6	LU	4.03e-15	7.99e-15	1	0.01
	5	3	6	5	LU	3.79e-16	2.22e-16	1	0.00
	5	3	8	5	LU	5.13e-16	1.11e-16	1	0.00
	5	5	6	5	LU	4.04e-15	5.80e-15	1	0.00
	5	5	8	5	LU	1.92e-15	1.47e-15	1	0.00
	5	3	6	6	LU	4.54e-16	1.50e-16	1	0.00
	5	3	8	6	LU	4.19e-16	1.11e-16	1	0.00
	5	5	6	6	LU	3.24e-14	4.31e-14	1	0.00
	5	5	8	6	LU	2.69e-15	9.71e-16	1	0.01
	6	3	6	5	LU	2.51e-01	9.69e-01	1	0.00
	6	3	8	5	LU	4.67e-01	1.50e+00	1	0.00
	6	5	6	5	LU	1.02e-15	1.48e-15	1	0.00
	6	5	8	5	LU	5.11e-16	5.00e-16	1	0.00
	6	3	6	6	LU	3.64e-01	1.34e+00	1	0.00
	6	3	8	6	LU	9.09e-01	7.50e-01	1	0.00
	6	5	6	6	LU	7.06e-15	9.98e-15	1	0.00
	6	5	8	6	LU	6.17e-16	3.05e-16	1	0.01

 ${\ensuremath{\overline{x}}}$ 49: 3D Poisson in a cylinder with Neumann B.C. (2) and LU Method

eq	Ν	М	Η	method	res_max	err_max	iter	cpu_t
7	3	6	5	LU	5.21e-16	6.11e-16	1	0.00
7	3	8	5	LU	2.88e-16	1.55e-15	1	0.00
7	5	6	5	LU	1.82e-15	3.17e-15	1	0.00
7	5	8	5	LU	2.27e-15	5.44e-15	1	0.01
7	3	6	6	LU	7.05e-16	8.88e-16	1	0.00
7	3	8	6	LU	5.32e-16	1.11e-15	1	0.00
7	5	6	6	LU	1.82e-14	2.08e-14	1	0.00
7	5	8	6	LU	1.92e-15	3.22e-15	1	0.01
8	3	6	5	LU	4.18e-16	1.11e-15	1	0.00
8	3	8	5	LU	4.76e-16	1.67e-15	1	0.00
8	5	6	5	LU	1.57e-15	2.66e-15	1	0.00
8	5	8	5	LU	1.48e-15	4.88e-15	1	0.00
8	3	6	6	LU	3.54e-16	1.33e-15	1	0.00
8	3	8	6	LU	5.84e-16	1.11e-15	1	0.00
8	5	6	6	LU	7.31e-15	8.35e-15	1	0.00
8	5	8	6	LU	1.48e-15	3.00e-15	1	0.01

 ${\ensuremath{\overline{z}}}$ 50: 3D Poisson in a cylinder with Neumann B.C. (3) and LU

eq	N	М	Н	method	res_max	err_max	iter	cpu_t
6	3	6	5	BCR	2.33e+03	2.80e+03	1000	0.27
6	3	8	5	BCR	2.95e+02	2.71e+02	1000	0.47
6	5	6	5	BCR	6.83e-15	5.29e-15	78	0.05
6	5	8	5	BCR	4.58e-15	1.32e-15	61	0.07
6	3	6	6	BCR	1.09e+03	9.30e+02	1000	0.35
6	3	8	6	BCR	1.16e+00	3.74e-01	1000	0.64
6	5	6	6	BCR	2.13e-14	1.53e-14	68	0.05
6	5	8	6	BCR	4.52e-13	1.14e-13	150	0.22
7	3	6	5	BCR	1.76e-14	8.49e-15	41	0.01
7	3	8	5	BCR	6.52e-15	2.89e-15	43	0.02
7	5	6	5	BCR	1.99e-14	5.65e-15	53	0.03
7	5	8	5	BCR	8.64e-15	8.55e-15	56	0.06
7	3	6	6	BCR	2.16e-14	9.10e-15	45	0.02
7	3	8	6	BCR	7.20e-15	2.09e-15	48	0.03
7	5	6	6	BCR	2.37e-14	7.22e-15	58	0.05
7	5	8	6	BCR	1.45e-14	7.77e-15	59	0.09
8	3	6	5	BCR	1.55e-14	1.27e-14	40	0.01
8	3	8	5	BCR	1.04e-14	1.34e-14	42	0.02
8	5	6	5	BCR	1.32e-14	4.76e-15	55	0.04
8	5	8	5	BCR	1.90e-14	1.03e-14	54	0.06
8	3	6	6	BCR	5.51e-15	2.07e-15	47	0.02
8	3	8	6	BCR	6.58e-15	2.78e-15	47	0.03
8	5	6	6	BCR	1.73e-14	4.11e-15	58	0.05
8	5	8	6	BCR	1.31e-14	6.00e-15	58	0.09

 ${\ensuremath{\,\overline{x}}}$ 51: 3D Poisson in a cylinder with Neumann B.C. and BCR Method

4 頻譜配點法之應用(二) 線性波

上一章僅對空間微分方程式作討論,並未對有時間相依(time dependence)的例子作討論。本章開始將對時間相依的方程式作討論。

一維的wave方程式: $u_{tt} - c^2 u_{xx} = 0$, $-1 \le x \le 1$

Boundary conditions:
$$u(-1,t) = 0, \quad u(1,t) = 0, \quad \forall t.$$

Initial conditions: $u(x,0) = f(x), \quad u_t(x,0) = 0, \quad \forall x.$
exact solution: $u_{x,t} = \frac{F(x-c*t) + F(x+c*t)}{2}.$
其中 $f(x)$ 為自訂的函數 $\cdot 0 < x \le 1$ \circ 而
 $F(z) = f(z), \quad if \quad 0 < z \le 1.$

$$F(-z) = -F(z), \quad if -1 \le z < 0.$$

$$F(z+2) = F(z), \quad \forall z \in (R)$$

本次實驗中對函數 f(x) 的設定如下:

$$if (|x - 0.5| < 0.1) \quad f(x) = sin(\pi * 5 * (x - 0.4))$$

else
$$f(x) = 0.0$$

頻譜配點法與有限差分法的實驗結果可參見表52。頻譜配點法只需要 極小的自由度,誤差就可以小於有限差分法。且其誤差累積的速度較慢。

time	finite difference	spectral collocation
	$err_1_n norm$	$\operatorname{err}_{-} 1_{-} \operatorname{norm}$
2.00e-06	1.258423e-04	5.44e-05
3.00e-06	1.256031e-04	5.44e-05
4.00e-06	2.733253e-04	1.09e-04
5.00e-06	2.736458e-04	1.09e-04
6.00e-06	5.823528e-04	1.63e-04
7.00e-06	7.751007e-04	1.63e-04
8.00e-06	1.459450e-03	2.17e-04
9.00e-06	2.323361e-03	2.17e-04
1.00e-05	4.242279e-03	2.72e-04
	N = 400	N = 13

52: comparison of finite difference and spectral collection

圕	9:	非線性波傳頻譜配點法誤差圖
---	----	---------------

此圖可以詳細看出頻譜配點法誤差的增加十分平緩。其中

err_max : 最大誤差 *err_*11 : 平均誤差

err_22: 根號平均誤差

5 頻譜配點法之應用(三) 非線性波

本章將以頻譜配點法應用於有時間相依的一維、二維、三 維Burgers方程式,在不同定義域所得到的結果。由於Burgers方程式 有正確解,所以先算出正確解的答案,再和近似解比較,算出誤 差。Burgers方程式是一個關於Convection-Diffusion兩者作用之下最簡單 的非線性微分方程式。而在計算流體力學,有效而準確地處理此兩者作用 的平衡性是一個重要而較困難的問題,且最重要的是其與Navier-Stokes方 程式具有類似性(Analogy),故研究者常用伯格方程式做為測試一個數值 方法是否可以應用於Navier-Stokes方程式。測試中採取直接解法的LU分 解法,與GMRes(Generalized minimal residual method)[11]迭代方法。

5.1 1D Burgers equation

使用LU分解法與GMRes迭代法[11]解一維的Burgers方程式。

一維Burgers方程式:
$$u_t + u(u_x) - \frac{(u_{xx})}{Re} = 0, \quad -1 \le x \le 1.$$

正確解:
$$u(x,t) = \frac{1.0}{1.0 + exp(\frac{Re * (2.0 * x - t)}{4.0})},$$

Re 為雷諾數。

設定基本參數:

N:x方向的自由度
iter_sum: 線性迭代次數總和
nl_sum: 非線性迭代次數總和
res_max: 最大 residual norm
err_max: 最大誤差
cpu_time: 測試所花的全部時間

由表53至表58可知其residual很快就可以達到指定的要求,但誤差似 乎比處理Poisson時大,應該是時間項沒有算的很準的結果。由於是一維 的問題,所以cpu時間為0,但隨著題目複雜程度的增加,cpu時間也會逐 漸增加。由表55與表57知道隨時間的減少,誤差也會隨著變小,且無論使 用分解法或迭代法,都可以到達相同的誤差值。

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	LU	6.80e-17	1.52e-10	0.00
9.00e-04	9	LU	6.80e-17	1.38e-10	0.00
8.00e-04	9	LU	6.80e-17	1.24e-10	0.00
7.00e-04	9	LU	6.80e-17	1.10e-10	0.00
6.00e-04	9	LU	6.80e-17	9.50e-11	0.00
5.00e-04	9	LU	6.80e-17	8.00e-11	0.00
4.00e-04	9	LU	6.80e-17	6.46e-11	0.00
3.00e-04	9	LU	6.80e-17	4.90e-11	0.00
2.00e-04	9	LU	6.80e-17	3.30e-11	0.00
1.00e-04	9	LU	6.80e-17	1.67e-11	0.00
	iter.	sum = 33	3, nl_sı	am = 33.	

表 53: 1D Burgers with Re =1.0 and LU Method

time	Ν	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$			
1.00e-03	9	LU	4.99e-17	2.15e-05	0.00			
9.00e-04	9	LU	4.99e-17	1.94e-05	0.00			
8.00e-04	9	LU	4.99e-17	1.72e-05	0.00			
7.00e-04	9	LU	4.99e-17	1.51e-05	0.00			
6.00e-04	9	LU	4.99e-17	1.29e-05	0.00			
5.00e-04	9	LU	4.99e-17	1.08e-05	0.00			
4.00e-04	9	LU	4.99e-17	8.62e-06	0.00			
3.00e-04	9	LU	4.99e-17	6.46e-06	0.00			
2.00e-04	9	LU	4.99e-17	4.31e-06	0.00			
1.00e-04	9	LU	4.99e-17	2.16e-06	0.00			
	$\text{iter}_{-} \text{sum} = 40, \text{nl}_{-} \text{sum} = 40.$							

表 54: 1D Burgers with Re =10.0 and LU Method

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	LU	3.51e-17	1.84e-03	0.00
1.00e-04	9	LU	7.02e-17	1.84e-04	0.00
1.00e-05	9	LU	1.67e-23	1.84e-05	0.00
1.00e-06	9	LU	8.60e-17	1.84e-06	0.00
1.00e-07	9	LU	4.97e-17	1.84e-07	0.00
1.00e-08	9	LU	6.08e-17	1.84e-08	0.00
1.00e-09	9	LU	6.08e-17	1.84e-09	0.00
1.00e-10	9	LU	7.85e-17	1.84e-10	0.00

表 55: 1D Burgers with Re =100 and LU Method

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	GMRes	5.61e-20	1.52e-10	0.00
9.00e-04	9	GMRes	5.61e-20	1.38e-10	0.00
8.00e-04	9	GMRes	5.61e-20	1.24e-10	0.00
7.00e-04	9	GMRes	5.61e-20	1.10e-10	0.00
6.00e-04	9	GMRes	5.61e-20	9.50e-11	0.00
5.00e-04	9	GMRes	5.61e-20	8.00e-11	0.00
4.00e-04	9	GMRes	5.61e-20	6.46e-11	0.00
3.00e-04	9	GMRes	5.61e-20	4.90e-11	0.00
2.00e-04	9	GMRes	5.61e-20	3.30e-11	0.00
1.00e-04	9	GMRes	5.61e-20	1.67e-11	0.00
$\operatorname{iter}_{-}\operatorname{sum} = 104, \operatorname{nl}_{-}\operatorname{sum} = 36.$					

表 56: 1D Burgers with Re =1.0 and GMRes Method

time	Ν	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	GMRes	3.51e-17	2.15e-05	0.00
9.00e-04	9	GMRes	3.51e-17	1.94e-05	0.00
8.00e-04	9	GMRes	3.51e-17	1.72e-05	0.00
7.00e-04	9	GMRes	3.51e-17	1.51e-05	0.00
6.00e-04	9	GMRes	3.51e-17	1.29e-05	0.00
5.00e-04	9	GMRes	3.51e-17	1.08e-05	0.00
4.00e-04	9	GMRes	3.51e-17	8.62e-06	0.00
3.00e-04	9	GMRes	3.51e-17	6.46e-06	0.00
2.00e-04	9	GMRes	3.51e-17	4.31e-06	0.00
1.00e-04	9	GMRes	3.51e-17	2.16e-06	0.00
$\operatorname{iter}_{-}\operatorname{sum} = 100, \operatorname{nl}_{-}\operatorname{sum} = 40.$					

 $\gtrsim~57:$ 1D Burgers with Re =10.0 and GMRes Method

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	GMRes	5.61e-20	1.84e-03	0.00
1.00e-04	9	GMRes	3.51e-17	1.84e-04	0.00
1.00e-05	9	GMRes	1.67e-23	1.84e-05	0.00
1.00e-06	9	GMRes	3.51e-17	1.84e-06	0.00
1.00e-07	9	GMRes	3.92e-25	1.84e-07	0.00
1.00e-08	9	GMRes	9.54e-20	1.84e-08	0.00
1.00e-09	9	GMRes	8.59e-21	1.84e-09	0.00
1.00e-10	9	GMRes	5.74e-24	1.84e-10	0.00

 ${\ensuremath{\overline{\times}}}$ 58: 1D Burgers with Re =100 and GMRes Method

5.2 2D Burgers equation in a square

使用LU分解法與GMRes迭代法[11]解二維的Burgers方程式。

二維Burgers方程式:
$$u_t + u(u_x + u_y) - \frac{(u_{xx} + u_{yy})}{Re} = 0,$$

 $-1 \le x \le 1, \quad -1 \le y \le 1.$

正確解:
$$u(x, y, t) = \frac{1.0}{1.0 + exp(\frac{Re * (2.0 * x + 2.0 * y - 2.0 * t)}{4.0})},$$

Re 為雷諾數。

設定基本參數:

- N: x方向與y方向的自由度
- iter_sum : 線性迭代次數總和
 - nl_sum : 非線性迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表59至表64可知其residual很快就可以達到指定的要求,但誤差似 乎比處理Poisson時大,應該是時間項沒有算的很準的結果。由表61與 表64知道隨時間的減少,誤差也會隨著變小,且無論使用分解法或迭代 法,都可以到達相同的誤差值。

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$	
1.00e-03	9	LU	8.83e-13	1.00e-09	0.00	
9.00e-04	9	LU	8.83e-13	9.02e-10	0.00	
8.00e-04	9	LU	8.83e-13	8.01e-10	0.00	
7.00e-04	9	LU	8.83e-13	7.00e-10	0.00	
6.00e-04	9	LU	8.83e-13	5.99e-10	0.00	
5.00e-04	9	LU	8.83e-13	4.99e-10	0.00	
4.00e-04	9	LU	8.83e-13	4.01e-10	0.00	
3.00e-04	9	LU	8.83e-13	3.05e-10	0.00	
2.00e-04	9	LU	8.83e-13	2.08e-10	0.00	
1.00e-04	9	LU	8.83e-13	1.06e-10	0.00	
$\text{iter}_{-} \text{sum} = 40, \qquad \text{nl}_{-} \text{sum} = 40.$						

表 59: 2D Burgers in a square with Re =1.0 and LU Method

time	Ν	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$	
1.00e-03	9	LU	9.82e-13	4.45e-05	0.00	
9.00e-04	9	LU	9.82e-13	4.01e-05	0.00	
8.00e-04	9	LU	9.82e-13	3.57e-05	0.00	
7.00e-04	9	LU	9.82e-13	3.12e-05	0.00	
6.00e-04	9	LU	9.82e-13	2.68e-05	0.00	
5.00e-04	9	LU	9.82e-13	2.23e-05	0.00	
4.00e-04	9	LU	9.82e-13	1.79e-05	0.00	
3.00e-04	9	LU	9.82e-13	1.34e-05	0.00	
2.00e-04	9	LU	9.82e-13	8.96e-06	0.00	
1.00e-04	9	LU	9.82e-13	4.48e-06	0.00	
$\text{iter}_{-} \text{sum} = 50, \text{nl}_{-} \text{sum} = 50.$						

表 60: 2D Burgers in a square with Re =10.0 and LU Method

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	LU	1.23e-12	1.05e-02	0.00
1.00e-04	9	LU	7.87e-12	1.05e-03	0.00
1.00e-05	9	LU	6.74e-11	1.05e-04	0.00
1.00e-06	9	LU	1.01e-09	1.05e-05	0.00
1.00e-07	9	LU	7.30e-09	1.05e-06	0.00
1.00e-08	9	LU	6.31e-08	1.05e-07	0.00
1.00e-09	9	LU	9.34e-07	1.05e-08	0.00
1.00e-10	9	LU	7.40e-06	1.05e-09	0.00

 ${\ensuremath{\,\overline{x}}}$ 61: 2D Burgers in a square with Re =100 and LU Method
time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	GMRes	3.69e-13	1.00e-09	0.00
9.00e-04	9	GMRes	3.69e-13	9.02e-10	0.00
8.00e-04	9	GMRes	3.69e-13	8.01e-10	0.00
7.00e-04	9	GMRes	3.69e-13	7.00e-10	0.00
6.00e-04	9	GMRes	3.69e-13	5.99e-10	0.00
5.00e-04	9	GMRes	3.69e-13	4.99e-10	0.00
4.00e-04	9	GMRes	3.69e-13	4.01e-10	0.00
3.00e-04	9	GMRes	3.69e-13	3.05e-10	0.00
2.00e-04	9	GMRes	3.69e-13	2.08e-10	0.00
1.00e-04	9	GMRes	3.69e-13	1.06e-10	0.00
i	iter_	sum = 13	$30, nl_{-}s$	um = 40.	

 $\gtrsim~62:~2\mathrm{D}$ Burgers in a square with Re =1.0 and GMRes Method

time	Ν	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$		
1.00e-03	9	GMRes	4.27e-13	4.45e-05	0.00		
9.00e-04	9	GMRes	4.27e-13	4.01e-05	0.00		
8.00e-04	9	GMRes	4.27e-13	3.57e-05	0.00		
7.00e-04	9	GMRes	4.27e-13	3.12e-05	0.00		
6.00e-04	9	GMRes	4.27e-13	2.68e-05	0.00		
5.00e-04	9	GMRes	4.27e-13	2.23e-05	0.00		
4.00e-04	9	GMRes	4.27e-13	1.79e-05	0.00		
3.00e-04	9	GMRes	4.27e-13	1.34e-05	0.00		
2.00e-04	9	GMRes	4.27e-13	8.96e-06	0.00		
1.00e-04	9	GMRes	4.27e-13	4.48e-06	0.00		
j	$\text{iter}_{-} \text{sum} = 140, \text{nl}_{-} \text{sum} = 50.$						

 ${\ensuremath{\,\overline{x}}}$ 63: 2D Burgers in a square with Re =10.0 and GMRes Method

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	GMRes	5.75e-13	1.05e-02	0.00
1.00e-04	9	GMRes	3.25e-12	1.05e-03	0.00
1.00e-05	9	GMRes	2.73e-11	1.05e-04	0.00
1.00e-06	9	GMRes	3.73e-10	1.05e-05	0.00
1.00e-07	9	GMRes	2.58e-09	1.05e-06	0.00
1.00e-08	9	GMRes	2.80e-08	1.05e-07	0.00
1.00e-09	9	GMRes	6.61e-07	1.05e-08	0.00
1.00e-10	9	GMRes	3.58e-06	1.05e-09	0.00

 ${\ensuremath{\overline{\times}}}$ 64: 2D Burgers in a square with Re =100 and GMRes Method

5.3 2D Burgers equation in a circle

使用LU分解法與GMRes迭代法[11]解二維的Burgers方程式。

二維Burgers方程式 :
$$u_t + u(u_r) - \frac{1}{Re}(u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta}) = 0,$$

 $0 < r \le 1, \quad 0 < \theta \le 2\pi.$

正確解:
$$u(r, \theta, t) = \frac{1.0}{1.0 + exp(\frac{Re * (2.0 * x + 2.0 * y - 2.0 * t)}{4.0})},$$

Re 為雷諾數。

設定基本參數:

- N: r方向的自由度,取奇數
- $M: \theta$ 方向的自由度,取偶數
- iter_sum : 線性迭代次數總和
 - nl_sum : 非線性迭代次數總和
- res_max : 最大 residual norm
- *err_max* : 最大誤差
- cpu_time : 測試所花的全部時間

由表65至表70可知其residual很快就可以達到指定的要求,但誤差似 乎比處理Poisson時大,應該是時間項沒有算的很準的結果。由表67與 表70知道隨時間的減少,誤差也會隨著變小,且無論使用分解法或迭代 法,都可以到達相同的誤差值。

time	Ν	М	method	res_max	err_ max	$cpu_{-} t$		
1.00e-03	9	8	LU	5.28e-13	2.52e-04	0.00		
9.00e-04	9	8	LU	5.28e-13	2.27e-04	0.00		
8.00e-04	9	8	LU	5.28e-13	2.01e-04	0.00		
7.00e-04	9	8	LU	5.28e-13	1.76e-04	0.00		
6.00e-04	9	8	LU	5.28e-13	1.51e-04	0.00		
5.00e-04	9	8	LU	5.28e-13	1.26e-04	0.00		
4.00e-04	9	8	LU	5.28e-13	1.01e-04	0.00		
3.00e-04	9	8	LU	5.28e-13	7.54e-05	0.00		
2.00e-04	9	8	LU	5.28e-13	5.02e-05	0.00		
1.00e-04	9	8	LU	5.28e-13	2.51e-05	0.00		
	$\text{iter}_{-} \text{sum} = 40, \text{nl}_{-} \text{sum} = 40.$							

 ${\ensuremath{\,\overline{x}}}$ 65: 2D Burgers in a circle with Re =1.0 and LU Method

time	Ν	М	method	res_max	err_ max	$cpu_{-} t$
1.00e-03	9	8	LU	8.29e-13	2.25e-03	0.00
9.00e-04	9	8	LU	8.29e-13	2.02e-03	0.00
8.00e-04	9	8	LU	8.29e-13	1.80e-03	0.00
7.00e-04	9	8	LU	8.29e-13	1.57e-03	0.00
6.00e-04	9	8	LU	8.29e-13	1.35e-03	0.00
5.00e-04	9	8	LU	8.29e-13	1.13e-03	0.00
4.00e-04	9	8	LU	8.29e-13	9.01e-04	0.00
3.00e-04	9	8	LU	8.29e-13	6.76e-04	0.00
2.00e-04	9	8	LU	8.29e-13	4.50e-04	0.00
1.00e-04	9	8	LU	8.29e-13	2.25e-04	0.00
	it	er_ s	um = 40,	nl_ sum	n = 40.	

表 66: 2D Burgers in a circle with Re =10.0 and LU Method

time	Ν	M	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	19	14	LU	1.30e-12	1.48e-02	0.04
1.00e-04	19	14	LU	1.09e-11	1.48e-03	0.04
1.00e-05	19	14	LU	1.00e-10	1.48e-04	0.04
1.00e-06	19	14	LU	1.34e-09	1.48e-05	0.04
1.00e-07	19	14	LU	1.13e-08	1.48e-06	0.04
1.00e-08	19	14	LU	7.89e-08	1.48e-07	0.04
1.00e-09	19	14	LU	1.11e-06	1.48e-08	0.04
1.00e-10	19	14	LU	9.53e-06	1.48e-09	0.04

表 67: 2D Burgers in a circle with Re =100 and LU Method

time	Ν	М	method	res_ max	err_ max	$cpu_{-} t$		
1.00e-03	9	8	GMRes	3.67e-13	2.52e-04	0.00		
9.00e-04	9	8	GMRes	3.67e-13	2.27e-04	0.00		
8.00e-04	9	8	GMRes	3.67e-13	2.01e-04	0.00		
7.00e-04	9	8	GMRes	3.67e-13	1.76e-04	0.00		
6.00e-04	9	8	GMRes	3.67e-13	1.51e-04	0.00		
5.00e-04	9	8	GMRes	3.67e-13	1.26e-04	0.00		
4.00e-04	9	8	GMRes	3.67e-13	1.01e-04	0.00		
3.00e-04	9	8	GMRes	3.67e-13	7.54e-05	0.00		
2.00e-04	9	8	GMRes	3.67e-13	5.02e-05	0.00		
1.00e-04	9	8	GMRes	3.67e-13	2.51e-05	0.00		
	$\text{iter}_{-} \text{sum} = 129, \text{nl}_{-} \text{sum} = 40.$							

 ${\ensuremath{\overline{\times}}}$ 68: 2D Burgers in a circle with Re =1.0 and GMRes Method

time	N	М	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$				
1.00e-03	9	8	GMRes	4.00e-13	2.25e-03	0.00				
9.00e-04	9	8	GMRes	4.00e-13	2.02e-03	0.00				
8.00e-04	9	8	GMRes	4.00e-13	1.80e-03	0.00				
7.00e-04	9	8	GMRes	4.00e-13	1.57e-03	0.00				
6.00e-04	9	8	GMRes	4.00e-13	1.35e-03	0.00				
5.00e-04	9	8	GMRes	4.00e-13	1.13e-03	0.00				
4.00e-04	9	8	GMRes	4.00e-13	9.01e-04	0.00				
3.00e-04	9	8	GMRes	4.00e-13	6.76e-04	0.00				
2.00e-04	9	8	GMRes	4.00e-13	4.50e-04	0.00				
1.00e-04	9	8	GMRes	4.00e-13	2.25e-04	0.00				
	ite	er_ su	$\operatorname{iter}_{\operatorname{sum}} = 110, \operatorname{nl}_{\operatorname{sum}} = 40.$							

 $\gtrsim~69:~2\mathrm{D}$ Burgers in a circle with Re =10.0 and GMRes Method

time	Ν	M	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	19	14	GMRes	5.54e-13	1.48e-02	0.04
1.00e-04	19	14	GMRes	2.13e-12	1.48e-03	0.04
1.00e-05	19	14	GMRes	3.27e-11	1.48e-04	0.04
1.00e-06	19	14	GMRes	5.04e-10	1.48e-05	0.04
1.00e-07	19	14	GMRes	2.82e-09	1.48e-06	0.04
1.00e-08	19	14	GMRes	3.34e-08	1.48e-07	0.04
1.00e-09	19	14	GMRes	7.03e-07	1.48e-08	0.04
1.00e-10	19	14	GMRes	2.34e-06	1.48e-09	0.04

 ${\ensuremath{\overline{\mathtt{z}}}}$ 70: 2D Burgers in a circle with Re =100 and GMRes Method

5.4 3D Burgers equation in a cube

使用LU分解法與GMRes迭代法[11]解三維的Burgers方程式。
三維Burgers方程式:
$$u_t + u(u_x + u_y + u_z) - \frac{u_{xx} + u_{yy} + u_{zz}}{Re} = 0,$$

 $-1 \le x \le 1, -1 \le y \le 1, -1 \le z \le 1.$

正確解: $u(x, y, z, t) = \frac{1.0}{1.0 + exp(\frac{Re * (2.0 * x + 2.0 * y + 2.0 * z - 3.0 * t)}{4.0})},$

Re 為雷諾數。

設定基本參數:

- *N* : *x* 方向與 *y* 方向與 *z* 方向的自由度
- iter_sum : 線性迭代次數總和
 - nl_sum : 非線性迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表71至表76可知其residual很快就可以達到指定的要求,但誤差似 乎比處理Poisson時大,應該是時間項沒有算的很準的結果。由表73與 表76知道隨時間的減少,誤差也會隨著變小,且無論使用分解法或迭代 法,都可以到達相同的誤差值。

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$			
1.00e-03	9	LU	7.47e-13	5.35e-05	3.62			
9.00e-04	9	LU	7.47e-13	4.82e-05	3.62			
8.00e-04	9	LU	7.47e-13	4.28e-05	3.62			
7.00e-04	9	LU	7.47e-13	3.74e-05	3.62			
6.00e-04	9	LU	7.47e-13	3.24e-05	3.62			
5.00e-04	9	LU	7.47e-13	2.72e-05	3.62			
4.00e-04	9	LU	7.47e-13	2.20e-05	3.62			
3.00e-04	9	LU	7.47e-13	1.67e-05	3.62			
2.00e-04	9	LU	7.47e-13	1.12e-05	3.62			
1.00e-04	9	LU	7.47e-13	5.66e-06	3.62			
	$\text{iter}_{-} \text{sum} = 40, \text{nl}_{-} \text{sum} = 40.$							

 ${\ensuremath{\overline{\times}}}$ 71: 3D Burgers in a cube with Re =1.0 and LU Method

time	Ν	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$			
1.00e-03	9	LU	1.11e-12	1.47e-03	3.81			
9.00e-04	9	LU	1.11e-12	1.33e-03	3.81			
8.00e-04	9	LU	1.11e-12	1.18e-03	3.81			
7.00e-04	9	LU	1.11e-12	1.03e-03	3.81			
6.00e-04	9	LU	1.11e-12	8.85e-04	3.81			
5.00e-04	9	LU	1.11e-12	7.37e-04	3.81			
4.00e-04	9	LU	1.11e-12	5.90e-04	3.81			
3.00e-04	9	LU	1.11e-12	4.42e-04	3.81			
2.00e-04	9	LU	1.11e-12	2.95e-04	3.81			
1.00e-04	9	LU	1.11e-12	1.47e-04	3.81			
	$\text{iter}_{-} \text{sum} = 40, \text{nl}_{-} \text{sum} = 40.$							

表 72: 3D Burgers in a cube with Re =10.0 and LU Method

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	LU	1.27e-12	1.78e-02	3.52
1.00e-04	9	LU	9.89e-12	1.78e-03	3.51
1.00e-05	9	LU	7.94e-11	1.78e-04	3.52
1.00e-06	9	LU	1.22e-09	1.78e-05	3.51
1.00e-07	9	LU	8.57e-09	1.78e-06	3.52
1.00e-08	9	LU	7.69e-08	1.78e-07	3.51
1.00e-09	9	LU	8.09e-07	1.78e-08	3.51
1.00e-10	9	LU	9.18e-06	1.78e-09	3.52

表 73: 3D Burgers in a cube with Re =100 and LU Method

time	Ν	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$				
1.00e-03	9	GMRes	3.15e-13	5.35e-05	0.15				
9.00e-04	9	GMRes	3.15e-13	4.82e-05	0.15				
8.00e-04	9	GMRes	3.15e-13	4.28e-05	0.15				
7.00e-04	9	GMRes	3.15e-13	3.74e-05	0.15				
6.00e-04	9	GMRes	3.15e-13	3.24e-05	0.15				
5.00e-04	9	GMRes	3.15e-13	2.72e-05	0.15				
4.00e-04	9	GMRes	3.15e-13	2.20e-05	0.15				
3.00e-04	9	GMRes	3.15e-13	1.67e-05	0.15				
2.00e-04	9	GMRes	3.15e-13	1.12e-05	0.15				
1.00e-04	9	GMRes	3.15e-13	5.66e-06	0.15				
i	$\text{iter}_{-} \text{sum} = 130, \text{nl}_{-} \text{sum} = 40.$								

表 74: 3D Burgers in a cube with Re =1.0 and GMRes Method

time	Ν	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$			
1.00e-03	9	GMRes	3.92e-13	1.47e-03	0.14			
9.00e-04	9	GMRes	3.92e-13	1.33e-03	0.14			
8.00e-04	9	GMRes	3.92e-13	1.18e-03	0.14			
7.00e-04	9	GMRes	3.92e-13	1.03e-03	0.14			
6.00e-04	9	GMRes	3.92e-13	8.85e-04	0.14			
5.00e-04	9	GMRes	3.92e-13	7.37e-04	0.14			
4.00e-04	9	GMRes	3.92e-13	5.90e-04	0.14			
3.00e-04	9	GMRes	3.92e-13	4.42e-04	0.14			
2.00e-04	9	GMRes	3.92e-13	2.95e-04	0.14			
1.00e-04	9	GMRes	3.92e-13	1.47e-04	0.14			
$\text{iter}_{-} \text{sum} = 130, \text{nl}_{-} \text{sum} = 40.$								

 $\gtrsim~75:$ 3D Burgers in a cube with Re =10.0 and GMRes Method

time	N	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	9	GMRes	4.30e-13	1.78e-02	0.12
1.00e-04	9	GMRes	3.14e-12	1.78e-03	0.12
1.00e-05	9	GMRes	2.91e-11	1.78e-04	0.12
1.00e-06	9	GMRes	4.33e-10	1.78e-05	0.12
1.00e-07	9	GMRes	2.64e-09	1.78e-06	0.12
1.00e-08	9	GMRes	2.72e-08	1.78e-07	0.11
1.00e-09	9	GMRes	4.14e-07	1.78e-08	0.12
1.00e-10	9	GMRes	2.51e-06	1.78e-09	0.11

表 76: 3D Burgers in a cube with Re =100 and GMRes Method

5.5 3D Burgers equation in a cylinder

使用LU分解法與GMRes迭代法[11]解三維的Burgers方程式。

三維Burgers方程式:
$$u_t + u(u_r + u_z) - \frac{1}{Re}(u_{rr} + r^{-1}u_r + r^{-2}u_{\theta\theta} + u_{zz}) = 0$$

 $0 < r \le 1, \quad 0 < \theta \le 2\pi, \quad -1 \le z \le 1.$

正確解:

$$u(r,\theta,z,t) = \frac{1.0}{1.0 + exp(\frac{Re*(2.0*x+2.0*y+2.0*z-3.0*t)}{4.0})}$$

Re 為雷諾數。

設定基本參數:

- N: r方向的自由度,取奇數
- M: θ 方向的自由度,取偶數
- H: z 方向的自由度
- iter: 迭代次數總和
- res_max : 最大 residual norm
- err_max : 最大誤差
- cpu_time : 測試所花的全部時間

由表77至表82可知其residual很快就可以達到指定的要求,但誤差似 乎比處理Poisson時大,應該是時間項沒有算的很準的結果。由表79與 表82知道隨時間的減少,誤差也會隨著變小,且無論使用分解法或迭代 法,都可以到達相同的誤差值。

time	N	М	Н	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$		
1.00e-03	9	8	9	LU	6.85e-13	2.54e-04	0.19		
9.00e-04	9	8	9	LU	6.85e-13	2.28e-04	0.19		
8.00e-04	9	8	9	LU	6.85e-13	2.03e-04	0.19		
7.00e-04	9	8	9	LU	6.85e-13	1.77e-04	0.19		
6.00e-04	9	8	9	LU	6.85e-13	1.52e-04	0.19		
5.00e-04	9	8	9	LU	6.85e-13	1.27e-04	0.19		
4.00e-04	9	8	9	LU	6.85e-13	1.01e-04	0.19		
3.00e-04	9	8	9	LU	6.85e-13	7.59e-05	0.19		
2.00e-04	9	8	9	LU	6.85e-13	5.06e-05	0.19		
1.00e-04	9	8	9	LU	6.85e-13	2.53e-05	0.19		
$\text{iter}_{-} \text{sum} = 40, \text{nl}_{-} \text{sum} = 40.$									

 $\gtrsim~77:$ 3D Burgers in a cylinder with Re =1.0 and LU Method

time	N	М	Н	method	res_max	err_ max	$cpu_{-} t$		
1.00e-03	9	8	9	LU	9.54e-13	2.59e-03	0.19		
9.00e-04	9	8	9	LU	9.54e-13	2.34e-03	0.19		
8.00e-04	9	8	9	LU	9.54e-13	2.08e-03	0.19		
7.00e-04	9	8	9	LU	9.54e-13	1.82e-03	0.19		
6.00e-04	9	8	9	LU	9.54e-13	1.56e-03	0.19		
5.00e-04	9	8	9	LU	9.54e-13	1.30e-03	0.19		
4.00e-04	9	8	9	LU	9.54e-13	1.04e-03	0.19		
3.00e-04	9	8	9	LU	9.54e-13	7.83e-04	0.19		
2.00e-04	9	8	9	LU	9.54e-13	5.23e-04	0.19		
1.00e-04	9	8	9	LU	9.54e-13	2.62e-04	0.19		
$\text{iter}_{-} \text{sum} = 50, \text{nl}_{-} \text{sum} = 50.$									

表 78: 3D Burgers in a cylinder with Re $=\!10.0$ and LU Method

time	N	М	Н	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	19	14	3	LU	1.10e-12	2.05e-02	0.61
1.00e-04	19	14	3	LU	9.63e-12	2.07e-03	0.61
1.00e-05	19	14	3	LU	6.19e-11	2.07e-04	0.61
1.00e-06	19	14	3	LU	1.01e-09	2.07e-05	0.61
1.00e-07	19	14	3	LU	8.81e-09	2.07e-06	0.62
1.00e-08	19	14	3	LU	6.56e-08	2.07e-07	0.61
1.00e-09	19	14	3	LU	1.10e-06	2.07e-08	0.62
1.00e-10	19	14	3	LU	8.70e-06	2.07e-09	0.61

 ${\ensuremath{\,\overline{x}}}$ 79: 3D Burgers in a cylinder with Re =100 and LU Method

time	Ν	М	Н	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$	
1.00e-03	9	8	9	GMRes	3.50e-13	2.54e-04	0.02	
9.00e-04	9	8	9	GMRes	3.50e-13	2.28e-04	0.02	
8.00e-04	9	8	9	GMRes	3.50e-13	2.03e-04	0.02	
7.00e-04	9	8	9	GMRes	3.50e-13	1.77e-04	0.02	
6.00e-04	9	8	9	GMRes	3.50e-13	1.52e-04	0.02	
5.00e-04	9	8	9	GMRes	3.50e-13	1.27e-04	0.02	
4.00e-04	9	8	9	GMRes	3.50e-13	1.01e-04	0.02	
3.00e-04	9	8	9	GMRes	3.50e-13	7.59e-05	0.02	
2.00e-04	9	8	9	GMRes	3.50e-13	5.06e-05	0.02	
1.00e-04	9	8	9	GMRes	3.50e-13	2.53e-05	0.02	
$\text{iter}_{-} \text{sum} = 150, \text{nl}_{-} \text{sum} = 40.$								

 ${\ensuremath{\,\overline{x}}}$ 80: 3D Burgers in a cylinder with Re =1.0 and GMRes Method

time	Ν	М	Н	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$		
1.00e-03	9	8	9	GMRes	4.32e-13	2.59e-03	0.02		
9.00e-04	9	8	9	GMRes	4.32e-13	2.34e-03	0.02		
8.00e-04	9	8	9	GMRes	4.32e-13	2.08e-03	0.02		
7.00e-04	9	8	9	GMRes	4.32e-13	1.82e-03	0.02		
6.00e-04	9	8	9	GMRes	4.32e-13	1.56e-03	0.02		
5.00e-04	9	8	9	GMRes	4.32e-13	1.30e-03	0.02		
4.00e-04	9	8	9	GMRes	4.32e-13	1.04e-03	0.02		
3.00e-04	9	8	9	GMRes	4.32e-13	7.83e-04	0.02		
2.00e-04	9	8	9	GMRes	4.32e-13	5.23e-04	0.02		
1.00e-04	9	8	9	GMRes	4.32e-13	2.62e-04	0.02		
	$\text{iter}_{-} \text{sum} = 140, \text{nl}_{-} \text{sum} = 40.$								

 $\gtrsim~81:$ 3D Burgers in a cylinder with Re =10.0 and GMRes Method

time	N	М	Н	method	res_max	$\operatorname{err}_{-}\max$	$cpu_{-} t$
1.00e-03	19	14	3	GMRes	3.99e-13	2.05e-02	0.04
1.00e-04	19	14	3	GMRes	3.53e-12	2.07e-03	0.04
1.00e-05	19	14	3	GMRes	2.87e-11	2.07e-04	0.04
1.00e-06	19	14	3	GMRes	3.52e-10	2.07e-05	0.04
1.00e-07	19	14	3	GMRes	2.95e-09	2.07e-06	0.04
1.00e-08	19	14	3	GMRes	2.08e-08	2.07e-07	0.04
1.00e-09	19	14	3	GMRes	4.11e-07	2.07e-08	0.04
1.00e-10	19	14	3	GMRes	2.58e-06	2.07e-09	0.04

 ${\ensuremath{\,\overline{x}}}$ 82: 3D Burgers in a cylinder with Re =100 and GMRes Method

6 結論

本論文是採用頻譜配點法來近似求解偏微分方程式。由前兩章可以知 道,無論是初始值問題或邊界條件問題,頻譜配點法對空間微分項的處理 可以得到非常好的解。頻譜配點法的好處就是,其誤差呈現指數形式的遞 減,故具有以較小的自由度便可達到需要的精確度。且頻譜法是採用正交 基底的函數展開的整體近似法,對空間微分項的處理可得非常好的解,故 不會有相速度的誤差。

關於頻譜配點法的應用,有下列幾點說明:

- 本論文討論的定義域僅限於 [-1,1],可以利用適當的座標轉換函 數(mapping function)將之應用的其他的定義域。
- 本論中處理時間項是採用FTCS Method,可利用Crank-Nicolson方法 增加準確度。
- 本論文中未利用到快速傅立葉轉換(Fast Fouier transform),若能加入 此法,應能加快計算速度。
- 4. 本論文中可知道頻譜配點法的優勢,未來可將之應用在更多實際的問題。

参 考 文 獻

- [1] Lloyd N. Trefethen (2000) : Spectral Methods in MATLAB, SIAM.
- [2] John P. Boyd (2001) : Chebyshev and Fourier Spectral Methods, Springer-Verlag.
- [3] Bengt Fornberg (1998) : A Practial Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, UK.
- [4] S.A. Orszag (1971) : Accurte solution of the Orr-Sommerfeld equation, Journal of Fluid Mechanics 50, 689-703.
- [5] D. Gottlieb and S.A. Orszag (1977) : Numerical analysis of spectral methods, Society for Industrial and Applied Mathematics, Philadelphia.
- [6] P. Moin and J. Kim (1980) : On the numerical solution of time-dependent viscous incompressible fluid flows involving solid boundaries, Journal of Computational Physics 35, 3.
- [7] A.T. Patera (1984) : A spectral element method for fluid dynamics: laminar flow in a channel expansion, Journal of Computational Physics 54, 468-488.
- [8] Y. Sadd and M. Schultz (1986) : A generalized minimal residual algorithm for solving nonsysmmetric linear systems, SIAM J. Sci. Statist. Comput, 7 pp.856-869.
- C. Canuto, M.Y. Hussaini, A. Quarteroni, and T. Zang (1988) : Spectral Methods in Fluid Dynamics, Springer-Verlag, New York.
- [10] 郭登堯(1996) :解一維震波問題,碩士論文,逢甲大學應用數學研究所。
- [11] 郭銘斌(2003) :線性系統之巢式迭代解法,碩士論文,輔仁大學數學研究所。