
東 海 大 學 

工業工程與經營資訊研究所 

 

碩士論文 

 

 
貝氏網路之醫療品質指標網之研究 

－以急性照護指標為例 
 
 
 
 
 

研 究 生：楊仕莙 
指導教授：王偉華 老師 

王文清 老師 
 
 
 

中 華 民 國 九 十 四 年 六 月



 
A BN-Based Healthcare Quality Indicator Network 

－An Application in Acute Care Indicators 

 
 
 
 

By 
Shih-Chun Yang 

 
 

                 Advisor: Dr. Wei-Hua Wang 
 Dr. Wen-Ching Wang 

 
 
 
 

A Thesis 
Submitted to the Institute of Industrial Engineering and Enterprise 

Information at Tunghai University 
in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 
in 

Industrial Engineering and Enterprise Information 
 
 
 
 

June 2005 
Taichung, Taiwan, Republic of China 



 i

A BN-Based Healthcare Quality Indicator Network 
－An Application in Acute Care Indicators 

Student: Shih-Chun Yang             Advisor: Dr. Wei-Hua Andrew Wang 

Dr. Wen-Ching Wang 

Department of Industrial Engineering and Enterprise Information 

Tunghai University 

Abstract 

In recent years, healthcare quality in Taiwan has become an increasingly important issue 
for the government, for the hospitals, and for the public. In order to survey and ultimately 
improve healthcare quality, the Taiwan Joint Commission on Hospital Accreditation (TJCHA) 
has imported, from the Maryland Hospital Association (MHA) in the United States, the 
Quality Indicator Project (QIP). TJCHA has re-named the Maryland QIP the Taiwan Quality 
Indicator Project (TQIP), and has been devoted to implementing the TQIP program in 
domestic hospitals. 

At present, the TQIP is comprised of multiple sets of performance indicators for 
measuring four different pattern care settings of the hospital system: Acute Care, Psychiatric 
Care, Long-term Care, and Home Care. Each care setting uses numerous TQIP indicators for 
measuring quality. Among hospitals, statistical profiling is a generally accepted method for 
assessing healthcare quality. Statistical profiling allows hospitals to predict certain outcomes 
of the healthcare process and to thus survey the various causes that affect quality performance. 
However, the data from these indicators cannot be used, independent of an appropriate 
analysis method, to determine relationships among healthcare quality settings. TQIP 
indicators merely provide data for various settings within the healthcare system. Therefore, 
this study proposes a method for analyzing the relevance and uncertainty among data 
gathered from TQIP indicators. In addition, we devise a feasible mechanism, involving 
Bayesian Networks, to solve problems of structure and parameter requirements for the TQIP 
indicators. We provide hospitals with an objective auxiliary-assessment for indicator-data 
analysis and check whether it implies certain probability relationships among these TQIP 
indicators. 

 

Keywords: Healthcare Quality, the Taiwan Quality Indicator Project, Bayesian Networks 
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貝氏網路之醫療品質指標網之研究 

－以急性照護指標為例 

學生：楊仕莙                               指導教授：王偉華  老師 

王文清  老師 

東海大學工業工程與經營資訊研究所 

中文摘要 

近年來，無論政府、各醫院及社會大眾，醫療品質已逐漸成為一項重要關心的議題。

為了加以監控及改善醫療品質，財團法人醫院評鑑暨醫療品質策進會（簡稱醫策會）引

進美國馬里蘭醫院協會所主導的「醫療品質指標計畫」(Quality Indicator Project , 簡稱

QIP)，以「台灣醫療品質指標改善計畫」(Taiwan Quality Indicator Project,簡稱 TQIP)，
在國內致力於醫療品質指標計畫之推動。 

目前，台灣醫療品質指標改善計畫已引進的照護指標群，計有急性照護、長期照護、

精神照護及居家照護等，各群組下有不同的指標。對醫院而言，使用統計輪廓 (Statistical 
Profiling)來評估醫療品質是常用的方式，在統計管制下，醫院可以預測判斷流程上影響

及品質造成的原因變異來檢視對品質的影響。然而，這些指標並非獨立使用卻透過衡量

結果反映出不同醫療照護層面的醫療品質現況。因此，本研究由急性照護 TQIP 醫療指

標群以貝氏網路來分析機制來衡量指標間相關程度及不確定性，並找出 TQIP 指標的非

線性網路架構來協助醫院監控醫療品質且是否有隱含指標間機率性關係存在，同時，協

助醫院在操作 TQIP 指標有客觀的衡量依據。 

 

關鍵字：醫療品質、台灣醫療品質指標改善計畫、貝氏網路 
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CHAPTER 1   INTRODUCTION 

1.1 Research Background 

Healthcare Quality 

With the implementation of the “Bureau of National Health Insurance, 
BNHI” in 1995, the public has obtained comprehensive medical care (disease 
prevention, clinical care, hospitalization, residential care, and social 
rehabilitation) via insurance pooling. Among participating hospitals, the 
resources available for patients seeking medical service have been increased 
substantially. Nevertheless, for the NHI (National Health Care) program, the 
substantial volume of ambulatory care and contracted inpatient claims has 
resulted in a waste of medical resources and an increase in insurance fees. 
Furthermore, for each level of hospitals, since the startup of NHI program, those 
hospitals have had to face the pressure of competition among themselves. 
Recently, as the BNHI has been committed to establishing a suitable 
management-style for the National Health Insurance part II, healthcare quality 
remains an important issue as do controlling insurance payments. The 
importance of establishing and maintaining quality of healthcare has been a 
constant point of contention among hospitals, legislatures and the public. 

Prior to 1990 [3], several medical establishments, such as National Taiwan 
University Hospital (NTUH) and Veterans General Hospital (VGH), in response 
to requests from hospital management, adopted and began to implement the 
“JCAHO (Joint Commission of Accreditation on Healthcare Organization) Ten 
Steps” of Quality Assurance from the United States. By 1992, Chang-Hua 
Christian Hospital (CCH) first imported the “Total Quality Management, TQM” 
from the U.S., which is comprised of some very important paradigm shifts. As a 
result, focusing on the patients and customer-oriented, high-quality medical 
services have become the standards for competition among medical service 
providers. 

Measurements imply management and improvement. Nowadays, with ever 
more attention being paid to increasing the quality of healthcare, the objective 
measurement of clinical service and healthcare quality is indispensable. The 
medical quality indicators have been generally acknowledged as an effective 
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tool with high credibility for the increase of healthcare quality via objective data. 
Quality indicators can be seen as guidelines of assessment for the outcome and 
management of patient’s healthcare. The goal is to provide standardized 
measurements of clinical efficiency and cost-effectiveness in healthcare [6]. For 
this reason, Taiwan Joint Commission on Hospital Accreditation (TJCHA) 
imported Quality Indicator Project (QIP) from Maryland Hospital Association 
(MHA) in U.S. as of 1999. Now named the Taiwan Quality Indicator Project 
(TQIP), it is a system devoted to achieving increases in healthcare quality. At 
present, QIP has compiled four sets of performance indicators for different care 
settings: acute care, psychiatric care, long-term care, and home care. Each 
indicator set has numerous measurements for which a facility can submit data 
and receive comparative feedback [27]. For example, the Acute Care 
indicator-set includes inpatient, outpatient and emergency ratings and totals 310 
criteria by which the care setting can be assessed. 

Using statistical profiling to assess healthcare quality has become an 
accepted methodology. Continuous and long-term measurements can reveal to 
monitor the performance of timely procedures such as early warnings for 
unusual tendency that depend on statistical process control (SPC) methods. 
Using statistical control methods, hospitals can analyze various processes and 
quality factors to identify potential causes affecting quality performance [13]. 
However, these methodologies focus mainly on surveying cause variances of 
only one indicator.  These indicators reflect different levels of the healthcare 
system via the measurement data. Our research intends to, by using the artificial 
intelligence applications such as Bayesian Approach (see below), to analyze the 
relativity and uncertainty among these indicators. We are trying to discover the 
nonlinear network structure for TQIP indicators and to help hospitals survey the 
quality performance and best utilize the relationships among these indicators. 

Bayesian Approach 

In this study, the main stress falls on learning relationships among the 
observations of TQIP indicators and compiling them into a consistent mesh that 
can reveal the current state of healthcare quality, or an appropriate abstraction. 
Such meshes or networks of cause-effect relationships may be called causal 
models. The Bayesian Network (BN), a graphical model of these meshes, is able 
to more clearly represent cause-effect relationships and analyze criteria-based 
causal relationships. Discovering and analyzing multiple criteria-based causal 
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relationships of the healthcare system is our research goal. 

A Bayesian network is a graphical model which encodes probabilistic 
relationships among a set of variables. Over the last decade, the Bayesian 
network has become a popular representation for encoding uncertain expert 
knowledge in expert systems [23]. More recently, many methods for learning 
Bayesian networks from data have been developed. These techniques have 
proven remarkably effective for some data-analysis problems.  

Bayesian networks and Bayesian methods can offer at least four 
advantages over other techniques for data analysis [22]. One, Bayesian 
networks can easily handle incomplete data sets. When one of the inputs is not 
observed or missed, for example, most models will produce an inaccurate 
prediction. Bayesian networks offer a natural way to encode such dependencies. 
Two, Bayesian networks allow one to learn about causal relationships. The use 
of BN helps to gain understanding about a problem domain and answer certain 
questions even when no experiment about the effects of increased exposure to 
any incomplete data is available. Three, Bayesian networks, used in conjunction 
with Bayesian statistical techniques, can facilitate the combination of domain 
knowledge and data. Four, Bayesian methods provide an efficient and principled 
solution for over-fitting of data. That is, Bayesian methods naturally integrate 
all the available data in the BN. 

1.2 Research Method and Goals 

Healthcare quality is an important issue for hospitals, and TQIP indicators 
are effective tools for assessing and monitoring the quality performance of 
hospitals. At present, linear analytical methods, such as statistical process 
control applications, are widely adopted by hospitals. Hospitals want to realize 
where, if anywhere, the cause variances exist. These observations show that 
hospitals are analyzing and monitoring their process variances, but just for one 
certain indicator. 

This study hopes to use the nonlinear analytical method of the Bayesian 
approach to analyze multiple indicators simultaneously. First, we focus on the 
acute care indicators of TQIP and the level of medical centers. Second, we 
construct a learning mechanism to learn the Bayesian network by combining the 
domain knowledge and data. Third, we construct an inference mechanism to 
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realize the causal relationships among these indicators. Finally, interested 
hospitals are provided the network structure as a whole for analyzing TQIP 
indicators. There are four issues to be tackled in this study. 

1. Assess the feasibility for applying the Bayesian approach to TQIP analysis. 

2. Understand if these indicators, when adopted by hospitals, can determine the 
present level of quality by using Bayesian networks. 

3. Identify any previously unknown variables between the relationships of these 
indicators. 

4. Monitor the quality of hospital-based healthcare as a whole. 

This study plans to use TQIP indicators to build up an analytical “Warning 
System” for hospital care which is based on Bayesian networks. Moreover, we 
aim to devise and construct a feasible and rational Bayesian network and 
mechanism for parameter modification of TQIP indicators. 

1.3 Research Scope and Constraints 

The following comes within the scope and constraints of this study: 

1. The main objects are “Acute Care Indicators” that give priority to inpatient, 
emergency, and outpatient departments. 

2. These indicators range from January 1, 2000 to December 31, 2004. 

3. We take the complete dataset into consideration. 

4. Although the value of each indicator item is recorded monthly, time is not a 
variable for the Bayesian Learner. 

1.4 Research Significance 

Bayesian Application 

Bayesian networking, as a knowledge representation tool, can 
demonstrate and apply our ideas for evaluating a situation. With the 
probabilistic properties and learning capability of Bayesian networks, one can 
more easily deal with the uncertainty and dynamics of certain domain 
problems. This study attempts to apply the Bayesian approach to the probing of 
correlative dependencies among TQIP indicators. Then, this study hopes to 
find a learning mechanism for applying Bayesian networks to TQIP networks 
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under appropriate assumptions beyond the function of time. Moreover, 
depending on the indicators’ framework, we can attempt a cross-referencing to 
find the causal relationships among them as well. 

For hospitals 

Healthcare quality is gradually becoming a big issue for hospitals no 
matter in rising patient expectations or the government regulations. Hospitals 
are having to pay increasingly more attention to quality-care surveillance, 
whether it be clinical, inpatient, or ambulatory. Hospital are required to be 
increasingly aware of what affects quality of care by using statistical profiling 
methods to analyze the cause variance behind indicators. This study provides 
hospitals with a nonlinear analytical methodology, the Bayesian approach, 
adopted from artificial intelligence applications. We hope and expect that the 
advantages of Bayesian networking, applied to the TQIP indicators, will 
provide hospitals with a more comprehensive method for analyzing healthcare 
quality and correlatives. 

1.5 Thesis Framework 

There are five chapters in this study, shown in Figure 1.1. Chapter I 
illustrates the reason for applying the Bayesian approach to healthcare 
indicators. Chapter II surveys related literatures with special emphasis on 
medical-care circumstances and the Bayesian approach. Chapter III presents a 
BN-based model for which we elaborate on the procedures for implementation 
in the healthcare system. Chapter IV applies the BN-based model to TQIP 
indicators and proposes a performance measure. Chapter V illustrates the 
conclusions and future research. 
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Figure 1.1 The thesis framework. 

Conclusions and future research

Research background, 
motivation, scope and goal 
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CHAPTER 2   LITERATURE REVIEW 

2.1 Healthcare Quality and Assessment 

Healthcare quality can be defined as a social service that, after accounting 
for the risk, benefit and cost for medical treatment, achieves a maximum benefit 
for the patient while maintaining minimal risk and cost. Han [9] considered 
quality healthcare, for patients and hospitals, to include both the evaluation of a 
patient’s health by a doctor, and the evaluation of a treatment’s effects for 
achieving patient satisfaction for which hospitals strive. The healthcare system 
(institutions, work-force, facilities, execution, etc.) is charged with the 
responsibility of alleviating rational health burdens of patients and society. 

Donabedian [20] submitted the earliest and most cited definition of 
healthcare quality: use minimal risk and cost to achieve the most appropriate 
health condition, and analyze the structure of medical quality via the framework 
of structure, process and outcome. On the whole, healthcare quality includes the 
medical specialties as well as patients’ satisfaction and can be divided into 
technical and service areas. Hence, in assessing healthcare quality, we must take 
into consideration the viewpoint of both doctors and patients as operating within 
the framework of structure, process, and outcome. In other words, our 
evaluation of healthcare quality must include both the technical aspects of 
medical science and the doctor-patient relationship that develops in the course 
of treatment.  Only after such a comprehensive evaluation, can we hope to 
meet patients’ expectations and requirements and increase medical efficiency. 

Consulting on healthcare quality is based primarily on the 
structure-process-outcome framework and the patient’s individual 
circumstances. These are important factors affecting treatment results. The 
purpose for assessing healthcare quality is to ascertain whether treatment goals 
have been met. The purpose for controlling healthcare quality is to proceed with 
continuous surveillance. For these purposes, measuring and manipulating 
quality assessment must be based on specialized standards and criteria. 
Therefore, Joint Commission of Accreditation on Healthcare Organization 
(JCAHO) has submitted the “Identification Indicators” method for monitoring 
and assessing healthcare quality. These “Indicators” are measurable standards 
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that are related to the system structure, execution processes, and treatment 
outcomes [29]. 

Ni [6] considered integration of related apparatuses into the healthcare 
system, using current medical knowledge and resources, necessary to increasing 
the quality of the structure-process-outcome framework. This reasoning hopes 
to promote widely accepted and efficient standards of care within the healthcare 
profession for patients, and to decrease the chances of ineffective or 
inappropriate care. 

Domestic hospital-survey programs depend mostly on indicators of a 
structural type (i.e., hospital scale, hospital level, teaching conditions, number 
of medical practitioners and staff) to assess quality. Few indicators are process 
and outcome oriented (patient history, mortality, etc). Recently, as healthcare 
quality is being increasingly valued, the field of assessing healthcare quality has 
been expanded to include healthcare process and outcome. Indicators of process 
and outcome will need to play an increasingly larger role in assessing healthcare 
quality. 

2.2 Indicators for Healthcare Quality 

Healthcare quality utilizes objective evidences for quantification and 
standardization. Before proceeding with improvements, one must measure 
clinical services in process and healthcare quality in outcome. The quality and 
clinical indicators, as defined by JCAHO, are quantified measurements of 
healthcare. Those indicators can be viewed as the foundation for detecting, 
assessing, and improving the quality and appropriation of healthcare [5] [7]. 
However, indicators alone are unable to measure the medical quality directly, 
but act more like a screen that monitor healthcare organizations. In order to 
provide a foundation for improving the healthcare quality, the indicators must 
still be evaluated [28]. 

Quality Indicator Project (QIP) led by Maryland Hospitals Association in 
U.S. has defined the healthcare quality indicators that can be used as a tool for 
constructing standards and reference points. They have also presented a quality 
trend and events’ timeline of patients’ medical care by performing statistical 
analysis with the indicator data in relation to time [1]. 

Indicator itself doesn’t provide the judgment of performance but simply 
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presents the outcome of clinical manifestation [7]. Gagel [23] considered that 
the key to improve the accurate measures of healthcare quality is the 
quality-indicator information system, like Health Care Quality Improvement 
Program (HCQIP) provided to Health Care Financing Administration (HCFA), 
which is a multi-indicator system for enhancing the quality, effectiveness, and 
efficiency of healthcare services. 

Indicators are used as screens and flags for monitoring situations that 
might require further analysis within the healthcare system [35]. However, 
indicators are not the final step in assessing quality performance. Knowledge of 
long-term trends should be developed to provide a basis for deeper investigation 
and understanding of healthcare. Such a knowledge-base might also increase the 
efficiency of patient evaluation by decreasing the time needed for surveying 
numerous patient histories [4]. 

2.3 Taiwan Quality Indicator Project 

Taiwan Quality Indicator Project (TQIP), enacted in August 1999, was 
imported by Taiwan Joint Commission on Hospital Accreditation (TJCHA) 
from Quality Indicator Project (QIP) directed by Maryland Hospital Association 
(MHA). 

At present, QIP has developed care-indicator groups including Acute Care 
Indicators, Long-term Care Indicators, Psychiatric Care Indicators and Home 
Care Indicators. Each group has different detail indicators. In 1999, TQIP 
introduced the general Acute Care Indicators (shown in Table 2.1) that give 
advance priority to in-patient, emergency and outpatient services. In the third 
quarter of 2001, TQIP continued to introduce the Psychiatric Care Indicators 
(shown in Table 2.2) and Long-term Care Indicators (shown in Table 2.3). These 
indicators, shown in the Tables, are currently being executed in domestic 
medical centers, regional hospitals and district hospitals. The following are 
care-indicator groups [8]. 
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Table 2.1 Acute Care Indicators. 

AC Indicator 1a: Device-Associated Infections in Intensive Care Units 
AC Indicator 1b: Device Use in Intensive Care Units 
AC Indicator 2a: Surgical Site Infections 
AC Indicator 2b: Prophylaxis for Surgical Procedures 
AC Indicator 3: Inpatient Mortality 
AC Indicator 4: Neonatal Mortality 
AC Indicator 5: Perioperative Mortality 
AC Indicator 6: Management of Labor 
AC Indicator 7: Unscheduled Readmission 
AC Indicator 8: Unscheduled Admission Following Ambulatory Procedures 
AC Indicator 9: Unscheduled Returns to Intensive Care Units 
AC Indicator 10: Unscheduled Returns to the Operation Room 
AC Indicator 11: Isolated CABG Perioperative Mortality 
AC Indicator 12: Physical Restraint Events 
AC Indicator 13 Documented Falls 
AC Indicator 14: Complications following Sedation and Analgesia 
AC Indicator 15: Pressure Ulcers in Acute Inpatient Care 
AC Indicator A-1: Unscheduled Returns to the Emergency Department 
AC Indicator A-2: Length of Stay in the Emergency Department 
AC Indicator A-3: X-Ray Study Discrepancies in the Emergency Department Requiring 

a Change in Patient Management 
AC Indicator A-4: Patients Leaving the Emergency Department Before Treatment is 

complete 
AC Indicator A-5: Cancellation of Ambulatory Procedures 

Table 2.2 Psychiatric Care Indicators. 

PC Indicator 1: Injurious Behavior 
PC Indicator 2: Unplanned Departures Resulting in Discharge 
PC Indicator 3: Adult Transfers to Acute Inpatient Care 
PC Indicator 4: Readmissions to Psychiatric Inpatient Care 
PC Indicator 5: Physical Restraint Events 
PC Indicator 6: Seclusion Events 
PC Indicator 7: Partial Hospitalization Programs 
PC Indicator 8: Documented Falls 
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Table 2.3 Long-term Care Indicators. 

LTC Indicator 1: Unplanned Weight Change 
LTC Indicator 2: Pressure Ulcers 
LTC Indicator 3: Documented Falls 
LTC Indicator 4: Unscheduled Transfers/Discharges to Inpatient Acute Care 
LTC Indicator 5: Nosocomial Infections 
LTC Indicator 6: Physical Restraint Use 

TQIP is based mainly on clinical indicators. Hospitals address selected 
indicators, which represent the hospital performance with regards to select 
criteria. Furthermore, in order to best utilize hospital resources in pursuing the 
desired criterion, the main function of TQIP is to assist hospitals with internal 
improvement and is not to involve external comparison. 

TQIP includes mainly process and outcome indicators. There are three 
main frames partitioned into TQIP indicators. The first is to monitor care status. 
The second is to monitor mortality. The third is to measure care process. 

As of 2002 [3], a total of sixty-six district-level advanced hospitals have 
participated in the TQIP program. There are fifteen medical centers, forty-three 
regional hospitals and six district hospitals, all of which are shown in Table 2.4. 

Table 2.4 Hospitals participate in TQIP program. 

Hospital Level Participation Number Participation-level Rate 
Medical Centers 15 82% 

Regional Hospitals 43 62% 
District Hospitals 6 14% 

 

2.4 Bayesian Approach 

A Bayesian network (BN) is a knowledge representation defined by 
probability distributions and graphical models. It consists of two properties: 

1. The network structure is in the form of a directed acyclic graph (DAG). 

2. A set of probability distributions of the random variables for each node 
(variable) and its parents. 



A directed graph G [14] can be defined as that which consists of a finite set, 
V, of nodes and an adjacency relation E on V. The graph G is denoted as (V, E). 
For each( )x, y E∈ , there is a directed edge from node x to node y. However, a 

directed acyclic graph (DAG) contains no directed cycles. 

That is, a Bayesian network is defined as follows: 

A network structure constructed as a Bayesian network (shown in Figure 
2.1) represent alternative paths of causal relationships between certain variables 
in the BN. Let P be a joint probability distribution of the nodes in some set V, 
and G= (V, E) be a DAG, in which BN can be represented as (G, P). 

where P is defined as follow: 
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( ) ( )(
n

1 2 n i i
i 1

P X ,X , ,X P X Pa X
=

=Π )                (2.1) 

where, ( )iPa X is the set containing the parents of in the BN. iX

Thus, we can compute the joint probability of each feasible path by (2.1). An 
example of Bayesian networks together with the conditional probability tables is 
shown below: 

 

Figure 2.1 An example Bayesian network of Chest Clinic. 



 

Figure 2.2 An example of Bayesian networks with probability tables [37]. 

A simplified network could be used to help in diagnosing patients arriving 
at a clinic. Each node in the network corresponds to two states and some 
conditions of the parents, for example, “Visit to Asia,” indicates whether the 
patient has recently visited Asia. 

The links between any two nodes indicate that there are probability 
relationships that exist between the states of those two nodes. For example, 
smoking increases the chances of getting lung cancer and bronchitis. And so on. 

Many learning techniques rely heavily on data. A Bayesian network, which 
is a knowledge representation, can allow us to learn new knowledge by 
combining expert domain knowledge and statistical data. Learning using 
Bayesian networks has two advantages [24]. One, we can easily encode expert 
knowledge in a Bayesian network and use this knowledge to increase the 
efficiency and accuracy of learning. Two, the nodes and arcs in learned 
Bayesian networks often correspond to recognizable distinctions and causal 
relationships. Consequently, we can more easily interpret and understand the 
knowledge encoded in the Bayesian network representation. 

The conceptual map of Bayesian networks is shown below: 
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Figure 2.3 Bayesian network concept map. 

Hence, Bayesian networks, based on the Bayes’ theorem of applying 
probabilities, can be used to denote causal inferences. Moreover, the two 
properties of d-separation and Markov assumption [36] are conditions of BN. 

2.4.1 Construction and Learning for Bayesian Networks 

The process of constructing a BN structure will be called “Learning 
Bayesian networks”. It can be divided into two parts: structure-learning and 
parameter-learning. Structure learning looks for the relationships between 
variables within networks of unknown structure. Parameter learning looks for 
the node probabilities within networks of known structure [21]. 

Structure learning of BN can be viewed as a causal discovery, which looks 
for the network structure between uncertain variables in domain knowledge [12]. 
When one variable is dependent on another, there will be an observable 
relationship. When relationships between nodes are independent of each other, 
there will be no observable relationship. 

The structure of relationships between nodes can be constructed by domain 
personnel or by the statistic data collected from the domain knowledge. 
However, to acquire the experts’ domain knowledge is not easy, because they 
are too busy to get assistances, or they can’t illustrate the hidden relations. 
Furthermore, numerous variables will make experts hard to describe all 
relations exactly. Hence, to construct the network using data is an essential 
method. In addition, Heckerman et al [25] describe a method for learning 
Bayesian networks from a combination of prior knowledge and statistical data. 
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In their learning algorithm, a user specifies his prior knowledge about the 
problem by constructing a prior network, and by assessing his confidence in this 
network which uses a database of cases generated from the network. 

In general terms, there are five different methods of learning probabilistic 
network structures from data. The first three methods are [42]: 1) the first is 
based on linearity and normality assumptions; 2) the second is based on the 
testing of independent relationships; 3) the third is based on the Bayesian 
approach. The other two methods of learning Bayesian network are partitioned 
into: 1) constraint-based algorithms; 2) Bayesian methods [15] [19]. 

Bayesian methods utilize heuristic methods to search the space of DAGs 
which are evaluated by scoring functions. There are many variations on 
Bayesian methods. Most researches have focused on the application of 
heuristics searching, such as K2 algorithm [17]. Others introduced to search 
scoring functions which are used to evaluate each network for maximizing 
Bayesian scores, such as BDe method [26] and Minimum Description Length 
Principle [31]. 

Constraint-based methods identify the dependencies between the two 
associated nodes by using Conditional Independence (CI) test [43]. PC 
algorithm [43] is one of the notable constraint-based algorithms. One of most 
advantages is that constraint-based algorithms are relatively fast and possess the 
ability to deal with latent variables. However, it takes time while computing CI 
test. The most significant drawback to Bayesian methods is that they are 
relatively slow [19], and they may not find the best structure due to heuristic 
methods. 

Friedman et al [21] discovered four rules for utilizing Learning-Bayesian 
Networks (LBN). These rules revolve around recognizing whether data and 
structure for the LBN are known or unknown: 1) Learn the parameters for 
applying known data within a known structure; 2) Learn the parameters for 
incomplete data within a known structure; 3) Learn the parameters for complete 
data within an unknown structure; 4) Learn the parameters for incomplete data 
and unknown structure. 

First, learning parameters for a complete data set and a known structure is 
a simple method in which Beta-distribution and Dirichlet-distribution are often 
used [24]. 



Second, applying partial or hidden variables with missing data to a known 
learning-structure will result in permutated combinations, especially and 
exponentially when time is a factor. In this case, an approximation method, such 
as the Gradient Ascent method [21] [40], may be used. 

Third, if complete data is applied to an unknown structure, such algorithms 
for solving structures generally fall into two groups: 1) constraint-based 
algorithms; and 2) Bayesian-method algorithms [15]. 

Fourth, using an incomplete data set to define a previously unknown 
structure can be achieved by using the Structural EM algorithm [22]. 

2.4.2 Inference 

Once a Bayesian network has been constructed from the complete or 
incomplete prior knowledge, data, or a combination, various probabilities need 
to be determined from the model. In general, the calculation of a probability for 
a given model is known as Probabilistic Inference (PI). PI can be adopted either 
by exact inference or approximate inference. For example, we can examine the 
following Bayesian network that has been devised to detect credit-card fraud 
[24]: 

 

Figure 2.4 A Bayesian network for detecting credit-card fraud. 

We can apply the conditional independencies encoded in the BN to exploit 
the probability of fraud given the other variables, which can be computed as 
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follows: 

( ) ( )
( )

( )
( )'

P f ,a,s,g, j P f ,a,s,g, j
P f a,s,g, j

P a,s,g, j P f ,a,s,g, j
= =

∑
             (2.3) 

where ( )'P f denotes the prior probability of fraud. 

Several probabilistic inference algorithms have been developed for 
Bayesian networks with discrete variables that exploit conditional independence. 
Pearl [38] developed a message-passing scheme of Polytree that updates the 
probability distributions for each variable in a BN, which responses to other 
observations of variables. 

Methods that encode Multivariable-Gaussian or Gaussian-mixture 
distributions for exact inference in Bayesian networks have been developed [32] 
[41]. 

Methods of approximation for other distributions such as a generalized 
linear-regression model for inference in BN have also been developed [24]. 
Other methods use stochastic simulation such as Logic-sampling method and 
Likelihood-weighting method [24]. 

Although conditional independence can be used to simplify probabilistic 
inference, exact inference in a BN for discrete variables is NP-hard [16]. Even 
approximate inference, such as Monte-Carlo method, is NP-hard [18]. 

2.4.3 d-separation and Markov Assumption 

The rules of d-separation can be used to realize independencies in the 
domain when given the structure of a BN. These rules can resemble graph 
connectivity with some important dependency on variables. For example, 
conditioning on a variable may block or unblock a dependent path between two 
variables, depending on the direction of traversal of that variable along that path. 
According to d-separation, Z is blocked if an undirected path p traverses along 
the following directions: 

1. If coming from a child of Z. 

2. If coming from a parent of Z and existing from a child of Z. 

According to the rules of d-separation, we can simplify a large scale 
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Bayesian network into several small scale structures without losing the 
knowledge representative properties of the model. 

The formal definition of d-separation is as follows [39]: 

Definition (d-separation): Let S, T, and V be three disjointed subsets of nodes 
in a DAG, and let p be any path between a node in S and a node in T, where by 
a path we mean any succession of arcs, regardless of their directions. Then V is 
said to block p if there is a node Z on p satisfying one of the following two 
conditions: 

1. Z has converging arrows along p and neither Z nor any of its descendants are 
in V. 

2. Z does not have converging arrows along p and Z is in V. 

That is, V is said to d-separate S from T, if V blocks every path from a 
node in S to a node in T. Below are some examples of d-separations: 

 

Figure 2.5 A Bayesian network example. 

1.  when both paths between A and D are blocked: path A－C－B－D 
is blocked while C is instantiated and path A－C－F－D is also blocked 
while F is instantiated. 

A D⊥

2. E D B⊥ , while B is instantiated. 

As we know, A Bayesian network encodes a set of independencies that 
exist in the domain. If we want to learn the structure using conditional 
independencies, here are the assumptions that should be followed [34]: 

1. Markov Assumption: Given a Bayesian network model B, any variable is 
independent of all its non-descendents in B, given its parents. 
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2. Faithfulness Assumption: A BN graph G and a probability distribution P are 
faithful to one another if each and all independence relations valid in P are 
those entailed by the Markov assumption on G. 

The Markov assumption expresses independence relations, which exist 
between every node and its non-descendants given a Bayesian network model. 
Hence, given Markov assumption, we can learn the BN structure from data by 
testing the conditional independence of every node in the model. 

2.5 Partitioned Clustering 

The Clustering method is used to explore a data set in which the goal is to 
separate the sample into groups or to provide understanding about the 
underlying structure or nature of the data. In the partitioned clustering, the data 
is distributed in a multidimensional space within the clusters. The centroid of 
each cluster is first selected, and then the clusters are generated by repeatedly 
re-calculating the centroid repeatedly using a measure of dissimilarity between 
cluster points. 

The goal of partitioned clustering is to partition a data set into groups such 
that the observations in one group are dissimilar to those in other groups. Here, 
one of the ways to measure the dissimilarity is the Euclidean distance, given 
by 
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)( ) (x x x xT

rs r s r sd = - -                    (2.4) 

where is a column vector representing one observation. x r

K-means clustering (MacQueen 1967) can best be described as a 
partitioning method. That is, K-means partitions the observations of any 
chosen data into K mutually exclusive clusters, and returns a vector of indices 
indicating to which of the k clusters it has assigned each observation. In 
addition, K-means uses an iterative algorithm that minimizes the sum of 
distances from each object to its cluster centroid, over all the clusters. 

Fuzzy C-means (FCM) [10] is a data clustering technique wherein each 
data point belongs to a cluster of some degree that is specified by a 
membership grade. This technique is an improvement on earlier clustering 
methods by providing a method to group data points that populate some 
multidimensional space into a specific number of separate clusters. 
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FCM starts with an initial guess for the cluster centers, which are intended 
to mark the mean location of each cluster. However, the initial guess for these 
cluster centers will most likely be incorrect. Additionally, FCM assigns every 
data point a membership grade for each cluster. By repeatedly re-calculating 
the cluster centers and the membership grades for each data point, FCM 
gradually moves the cluster centers to the appropriate location within a data set. 
This repetition is based on minimizing an objective function that represents the 
distance from any given data point to a cluster center weighted by that data 
point's membership grade. 
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CHAPTER 3   METHODS AND PROCEDURES 

This study integrates the possibility of adopting Bayesian networks to 
analyze the relevance and uncertainty among TQIP indicators, and to devise a 
feasible mechanism to modify the structure and parameters of TQIP indicators. 
Accordingly, we have devised a nonlinear network of TQIP indicators to form a 
warning system which helps hospitals to control medical quality by determining 
if hidden relations exist among those indicators. 

3.1 Problem Scope and Constraints 

1. The variables in the problem field must be discrete data-types that satisfy the 
Bayesian network assumptions. 

2. The data resource must be complete for Bayesian network implementation. 

3. The data sets are independently and identically distributed within the 
Bayesian network. 

3.2 Clustering + Bayesian Network Methodology 

This study applies the clustering algorithm and Bayesian networking to the 
program of healthcare quality indicators. We then use kernel approximation [2] 
to verify similarities between the generated data behind the BN and the raw 
indicator data. 

In order to reduce the network complexity and illustrate the whole 
indicator network more completely, this study proposes a “Clustering +Bayesian 
network” methodology to implement the program of healthcare quality 
indicators. The first part of this methodology uses the concepts and properties of 
the Fuzzy C-means (FCM) method to cluster indicators; in the second part, we 
add a mechanism for combining clustering with the Bayesian network. This 
mechanism essentially sets a “Radius”, which is a maximum distance, to 
determine the central point of each cluster to be the farthest point from this 
cluster. According to the “radius”, we re-calculate the new clusters again and 
look for the overlapping points between clusters after FCM implementation. 

The third part uses “HUGIN Researcher”, an application package based on 



the PC algorithm, to implement the structure learning process and to derive a 
structure of hidden relationships among the indicators. After that, we estimate 
the parameters by using the EM algorithm [30] in HUGIN Tool. 

This research mechanism is shown in Figure 3.1. 

Apply on 
Healthcare 
Indicators 

Clustering+BN Approach 

Raw indicator sets
d1

Similarity measureClustering
indicators

Bayesian
Networking

Indicator
Bayesian network

Generated indicator
Sets d2

Raw indicator sets
d1

Similarity measureSimilarity measureClustering
indicators
Clustering
indicators

Bayesian
Networking
Bayesian

Networking

Indicator
Bayesian network

Indicator
Bayesian network

Generated indicator
Sets d2

Generated indicator
Sets d2

TQIP raw data
d1

Step 2: Overlapping procedure
(FCM + Connection Mechanism)

Step 3: State transformation

Step 4: BN construction
HUGIN Tool

TQIP NetworkGenerated TQIP data
d2

Step 5:
Data similarity measure

Step 1: Data preprocessingTQIP raw data
d1

Step 2: Overlapping procedure
(FCM + Connection Mechanism)
Step 2: Overlapping procedure

(FCM + Connection Mechanism)

Step 3: State transformationStep 3: State transformation

Step 4: BN construction
HUGIN Tool

Step 4: BN construction
HUGIN Tool

TQIP NetworkTQIP NetworkGenerated TQIP data
d2

Generated TQIP data
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Step 5:
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Figure 3.1 The research mechanism. 
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3.3 Fuzzy C-means Algorithm 

Fuzzy C-means (FCM) is a clustering algorithm extended from the 
K-means algorithm. The difference in the FCM is that each data point belongs 
to a cluster that is specified by a membership grade denoted as [0, 1]. It 
provides a method for grouping data points that populate some 
multidimensional space into a specific number of different clusters. 

Let { }1 2iX = x ,x , ,xN present a given set included of feature data. N

{ }1 2 CV= v ,v , ,v are the expected cluster centers. ( )ij N C
U=

×
μ  is a fuzzy 

partition matrix, where each member ijμ indicates the degree of membership 

between the data vector ix and the cluster j . The values of matrixU should 

satisfy the following two conditions: 

[ ]0,1 1 1ij , i= , ,N, j= , ,Cμ ∈ ∀ ∀                  (3.1) 

And the other condition is that the sum of the membership grade for each cluster 
is 1: 

1
1 1

C

ij
j=

= , i= , ,Nμ ∀∑                         (3.2) 

The objective of FCM algorithm is to minimize the cost function formulated as 
follows. 

( ) ( ) ( ) ( )
2

1 1

C N m T

ij i j i j
j= i=

J U,V = x -v x -v⎛μ ⎜
⎝ ⎠

∑∑ ⎞
⎟             (3.3) 

( ) ( )( )2T

i j i jx -v x -v is the distance between a data point and cluster center. In this 

study, we adopt the Euclidean distance. The procedure of FCM is illustrated as 
follows. 

Step 1: Initialize the membership matrixU with random values ranged [0, 1], 
where the conditions (3.1) and (3.2) are satisfied. 

Step 2: Calculate the cluster centers jv according to the equation: 
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( )

( )
1

1

1

N m

ij i
i=

j N m

ij
i=

x
v = , j= , ,C

μ
∀

μ

∑

∑
                      (3.4) 

Step 3: Calculate the new distance: 

1 1ij i jd = x -v , i= , ,N j= , ,C∀ ∀                   (3.5) 

Step 4: Update the new matrixU : 

If ( )0ij i jd > x v≠ , calculate the new membership grade . ijμ

2
1

1

1
ij

C m-
ij

k= ik

=
d
d

μ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
                          (3.6) 

Else . 1ij=μ

Step 5: If the termination criterion has been met (e.g. maximum number of 
iterations), stop. 

Otherwise, go to step 2. 

3.4 The Connection Mechanism for Clustering + Bayesian  
Network 

Take the Acute Care Indicators used at the domestic level of medical 
centers during 2002 for example. The scatter plot of the third and fourth 
features of the indicator data after FCM implementation is shown in Figure 3.2. 
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Figure 3.2 Two Clustered in TQIP by FCM. 

Here we add a mechanism for combining clustering with the Bayesian 
network in order to re-calculate the new clusters and look for the overlapping 
points between clusters after FCM implementation. The procedure for the 
connection mechanism is as follows. 

Step 1: Find the centroids of each cluster by FCM. 

Step 2: Calculate the Euclidean distance from each node to the centroid in each 
cluster in order to find out the maximum distance of the “Radius”. 

Step 3: Compute all the distances of each node to the cluster centroids. 

Step 4: Compare the “radius” in each cluster to each node in the other cluster.  

Step 5: If the radius is larger than the distance of the node in its cluster to the 
centroid in the other one, then reset the node to a new cluster. 

Step 6: Repeat Step 4 to 5 until all nodes have been re-calculated. 

The following is a sketch illustration of the mechanism. 
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Figure 3.3 Overlapping by maximum distance from each cluster. 

3.5 BN Construction by HUGIN Tool Based on PC Algorithm 

The PC algorithm is the key for learning the structure of a Bayesian 
network of the HUGIN Tool [30] [33]. 

The PC algorithm assumes the Causal Markov Condition and the 
Faithfulness Condition as well as statistical decisions. As follows [34]: 

Markov Assumption: Given a Bayesian network B , any variable is 
independent of all its descendants in B , given its parents. 

Faithfulness Assumption: A graph and a probability distribution  are 
faithful to one another if and only if each one and all independent relations 
in are valid and entailed by the Markov assumption on . 

G P

P G

Let a database  serve as an input over a set of variablesV , D ( )I X,Y S  

serves as a test of conditional independence, and a significant level 0<α <1. The 
following is a sketch of the revised procedure [19]. 

Input: A database over a set of variablesV ;D ( )I X,Y S : a test of conditional 

independence; 0<α <1: a significant level. 

Output: An essential graph overV . 

Indicator Values 
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1) Construct the complete undirected graph overV . 

2) For all ordered adjacent nodes andY , check a conditional independence 

relation

X

( )I X,Y S if and only if all variables in are adjacent to 

either orY . If and are d-separated given , delete edge -Y ; until 
all ordered pairs of adjacent variables have been tested for d-separation. 

S

X X Y S X

3) For each triple of nodes ,Y ,X Z such that is adjacent to Y and is 
adjacent to 

X Y
Z but is not adjacent toX Z , orient -Y -X Z as YX Z if 

and only if is not in the set that d-separates andY in 2). Y S X

4) Repeat, until no more edges can be directed: 

(a) Direct all arcs necessary to avoid new v-structures. 

(b) Direct all arcs necessary to avoid cycles. 

Figure 3.4 The sketch of the revised procedure. 

The procedure of the PC algorithm can be concluded with the following 
description [19]: 

1) Test for conditional independence between each pair of variables 
( ⊥Y ∣ ). X S

2) Identify the skeleton of the graph. 

3) Identify collides ( YX Z ). 

4) Identify derived directions. 
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Figure 3.5 Traces the first two steps of the PC algorithm [43]. 

In step 1, a complete undirected graph is created. A hypothesis of any 
ordered adjacent nodes andY exists as conditionally independent by statistical 
tests given the set  within but not inclusive of andY . After the set of 
adjacencies has been identified and no conditional independent relation has 
been found in step 2, the triple set of variables with only two adjacencies and a 
skeleton of the second part in Figure 3.5 will be partially oriented in step 3, e.g.: 

X
S X

A-B-C; A-B-D; 

C-B-D; B-C-E; 

B-D-E; C-E-D 

A collide E is found because E is not in set{C, D}. And we have none of 
the other triples from collides. In step 4, repeat the procedure and check to avoid 
new v-structures and cycles until no more edges can be oriented, e.g. If there is 
a directed path from A to B, and an edge between A and B, then orient A-B as 
A B. 
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3.6 Parameter Estimation by HUGIN Tool Based on EM 
Algorithm 
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( )
The EM algorithm [27] supports parameter estimation in the HUGIN Tool. 

Let a Bayesian network B= G,P , and the conditional probability distribution 

of the parameters of ( ( )B  such that )i i=P X =k Pa X =j i,j,kijkθ for each . 

The log-likelihood function ( )l θ given data and DAG is: D G

( ) (log
N

i
i=1

l = P c )θ θ∑                      (3.7) 

The E-step computes expected counts for family ( i )fa X  and 

parent  configurations of each node under( iPa X ) iX θ : 

( ) ( ){ }* Y =E Y Dθη η                     (3.8) 

where is either orY ( )iPa X =j ( )i iX =k,Pa X =j . The M-step computes new 

estimates of *
ijkθ from the expected counts under ijkθ : 

( )( )
( )( )

*
i i*

ijk *
i

X =k,Pa X =j
=

Pa X =j
η

θ
η

                  (3.9) 

The E-M procedure is iterated until a convergence of ( )l θ . In the HUGIN 

Tool, when the difference between the log-likelihoods of two successive 
iterations is less than or equal to the numerical value of a threshold multiplied 
by the log-likelihood, the procedure stops. Alternatively, one can set the number 
of upper limit of iterations to ensure that the procedure terminates. 

3.7 HUGIN Learning Wizard Tool 

The BN learning of HUGIN Tool, which is supported through a “Learning 
Wizard” [33], is adopted in this study. A full learning cycle consists of three 
main steps: Data acquisition, structure learning, and parameter estimation. 

Step 1: Data acquisition. 

Read data from various sources and preprocess the data. 

Step 2: Structure learning. 



Check whether known dependencies or independencies have to be 
forced onto the algorithm, including constraints, node positions, and 
node labels, etc. 

Step 3: Parameter estimation. 

Specify parameters for the EM algorithm. 

3.8 Performance Evaluation-Data Similarity 

In the end, this study adopts kernel approximation [2] for the purpose of 
measuring the data similarity behind data structures. First, the kernel function is 
used to calculate the approximate structure behind the dataset. In kernel 
function, the “Smoothing Parameter as the Bandwidth” (3.10) is used to adjust 
the shape and control the smooth degree of kernel function. Furthermore, this 
study compares the values for the Gap (3.11) of bandwidth between two 
datasets in order to determine whether two datasets come from the same 
structure. 

The bandwidth is formulated as follows: 

( )
( ) ( )

1
5

2
*

2 "

R K
h =

n x K R f

⎛ ⎞
⎜
⎜⎜ ⎟
⎝ ⎠∫

⎟
⎟                    (3.10) 

Where ( )R K is represented as the Roughness of Gaussian kernel function; 

( )2
2x K∫ is represented as the Square of the Second Moment of Gaussian kernel 

function; ( )"R f  is used to approximate the estimated probability density 

function. In addition, the difference (interval) of bandwidth values is formulated 
as follows: 

1 2hd = h -h                         (3.11) 

Here we set a threshold by our case to check the similarity between the raw 
indicator-data and the generated data behind the BN model. 
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CHAPTER 4   A BN-BASED HEALTHCARE   

QUALITY INDICATOR NETWORK 

In this chapter, we apply the methods and procedures mentioned in chapter 
3 to TQIP indicator sets. First, we determine the scope of selected indicators 
depending on the report key and eliminate the missing records. Second, we 
adopt a data-transformation mechanism, which is used for transforming the 
continuous data-type into a discrete type before using the BN learner. 

4.1 Indicator Resource and Scope 

1. Indicator data is provided by Taiwan Joint Commission on Hospital 
Accreditation. 

2. Acute Care Indicators adopted in domestic medical centers are the objective 
of this study. 

3. Report key showed in “-7*” and “-99†” is not within the scope of selected 
indicators. 

4. Indicators range is from January 1 2000 to December 31 2004 and a total of 
60 cases (records) of each indicator item. 

5. Time is not a function of this study. 

The following is the indicator list of the medical centers. 

Table 4.1 Indicator lists of the medical centers. 

Year I.D. 
Indicator 

Set 

Total # 
Measurements Not 

Recorded  

Total # of Indicator 
Measurements 

2000 Group 1‡ AC 39 162 
2001 Group 1 AC 86 184 
2002 Group 1 AC 86 192 
2003 Group 1 AC 86 200 
2004 Group 1 AC 90 228 

                                                 
* -7 (NR): No Records in the database at the facility level, or No valid Records at the aggressive level (no 
hospital rates≧0). 
† -99 (NA): Not Able to calculate or display value due to low facility count. 
‡ Group 1: the level of Medical Centers. 
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4.2 Research Tools 

The experiments in this study were conducted on a Pentium 4 2.80 GHz 
PC with 512 MB of RAM running under Windows XP Professional SP2. The 
data sets were stored in MS-Excel formats, which were used for the data 
preprocessing as well. In addition, MATLAB, an application-software, was used 
for numerical computation, data visualization and simulation. In this study, the 
clustering algorithm and connection mechanism were programmed using 
MATLAB. In addition, the BN learning of HUGIN Tool, which is supported 
through a “Learning Wizard”, was adopted in this experiment. 

4.3 Data Preprocessing and State Discretization 

The data-type of TQIP indicators is presented as continuous data-type 
(shown in Table 4.2 & 4.3); though the data-type of problem domains dealt with 
in Bayesian networks is presented as discrete values. In addition, different 
indicator items have different numerical values. Therefore, we utilize a 
state-transformation for value discretization of TQIP indicators. 

Table 4.2 Partial indicator data sets of A1.1 (Resource: TJCHA). 

I.D. Indicator Set Indicator Measure Year Month Weighted Mean 

Group 1 AC A1 A1.1 2000 1 0.8546 

Group 1 AC A1 A1.1 2000 2 1.305 

Group 1 AC A1 A1.1 2000 3 1.1855 

Group 1 AC A1 A1.1 2000 1Q 1.0965 

Group 1 AC A1 A1.1 2000 4 0.9918 

Group 1 AC A1 A1.1 2000 5 1.0129 

Group 1 AC A1 A1.1 2000 6 1.1675 

Group 1 AC A1 A1.1 2000 2Q 1.0558 

Group 1 AC A1 A1.1 2000 7 1.1887 

Group 1 AC A1 A1.1 2000 8 1.1252 

Group 1 AC A1 A1.1 2000 9 1.2437 

Group 1 AC A1 A1.1 2000 3Q 1.1862 

Group 1 AC A1 A1.1 2000 10 1.1327 

Group 1 AC A1 A1.1 2000 11 1.0771 



I.D. Indicator Set Indicator Measure Year Month Weighted Mean 

Group 1 AC A1 A1.1 2000 12 1.0243 

Group 1 AC A1 A1.1 2000 4Q 1.0777 

Table 4.3 Partial indicator data sets of A1.1a. 

I.D. Indicator Set Indicator Measure Year Month Weighted Mean 

Group 1 AC A1 A1.1a 2000 1 20.1389 

Group 1 AC A1 A1.1a 2000 2 19.3878 

Group 1 AC A1 A1.1a 2000 3 21.3389 

Group 1 AC A1 A1.1a 2000 1Q 20.2192 

Group 1 AC A1 A1.1a 2000 4 24.7899 

Group 1 AC A1 A1.1a 2000 5 28.0899 

Group 1 AC A1 A1.1a 2000 6 25.3472 

Group 1 AC A1 A1.1a 2000 2Q 26.1034 

Group 1 AC A1 A1.1a 2000 7 27.5934 

Group 1 AC A1 A1.1a 2000 8 25.8915 

Group 1 AC A1 A1.1a 2000 9 23.0878 

Group 1 AC A1 A1.1a 2000 3Q 25.2591 

Group 1 AC A1 A1.1a 2000 10 25.5814 

Group 1 AC A1 A1.1a 2000 11 31.1864 

Group 1 AC A1 A1.1a 2000 12 25.5521 

Group 1 AC A1 A1.1a 2000 4Q 27.3013 

In Table 4.1, each item of indicators has its range of weighted means. In 
order to satisfy the discrete data-type conditions of Bayesian networks, a 
transformation procedure will be used in this study. 

From the outset, we adopt equally weighted discretization depending on 
Frequency distribution. The following describes the procedure. 

Step 1: Sort the data points and compute the Range. 

Range=Max－Min                     (4.1) 

Step 2: Divide up the numbers of discrete state . k

2log n +1k=                         (4.2) 

where is denoted as the total sample size. n

Step 3: Compute the divided range of each state. 
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RangeState Width=
k

                     (4.3) 

Step 4: Transform each indicator into the corresponding state. 

Take A1.1 for example. A total number of records ; Max=1.9463, 
Min=0.8546, then Range=Max－Min=1.0917. The numbers of discrete state 

≒7; each state width=

= 60n

2log n +1k= 1.0917 7 0.156= . Thus the corresponding 

state-transformation is shown in Table 4.4 

Table 4.4 The corresponding state transformation of A1.1. 

Indicator/
Records 

A1.1 
Corresponding 

state 
Indicator/
Records 

A1.1 
Corresponding 

state 
1 0.8546 0 31 1.5821 4 

2 1.305 2 32 1.5256 4 

3 1.1855 2 33 1.5536 4 

4 0.9918 0 34 1.476 3 

5 1.0129 1 35 1.3836 3 

6 1.1675 2 36 1.3205 2 

7 1.1887 2 37 1.3862 3 

8 1.1252 1 38 1.4679 3 

9 1.2437 2 39 1.4314 3 

10 1.1327 1 40 1.6648 5 

11 1.0771 1 41 1.549 4 

12 1.0243 1 42 1.4533 3 

13 1.2891 2 43 1.5039 4 

14 1.1529 1 44 1.561 4 

15 1.1932 2 45 1.5588 4 

16 1.2068 2 46 1.4777 3 

17 1.2977 2 47 1.3506 3 

18 1.5062 4 48 1.3571 3 

19 1.4631 3 49 1.7943 6 

20 1.2775 2 50 1.772 5 

21 1.2815 2 51 1.7498 5 

22 1.2518 2 52 1.743 5 

23 1.1768 2 53 1.8342 6 

24 1.18 2 54 1.8176 6 

25 1.3974 3 55 1.9463 6 

26 1.3934 3 56 1.9397 6 
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Indicator/
Records 

A1.1 
Corresponding 

state 
Indicator/
Records 

A1.1 
Corresponding 

state 
27 1.3506 3 57 1.8183 6 

28 1.3412 3 58 1.7167 5 

29 1.4613 3 59 1.8061 6 

30 1.5015 4 60 1.7196 5 

Here is another example A1.1a. The total numbers of records ; 
Max=32.173, Min=18.6901, then Range=Max－Min=13.4829. The numbers of 
discrete state ≒7; each state width=

= 60n

2log n +1k= 13.4829 7 1.926= . As a result, 

the corresponding state is shown in Table 4.5. 

Table 4.5 The corresponding state transformation of A1.1a. 

Indicator/
Records 

A1.1a 
Corresponding 

state 
Indicator/
Records 

A1.1a 
Corresponding 

state 
1 20.1389 0 31 21.1838 1 

2 19.3878 0 32 25.0177 3 

3 21.3389 1 33 24.9304 3 

4 24.7899 3 34 24.4364 2 

5 28.0899 4 35 28.1528 4 

6 25.3472 3 36 25.1472 3 

7 27.5934 4 37 23.5374 2 

8 25.8915 3 38 19.0939 0 

9 23.0878 2 39 24.5627 3 

10 25.5814 3 40 22.8457 2 

11 31.1864 6 41 26.1484 3 

12 25.5521 3 42 24.9201 3 

13 18.6901 0 43 23.8647 2 

14 19.9297 0 44 23.4934 2 

15 22.8238 2 45 20.9691 1 

16 21.2481 1 46 24.6847 3 

17 21.7503 1 47 23.6422 2 

18 22.5873 2 48 24.6804 3 

19 24.8019 3 49 27.014 4 

20 25.7874 3 50 28.7339 5 

21 27.5154 4 51 31.6253 6 

22 21.8563 1 52 32.173 7 
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Indicator/
Records 

A1.1a 
Corresponding 

state 
Indicator/
Records 

A1.1a 
Corresponding 

state 
23 23.0769 2 53 29.2774 5 

24 22.3958 1 54 28.71 5 

25 20.1674 0 55 30.6839 6 

26 19.6151 0 56 27.6484 4 

27 23.7679 2 57 27.4445 4 

28 22.4745 1 58 28.2417 4 

29 21.346 1 59 29.9551 5 

30 19.6881 0 60 27.6431 4 

4.4 Prior Information Involved 

Within indicator sets, parts of indicators are related to their detailed 
measurements depending on certain formula-relations. For example, A1.1 is 
formulated as follows: 

A1.1
Person - time of  Unscheduled Returns to the Emergency Department 100%

Total Person - time of  Emergency Department

=

×
 

(4.4) 

And its detailed measure “A1.1a” is formulated as follows: 
A1.1a
Person - time of  unscheduled returns resulting in an inpatient admission 100%

Person - time of  Unscheduled Returns to the Emergency Department

=

×
 

(4.5) 

Hence, while learning the structure within the BN, we designate a “Design 
Relation” to serve as the prior information, which is a formula-relation between 
AC indicators and their detailed measurements. 

4.5 Indicators Clustering 

After the data preprocessing and state-discretization, a total of 121 
indicators are selected in this study. In order to reduce the complexity of the 
final network, the expected cluster is set as 2 ( )2V = . The scatter plot of the first 

and second columns by FCM clustering is shown in Figure 4.1.  
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Figure 4.1 Clusters of TQIP data by FCM. 

And below is the result of objective function by FCM. 

 

Figure 4.2 The objective function of TQIP data by FCM clustering. 

After FCM implementation, the connection mechanism of clustering + BN, 
which is mentioned in Sec. 3.4, is used for the next procedure. We re-calculate 
the maximum distance from each point to the centroid in each cluster and look 
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for the overlapping points between two clusters after FCM implementation. The 
following is the result of the connection mechanism. 

Table 4.6 The first new cluster by the connection mechanism. 

New Cluster One 
Count Indicator Measure Count Indicator Measure 

1 1b.3 20 2b.4d 
2 1b.5 21 2b.5 
3 1b.6 22 2b.5c 
4 1b.7 23 2b.6 
5 1b.8 24 2b.6c 
6 1b.10 25 6.2 
7 1b.11 26 6.5 
8 1b.12 27 12.1f 
9 1b.13 28 12.1j 
10 1b.15 29 12.1m 
11 2b.1 30 13.1a 
12 2b.1c 31 13.2 
13 2b.1d 32 13.2a 
14 2b.2 33 A2.1 
15 2b.2c 34 A2.1a 
16 2b.3 35 A2.2a 
17 2b.3c 36 A2.3a 
18 2b.4 37 A2.4a 
19 2b.4c   

Total count of indicators=37. 

Table 4.7 The second new cluster by the connection mechanism. 

New Cluster Two 
Count Indicator Count Indicator Count Indicator Count Indicator

1 1a.1 23 3.7 45 12.1 67 A1.2a 
2 1a.2 24 3.8 46 12.1a 68 A1.3 
3 1a.3 25 3.9 47 12.1b 69 A1.3a 
4 1a.5 26 3.12 48 12.1c 70 A2.1b 
5 1a.6 27 4.3 49 12.1d 71 A2.1d 
6 1a.7 28 4.4 50 12.1e 72 A2.1e 
7 1a.8 29 4.8 51 12.1k 73 A2.2 



Count Indicator Count Indicator Count Indicator Count Indicator
8 1a.10 30 5.1 52 12.1l 74 A2.2b 
9 1a.11 31 5.2 53 12.1m 75 A2.2d 
10 1a.12 32 5.3 54 12.1n 76 A2.2e 
11 1a.13 33 5.4 55 12.2 77 A2.3 
12 1a.15 34 5.5 56 12.3 78 A2.3b 
13 1b.2 35 5.6 57 13.1 79 A2.3d 
14 1b.7 36 6.1 58 13.1b 80 A2.3e 
15 2a.7 37 6.3 59 13.1c 81 A2.4 
16 2b.1d 38 6.4 60 13.1d 82 A2.4b 
17 2b.6d 39 7.1 61 13.2b 83 A2.4d 
18 3.1 40 9.1 62 13.2c 84 A2.4e 
19 3.2 41 10.1 63 13.3 85 A4.1 
20 3.3 42 11.3 64 A1.1   
21 3.4 43 11.4 65 A1.1a   
22 3.6 44 11.6 66 A1.2   

Total count of indicators=85. 

After implementing the connection mechanism, we obtain two overlapping 
points: “1b.7” and “12.1m”. 

4.6 BN Learner based on HUGIN Tool 

4.6.1 BN Learner with Prior Information Involved 

Before performing the BN learner, we adopt the state-transformation 
procedure, which is mentioned in Sec. 4.3, to implement the data discretization. 
The discretization procedure performs the state-transformations on a total of 
121 indicators. 

After the state-transformations, we import the “prior information” and the 
clustered data into the HUGIN Tool’s learning wizard to perform the structure 
learning for the BN learner (shown in Figure 4.3). 

In this study, because the indicator data sets in TQIP are subject to time 
periods it is difficult to acquire sufficient indicator records. We have therefore 
lessened the significant level . = 0.2α
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Figure 4.3 Data Acquisition and Data Preprocessing. 

Then, we take the design relations as the “prior information”, which is 
mentioned in Sec. 4.4, before performing the structure learning (shown in 
Figure 4.4). 

 

Figure 4.4 Prior Information Involved. 

Next, with the significant level = 0.2α , learning the BN structure using the 
PC algorithm is continued. Furthermore, the parameters among these indicators 
are estimated using EM-learning (shown in Figure 4.5). 
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Figure 4.5 Structure Learning and Parameter Estimation. 

As such we construct two Bayesian networks by using indicator sets 
(shown in Figure 4.6 and 4.7). 

 

Figure 4.6 The first BN of TQIP indicators with design relations involved. 

Below is the second BN of TQIP indicator set. 
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Figure 4.7 The second BN of TQIP indicators with design relations involved. 

4.6.2 BN Learner without constraints 

It should be mentioned that the design relations among indicators are not 
concerned with the BN learner. Learning the structure and estimating the 
parameters to obtain Bayesian networks uses the indicator sets directly. The 
BNs simply illustrate the hidden relations among TQIP indicators.  

The following is the Bayesian networks without constraints. 

 

Figure 4.8 The first BN of TQIP indicators without constraints. 
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Figure 4.9 The second BN of TQIP indicators without constraints. 

4.7 Performance Evaluation－Data Similarity 

The diagrams in Sec. 4.6 may help to illustrate the overlapping of multiple, 
simultaneous Bayesian networks when used with the TQIP indicator sets. In 
Part One, we realized that the overlapping indicators of 1b.7 and 12.1m connect 
the two separate Bayesian networks. 

In Figure 4.6, indicator 12.1m is isolated without any direct dependency on 
other indicators. However, indicator 1b.7 has two direct links to the indicators 
1b.12 and 2b.4. The causal relationship among the three indicators is shown as 
1b.12 1b.7 2b.4. That is, the causal relationship of 1b.12 1b.7 2b.4 is a 
diverging relationship, i.e., when 1b.7 is known, it blocks the evidence of 
indicator 1b.12 and 2b.4. On the other hand, when indicator 1b.7 is instantiated, 
1b.12 and 2b.4 are d-separated.  

Next, in Figure 4.7, indicator 1b.7 has a direct dependency on indicator 
1a.3, and the causal relationship is shown as 13.3 1b.7 1a.3, which is the 
causal relationship of a serial relation. When 1b.7 is known, it blocks the 
evidence of indicator 13.3 and 1a.3. In addition, when indicator 1b.7 is 
instantiated, indicator 13.3 and 1a.3 become d-separated. In addition, indicator 
12.1m has a causal relationship with indicator 1a.10, e.g., 12.1m 1a.10. The 
following is the dependency-relation sketch of two sub-BNs. 
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Figure 4.10 The connection sketch of two sub-BNs. 

In this way, we measure the similarity between the original indicator data 
and the indicator data generated from Bayesian networks based on the two 
formulas of bandwidth  (3.10) and the gap of bandwidth  (3.11). *h hd

First, we compute the bandwidth values of the complete five-year original 
TQIP records and generate five-year indicator records with the Bayesian 
network. The following is the result of measuring the overlapping indicators 
when the “prior information”, i.e. the design relations (see in Sec.4.4), is 
involved. 

Table 4.8 The bandwidth value of the original and generated indicators (I). 

Indicators Original  1h Generated  2h hd  Remark (BN I)

1b.1 0.5976 0.6463 0.0487  
1b.3 0.6159 0.7333 0.1174  
1b.5 0.103 0.107 0.004  
1b.6 0.5855 0.5282 0.0573  
1b.7 0.5936 0.1032 0.4904 Overlapping 
1b.8 0.138 0.1418 0.0038  
1b.10 0.6451 0.132 0.5131  
1b.11 0.1073 0.5288 0.4215  
1b.12 0.4697 0.11 0.3597 Child indicator 
1b.13 0.7444 0.1362 0.6082  
1b.15 0.6735 0.518 0.1555  
2b.1 0.1067 0.1304 0.0237  
2b.1c 0.5184 0.552 0.0336  
2b.2 0.6553 0.5344 0.1209  
2b.2c 0.61 0.7444 0.1344  
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Indicators Original  1h Generated  2h hd  Remark (BN I)

2b.3 0.121 0.1034 0.0176  
2b.3c 0.1023 0.5264 0.4241  
2b.4 0.7963 0.7178 0.0785 Child indicator 
2b.4c 0.7379 0.62 0.1179  
2b.4d 0.88 0.9011 0.0211  
2b.5 0.089 0.0702 0.0188  
2b.5c 0.1186 0.1345 0.0159  
2b.6 0.7063 0.7864 0.0801  
2b.6c 0.132 0.3813 0.2493  
6.2 0.1392 0.1304 0.0088  
6.5 0.8095 0.6236 0.1859  

12.1f 0.4796 0.1337 0.3459  
12.1j 0.1263 0.1383 0.012  
12.1m 0.7075 0.1387 0.5688 Overlapping 
13.1a 0.1082 0.1124 0.0042  
13.2 0.7025 0.4997 0.2028  
13.2a 0.1152 0.1094 0.0058  
A2.1 0.0898 0.071 0.0188  
A2.1a 0.0995 0.0925 0.007  
A2.2a 0.5715 0.7733 0.2018  
A2.3a 0.107 0.5646 0.4576  
A2.4a 0.4876 0.6169 0.1293  

Table 4.9 The bandwidth value of the original and generated indicators (II). 

Indicators Original  1h Generated  2h hd  Remark (BN II)

1a.1 0.4874 0.4765 0.0109  
1a.2 0.6135 0.1228 0.4907  
1a.3 0.6555 0.5485 0.107 Child indicator 
1a.5 0.5266 0.4628 0.0638  
1a.6 0.1285 0.5895 0.461  
1a.7 0.4563 0.1276 0.3287  
1a.8 0.1095 0.0666 0.0429  
1a.10 0.6209 0.1546 0.4663 Child indicator 
1a.11 0.7105 0.7473 0.0368  
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Indicators Original  1h Generated  2h hd  Remark (BN II)

1a.12 0.8558 0.5824 0.2734  
1a.13 0.6521 0.6358 0.0163  
1a.15 0.1225 0.1150 0.0075  
1b.2 0.0882 0.6109 0.5227  
1b.7 0.5936 0.6414 0.0478 Overlapping 
2a.7 0.4887 0.6483 0.1596  

2b.1d 0.7767 0.6537 0.123  
2b.6d 0.737 0.1724 0.5646  
3.1 0.0904 0.0933 0.0029  
3.2 0.6326 0.1508 0.4818  
3.3 0.1672 0.6898 0.5226  
3.4 0.5513 0.0806 0.4707  
3.6 0.6892 0.1413 0.5479  
3.7 0.1054 0.0809 0.0245  
3.8 0.1086 0.0995 0.0091  
3.9 0.0992 0.0776 0.0216  
3.12 0.0702 0.0810 0.0108  
4.3 0.1215 0.1231 0.0016  
4.4 0.5904 0.5338 0.0566  
4.8 0.5651 0.5595 0.0056  
5.1 0.637 0.6563 0.0193  
5.2 0.0669 0.0724 0.0055  
5.3 0.4981 0.1494 0.3487  
5.4 0.1072 0.1205 0.0133  
5.5 0.5302 0.1204 0.4098  
5.6 0.1004 0.5082 0.4078  
6.1 0.6335 0.0760 0.5575  
6.3 0.6648 0.1360 0.5288  
6.4 0.605 0.1235 0.4815  
7.1 0.5583 0.5850 0.0267  
9.1 0.159 0.6816 0.5226  
10.1 0.1102 0.1040 0.0062  
11.3 0.0706 0.0498 0.0208  
11.4 0.0782 0.0759 0.0023  
11.6 0.466 0.1052 0.3608  
12.1 0.5667 0.1122 0.4545  
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Indicators Original  1h Generated  2h hd  Remark (BN II)

12.1a 0.7324 0.6069 0.1255  
12.1b 0.1514 0.6474 0.496  
12.1c 0.9008 0.4052 0.4956  
12.1d 0.6374 0.1752 0.4622  
12.1e 0.1191 0.7269 0.6078  
12.1k 0.4223 0.1731 0.2492  
12.1l 0.098 0.0826 0.0154  
12.1m 0.7075 0.6825 0.025 Overlapping 
12.1n 0.5514 0.1135 0.4379  
12.2 0.1422 0.1697 0.0275  
12.3 0.1039 0.0748 0.0291  
13.1 0.5946 0.5150 0.0796  
13.1b 0.6203 0.5641 0.0562  
13.1c 0.1177 0.7601 0.6424  
13.1d 0.7216 0.1331 0.5885  
13.2b 0.0883 0.0671 0.0212  
13.2c 0.111 0.1151 0.0041  
13.3 0.7528 0.7980 0.0452  
A1.1 0.7004 0.1320 0.5684  
A1.1a 0.8266 0.5537 0.2729  
A1.2 0.866 0.7868 0.0792  
A1.2a 0.6515 0.7721 0.1206  
A1.3 0.8852 0.7443 0.1409  
A1.3a 0.7758 0.9210 0.1452  
A2.1b 0.6226 0.6535 0.0309  
A2.1d 0.1157 0.0939 0.0218  
A2.1e 0.0994 0.6798 0.5804  
A2.2 0.0869 0.5021 0.4152  
A2.2b 0.698 0.7165 0.0185  
A2.2d 0.5575 0.5135 0.044  
A2.2e 0.6942 0.1268 0.5674  
A2.3 0.1399 0.1363 0.0036  
A2.3b 0.612 0.1256 0.4864  
A2.3d 0.0901 0.1087 0.0186  
A2.3e 0.7781 0.7218 0.0563  
A2.4 0.6438 0.6441 0.0003  
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Indicators Original  1h Generated  2h hd  Remark (BN II)

A2.4b 0.8128 0.7152 0.0976  
A2.4d 0.8528 0.6275 0.2253  
A2.4e 0.6491 0.4945 0.1546  
A4.1 0.8148 0.6928 0.122  

Then, when no constraints (See in Sec. 4.6.2) are applied, we achieve the 
same results as when applying design relations (See in Sec. 4.6.1). In Figure 4.8, 
indicator 12.1m is isolated without any connections. Indicator 1b.7 has a causal 
relationship among other two indicators of 1b.12 and 2b.4, which is shown as 
1b.12 1a.7 2b.4. It is a diverging relationship, so that when 1b.7 is known, it 
blocks the evidence of indicator 1b.12 and 2b.4. In addition, in Figure 4.9, 
indicator 1b.7 has a serial relation shown as 13.3 1b.7 1a.3, which is to say 
that when 1b.7 is known, it blocks the evidence of indicator 13.3 and 1a.3 
(shown in Figure 4.11). 

13.3

1b.7
1a.3

1b.12 2b.4

12.1m 1a.10

13.3

1b.7
1a.3

1b.12 2b.4

12.1m 1a.10
 

Figure 4.11 The connection sketch of two sub-BNs under no constraints. 

Again, we measure the similarity between the original indicator data and 
the indicator data generated from Bayesian networks based on the two formulas 
of bandwidth  (3.10) and the gap of bandwidth  (3.11). *h hd

In the same way, we re-compute the bandwidth values of the complete 
five-year original TQIP records, and once again generate five-year indicator 
records from the Bayesian network. The following is the result of measuring the 
overlapping indicators when no constraints are involved. 
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Table 4.10 The bandwidth value of the original and generated indicators (I) 

Indicators Original  1h Generated  2h hd  Remark (BN I)

1b.1 0.5976 0.1291 0.4685  
1b.3 0.6159 0.4950 0.1209  
1b.5 0.103 0.0886 0.0144  
1b.6 0.5855 0.5712 0.0143  
1b.7 0.5936 0.4592 0.1344 Overlapping 
1b.8 0.138 0.1005 0.0375  
1b.10 0.6451 0.0896 0.5555  
1b.11 0.1073 0.4872 0.3799  
1b.12 0.4697 0.4830 0.0133 Child indicator 
1b.13 0.7444 0.1496 0.5948  
1b.15 0.6735 0.5870 0.0865  
2b.1 0.1067 0.0993 0.0074  
2b.1c 0.5184 0.0768 0.4416  
2b.2 0.6553 0.6600 0.0047  
2b.2c 0.61 0.5810 0.029  
2b.3 0.121 0.1206 0.0004  
2b.3c 0.1023 0.1115 0.0092  
2b.4 0.7963 0.1338 0.6625 Child indicator 
2b.4c 0.7379 0.7116 0.0263  
2b.4d 0.88 0.6455 0.2345  
2b.5 0.089 0.0926 0.0036  
2b.5c 0.1186 0.1245 0.0059  
2b.6 0.7063 0.1398 0.5665  
2b.6c 0.132 0.1291 0.0029  
6.2 0.1392 0.6480 0.5088  
6.5 0.8095 0.1575 0.652  

12.1f 0.4796 0.4423 0.0373  
12.1j 0.1263 0.6313 0.505  
12.1m 0.7075 0.1099 0.5976 Overlapping 
13.1a 0.1082 0.1134 0.0052  
13.2 0.7025 0.6106 0.0919  
13.2a 0.1152 0.1084 0.0068  
A2.1 0.0898 0.0585 0.0313  
A2.1a 0.0995 0.1197 0.0202  
A2.2a 0.5715 0.6630 0.0915  
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Indicators Original  1h Generated  2h hd  Remark (BN I)

A2.3a 0.107 0.1102 0.0032  
A2.4a 0.4876 0.7594 0.2718  

Table 4.11 The bandwidth value of the original and generated indicators (II). 

Indicators Original  1h Generated  2h hd  Remark (BN II)

1a.1 0.4874 0.6663 0.1789  
1a.2 0.6135 0.1213 0.4922  
1a.3 0.6555 0.4985 0.157 Child indicator 
1a.5 0.5266 0.0993 0.4273  
1a.6 0.1285 0.1322 0.0037  
1a.7 0.4563 0.1309 0.3254  
1a.8 0.1095 0.0989 0.0106  
1a.10 0.6209 0.5641 0.0568 Child indicator 
1a.11 0.7105 0.8660 0.1555  
1a.12 0.8558 0.5447 0.3111  
1a.13 0.6521 0.5869 0.0652  
1a.15 0.1225 0.1411 0.0186  
1b.2 0.0882 0.5737 0.4855  
1b.7 0.5936 0.5737 0.0199 Overlapping 
2a.7 0.4887 0.0728 0.4159  

2b.1d 0.7767 0.7019 0.0748  
2b.6d 0.737 0.3917 0.3453  
3.1 0.0904 0.0814 0.009  
3.2 0.6326 0.6356 0.003  
3.3 0.1672 0.1071 0.0601  
3.4 0.5513 0.5024 0.0489  
3.6 0.6892 0.6270 0.0622  
3.7 0.1054 0.1236 0.0182  
3.8 0.1086 0.0899 0.0187  
3.9 0.0992 0.1286 0.0294  
3.12 0.0702 0.0814 0.0112  
4.3 0.1215 0.1086 0.0129  
4.4 0.5904 0.4154 0.175  
4.8 0.5651 0.4959 0.0692  
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Indicators Original  1h Generated  2h hd  Remark (BN II)

5.1 0.637 0.1259 0.5111  
5.2 0.0669 0.0714 0.0045  
5.3 0.4981 0.1440 0.3541  
5.4 0.1072 0.0756 0.0316  
5.5 0.5302 0.1190 0.4112  
5.6 0.1004 0.4951 0.3947  
6.1 0.6335 0.1196 0.5139  
6.3 0.6648 0.6835 0.0187  
6.4 0.605 0.1035 0.5015  
7.1 0.5583 0.7848 0.2265  
9.1 0.159 0.6503 0.4913  
10.1 0.1102 0.1065 0.0037  
11.3 0.0706 0.0966 0.026  
11.4 0.0782 0.0871 0.0089  
11.6 0.466 0.5177 0.0517  
12.1 0.5667 0.6057 0.039  
12.1a 0.7324 0.5299 0.2025  
12.1b 0.1514 1.0048 0.8534  
12.1c 0.9008 0.5570 0.3438  
12.1d 0.6374 0.1787 0.4587  
12.1e 0.1191 0.6126 0.4935  
12.1k 0.4223 0.1606 0.2617  
12.1l 0.098 0.0930 0.005  
12.1m 0.7075 0.1243 0.5832 Overlapping 
12.1n 0.5514 0.0858 0.4656  
12.2 0.1422 0.1482 0.006  
12.3 0.1039 0.1085 0.0046  
13.1 0.5946 0.1167 0.4779  
13.1b 0.6203 0.5431 0.0772  
13.1c 0.1177 0.8209 0.7032  
13.1d 0.7216 0.6607 0.0609  
13.2b 0.0883 0.0979 0.0096  
13.2c 0.111 0.1027 0.0083  
13.3 0.7528 0.5156 0.2372  
A1.1 0.7004 0.5200 0.1804  
A1.1a 0.8266 0.6613 0.1653  
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Indicators Original  1h Generated  2h hd  Remark (BN II)

A1.2 0.866 0.7184 0.1476  
A1.2a 0.6515 0.6909 0.0394  
A1.3 0.8852 0.6930 0.1922  
A1.3a 0.7758 0.8565 0.0807  
A2.1b 0.6226 0.6377 0.0151  
A2.1d 0.1157 0.1107 0.005  
A2.1e 0.0994 0.6415 0.5421  
A2.2 0.0869 0.4966 0.4097  
A2.2b 0.698 0.1306 0.5674  
A2.2d 0.5575 0.5273 0.0302  
A2.2e 0.6942 0.7555 0.0613  
A2.3 0.1399 0.1293 0.0106  
A2.3b 0.612 0.6224 0.0104  
A2.3d 0.0901 0.1026 0.0125  
A2.3e 0.7781 0.7613 0.0168  
A2.4 0.6438 0.4718 0.172  
A2.4b 0.8128 0.7275 0.0853  
A2.4d 0.8528 0.7392 0.1136  
A2.4e 0.6491 0.4920 0.1571  
A4.1 0.8148 0.7450 0.0698  

In our study, we set two thresholds of 0.01 and 0.05 used as significant 
levels depending on our two cases. In the above two cases, we can see that 
regardless of design relations or non-constraints, the similarity between data 
gathered from the original indicators and the indicators generated from the 
Bayesian network partially falls within the settled interval (0.01 and 0.05) of 
this study (shown in Table 4.12, 4.13, and 4.14). In concern with the quantity of 
the compared data sets, this is because the original indicators are identically 
recorded and independent of each other, and because the Bayesian network 
molds the generated indicators to possess causal relationships among 
themselves. Furthermore, the state-transformation might affect the similarity 
between the two compared data sets. 
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Table 4.12 The interval of bandwidth of indicators within BN (I). 
Indicators hd  Remark 

1b.5 0.004 BN I 
1b.8 0.0038  
6.2 0.0088  

13.1a 0.0042  
13.2a 0.0058  
A2.1a 0.007  
1a.15 0.0075  
3.1 0.0029  
3.8 0.0091  
4.3 0.0016  
5.2 0.0055  
10.1 0.0062  
11.4 0.0023  
13.2c 0.0041  
A2.4 0.0003  

Indicators hd  Remark 
2b.1 0.0074 BN II 
2b.2 0.0047  
2b.3 0.0004  
2b.3c 0.0092  
2b.5 0.0036  
2b.5c 0.0059  
2b.6c 0.0029  
13.1a 0.0052  
13.2a 0.0068  
A2.3a 0.0032  
1a.6 0.0037  
3.1 0.009  
3.2 0.003  
5.2 0.0045  
10.1 0.0037  
11.4 0.0089  
12.1l 0.005  
12.2 0.006  
12.3 0.0046  
13.2b 0.0096  
13.2c 0.0083  
A2.1d 0.005  
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Table 4.13 The interval of bandwidth of indicators within BN (II). 

Indicators hd  Remark 
1b.1 0.0487 BN I 
1b.5 0.004  
1b.8 0.0038  
2b.1 0.0237  
2b.1c 0.0336  
2b.3 0.0176  
2b.4d 0.0211  
2b.5 0.0188  
2b.5c 0.0159  
6.2 0.0088  

12.1j 0.012  
13.1a 0.0042  
13.2a 0.0058  
A2.1 0.0188  
A2.1a 0.007  
1a.1 0.0109  
1a.8 0.0429  
1a.11 0.0368  
1a.13 0.0163  
1a.15 0.0075  
1b.7 0.0478  
3.7 0.0245  
3.8 0.0091  
3.9 0.0216  
3.12 0.0108  
4.3 0.0016  
4.8 0.0056  
5.1 0.0193  
5.2 0.0055  
5.4 0.0133  
7.1 0.0267  
10.1 0.0062  
11.3 0.0208  
11.4 0.0023  

12.1m 0.025  
12.2 0.0275  
12.3 0.0291  
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13.2b 0.0212  
13.2c 0.0041  
13.3 0.0452  

A2.1b 0.0309  
A2.1d 0.0218  
A2.2b 0.0185  
A2.2d 0.044  
A2.3 0.0036  
A2.3d 0.0186  
A2.4 0.0003  

Table 4.14 The interval of bandwidth of indicators within BN (II). 

Indicators hd  Remark 
1b.5 0.0144 BN II 
1b.6 0.0143  
1b.8 0.0375  
1b.12 0.0133  
2b.1 0.0074  
2b.2 0.0047  
2b.2c 0.029  
2b.3 0.0004  
2b.3c 0.0092  
2b.4c 0.0263  
2b.5 0.0036  
2b.6c 0.0029  
12.1f 0.0373  
13.1a 0.0052  
13.2a 0.0068  
A2.1 0.0313  
A2.1a 0.0202  
A2.3 0.0032  
1a.6 0.0037  
1a.8 0.0106  
1a.15 0.0186  
1b.7 0.0199  
3.1 0.009  
3.2 0.003  
3.4 0.0489  
3.7 0.0182  
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3.8 0.0187  
3.9 0.0294  
3.12 0.0112  
4.3 0.0129  
5.2 0.0045  
5.4 0.0316  
6.3 0.0187  
10.1 0.0037  
11.3 0.026  
11.4 0.0089  
11.6 0.0517  
12.1 0.039  
12.1l 0.005  
12.2 0.006  
12.3 0.0046  
13.2b 0.0096  
13.2c 0.0083  
A1.2a 0.0394  
A2.1b 0.0151  
A2.1d 0.005  
A2.2d 0.0302  
A2.3 0.0106  
A2.3b 0.0104  
A2.3d 0.0125  
A2.3e 0.0168  

However, by utilizing BN Learner, we construct a Bayesian network based 
on TQIP Acute Care indicators. Within the Bayesian network, in terms of raw 
data, the overlapping-indicators 1b.7 and 12.1m could be the key to surveying 
the quality of medical care in hospitals. 

In addition, in terms of data, indicator 1b.7 “Ventilator use in the CCU” 
affects three indicators of 1b.12 “Indwelling urinary catheter use in the CCU”, 
2b.4 “Antibiotic prophylaxis for appendectomy” and 1a.3 “Central 
line-associated bloodstream infections in the MICU”. In addition, indicator 13.3 
“Repeat Falls” affects indicator 1b.7, and indicator 12.1m “Physical restraint 
events initiated between 3:00 p.m. and 10:59 p.m.” affects indicator 1a.10 
“Ventilator-associated pneumonia in the SICU”. Hence, we can realize the two 
signal-indicators of 1b.7 and 12.1m within the Bayesian network and give 



hospitals an auxiliary-assessment objectively utilizing the Acute Care TQIP 
indicators. 

Furthermore, in this study, we still can get a portion of indicators falls 
within the settled thresholds (shown in Table 4.15). Although the bandwidth 
selection is a further point that needs to be considered, we still consider that the 
thresholds are fit to TQIP indicator-data sets. Thus, a similar data structure 
between the two indicator sets could be satisfied. 

Table 4.15 The portion (%) of bandwidth-value within thresholds. 

Type/thresholds 0.01hd <  0.05hd <  

Design relations involved 12.4 40.5 
Without constraints 18.2 42.1 

As result, it seems reasonable to suggest that, in the final analysis, this 
study primarily to provide an explanation or understanding of how data are 
generated. Accordingly, we may view our quest for understanding how 
indicator-data is generated or how indicators work as a quest for acquiring the 
ability to make prediction under wider range of circumstances, including things 
are taken apart or reconfigured among TQIP indicators. 
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CHAPTER 5   CONCLUSIONS AND FUTURE 

RESEARCH 

In this study, the Equally-weighted discretization technique is used to 
divide the individual TQIP indicators into standardized intervals. In addition, 
the FCM clustering algorithm, which is used to cluster TQIP indicators, reduces 
the complexity of the network structure while utilizing the Bayesian network 
construction. 

Bayesian networks are built by using the HUGIN Tool, which is based on 
the PC algorithm. We construct two separate Bayesian networks for TQIP 
indicators depending either on the use of design relations or without the use of 
design relations. In summary, in terms of raw data, this study provides a method 
for hospitals to survey the provision of quality medical services. In addition, an 
integrated representation of Bayesian networks is provided to determine 
probability relationships among these TQIP indicators of healthcare quality 
settings, and also to identify any deficiency among indicators while surveying 
the performance of medical quality in hospitals. 

In addition, we may view our quest for understanding how indicator-data is 
generated or how indicators work as a quest for acquiring the ability to make 
prediction under wider range of circumstances, including things are taken apart 
or reconfigured among TQIP indicators. 

This study proposes a method to analyze the relevance and uncertainty 
among TQIP indicators. In addition, we devise a feasible mechanism to deal 
with the structure and parameters of TQIP indicators, and to form a nonlinear 
Bayesian network. However, in order to improve the TQIP network more 
completely, there are several further directions that need to be explored in future 
research. 

1. This study is not concerned with the function of time. As collecting 
long-term data for TQIP indicators would better illustrate the healthcare 
system’s quality performance, a solution for integrating dynamic time-series 
data into the Bayesian networks should be explored. 

2. In this study, the TQIP indicators are continuous variables. However, discrete 
or categorical data can be used efficiently in Bayesian networks. Here, we 



 59

adopt the equally weighted state-transformation depending on the ranges of 
indicators. Nevertheless, univariate discretization of indicators may destroy 
hidden patterns in data. Hence, a feasible merging-method might be 
considered that could divide continuous variables based on similar 
multivariate distributions across all variables and combinations of variables. 

3. As a large quantity of TQIP indicators must be analyzed, an efficient method 
of combining clustering and the Bayesian network is a further point that 
needs to be considered. It is hoped that the problem complexity can be 
reduced and the explanative power of the Bayesian model can be increased. 

4. If the large quantity of data is a constraint, using more sparse data with 
greater dimensionality is an issue to be considered. These issues of data 
capacity, complexity, and generalization must be settled if the BN is to 
interpret data appropriately. 

5. In this study, in terms of data, two thresholds of 0.01 and 0.05 are set to fit 
our data sets. Deciding the appropriate bandwidth-selection by cases will be 
a further point that needs to be considered. 
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