私立東海大學應用化學研究所碩士論文

指導教授: 柯安男 博士

奈米鎳觸媒之製備、鑑定與氫化反應

NANO-NICKEL PARTICLES: SYNTHESIS, CHARACTERIZATION AND CATALYTIC

HYDROGENATION

研究生: 饒光宇 撰

中華民國九十四年

第一章 緒 論

1.1. 觸媒簡介

'觸媒在化學反應中一直都扮演著相當重要的角色,它能夠在反應 中加快反應的速率,但反應後不會消失。有關觸媒的應用,可以追朔 到 Pelegrin Phillips 在 1831 年發現鉑金屬可以加速 SO2氧化成 SO3 ;進而製造硫酸的催化作用,雖然他擁有了這個催化反應的專利,但是 在當時他並未能對此一現象做有系統的解釋與描述,而是直到 1836 年才被 J.J.Berzelius 加以解釋,他認為物質與反應物之間具有一種 引力,而這種引力所表現出來的現象被他稱之為催化作用 (catalysis),從這時開始,觸媒,便成為了相當具有研究價值的 一門學問。1899 年 Arrhenius equation 被發表,其中說明了活化能 與反應速率的關係,接著在1909、1912以及1919年都有相關於觸媒 的研究獲得諾貝爾獎, 而最為人熟知的, 就屬 1919 年獲獎的哈柏 (Haber)法製氨, 1920~1935 年之間 Langmuir isotherm 說明了氣 體與固體觸媒之間的吸附現象,此外,化學吸附以及活化複合體的觀 念也都在此時開始萌芽,這對往後的研究都帶來了極大的幫助[1], 往後, 觸媒的發展越來越蓬勃, 新觸媒的開發與應用更是科學家們不 遺餘力的工作,而且觸媒也逐漸的開始被大量運用在工業上。

一般來說,當觸媒與反應物是以相同型態且沒有相界存在的情況 下進行反應,即被視為均勻相催化反應(homogeneous catalysis), 例如:以容易水解之鹵化物路易士酸 AICI³ 來當成觸媒進行苯與鹵烷 類的 Friedel-Crafts 反應[2]。非均勻相催化反應(heterogeneous catalysis)則是指當反應物與觸媒存在不同相界的情況下所進行的 反應,舉世聞名的哈柏法製氨即為此例。雖然均勻相催化反應可以具 有良好的催化效果,但缺點頗多:廢液容易造成污染,產物與觸媒分 離不易,反應器容易被腐蝕 等。非均勻相催化反應就幾乎不會發生 這些問題,除此之外,它還具有以下優點:(1)熱穩定度佳,(2)機械 強度高,(3)可以避免環境污染,(4)觸媒易與產物分離,可提高觸媒 的使用率 等,在非均勻相催化反應擁有這麼多的優點之下,固體觸 媒長久以來一直備受重視。 1.2. 沸石的結構、分類與特性

沸石通常是指含鹼金屬、鹼土金屬以及稀土金屬之矽鋁酸鹽晶體 結構,其晶體基本單元通常是以矽或鋁為中心,氧原子為四角之四面 體(Si0₄及AIO₄),因堆積方式之差異而形成各種不同的沸石;為平衡 AIO₄所造成的電荷不均,則需以金屬離子電荷來補足,如此構成之晶 體具多孔性且孔洞窗口大小一致。以離子交換法可使孔洞中之金屬離 子機動性地進出;又因孔洞窗口大小一致,故對不同分子產生選擇性 而有分子篩(Molecular Sieve)之稱。

滞石的種類相當多,根據 Smith、Fischer、Meier、及 Breck 等 人提出之分類法,大致可將其分成七大類,如表 1.1.,每一類沸石 皆具有共同之 Si0₄及 AI0₄四面體排列法。另外,構成沸石結構是由 初級單位如圖 1-1(a),進而彼此相互組合成次級單位然後再進一步 構成各種不同的 cage,如圖 1-1(b)。

晶體單位均為 -cage 的沸石,可統稱為 Sodalite 群,如 Zeolite A、X、Y及 Faujasite 等,如圖 1-2。因為其晶體單位均為截頭八面 體之 Sodalite 構造即上述 -cage,但由於用來連接之面不同而形 成不同型態之沸石,其中 A 型是以 -cage 之四邊形面連接構成一較

大之 -cage, 而X、Y及Faujasite 是以 -cage 之六邊形面連接構
成一 -cage,故A型屬於D4R類,而XY及Faujasite 屬於D6R類。

	Name	Example
Group I	S4R	Analcime , Gismondine
Group II	S6R	Erionite , Offretite
		Omega · Sodalite
Group III	D4R	Zeolite A, ZK - 4
Group IV	D6R	Faujasite , X, Y
		Chabazite, Zeolite L
Group V	T5O10	Natrolite , Scolecite
Group VI	T ₈ O ₁₆	Mordenite · Ferrierite
Group VII	T ₁₀ O ₂₀	Stilbite , Heulandite

表 1.1. 沸石的分類[1]

(a) 初級單位

(b) 次級單位.

圖 1-1 構成沸石結構之初級單位與次級單位[1]。

圖 1-2 A 型及 X, Y 型沸石之結構[1]。

沸石之矽鋁比值越大,穩定性越高。另外,沸石中的陽離子也會 改變窗口直徑大小,其孔洞大小之一致性乃是與其他觸媒最大的不同 處,亦可具有良好的形狀選擇性。沸石表面可同時具備布忍斯特 (Bronsted)酸及路易士(Lewis)酸,亦即表面有質子授與能力及 電子接受能力,其強度與觸媒活性及選擇性有關。藉由陽離子交換過 程,可改變沸石酸鹼性,並增加熱穩定度。 自西元 1756 年第一種天然沸石 Stilbite 被發現後,至今兩百多 年來已發現的自然沸石和人造沸石多達兩百多種,目前的科技也已經 使得人造沸石催化效果大大超越自然沸石。沸石本身是矽鋁酸鹽之結 晶體,有均勻的孔洞體積,窗口大小約在 0.3~1 nm,具有穩定、抗 壓、抗熱與抗拉的性質,由於擁有良好的離子交換特性,能改變本身 的電磁性、催化性、吸附性及選擇性等。

沸石在早期的催化反應上扮演了重要的角色,但是美中不足的是 其孔洞大小均屬於微孔洞(Micropore,孔洞直徑小於 2nm),而且 目前為止所發現的微孔洞型沸石,最大孔洞僅止於 1.3 nm,故通常 多見其被應用在小分子的裂解、加氫、脫氫或異構化等催化反應中。 其微孔性質若應用於催化大分子反應時,就會受到許多限制,如應用 在大分子催化反應中,反應物在孔洞裡擴散過慢,選擇性不佳等,再 加上近幾年來奈米級的材料愈趨熱門,科學家們無不致力於將催化反 應的運用提升到更多更大的分子上,因此中孔型分子篩(Mesoporous molecular sieves,孔洞直徑介於 2~30 nm)的研究便成為了後起之 星。

1.3. 中孔型分子篩

美國 Mobil 公司在 1992 年發表了 M41S 系列的中孔型分子篩 [3],主要是利用直鏈型四級銨鹽的界面活性劑來當作有機模板,用 以與矽酸鹽類結合之後,成功的合成出如 MCM-41(Mobil Composite of Matter 41)、MCM-48(Mobil Composite of Matter 48)、MCM-50 (Mobil Composite of Matter 50) 等備受矚目的觸媒,其中又以 MCM-41與 MCM-48 更是成為近幾年的熱門題材。MCM-41 屬於一維孔道 的六角晶型規則排列中孔洞分子篩,而 MCM-48 則是屬於三維孔道的 立方晶型排列結構如圖 1.3 所示[4-5],由於這個類型的觸媒都具有 可調式孔道(1.6 nm ~ 30 nm)、高表面積(~1000 m²/g)、高熱穩定 性等優點,因此這種分子篩深具有應用的潛力,直到目前為止,一直 都還是熱門的研究領域[6]。

中孔型分子篩MCM-41與MCM-48主要是由帶負電荷的矽氧化物與 帶正電荷的界面活性劑經過組合(self-assembly)的過程而形成的 產物,如圖 1.4 所示[7]。矽氧化物的來源可以是矽酸鹽溶液,也可 以是有機矽化物,例如:四乙基氧矽(tetraethyl orthosilicate) 等等。主要的陽離子介面活性劑[8]是以四級銨鹽 (n-Alkyltrimethylammonium halide)為主,最常被使用的是十六 烷基三甲基銨鹽。

圖 1.3 中孔型分子篩之結構圖。(a) MCM-41;(b) MCM-48[4-5]。

值得一提的是,十六烷基三甲基銨鹽[9]這一類型的有機模板在 25 時,隨著有機模板形成的相及相轉移的臨界微胞濃度(critical micelle concentration)為 0.03 wt% ~ 11 wt%時,會形成球狀微 胞(spherical micelles);11 wt% ~ 20.5 wt%時會形成棒狀微胞 (rod-like micelles);26 wt% ~ 75 wt%時會形成六角形液晶相 (hexagonal liquid crystalline phase);倘若濃度再持續增加, 則會形成立方晶相(cubic phase),因此,適當控制有機模板的濃 度,將可以有效的獲得所需的產物。如圖 1.5[10]。

圖 1.4 MCM-41 型中孔型分子篩之形成機制圖。

1.4. 奈米材料

奈米微粒(nanoparticles),一般泛指粒徑介在1到100 奈米 (nanometer)的超微粒子,因為粒子的尺寸已經與分子或原子的大 小相當接近,以至於此類粒子兼具有強烈的凡德瓦爾力,同時暴露於 表層的原子比例極高[11]。奈米粒子與一般巨觀固體的區別,主要在 於它的總原子數,表面原子數所占的百分率較高,如表1-2 所示。當 表面原子數較多時,原子的排列缺乏像一般固體那樣的有序,也就是 說它不具有固定的結構,這也使得其電子結構與一般固體不同,往往 同時具有均相與異相觸媒的優點[12]。

粒徑(nm)	原子總數	表層原子的比率(%)
100	3,000,000	2
20	250,000	10
10	30,000	20
5	4,000	40
2	250	80
1	30	>90

表 1-2. 顆粒粒徑與表層原子所佔比率之關係[11]

1.4.1. 奈米顆粒的物理特性

對直徑為 1 奈米的金屬顆粒而言,表面原子數占總數的 90 % 以 上,而表面原子的幾何結構,自旋結構,原子間相互作用力與電子結 構,就會呈現與顆粒內原子有顯著的不同。舉例來說,在觸媒反應時, 由於氣體分子需要先吸附在觸媒的表面原子上才會進行反應,因此, 吸附氣體物質的擴散,表面原子的擴散與燒結,這些原來就會受到表 面原子性質所影響的物理特性,在奈米顆粒上將會有更佳的反應性, 例如:當使用傳統觸媒進行乙烯的氫化反應原先需要大約 600 的反 應溫度,但是當觸媒改以奈米顆粒來進行時,反應溫度只需要室溫即 可;氧化反應也有相同的情況,金在顆粒直徑小於 4 奈米時,用來進 行一氧化碳氧化成二氧化碳的催化反應,也只需要室溫就可以達到很 好的成效[13]。

大部分的奈米顆粒觸媒都呈現黑色,而且,尺寸越小,顏色越黑, 這說明了超微小顆粒對光的反射率很低,吸光度很高,藉由此特性, 奈米顆粒可以被運用在高效率的光熱、光電等轉換材料,可以高效率 的將太陽能轉換為熱能,電能 等。固態物質一般都被認定其型態為 大尺寸時,熔點是固定的,不過,超細微化之後其熔點將會顯著降低, 特別是當顆粒小於 10 奈米量級時尤其顯著,這樣的特性運用在製程 上,將可以提升品質與降低成本,例如:在鎢顆粒中添加 0.1%~0.5%

的超微鎳顆粒之後,可以使燒結的溫度從攝氏3000度降低到1200度 左右,這對半導體工業燒製大功率基體電路板而言,是相當大的福音。

一般所認知的陶瓷材料都呈現脆性,但是由奈米顆粒壓製而成的 奈米陶瓷卻可以在硬度不變的情況下具有很好的韌性,這主要是因為 奈米材料表面原子的混亂排列,使得原子在外力變形的條件下很容易 遷移,因此能夠表現出極好的韌性與一定的延展性,至於金屬陶瓷等 近年熱門的複合材料則可以在更大範圍內改變材料的力學性質,使其 應用前景十分寬廣。

1.4.2. 奈米觸媒的製備

近年來奈米觸媒成熟製備方法有很多,大致可分為物理方法和化學方 法兩種。物理方法:主要有真空冷凝法、物理粉碎法以及球磨法三種:

- (1) 真空冷凝法:以真空蒸發、加熱、高頻感應等方法使原料氣化或 形成等粒子體,然後驟冷而得。此法特點為純度高、結晶組織 好,但所需的操作與技術設備相對要求相當高。
- (2) 物理粉碎法:運用電火花爆炸或機械粉碎而得到的奈米顆粒,特 性為操作簡單、成本低,不過產品純度與顆粒分布不甚理想。
- (3) 球磨法:利用球磨方法,控制適當的條件得到純元素、合成或複 合材料的奈米粒子。其特點亦為操作容易,但產品純度與顆粒

分布則與物理粉碎法一樣不理想。

化學方法:製備奈米粒子的化學方法主要有沉澱法、水熱合成法、溶 膠凝膠法 等法:

- (1) 沉澱法:添加沉澱劑到鹽溶液中反應,經由沉澱熱處理得到奈米 材料。其特點為簡單易行,但純度低,顆粒半徑大,較適合製 備氧化物。惰性氣體沉積法亦為此類,當金屬顆粒的尺寸達到 奈米等級時,由於具有相當高的表面能,極易氧化,因此利用 沉澱法製備觸媒時,採用惰性氣體保護是相當重要的[14]。
- (2) 水熱合成法:在高溫高壓下水溶液或蒸氣等流體先合成,再經過 分離和熱處理而得的奈米粒子。其特點是純度高,金屬顆粒分 散好且粒徑容易控制[15]。
- (3) 溶膠凝膠法:金屬化合物經溶液、溶膠、凝膠而固化,再經過低 溫熱處理生成奈米粒子。這種方法製備的觸媒產物顆粒均勻, 過程容易控制,通常適合在氧化物以及 ~ 族化合物的製備。

1.4.3. 奈米觸媒的種類及應用

奈米觸媒較常見的有奈米金屬與奈米級金屬氧化物這兩種。奈米 金屬顆粒本身可以拿來當成觸媒進行反應,如:將奈米鎳顆粒應用在 液相的氫化反應上,可以成功的取代傳統鈀、鉑或 Raney-Nickel 等 等貴重金屬[16]。這類的細小顆粒也可以附著在載體上以增加酸性或 鹼性於觸媒運用上,如:含浸金屬鎳於 Si-MCM-41 載體上可以同時進 行酸催化與氫化反應。奈米級金屬氧化物則是本身可以拿來當成觸媒 又可以被當成載體的例子,像TiO2就是其中一例,它本身可以被運用 在氧化、裂解或異構化反應,也可以因為其特有的酸性來當成觸媒載 體,含浸金屬來進行其他特殊的反應[17]。

圖 1.6 在二氧化鈦載體上的奈米金粒子[17]

1.5. 研究動機與目的

肉桂醛(cinnamaldehyde)為,一不飽和醛,同時具有烯基 (C=C)與羰基(C=O)的共軛結構,通常以金屬為觸媒進行催化反應,產 物主要是氫化烯基所得的飽和醛。這一類的芳香族氫化反應在文獻上 已經有很多的報導,一般認為反應大多都是發生在金屬活性點上,不 過,也有報告顯示,當附載金屬於固態酸載體上時,對於芳香族氫化 反應活性會明顯高於非酸性載體上,也就是說加氫反應除了可能會發 生在金屬點上,還會發生在金屬與酸性點交界處的酸性中心上[18]。

香茅醛(Citronellal)分子本身也像肉桂醛一樣帶有烯基(C=C) 與羰基(C=O),不過這兩個官能基並無共軛現象,迄今文獻報導過有 關於此類分子的催化反應,則大多是利用各種固體酸觸媒,催化香茅 醛使其產生異構化藉以合成異蒲勒醇(Isopulegol)這種工業上高經 濟價值的產物[19]。

環十二烷碳三烯(Cyclododecatriene)在過去的有機氫化反應 應用上,通常是利用石墨或聚合物載體來附載貴重金屬進行反應生成 環十二烷碳一烯(Cyclododecene),不過其反應性差,反應速度慢 是兩個重大的缺點[20],因此在這幾年的文獻報導中常常可以看到以 中孔型觸媒作為載體,探討氫化反應。

基於上述說明,本論文的研究方向包括:(1)製備中孔型分子篩 Si-MCM-41,並含浸 Ni 金屬使其顆粒達到奈米級;(2)購買奈米鎳,微 粒鎳,鑑定各種觸媒的性質(晶體結構,表面積,顆粒分布,觸媒還 原溫度,觸媒酸量,金屬分散度 等);(3)利用各種觸媒分別催化肉 桂醛、香茅醛、環十二烷碳三烯的氫化反應,探討反應結果與觸媒性 質的相關性,並提出可能的反應途徑。

第二章 實 驗

2.1. 觸媒簡寫代號

為方便區分本論文中提到的所有觸媒 , (X%)Pd/MCM-48 代表含浸 重量比例為 X%的 Si-MCM-41;Ni(nano)為購買的奈米級鎳顆粒;Ni(X mesh) 則是購買 X mesh 的鎳顆粒。反應相關化合物的簡稱如下: 肉桂醛(cinnamaldehyde,CALD);苯丙醛(hydrocinnamaldehyde, HCALD);肉桂醇(cinnamyl alcohol, CALC);苯丙醇 (3-phenyl-1-propanol, PP);乙苯(ethylbenzene, EB); 香茅醛(citronellal, CTNAL);香茅醇(citronellol, CTNOL); MTO); 2-異丙烯基-5-甲基環己醇(p-menth-4(8)-en-3-ol, MTEO); 3,7-二甲基辛醛(3,7-dimethyloctanal, DMOAL); 3,7-二甲基辛醇 (3,7-dimethyloctanol, DMOOL); 2-異丙基-5-甲基環己醇(2isopropy1-5-methy1cyclohexanol, IPMC);反,反,順-環十二烷碳三 烯(trans, trans, cis-1,5,9 - cyclododecatriene , CDT); 環十二 烷碳二烯 (cyclododecadiene , CDD); 環十二烷碳一烯 (cyclododecene, CDE); 環十二烷(cyclododecane, CDA)。

2.2. 實驗試劑

- 2.2.1. 觸媒製備
- (1)本論文使用之觸媒有關於(X%)Pd/MCM-48部分,乃是由國立清華 大學化學所趙桂蓉教授實驗室合成。
- (2) Ni(nano):東成昌股份有限公司產品,利用物理冷凝法製備而得,黑色粉末,純度為 99.9%。
- (3) Ni(325 mesh): NOAH technologies corporation 公司產品,純 度為 99.9%。
- (4) Ni(100 mesh): Aldrich 公司產品,純度為 99%。
- (5) 配製 Si-MCM-41

原料: Sodium silicate: Riedel-de Haen 公司產品。 Cetyltrimethylammonium bromide(C16TMAB): Riedel - de Haen 公司產品。硫酸(1.1M): Riedel - de Haen 公司產品。去離子水:使用 Syborn / Barnstead NaNO 製造去離子水。

製備:先將 36 克 C16TMAB 溶於 264 克去離子水,然後把 53 克 Sodium silicate 溶液同時倒入 C16TMAB 溶液,攪拌 10 分鐘使充分混合,加入 1.1M H2SO4 60 克,以每分鐘 2ml 滴入,最後再攪拌 20 分鐘,此時混合液 pH 值介於

- 9 10 之間。將混合液倒入鐵弗龍杯子後,移入 autoclave 鎖緊,並放於烘箱,溫度 100,時間 48 小 時後會有結晶產生。最後將結晶物水洗、乾燥後,在 540 下鍛燒 6 小時,即可得到 Si-MCM-41。
- (6) Si-MCM-41 含浸 Ni 金屬的製備
 - 原料:Ni()-acetate-4-hydrate: Riedel de Haen 公司 產品。去離子水:使用 Syborn / Barnstead NaN0 製 造去離子水。
 - 製備:取3.0克Ni()-acetate-4-hydrate加入少量去離子水 使其完全溶解,再加入4克的Si-MCM-41 攪拌均勻,自然 風乾後再放入烘箱以110 乾燥12小時,再放入鍛燒爐 以0.25℃/min 升溫到540度,鍛燒6小時製備成

(15%)Ni/Si-MCM-41。

先還原:觸媒經由緞燒製備完成之後,裝入固定床反應器之玻璃反 應管(49 cm x 2 cm Ⅰ.D.)中,在 300℃下通入 60 mI/min 氫氣 3 小時,完成觸媒先還原。 2.2.2.反應試劑

- (1)肉桂醛(trans-Cinnamaldehyde): Aldrich 公司產品,分子式
 C₀H₀O, F.W.=132.16, 純度大於 98 %。
- (2)香茅醛(Citronellal): Merck 公司產品,分子式 C10H18O,
 F.W.=154.3, 純度大約 90%。
- (3)環十二烷碳三烯(t, t, c- 1,5,9- CDT): ACROS 公司產品,分 子式 C12H18, F.W. =162.27, 純度大約為 98%。

2.2.3. 鑑定產物試劑

- (1)肉桂醇 (cinnamyl alcohol): Aldrich 公司產品,分子式 C₆H₅(CH)₂CH₂OH, F.W.=134.18, 純度大於 98 %。
- (2)苯丙醛 (hydrocinnamaldehyde): Aldrich 公司產品,分子式 C6H₅(CH₂)2CHO, F.W.=134.18,純度大於90%。
- (3) 苯丙醇 (3-phenyl-1-propanol): Merck 公司產品,分子式
 C6H5(CH2)3OH, F.W.=136.19, 純度大於98 %。
- (4)苯乙烯 (styrene): Aldrich 公司產品,分子式 C₆H₅CH=CH₂,F.W.=104.15, 純度大於 99 %。
- (5)乙苯 (ethylbenzene): Aldrich 公司產品,分子式 C6H₅C2H₅, F.W.=106.17, 純度大於 99 %。

(6)Menthone: Riedel-de Haen 公司產品,分子式 C10H180,

F.₩.=154.25, 純度大於 95%。

- (7)異蒲勒醇(Isopulegol): Riedel-de Haen 公司產品,分子式 C10H180, F.W.=154.25,純度大於 99%。
- (8) 香茅醇(Citronellol): Merck 公司產品,分子式 C10H200,
 F.W.=156.27, 純度大於 98%。
- (9) 環十二烷碳一烯 (CDE): ACROS 公司產品, 分子式 C12H22

F.₩.=166.30, 純度大於 97%。

(10)環十二烷(CDA): MERCK 公司產品,分子式 C12H24, F.W.=168.33, 純度大於 99%。

2.2.4. 其他實驗試劑

- (1)氮氣 (№):東洋氣體公司,純度 99.99 ‰
- (2)氫氣 (H₂):東洋氣體公司,純度 99.99 %。
- (3)氧氣 (02):東洋氣體公司,純度 99.99 %。
- (4)氦氣 (He):東洋氣體公司, 純度 99.99 %。
- (5)一氧化碳 (CO):東洋氣體公司, 純度 99.99 %。

2.3. 實驗儀器

- (1)固定床流動型反應器:本實驗室裝設。
- (2)高壓批式反應器 (Batch reactor): 100 ml EZE-Seal 美國 Autoclave Engineers 公司產品。
- (3)氣相層析儀: HP 5890 Series II 美國惠普公司產品。Column HPFFAP (50 m × 0.2 mm)。
- (4)數據積分處理系統:SISC,訊華公司產品。
- (5)氣相層析質譜儀(GC-MS): Micromass Trio 2000(國科會中區貴 儀中心-中興大學化學系)。
- (6)X 射線繞射儀: Shimadzu XRD-6000,日本島津公司產品(東海大 學化工系)。
- (7)紅外線光譜儀: System 2000 FT-IR, Perkin-Elmer 公司產品。
- (8)溫度程控脫附儀(TPD):本實驗室裝設(TCD購自中國層析公司)。
- (9)溫度程控還原儀(TPR):本實驗室裝設(TCD購自中國層析公司)。
- (10)B.E.T.表面積測定儀:QUANTA CHROME 公司產品。
- (11) 脈衝式化學吸附儀: Micromeritics Pulse ChemiSorb 2750。
- (12)鍛燒爐:Thermolyne 48000,美國 Thermolyne 公司產品。
- (13)穿透式電子顯微鏡 (TEM):Hitachi, H-7500 國科會貴儀中心。
- (14) 感應偶合電漿-原子放射光譜儀 (ICP-AES): Jarrell-Ash, ICAP

9000 國科會貴儀中心。

2.4. 觸媒性質鑑定

2.4.1. X-射線粉末繞射光譜儀 (Powder X-ray Diffraction, XRD) 藉由 X-射線粉末繞射光譜儀測得繞射位置與強度,可鑑定觸媒的結 構與金屬顆粒大小。以 Cu-K 射線,設定操作電壓、電流與掃描速 度,掃描角度 2 = 10[°]~100[°],將樣品放入儀器中掃描,由圖譜中可 得金屬繞射位置與強度。金屬粒徑大小可藉由繞射面之繞射峰,取訊 號的半高寬值再經由 Debye-Scherrer 的公式計算:

S = K / cos

其中,S:金屬顆粒大小

K:常數項

:使用的 X-ray 光源的波長

: 繞射峰的半高寬值

: 繞射角度

2.4.2. 觸媒表面積測定

觸媒的表面積愈大,催化反應的活性點可能愈多,因此對觸媒的 研究而言這是一個很重要的性質。根據 BET 的原理,我們利用表面積 測定儀測得氮氣的吸附量,進而算出觸媒的表面積,裝置如圖 2.1。

BET 方法考慮氣體的多層吸附, 並有如下的關係式:

$$\frac{P}{V(P_0 - P)} = \frac{1}{V_M C} + \frac{(C - 1)P}{V_M C P_0}$$

其中 V: 在壓力下之吸附氣體體積

- ₩:單層吸附之氣體體積
- P₀: 實驗溫度下吸附氣體之飽和壓力

C:常數

根據 P/V (P₀ - P) 對 P/P₀作圖所得的直線,則

S (斜率) = (C - 1) / V_MC

I (截距) = 1 / V_MC

由此可得 ₩, 並進一步求得表面積。

圖 2.1 B.E.T.儀器裝置圖

2.4.3.穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 將高能電子照射穿透過薄固體樣品,產生穿透電子、反射電子、二次 電子、X射線等電子成像訊號。經訊號通過儀器處理,得到樣品的結 構,並由處理訊號的儀器,分辨樣品上不同位置所發出訊號差別,即 能形成樣品的放大像。藉由穿透式電子顯微鏡測定,偵測觸媒的細微 孔洞結構和形狀,與金屬負於載體的分散情形和顆粒大小。 2.4.4. 氫氣之溫度程控還原測定

利用實驗室自行裝設的溫度程控還原儀(Temperature Programmed Reduction; TPR) 如圖 2.2(b),探討觸媒在由低溫到高溫時氫氣 消耗的變化量。 實驗操作步驟如下:

- (1)量取 0.1 克觸媒, 裝於 U 形管中, 如圖 2.2(a), 將 U 形
 管裝在加熱爐內, 如圖 2.2(b)。
- (2)通入氦氣(40 ml/min),在室溫下以每分鐘 5 之速率升 溫至 500 ,持平 2 個小時再降溫,以將觸媒吸附的水分 及觸媒上吸附之雜質氣體完全去除。
- (3)降到室溫後,再轉換成混合氣(H₂:Ar=1:10)以30 mI/min 通入U 形管。
- (4)升溫至 110 保持 10 分鐘,再以每分鐘 10 之速率升溫
 至 710 ; TCD 溫度為 100 ,偵測電流 80mA,其訊號由
 記錄器記錄之。

(a)

圖 2.2 (a) TPR 實驗裝填觸媒之 U 型管裝置圖

(b) TPR 與 TPD 儀器裝置圖

2.4.5. 觸媒酸性質的測定

利用本實驗室自行裝設的溫度程控脫附儀 (Temperature Programmed Desorption; TPD),如圖 2.2(b),將吸附在觸媒上的 鹼性氣體 (NH₃)以升溫的程序脫附出來,並以記錄器記錄之,如此 即可測得觸媒酸性的強弱,及酸量的多寡;實驗操作步驟如下:

- (1)量取 0.1 克觸媒,裝於 U 形管中,如圖 2.2(a),將 U 形
 管裝在加熱爐內,如圖 2.2(b)。
- (2) 通入氦氣(40ml/min),在室溫下以每分鐘 5 之速率升溫至 500 ,持平 2 個小時再降溫,以將觸媒吸附的水份

及雜質氣體完全去除。

(3) 降到室溫後,以脈衝方式注入 NH3,每一次注入 10 mI,共注入 30

次,以確保U形管中的觸媒吸附氨氣達到飽和。

(4)升溫至 100 保持 10 分鐘,再以每分鐘 10 之速率升溫
至 600 ,保持於 600 2 小時直到脫去化學吸附氣體;
TCD 溫度為 100 ,偵測電流 160mA,其訊號由記錄器記錄之。

2.4.6. 金屬分散度的測定

金屬顆粒在觸媒載體上分散的情形,對於催化效果而言,往往是很重要的關鍵,而測量金屬分散度最常用的即為化學吸附法。過程中必須利用氫氣將金屬離子還原成活性狀態(activated)的金屬顆粒,活 化後的金屬表面原子,常能吸附一些氣體如(氫氣、氧氣、 一氧化碳等),這種過程就稱為化學吸附。由化學吸附的係 數和測得的氣體消耗量,可算出觸媒的金屬分散度。實驗儀 器如圖 2.3。操作步驟如下:

(1)取 0.1 克的觸媒,裝置在 U 形管中載流氣體為氦氣
(30 ml/min),升溫至 150 ,持平 1 小時。

(2)拆下 U 形管,用橡皮墊塞住兩端,秤取精確的觸媒重量

才能換算觸媒的金屬含量。

(3) 裝回 U 形管,載流氣體改為氫氣(30 ml/min),同時等

待温度回升至 150 之後,持平 1 小時進行還原。

(4)將氫氣改換回氦氣,氣體流速保持不變,等待一段時間 除去物理吸附的氫氣。將溫度降至室溫,開始以脈衝方 式注入定量的一氧化碳直到吸附飽和,吸附的量由 TCD 紀錄。 金屬分散度的計算方式如下:

分散度 = [氣體吸附量(mol)×吸附係數/觸媒中金屬含量(mol)]×100% 鎳對一氧化碳的吸附係數是 2

圖 2.3 脈衝式化學吸附儀

2.5.催化反應

- 2.5.1. 固定床流動反應器
- (1) 取適量已還原或未還原觸媒與玻璃砂均勻混合,裝入玻璃反應管

(49 cm × 2 cm I.D.)中,如圖 2.4(a)。

- (2)將反應管接至加熱及進料系統,如圖2.4(b)。
- (3) 通入 60 ml/min 氮氣同時將反應器加熱至反應所需溫度,以除去 水分與雜質。
- (4) 關氮氣,通氫氣 60 ml/min 於反應溫度持平1小時。
- (5)取反應物肉桂醛利用微量注射器進料,在特定溫度下進行反應, 反應器下端接上冷凝器,定期收集液體產物,再注入氣相層析儀 進行分析,如圖 2.5。
- (6) 香茅醛之反應步驟亦相同於步驟(1)至(5)。

圖 2.4 催化反應裝置圖。(a)反應管裝置圖;(b)催化反應裝置圖。

管柱烘箱

圖 2.5 氣相層析儀裝置圖

2.5.2. 高壓批式反應器

(1) 取觸媒 0.3 克,反應物環十二碳三烯 1 ml 與溶劑甲基環己烷

(methylcyclohexane) 60 ml 置入反應鋼瓶中如圖 2.6。

(2) 將白金圓環放置反應鋼瓶上,架設反應裝置,套上加熱器並打開

循環水,然後升溫至反應溫度。

(3)等到達反應溫度後,先通入氫氣並將壓力調至 10 bar,再調洩壓 閥將氫氣排出,重複此動作三次確保反應時系統中沒有空氣存 在,然後氫氣壓力調至 10 bar,設定攪拌速度後開始反應。
(4)反應完成,收集產物以離心機離心後,利用氣相層析儀進行分析。

圖 2.6 高壓批式反應器裝置圖
2.5.3. 產物之鑑定

本論文利用三種不同反應物(肉桂醛、香茅醛、環十二烷碳三烯),以 及各種不同觸媒[Pd/MCM-48、Ni(nano)、Ni/MCM-41、Ni(325 mesh)、 Ni(100 mesh)]來進行氫化反應。G.C.分析條件及 FID 靈敏度因素 分別列於表 2.1~表 2.4。圖 2.7~圖 2.9 為各種反應後之 GC 圖譜。

HP 5890 Series			
分離管柱	HP-FFAP , 50 m \times 0.2 mm \times 0.33 μ m		
注射/偵測溫度	230/230		
偵測器	FID		
攜帶氣體	氮氣		
氣體流速	50 ml/min		
爐體溫度	起始溫度:150 (1 min);升溫速率:5 /min;		
	最終溫度:230 (10 min)		

表 2.1 肉桂醛氫化反應之 GC 分析條件

CHINA CHROMATOGRAPHY 8700F			
分離管柱	PONA , 50 m × 0.2 mm × 0.5 μ m		
注射/偵測溫度	270/270		
偵測器	FID		
攜帶氣體	氮氣		
氣體流速	75 ml/min		
爐體溫度	起始溫度:150 (15 min);升溫速率:20 /min;		
	最終溫度:250 (5 min)		

表 2.2 香茅醛氫化反應之 GC 分析條件

表 2.3 環十二烷碳三烯氫化反應之 GC 分析條件

HP 5890 Series			
分離管柱	HP-FFAP , 50 m × 0.2 mm × 0.33 μ m		
注射/偵測溫度	220/220		
偵測器	FID		
攜帶氣體	氮氣		
氣體流速	50 ml/min		
爐體溫度	起始溫度:150 (5 min);升溫速率:5 /min;		
	最終溫度:200 (5 min)		

氫化反應	反應物與產物/分子量	滯留時間(min) 相對靈敏		
		Rentention time	Sensitivity	
肉桂醛	trans-CALD	16.7	0.867	
氫化反應	肉桂醛/132.16			
	CALC	20.8	0.734	
	肉桂醇/134.18			
		15.9	0.930	
	本内醇/136.19			
		11.9	0.835	
	本内壁/134.18			
	styrene エフトレー 15	6.7	1.127	
	本了称/104.13			
	ED 乙苯/10617	6.2	1	
		12.1	0.72	
日 小 HE 気 化 反 確		13.1	0.75	
至日日又応	省矛酫/154			
	CTNOL	16.1	0.83	
	香茅醇/156			
	IPG	13.9	0.88	
	異蒲勒醇/154			
	IPMC	14.2	0.79	
	2-異丙基-5 甲基環己醇/156			
	MTO/ 154	17.6	0.79	
	MTEO/ 154	17.1	0.88	
	DMOOL	14.9	0.85	
	3,7-二甲基癸醛/156			
環十二烷碳	CDT	14.2	1	
三烯	環十二烷碳三烯/162			
氫化反應	CDD	12.8, 13.1, 13.6	1	
	環十二烷碳二烯/164			
		12.4, 12.9	1	
	袁 十二烷碳一烯/166			
		11.9	1	
	埌丅炕/ 168			

圖 2.7 肉桂醛反應之 GC 圖譜

圖 2.9 環十二烷碳三烯反應之 GC 圖譜

第三章 結果與討論

3.1. 觸媒物理性質

3.1.1 觸媒晶體的測定

利用 X 射線粉末繞射儀(XRD)探討觸媒的晶體結構。圖 3.1 為已 還原之(15%)Ni/Si-MCM-41 與購買的 Ni(nano)之 XRD 圖譜,此圖譜 顯示購買的奈米級鎳顆粒以及實驗室自行利用含浸法合成的 Ni/MCM-41 有相同的特徵波峰。(111)、(200)、(220)代表鎳顆粒的 立方晶格繞射面,這兩種觸媒所測之結果均與文獻值[21-22]相符。 除此之外,根據報導,奈米顆粒極容易在空氣中氧化甚至產生自燃現 象,因此本實驗亦同步將奈米鎳顆粒置於空氣中長達一週後再行測 試,結果並沒有 Ni0 特徵波峰形成[23]。

圖 3.2 為 Si-MCM-41 鍛燒前後與含浸 Ni 之後的 XRD 比較圖,三 種觸媒幾乎都有相似的(100)、(110)、(200)、(210)特徵波峰,與文 獻報導[24]之六角晶格排列相吻合,顯示鍛燒前後以及含浸後的觸媒 皆具有明顯的 MCM-41 特徵波峰,這說明了我們所合成的觸媒結構穩 定不會有坍塌的現象。不過,倘若比較鍛燒前後的觸媒,可以發現鍛 燒後的 d₁₀₀ 有減小的趨勢,根據文獻[25]說法,此乃觸媒於高溫鍛燒 過程中除去有機模板,產生之晶格收縮現象(lattice contraction),但 是其晶體結構,仍然保持著六角形的孔洞排列。

圖 3.1 (15%)Ni/Si-MCM-41 與購買之 Ni(nano)XRD 圖譜

Symbols: 'Ni; x NiO.

圖 3.2 Si-MCM-41 鍛燒前後與含浸 Ni 之後的 XRD 圖譜

3.1.2. 觸媒結構 TEM、表面積與顆粒大小分佈

穿透式電子顯微鏡(Transmission Electron Microscopy)是利 用電子束照射樣品而讓偵測器接收,此種儀器的好處是所需的樣品少 量,解析度可以達到奈米的層次(即 nm)。若樣品含有多電子的原 子,則電子無法穿過樣品,在偵測器上顯示黑點;若電子束可以穿透 或較輕的原子,在偵測器上顯示亮點,這種不同亮度與對比的影像即 代表了樣品的結構與形狀。

圖 3.3 為 Ni(nano)顆粒大小之分布,根據廠商利用德芮克公司之粒徑分佈儀所測量的結果顯示,購買的奈米 Ni 平均粒徑約為 25 nm,與廠商所提供之 TEM(圖 3.4)相符。

粉末粒授 (nm)

圖 3.3 Ni(nano) 之顆粒大小分布

圖 3.4 Ni (nano)之 TEM 圖

根據 XRD 的結果顯示, 含浸鎳金屬到 Si-MCM-41 觸媒上, 只會有 晶格收縮的現象發生,其主體結構所呈現的六角晶形規則孔洞排列並 不會因此而崩解, 我們亦可以從圖 3.5 的 TEM 結構中看出端倪[26]。 此外,合成此觸媒所含浸的鎳含量約為 15%,從圖中可以清楚看 見在六角形孔道排列的 Si-MCM-41 載體上,鎳顆粒的分散情形大致良 好,並沒有非常嚴重的堆疊現象發生,而且其顆粒大小約為 4~15nm, 經過比例尺測量結果也確定了此觸媒結構的孔洞直徑約為 3.5 nm, 在分類上是屬於中孔洞型分子篩的範疇[27]。

表 3.1 為利用 BET 所測得的各種觸媒表面積與粒徑之比較, 從結 果中可得知 Si-MCM-41 含浸鎳金屬後表面積有稍微減小的趨勢 [28],這也是受到晶格收縮的影響。而 Ni(325 mesh)以及 Ni(100 mesh)則因為其顆粒太大,有其偵測上的限制,故無法用 BET 法求出 其表面積。粒徑大小之結果則顯示了購買的 Ni(nano)與實驗室所 自行合成的(15%)Ni/Si-MCM-41 鎳顆粒的粒徑較為接近,皆為奈米尺 寸,而 Ni(325 mesh)以及 Ni(100 mesh)的鎳顆粒大小則隨著篩 網的係數越小而顆粒粒徑越大。

소교 1부 각독 사고	BET 表面積	Ni 粒徑	
────────────────────────────────────	(m2/g)	(nm)	
Si-MCM-41	1000		
(15%)Ni/Si-MCM-41	825	4~15	
Ni (nano)	32	~20	
Ni (325 mesh)		30000	
Ni (100 mesh)		150000	

表 3.1 各種觸媒之 BET 表面積結果與粒徑大小

3.1.3. 觸媒之 FT-IR 測定之結果

本 實 驗 在 鑑 定 各 種 不 同 觸 媒 時 使 用 的 紅 外 線 光 譜 儀 (Fourier-Transform infrared spectroscopy)是以傅立葉(Fourier) 轉換器來進行光譜處理。利用化學分子對紅外線照射時所產生的吸 收,發射及反射光譜,經由分子的一個振動或轉動能階躍遷至另一個 能階時,所引發在能量上的各種改變而加以偵測,然後透過接收器將 其振動頻率表現在 FT-IR 圖譜上。在化學領域中通常是用來鑑定出分 子的特徵官能基。

由於紅外線以穿透或反射的方式照射在觸媒樣品上,有時會因為 照射的方法不同,使得用來填裝觸媒的樣品槽也不同;較常見的有直 立式與平鋪式,但也因為此差異,所採用的鹽片也跟著有所不同。本 實驗室使用直立式的樣品槽,所採用的鹽片為 KBr。

圖 3.6 為 MCM-41 系列觸媒鍛燒前後與含浸鎳金屬後之 FT-IR 圖 譜。比較鍛燒前後之 Si-MCM-41 觸媒,鍛燒前在 1450,2850 與 2900 cm⁻¹吸收位置可以明顯看見波峰,鍛燒後的觸媒則無此類波峰,經研 判這分別代表 C-H 鍵的 bending 與 stretching 震動,通常可利用這 些波峰來鑑定有機模板是否已完全清除[29]。

比較三種觸媒 IR 圖譜還可以發現在 960 cm⁻¹ 位置有吸收的現 象,不過強度大小不一;文獻[30]當中指出此震動波峰為 Si-0 之震動 波峰,由圖譜中可以發現當含浸鎳金屬進入 Si-MCM-41 之後,Si-0 訊號有明顯減弱趨勢,說明了觸媒結構可能有損壞的現象,這點與 XRD 所鑑定之結果可以得到印證。

圖 3.6 MCM-41 系列觸媒之 FT-IR 圖譜

3.1.4. 觸媒之金屬含量與分散度

MCM-48 系列觸媒中含浸金屬鈀的重量百分比是以感應耦合電漿 原子放射光譜分析儀(Inductively Coupled Plasma Atomic Emission Spectroscopy)所測得,。這是一種能夠進行多元素同時 分析,擁有低偵測極限,以及極高靈敏度能力的新興科技,藉由 ICP 所具有之相當高的游離效率,但是卻不會有過度激烈的游離現象這個 特性,使得 ICP-AES 成為了化合物進行元素分析的絕佳首選。透過此 分析法,所有觸媒含浸金屬的重量百分比結果都列在表 3.2 之觸媒 種類(X%)Pd/Si-MCM-48。

6 四 / 甘 千舌 米百	CO 吸附量	金屬分散度	
用對外未作里犬只	(µmol/g)	(%)	
(1.12%)Pd/Si-MCM-48	38.51	7.88	
(2.14%)Pd/Si-MCM-48	85.63	17.53	
(5.06%)Pd/Si-MCM-48	92.15	18.86	
(15%)Ni/Si-MCM-41	254.1	23.71	

表 3.2 觸媒之一氧化碳吸附及金屬分散度

金屬分散度通常是利用一氧化碳或氫氣、氧氣 等氣體,以化學 吸附的方式來測量。常用在進行氫化反應的觸媒,如鎳、鈀、鉑 等 金屬,先經過還原處理以後,在低溫下便能與一氧化碳發生化學吸附 現象,從其化學吸附的量,然後可以進而求出之金屬分散度。如表 3.2 所示,MCM-48 系列觸媒可以明顯看出一氧化碳的吸附量與金屬分 散度在含浸鈀的含量達到 5.06%時,會有最好的結果。這種金屬分散 度與一氧化碳吸附量隨金屬含量增加而上升的趨勢,與文獻報導[31] 相符。

3.1.5. 觸媒酸性質

觸媒酸性質的測定通常是使用溫度程控脫附的方式,其測量結果 包括酸強度與酸量。酸強度乃是對鹼性物質進行化學吸附的能力,換 言之,是指使吸附的電中性鹼變成共軛酸形式之能力,而酸量則表示 單位重量或單位表面積的固體酸擁有的酸性點(acid site)數目或 毫莫耳數。氨是鹼性氣體,具有一對未共用電子對,可吸附在觸媒的 酸性點,進行酸量與酸強度的測試。強酸性點比弱酸性點穩定且較不 易被脫出,因此從觸媒脫附的溫度與鹼分子的數量可判斷酸強度與酸 量。通常將圖譜的波型以 300℃ 區分為二:300℃以下為 L-Peak(Low temperature Peak), 300℃ 以上為 H-Peak(High temperature Peak)[32]。

圖 3.7 為純矽與含浸鎳的 MCM-41 型觸媒 TPD 比較圖,顯示 (15%)Ni/Si-MCM-41 的 TPD 脫附量(即酸量)比純矽的 MCM-41 要大 的多,主要是因為觸媒含浸了鎳金屬,相對的使其接收電子的程度增 加;Si-MCM-41 在圖中的氨脫附訊號是因為結構中的矽醇基所造成。 圖中還有一個值得探討的地方,當反應升溫到 200 時 Si-MCM-41 並 沒有氨脫附的訊號,而是到大約 300 之後才開始有訊號產生;這點 與(15%)Ni/Si-MCM-41 有很大的不同之處,含浸鎳金屬之後的 MCM-41

觸媒,從實驗開始升溫即有氨的脫附訊號,這個現象,在接下來的觸 媒催化反應中,也會有深入的探討。

圖 3.7 純矽與含浸鎳的 MCM-41 型觸媒之 NH₃-TPD 圖譜

3.1.6. 觸媒的還原性質

觸媒還原性質的測定是利用溫度程控脫附的方式,使用氫氣作為 還原氣體。圖 3.8 為各種觸媒鍛燒後所測得的 H₂-TPR 圖譜,圖中顯 示(15%)Ni/Si-MCM-41 在 310 與 590 會出現兩個還原波峰,根據文 獻報導[33-34],這兩個波峰中低溫 310 的部分代表了觸媒中的 NiO 還原為金屬 Ni,而 590 的部分則有可能是觸媒中的鎳從離子狀態被 還原或其他因高溫因素所導致。

鍛燒後的奈米鎳顆粒與顆粒較大的 Ni(325 mesh)皆在 370 左 右有明顯的 H₂還原現象,且其波峰大小相近。

比較鎳金屬顆粒與含浸在 MCM-41 載體上的分子篩,我們還可以 發現,金屬鎳微粒的還原波峰面積較大,這對氫化反應的催化效果, 是否會有明顯的幫助,在接下來的催化反應中也會針對此特性,作一 系列的探討。

圖 3.8 已鍛燒觸媒之 H2-TPR 圖譜: (a) (15%)Ni/Si-MCM-41;

(b)Ni(nano); (c)Ni(325 mesh)

3.2. 肉桂醛在固定床流動反應器之氫化反應

本研究採用固定床反應器,於一大氣壓下進行肉桂醛氫化反應 [35],產物包括乙烯苯、苯丙醛、苯丙醇、乙基苯。反應方程式如下:

探討不同金屬種類觸媒與不同顆粒大小觸媒的效應。肉桂醛之轉 化率、單一產物的選擇率與產率的定義如下:

3.2.1. 金屬含量對催化反應的影響

圖 3.9 為一系列不同鈀金屬含量之 MCM-48, 在反應溫度為 200 下肉桂醛轉化率與主產物苯丙醛之關係圖。從圖中可以得知,當鈀 金屬的含浸量增加到 5.06% 時,反應物的轉化率為最佳;但與 2.14% 的實驗結果轉化率相差並不明顯。

針對這一點,我們可以拿來與化學吸附的結果作比較,一氧化碳 的吸附量與金屬的分散度在鈀含量達到 5.06%時雖然達到最大值,但 相較於 2.14%所測得的結果,金屬含量從 2.14%增加一倍多到 5.06% 之後,分散度並未隨之大幅度增加,與催化反應之結果是相互吻合 的。而在苯丙醛的選擇率則可以看出不論是含浸鈀的量多或少,在主 產物的選擇率都相去不遠。圖 3.10 為不同觸媒的所有生成物之選擇 率比較,從圖中我們發現主產物 HCALD 與副產物 EB 的選擇率都相當 好,這說明了鈀金屬對於有機物的烯基選擇氫化能力非常好,此結果 與文獻報導相符[36]。

(a)

圖 3.10 MCM-48 系列觸媒對肉桂醛反應之產物選擇率的影響。 (X%)Pd/Si-MCM-48: X=(a)1.12; (b)2.14; (c)5.06 反應條件: 200 ;W/F=0.19 g·h/mol; 1atm。 HCALD(), PP(), Styrene(), EB()。 3.2.2.金屬顆粒大小對催化反應的影響

圖 3.11 呈現不同鎳金屬顆粒粒徑的觸媒,在肉桂醛氫化反應中 的轉化率與主產物選擇率之比較,奈米鎳顆粒除了有最好的轉化效果 以外,其反應時間經過 6 小時之後,仍能保有約 80%左右的高轉化率, 是其他類型觸媒所不能及的,而 Ni(100 mesh)則幾乎不參與反應。 HCALD 選擇率的部分,顆粒越大的觸媒由於轉化率不高,只有主產物 產生,所以反應初期對主產物的選擇率比 Ni(nano)觸媒好,也就 是說,隨著金屬觸媒顆粒的減小,主產物在反應前期的選擇率會因為 對副產物的催化效果增加而減弱。

圖 3.11 金屬鎳顆粒的肉桂醛轉化率與苯丙醛選擇率之影響。

反應條件: 200 ; W/F=0.19 g·h/mol; 1atm。

Ni (nano)(), Ni (325 mesh)()。

3.2.3. 反應溫度對催化反應之影響

圖 3.12(a)為各種不同反應溫度條件下,MCM-41 中孔型分子篩含 浸鎳金屬後對肉桂醛氫化反應的催化效果。在通入肉桂醛以前,先通 氫氣 60 ml/min 於反應溫度持平一小時。實驗結果發現觸媒在反應溫 度為 200 時,完全沒有氫化現象;當反應溫度升高到 250 開始有些 微反應,產物也是以烯類的氫化為主,當反應溫度再提高到 300 時, 轉化率開始大幅提高,對應到物性鑑定之 H₂-TPR 可以發現,Ni/MCM-41 型觸媒的還原溫度約在 300 ,與催化反應結果相吻合。

根據上述,探討酸性質對反應的影響,先將觸媒在進行反應前以 300 通氫氣先行還原。圖 3.12(b)為各種不同溫度下已還原的 MCM-41 型觸媒在肉桂醛反應的影響,與觸媒未先行還原的圖(a)比較 可以發現,反應溫度為 200 時的反應性比先前未還原要好,而反應 溫度 250 反應性更好,不過,這兩種溫度的肉桂醛轉化率都呈現衰 退的現象,反應溫度 300 則無此現象。

(a)

圖 3.12 反應溫度對肉桂醛轉化率之影響。(a)觸媒未還原;(b)觸媒已還 原 兩種觸媒於反應前在反應溫度下通 H2一小時 還原條件:H2,60 ml/min; 300 ;3h。反應條件:(15%)Ni/Si-MCM-41;W/F=0.19 g·h/mol; 1atm。 反應溫度:300 (),250 (),200 ()。

圖 3.13 比較觸媒在不同 W/F 之下對肉桂醛氫化反應的產率。可 以發現 HCALD 與 Styrene 之產率會隨著接觸時間的增加,呈現先上升 後下降的趨勢,這說明了他們在反應中皆屬於反應的初級產物。而 PP 與 EB 則隨著接觸時間的增加而使得產率變大,則說明了這兩個生 成物屬於肉桂醛氫化反應中的次級產物。

圖 3.13 接觸時間對反應產率之影響。

反應條件:已還原(15%)Ni/Si-MCM-41;200 ;1atm;T.O.S.=15 min。 HCALD(), PP(), Styrene(), EB() 3.2.4. 肉桂醛氫化之反應途徑

綜合以上實驗結果得知,進行肉桂醛氫化反應的初級產物為氫化 烯基所得的苯丙醛以及經由肉桂醛脫去 CO 產生的苯乙烯,上述產物 再次氫化所得的苯丙醇與乙苯為次級產物,如下圖 3.14 所示。

圖 3.14 肉桂醛氫化反應途徑。

3.3. 香茅醛在固定床流動反應器之氫化反應

本研究採用固定床反應器,於一大氣壓下進行香茅醛氫化反應 [37],產物包括香茅醇、異蒲勒醇、2-異丙基-5-甲基環己酮;2-異 丙烯基-5-甲基環己醇;3,7-二甲基辛醇;2-異丙基-5-甲基環己醇。 反應方程式如下:

探討鎳觸媒與(15%)Ni/Si-MCM-41 觸媒的催化效應。香茅醛之轉 化率、產物的選擇率與產率的定義如下:

3.3.1.金屬顆粒大小對催化反應的影響

圖 3.15 為兩種不同粒徑之鎳顆粒對香茅醛氫化反應的結果,香 茅醛的轉化率,會隨著顆粒的減小而增大,這主要是因為鎳金屬顆粒 達到奈米級時,表面積比 325 mesh 的顆粒要大很多,增加了與氫鍵 結的機會所致。隨著接觸時間的減小,也可以看出同樣的趨勢,奈米 級鎳顆粒同樣具有較好的轉化率。在選擇率方面,由表 3.3 中可以看 出主產物均為香茅醇,次級產物均為 3,7-二甲基辛醇 (3,7-dimethyloctanol,DMOOL)以及少許的異蒲勒醇。

觸媒種類/接觸時間	轉化率	選擇率(mol%))
GENTRAL	(mol%)	CTNOL	DMOOL	IPG	IPMC
Ni (nano) / W/F=0.6	86.3	78.0	19.2	2.6	0
Ni (nano) / W/F=0.19	52.1	88.6	9.7	1.6	0
Ni (325 mesh) / W/F=0.6	55.2	89.9	7.8	2.1	0
Ni (325 mesh) / W/F=0.19	11.9	87.6	12.3	0	0

表 3.3 不同顆粒大小與接觸時間之香茅醛反應選擇率 "

a. 反應溫度 200 ; 1atm , 載流時間 15 min。

圖 3.15 粒徑大小對香茅醛之轉化率。反應條件: 1atm;溫度:200 。 Ni (nano)(), Ni (325 mesh)()

3.3.2. 觸媒酸性對催化反應的影響

利用物理混合法直接將奈米級鎳顆粒與鍛燒後的 Si-MCM-41,以 重量百分比 15:85 的比例 , 混合而得的觸媒 , 以(15%)Ni+Si-MCM-41 表示 , 而含浸 15% Ni 在 Si-MCM-41 的觸媒則以(15%)Ni/Si-MCM-41 表示。圖 3.16 為各種觸媒催化活性與接觸時間(W/F)以及載流時間 (Time-on-stream)的關係。獲知香茅醛轉化率隨接觸時間的減少與 載流時間的增加而下降。表 3.4 呈現催化反應的結果,未還原的 Ni/Si-MCM-41 主產物為異蒲勒醇,已還原的 Ni/Si-MCM-41 主產物為 異蒲勒醇與香茅醇兩種,而物理混合型的觸媒也大致呈現相同的現 象。對應到物性鑑定的 NH3-TPD 圖譜 , (15%)Ni /Si -MCM-41 在 200 時已經有酸性產生,文獻報導[26、38],此觸媒具有路易士酸性在進 行香茅醛催化反應中將會扮演提供酸性點的角色,讓香茅醛轉化為異 蒲勒醇,反應機制如圖3.17所示,因而,未還原的MCM-41型觸媒產 物就會以異蒲勒醇為主:已還原的此類型觸媒,異蒲勒醇與香茅醇都 會生成 , 且異蒲勒醇較多於香茅醇。 而物理混合型觸媒 , 倘若未先行 進行還原,根據 NH₃-TPD 圖譜,在 200 的反應溫度下,由於 Si-MCM-41 幾乎沒有酸性產生,所以觸媒性質與使用奈米鎳顆粒一樣,反應主要 是由香茅醛轉化成 CTNOL 以及 DMOOL。已先還原的物理混合型觸媒與 直接合成的(15%)Ni/Si-MCM-41 相較之下生成物相同,不過因為酸性

圖 3.16 接觸時間對香茅醛轉化率之影響。反應條件: 200 ; 1atm。 (15%)Ni/Si-MCM-41 未還原(),(15%)Ni/Si-MCM-41 已還原((), (15%)Ni+MCM-41 未還原(),(15%)Ni+MCM-41 已還原()
觸媒種類	W/F	轉化率			選擇率	(mol%)		
		(mol%)	DMOOL	CTNL	IPG	IPMC	MTEO	МТО
(15%)Ni/Si-MCM-41 未還原	0.6	82.5	19.6	0	59.5	20.9	0	0
(15%)Ni/Si-MCM-41 已還原 ^b	0.6	83.4	6.1	25.4	35.3	14.3	5.4	13.5
(15%)Ni+Si-MCM-41 未還原	0.6	77.9	16.6	76.2	3.7	0.8	1.4	1.3
(15%)Ni+Si-MCM-41 已還原 ^b	0.6	87.6	16.3	31.5	35.9	6.7	2.4	7.2
(15%)Ni/Si-MCM-41 未還原	0.2	42	2.14	0.5	52.5	44.8	0	0.06
(15%)Ni/Si-MCM-41 已還原 ^b	0.2	46.4	5.6	17.9	47	7.4	9.9	12.2
(15%)Ni+Si-MCM-41 未還原	0.2	67	12.6	80.2	3.7	0	2.5	1
	0.2	63	7.7	40.5	43.1	4.7	2.4	1.6

表 3.4 觸媒種類與接觸時間之香茅醛選擇率 "

a. 反應條件:反應溫度:200 ; W/F=0.6 g·h/mol; 1atm;載流時間:60 min。

b. 還原條件: 300 H₂, 1 h。

與還原力比較上,物理混合型觸媒酸強度較弱而還原性較強,所以生成 CTNOL與 IPG 的量差不多;而自行合成的(15%)Ni/Si-MCM-41 酸強 度與還原性都很顯著,故生成物仍以 IPG 為主。

下圖比較觸媒在不同 W/F 之下對香茅醛氫化反應的產物產率。可 以發現 IPG 和其他副產物以及 CTNOL 之產率在接觸時間很小時,即已 產生,且呈現大幅上升的趨勢,這說明了他們在反應中皆屬於反應的 初級產物。而 IPMC 與 DMOOL 則是在接觸時間很小時,幾乎沒有生成, 此說明了這兩個生成物屬於香茅醛氫化反應中的次級產物。

圖 3.18 接觸時間對香茅醛氫化反應產物的產率之影響。

反應條件:已還原(15%)Ni/Si-MCM-41;200 ; 1atm; T.O.S. 45 min。 CTNOL(), IPG+MTO+MTEO(), IPMC(), DMOOL(+) 3.3.3. 香茅醛氫化之反應途徑

綜合以上實驗結果得知,進行香茅醛氫化反應的主要產物與觸媒 本身所帶有的酸性有關,若觸媒酸性強,則產物將會是經由酸催化異 構化生成的異蒲勒醇(isopulegol, IPG)以及其他副產物,再進而氫 化產生的2-異丙基-5-甲基環己醇(2-isopropyl-5-methylcyclohexanol, IPMC);若觸媒本身不帶有酸性,產物就會以香茅醛氫化後 的香茅醇(citronellol, CTNOL),與再氫化之3,7-二甲基辛醇 (3,7-dimethyloctanol, DMOOL)為主,如下圖所示。

3.4. 環十二烷碳三烯在高壓批式反應器之氫化反應

本研究採用高壓批式反應器,於 10 bar 氫氣壓力下,選擇使用 甲基環己烷作為溶劑[26],進行環十二烷碳三烯(CDT)氫化反應 [39],產物包括環十二烷碳二烯(cyclododecadiene,CDD);環十二烷 碳一烯(cyclododecene,CDE);環十二烷(cyclododecane,CDA)。 探討攪拌轉速、反應溫度與鎳顆粒尺寸的效應。環十二烷碳三烯之轉 化率、產物選擇率與產率的定義如下:

 CDT之轉化率 (mol%) =
 消耗的CDT莫耳數 進料的CDT莫耳數
 ×100 %

 產物i之選擇率 (mol%) =
 產物i的莫耳數 消耗的CDT莫耳數
 ×100 %

 產物i之產率 (mol%) =
 產物i的莫耳數 進料的CDT莫耳數
 ×100 %

3.4.1. 攪拌轉速對催化反應的影響

觸媒以批式反應器進行催化反應時必須特別注意擴散限制效應 (diffusional limitation);因為反應物擴散至觸媒表面上是屬於

76

物理程序並不含有化學變化,此步驟是指反應物經固體觸媒周圍的液 相物質而到達觸媒表面的活性點上。圖 3.19 探討反應時間與馬達轉 速對轉化率的影響,實驗結果顯示,反應時間增加時轉化率亦隨之上 升,當馬達轉速從 600 rpm 增加到 800 rpm 時,轉化率提高了 20 mo1% 左右;但從 800 rpm 增加至 1000 rpm 時轉化率則無明顯改變,所以 當馬達轉速達 800 rpm 以上時,表示擴散限制可以被忽略,因而此氫 化反應實驗,馬達轉速均固定在 800 rpm。

3.4.2. 反應溫度對催化反應的影響

比較觸媒在不同溫度 40 至 60 的反應性,結果如圖 3.20 所 示,當反應溫度升高時,反應活性亦隨之提高,而環十二碳一烯的選 擇率也隨之提高;但由於反應溫度達到 60 時,反應才進行到 40 分 鐘其轉化率已達到 80%以上,將會因實驗操作上的限制,而使反應性 的探討變的困難,故本反應使用 50 作為最適化溫度。這也證明了 奈米鎳金屬顆粒在進行氫化之催化反應時,不需要太高的溫度,就可 以達到很好的效果。

圖 3.19 馬達轉速對轉化率與 CDE 選擇率之影響。反應條件:溶劑:甲 基環己烷,60 ml;H₂,10 bar;Ni(nano),0.045 g;反應溫度:50 。 轉速(rpm): 200(+),400(),600(),800(),1000()。

圖 3.20 反應溫度對轉化率與 CDE 選擇率之影響

反應條件:Ni(nano),0.045 g; CDT,1 ml;溶劑:甲基環己烷,60 ml;H₂,10 bar;反應溫度:40 (),50 (),60 ()。

3.4.3. 觸媒金屬顆粒大小對催化反應的影響

如 圖 3.21 所 示 , 本 實 驗 利 用 4 種 不 同 鎳 觸 媒:(15%)Ni/Si-MCM-41、 Ni(nano)、Ni(325 mesh)以及Ni(100 mesh),催化環十二烷碳三烯的反應。結果顯示,環十二烷碳三烯的 轉化率隨顆粒粒徑減小而增大。當反應時間為 120 分鐘時,其轉化率 大小依序為Ni(nano)>(15%)Ni/Si-MCM-41 > Ni(325 mesh)> Ni(100 mesh),推測原因與表面效應有關,奈米級顆粒表面所具有 的表層原子比率隨著粒徑的減小而增加,對催化反應而言,表層原子 增加即增加反應物接觸機會,反應性會相對提高。

圖 3.21 顆粒大小對轉化率與 CDE 選擇率之影響。反應條件: CDT,1 ml;溶劑:甲基環己烷,60 ml;H₂,10 bar ;反應溫度:50 。 觸媒種類:Ni(nano)(+),(15%)Ni/Si-MCM-41(), Ni(325 mesh)(),Ni(100 mesh)()。

下圖為(15%)Ni/Si-MCM-41 觸媒在不同反應時間之下對環十二烷 碳三烯氫化反應的產率。可以發現 CDD 之產率會隨著接觸時間的增 加,呈現先上升而後下降的趨勢,這說明了其在反應中屬於反應的一 級產物;CDE 也有相同情況,但隨著反應時間增加其產率則愈趨大於 CDD,故說明了其屬於此氫化反應中的二級產物;CDA 則是反應初期 產率低,當反應時間拉長後則產率較 CDD 與 CDE 都要來的大,說明其 在反應中為三級產物。

圖 3.22 產物產率與反應時間之關係

反應條件: Ni(nano), 0.045 g; CDT, 1 ml; 800 rpm 溶劑:甲基環己烷, 60 ml;H2, 10 bar;反應溫度: 50 3.4.4. 環十二烷碳三烯氫化之反應途徑

綜合以上實驗結果得知,環十二烷碳三烯(CDT)之氫化反應的初 級產物為環十二烷碳二烯(cyclododecadiene,CDD);然後是次級產物 環十二烷碳一烯(cyclododecene,CDE)與最終產物環十二烷 (cyclododecane,CDA),如下圖所示。

第四章 結論

- Pd/Si-MCM-48 系列觸媒由化學吸附儀鑑定可知,金屬鈀含量增加 分散度亦隨之增加,而進行催化肉桂醛氫化反應之後,可得知因 為載體上的鈀金屬具有良好分散度與顆粒粒徑較小的緣故,因而 對肉桂醛氫化反應,呈現良好的催化活性。
- MCM-41 系列觸媒含浸金屬後產生晶格收縮現象,但六角晶型結構 沒有被破壞,而酸量、一氧化碳吸附量以及還原波峰面積,在含 浸金屬後皆隨之增加。
- 3. 肉桂醛在 Pd/Si-MCM-48 之氫化反應,肉桂醛轉化率隨著金屬鈀的 含浸量增加而增大。Ni/MCM-41 也有相同的趨勢,且催化活性隨著 反應溫度升高而增加。但以金屬顆粒進行催化反應時,可以明顯 發現奈米鎳顆粒有最好的催化活性,325 mesh 與 100 mesh 的鎳顆 粒反應性差。
- 香茅醛在 Ni(nano)與 Ni(325 mesh)觸媒之氫化反應中,反應 物轉化率隨鎳顆粒尺寸減少與接觸時間增加而上升。主要產物為 香茅醇,副產物為 3,7-二甲基辛醇,以及相當少量之異蒲勒醇。

- 5. 香茅醛之氫化反應, Ni/MCM-41 與 Ni(nano)皆呈現相當好的催 化效果,但選擇率則差異很大, Ni/MCM-41 在具有少量酸性的情況 下使得香茅醛轉化成異蒲勒醇;由於 Ni(nano)不具酸性,故香茅 醇為主要產物。
- 6. 使用高壓批式反應器進行環十二烷碳三烯之氫化反應,獲知當馬 達轉速大於 800 rpm 時可以忽略擴散限制。而對 Ni(nano)而言, 反應性隨溫度升高而提升,且反應溫度為 50 時就可以達到很好 的效果。比較觸媒顆粒大小對反應活性依序為: Ni(nano)>(15%)Ni/Si-MCM-41>Ni(325 mesh)>Ni(100 mesh)。

參考文獻

- 1. 吳榮宗,工業觸媒概論,黎明書局,新竹,1989.
- 2. P. Tarakeshwar, J. Y. Lee, K. S. Kim, J. Phys. Chem. 102 (1998) 2253.
- J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.
 D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, *J. Am. Chem. Soc.* **114** (1992) 10834.
- P. S. Singh, R. B. Bandyopadhyay, S. G. Hegde, and B. S. Rao, *Appl. Catal. A.* 136 (1996) 249.
- 5. A. Corma, *Chem. Rev.* 97 (1997) 2373.
- B. Chakraborty, A. C. Pulikottil and B. Viswanathan, *Catal. Lett.* **39** (1996) 63.
- 7. 鄭雅如、牟中原,化學,中國化學會,56 (1998) 197.
- A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka, *Science* 261 (1993) 1299.
- 9. 陳郁文、黃朝南,觸媒與製程,**5**(1996)14.
- C. J. Brinker, Y. Lu, A. Sellinger and H. Fan, *Adv. Mater.* **11** (1999)
 579.
- R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B. 107 (2003)
 12416.
- 12. 鞏建華、林唯芳,你不可不知的奈米科技,世茂出版社(2002).
- G. Neri, A. Bonavita and C. Milone, Sensors and Actuators B-Chemical 93 (2003) 402.
- 14. S. Davis, K. J. Klabunde, Chem. Rev. 82 (1982) 153.

- 15. M. Yoshimura, S. Somiya, Mater Chem Phys. 61 (1999) 1.
- R. S. Disselkamp, T. R. Hart, A. M. Williams, J. F. White, C. H. F. Peden, *Ultrasonics Sonochemistry* 12 (2005) 319.
- 17. J. D. Stiehl, T. S. Kim, S. M. McClure, J. Am. Chem. Soc. **126** (2004) 13574.
- M. Lashdaf, J. Lahtinen, M. Lindblad, *Appl. Catal. A.* 276 (2004)
 129.
- 19. P. Maki-Arvela, N. Kumar, V. Nieminen, J. Catal. 225 (2004) 155.
- 20. C. Julcour, J. M. Le Lann, A. M. Wilhelm, *Catal. Today* **48** (1999) 147.
- 21. R. Wojcieszak, S. Monteverdi, M. Mercy, *Appl. Catal. A.* **268** (2004) 241.
- 22. X. Dong, Z. D. Zhang, S. R. Jin, W. M. Sun, *Nanostruc. Mater.* **10** (1998) 585.
- 23. J-H. Gao, F. Guan, Y-C. Zhao, W. Yang, Y-J. Ma, *Mater Chem Phys.*71 (2001) 215.
- 24. V. Parvulescu, B. L. Su, Catal. Today 69 (2001) 315.
- 25. 陳志煒 , 東海大學應用化學所碩士論文 , 2002.
- 26. 許振宏, 東海大學應用化學所碩士論文, 2003.
- 27. R. Savidha, A. Pandurangan, Appl. Catal. A. 276 (2004) 39.
- 28. A. Lewandowska, S. Monteverdi, M. Bettahar, J. Mol Catal. A-Chem.
 188 (2002) 85.
- 29. 張榮哲, 東海大學應用化學所碩士論文, 2003.
- 30. Z. H. Luan, J. Xu, H. Y. He, J. Phys. Chem. 100 (1996) 19595.
- 31. 蔡佳純 , 東海大學應用化學所碩士論文 , 2003.

32. 謝東陵, 東海大學應用化學所碩士論文, 2001.

- 33. M. D. Romero, J. A. Calles, A. Rodriguez, and J. C. Cabanelas, *Ind. Eng. Chem. Res.* **37** (1998) 3846.
- 34. L. M. Gandia, A. Diaz, and M. Montes, J. Catal. 157 (1995) 461.
- 35. M. Chatterjee, Y. Ikushima, F. Y. Zhao, Catal. Lett. 82 (2002) 141.
- 36. H. Marwan, J. M. Winterbottom, Catal. Today 97 (2004) 325.
- 37. P. Maki-Arvela, N. Kumar, V. Nieminen, J. Catal. 225 (2004) 155.
- 38. G. K. Chuah, S. H. Liu, S. Jaenicke, J. Catal. 200 (2001) 352.
- 39. F. Stuber, M. Benaissa, H. Delmas, Catal. Today 24 (1995) 95.

催化反應之實驗數據

- 一. 肉桂醛在固定床流動反應器之氫化反應
 - 1. 金屬含量對催化反應的影響
 - 2. 金屬顆粒大小對催化反應的影響
 - 3. 反應溫度對催化反應的影響
- 二. 香茅醛在固定床流動反應器之氫化反應
 - 1. 金屬顆粒大小對催化反應的影響
 - 2. 觸媒酸性對催化反應的影響
- 三. 環十二烷碳三烯在高壓批式反應器之氫化反應
 - 1. 攪拌轉速對催化反應的影響
 - 2. 反應溫度對催化反應的影響
 - 3. 觸媒顆粒大小對催化反應的影響

一.肉桂醛在固定床流動反應器之氫化反應

反應物之簡稱為: cinnamaldehyde (CALD); hydrocinnamaldehyde

(HCALD); cinnamyl alcohol (CALC); ethylbenzene (EB);

3-phenyl-1-propanol (PP)

1. 金屬含量對催化反應的影響

(本實驗之觸媒由清華大學化學系趙桂蓉教授實驗室提供)

反應物:肉	桂醛		觸媒重量:	0.01 g	
觸媒種類: (1.12%)Pd/Si-MCM-48		接觸時間:	0.19 gh/mol		
反應溫度:	200		收集方式:	液針收集	
畫法時間	輔化亥(mol)	選擇率			
単以川山口目」	₩31℃1~(1101∞)	(mol%)			
(min)	CALD	HCALD	PP	Styrene	EB
15	73.78	80.68	6.30	0.91	12.10
45	32.49	84.69	3.94	2.62	8.76
75	30.44	85.41	3.77	2.44	8.37
105	26.30	85.74	3.35	2.66	8.26
165	26.77	86.34	3.20	2.48	7.98

反應物:肉桂醛			觸媒重量:	0.01 g	
觸媒種類: (2.14%)Pd/Si-MCM-48		M-48	接觸時間:	0.19 gh/mol	
反應溫度:	200		收集方式:	液針收集	
载达叶田	輔化亥(mol)	選擇率			
単以川山中「日」	軋;朮時間				
(min)	CALD	HCALD	PP	Styrene	EB
15	93.66	65.74	7.83	0.55	25.87
45	90.98	71.88	7.67	0.54	19.90
75	89.53	71.91	7.56	0.64	19.88
105	82.99	75.34	7.17	0.97	16.51
165	63.80	79.11	6.16	1.72	13.02

反應物:肉桂醛			觸媒重量:	0.01 g	
觸媒種類:	(5.06%)Pd/Si-MCM	M-48	接觸時間:	0.19 gh/mol	
反應溫度:	200		收集方式:	液針收集	
畫法時間	輔化亥(mol)	選擇率			
甲以 / 川山 中寸 日]	₩₹1℃~(1101%)	(mol%)			
(min)	CALD	HCALD	PP	Styrene	EB
15	91.09	80.73	0.00	0.22	19.05
45	90.99	82.46	0.00	0.21	17.33
75	90.97	85.29	0.00	0.21	14.50
105	85.83	81.39	7.57	0.74	10.30
165	77.74	82.47	6.64	0.88	10.01

反應物:肉桂醛			觸媒重量:	0.01 g	
觸媒種類:	(5.4%)Pd/Si-MCM	-48	接觸時間:	0.19 gh/mol	
反應溫度:	200		收集方式:	液針收集	
载达叶阳	輔化茲(mal@)	選擇率			
■111111111111111111111111111111111111		(mol%)			
(min)	CALD	HCALD	PP	Styrene	EB
15	96.17	78.43	10.50	0.30	10.77
45	88.28	82.54	8.46	0.68	8.33
75	79.34	84.43	7.20	1.22	7.15
105	69.69	85.44	6.91	1.30	6.35
165	69.68	86.73	5.85	1.29	6.13

2. 金屬顆粒大小對催化反應的影響

(以下實驗之觸媒為本實驗室自行合成或購買)

反應物:肉桂醛	1		觸媒重量: 0.01 g				
觸媒種類: Ni ((nano)		接觸時間: 0.19	9 gh/mol			
反應溫度: 200			收集方式:液針收集				
載流時間	轉化率(mol%)	選擇率(mol%)					
(min)	CALD	HCALD	PP	Styrene	EB		
15	100.00	44.53	13.96	11.79	29.72		
45	100.00	47.97	13.39	12.41	26.23		
75	100.00	50.18	11.16	14.37	24.28		
105	100.00	48.74	13.23	14.85	23.18		
165	100.00	56.75	10.20	13.86	19.18		

反應物:肉桂醛	反應物:肉桂醛 觸媒重量:0.01g						
觸媒種類: Ni (32	觸媒種類: Ni (325 mesh)						
反應溫度: 200			收集方式:液針收集				
載流時間	轉化率(mol%)	選擇率(mol%)	選擇率(mol%)				
(min)	CALD	HCALD	PP	Styrene	EB		
15	3.32	60.36	0.00	12.35	27.30		
45	3.15	63.82	0.00	10.20	25.98		
75	2.94	59.85	0.00	16.28	23.87		
105	2.73	61.02 0.00 12.51 26.47					
165	2.25	56.89	0.00	14.77	28.34		

反應物:肉桂醛	反應物:肉桂醛					
反應溫度: 200			收集方式:液針收集			
載流時間	轉化率(mol%)	選擇率(mol%)				
(min)	CALD	HCALD	PP	Styrene	EB	
15	0.07	100.00	0.00	0.00	0.00	
45	0.05	100.00	0.00	0.00	0.00	
75	0.04	100.00	0.00	0.00	0.00	
105	0.04	100.00	0.00	0.00	0.00	
165	0.02	100.00	0.00	0.00	0.00	

3.反應溫度對催化反應的影響

反應物:肉桂醛 觸媒重量: 0.067 g							
觸媒種類: (15%	6)Ni/Si-MCM-41		接觸時間: 0.19 gh/mol				
反應溫度: 300			收集方式:液針收集				
載流時間	轉化率(mol%)	選擇率(mol%)					
(min)	CALD	HCALD	PP	Styrene	EB		
15	78.42	49.64	2.37	30.64	17.34		
45	73.07	60.64	3.02	27.63	8.71		
75	73.92	65.94	1.47	25.79	6.77		
105	75.22	68.40	2.19	23.42	5.99		
165	76.10	69.48	2.10	22.86	5.57		

反確物・肉桂磷	\$					
			阀殊主重. 0.007 g			
觸媒種類: (15%)Ni/Si-MCM-41 (未還原)			接觸時間: 0.	19 gh/mol		
反應溫度: 250			收集方式:液	針收集		
載流時間	轉化率(mol%)	選擇率(mol%)				
(min)	CALD	HCALD	PP	Styrene	EB	
15	2.49	70.24	7.41	22.35	0.00	
45	1.43	69.35	6.77	23.88	0.00	
75	1.43	81.29	1.01	17.70	0.00	
105	1.17	71.60	1.85	19.17	7.37	
165	0.92	77.78	0.00	11.67	10.55	

反應物:肉桂醛			觸媒重量: 0.	067 g			
觸媒種類: (15%)Ni/Si-MCM-41 (未還原)			接觸時間: 0.19 gh/mol				
反應溫度: 200			收集方式:液	針收集			
載流時間	轉化率(mol%)	選擇率(mol%)					
(min)	CALD	HCALD	PP	Styrene	EB		
15	0.00	0.00	0.00	0.00	0.00		
45	0.00	0.00	0.00	0.00	0.00		
75	0.00	0.00	0.00	0.00	0.00		
105	0.00	0.00	0.00	0.00	0.00		
165	0.00	0.00	0.00	0.00	0.00		

反應物:肉桂醛					
觸媒種類:	(15%)Ni/Si-MCM-4	41 (已還原)	接觸時間:	0.19 gh/mol	
反應溫度:	250		收集方式:	液針收集	
载达叶阳	輔化 家(mol%)	選擇率			
単以川山中「日」	₩31℃ᢡ(1101%)	(mol%)			
(min)	CALD	HCALD	PP	Styrene	EB
15	86.78	45.40	8.79	22.29	23.52
45	78.18	49.60	9.27	22.70	18.43
75	69.50	53.84	7.78	22.13	16.25
105	69.25	53.62	6.47	23.31	16.60
165	64.96	54.69	6.65	23.72	14.94

反應物:肉	反應物: 肉桂醛									
觸媒種類:	觸媒種類: (15%)Ni/Si-MCM-41 (已還原) 接觸時間: 0.19 gh/mol									
反應溫度: 2	200		收集方式:	液針收集						
载达叶阳	輔化茲(mal@)	選擇率								
単以ルルサロリ	115~(1101%)	(mol%)								
(min)	CALD	HCALD	PP	Styrene	EB					
15	32.02	76.17	0.06	12.53	11.24					
45	10.87	83.68	0.33	10.04	5.95					
75	6.95	83.73	0.26	9.81	6.20					
105	3.99	97.74	2.26	0.00	0.00					
165	3.65	95.54	4.46	0.00	0.00					

二.香茅醛在固定床流動反應器之氫化反應

反應物之簡稱為: citronellal (CTNAL);citronellol (CTNOL);

isopulegol (IPG); menthone (MTO); p-menth-4(8)-en-3-ol (MTEO);

3,7-dimethyloctanal (DMOAL); 3,7-dimethyloctanol (DMOOL); 2-

isopropyl-5-methylcyclohexanol (IPMC)

	催化反應的影	∖對催(泣大!	屬顆粃	.金	1
--	--------	------	-----	-----	----	---

反應物: 香	茅醛	g			
觸媒種類:	Ni (nano)		接觸時間: 0.6 gl	h/mol	
反應溫度:	200		收集方式:液針收	x集	
載流時間		選擇率			
単化パルドサドリ	¥ᢋ <i>\℃⁴</i> 平(\\\U1%)	(mol%)			
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC
15	86.33	19.28	78.06	2.66	0.00
45	79.10	14.64	83.35	2.01	0.00
75	75.19	13.42	85.06	1.52	0.00
105	71.25	12.60	85.82	1.58	0.00

反應物: 香	反應物: 香茅醛							
觸媒種類: Ni (325 mesh) 接觸時間: 0.6 gh/mol								
反應溫度: 2	200		收集方式:液針收	ζ集				
載流時間 - 輔化家(mol%)		選擇率						
甲以川山可口」	¥ᢋᠠ᠘ᡩᢩᢇ(┉᠐᠇᠉)	(mol%)						
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC			
15	34.98	7.87	89.97	2.15	0.00			
45	21.79	8.30	89.29	2.40	0.00			
75	18.60	8.62	87.99	3.40	0.00			
105	13.10	12.59	82.95	4.46	0.00			

反應物: 香茅醛 觸媒重量: 0.02 g									
觸媒種類: Ni (nano) 接觸時間: 0.19 gh/mol									
反應溫度: 2	200		收集方式:液針收集						
載流時間 轉化家(mol%)		選擇率							
単以ルトウロリ	¥ᢋ1℃ ⁻ ┯~(1101 //)	(mol%)	(mol%)						
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC				
15	52.14	9.71	88.64	1.65	0.00				
45	40.21	7.21	89.41	3.38	0.00				
75	33.15	6.14	89.42	4.45	0.00				
105	26.98	5.21	88.86	5.93	0.00				

反應物: 香茅醛							
觸媒種類: Ni (325 mesh) 接觸時間: 0.19 gh/mol							
反應溫度: 2	200		收集方式:液針收	又集			
載这時間	輔化茲(mol%)	選擇率					
単以川山山口口	¥ᢋᠠ᠘ᡩᢩᢇ(ᡣ᠐᠇᠉)	(mol%)					
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC		
15	11.95	12.35	87.65	0.00	0.00		
45	9.18	13.33	86.67	0.00	0.00		
75	3.54	13.33	86.67	0.00	0.00		
105	2.85	16.21	83.79	0.00	0.00		

2. 觸媒酸性對催化反應的影響

反應物: 香茅醛 觸媒種類: (15%)Ni/Si-MCM-41(已還原)

反應溫度: 200

觸媒重量: 0.14 g 接觸時間: 0.6 gh/mol 收集方式: 液針收集

載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC	MTEO	MTO
15	91.83	3.75	29.89	26.17	11.49	9.36	19.33
45	83.39	6.12	25.35	35.26	14.26	5.44	13.57
75	78.24	9.57	18.83	34.46	16.57	4.89	15.67
105	65.15	14.54	15.19	43.49	17.48	3.85	5.45

反應物: 香茅醛

觸媒種類: (15%)Ni+MCM-41(已還原)

反應溫度: 200

觸媒重量: 0.14 g 接觸時間: 0.6 gh/mol 收集方式: 液針收集

載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC	MTEO	MTO
15	97.83	13.33	34.33	38.39	3.54	3.08	7.32
45	87.64	16.27	31.50	35.88	6.71	2.43	7.21
75	85.08	16.99	31.67	34.33	7.55	2.39	7.07
105	75.55	20.58	29.67	32.35	9.29	2.37	5.73

反應物:香茅醛

觸媒種類:	(15%)Ni/Si-MCM-41(未還原)
反應溫度:	200

觸媒重量: 0.14 g 接觸時間: 0.6 gh/mol 收集方式: 液針收集

載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC	MTEO	MTO
15	89.75	8.70	0.00	58.63	32.67	0	0
45	82.54	19.58	0.00	59.47	20.95	0	0
75	76.68	19.36	0.00	58.48	22.16	0	0
105	69.72	19.22	0.00	57.84	22.93	0	0

反應物: 香茅醛 觸媒重量: 0.14 g							
觸媒種類: (15%)Ni+MCM-41(未還原)				接觸時間: 0.6 gh/mol			
反應溫度: 200				收集方式	:液針收集		
載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	I PMC	MTEO	MTO
15	88.29	16.72	72.21	4.88	0.00	3.10	3.08
45	77.92	16.60	76.23	3.69	0.75	1.40	1.32
75	72.99	15.89	76.29	3.12	1.70	1.95	1.05
105	69.65	14.94	80.10	2.46	1.83	0.60	0.07

反應物: 香茅	考 醛		觸媒重量: 0.14 g				
觸媒種類: (15%)Ni/Si-MCM-41(已還原)				接觸時間: 0.2 gh/mol			
反應溫度: 200				收集方式:	液針收集		
載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC	MTEO	MTO
15	71.60	4.05	15.43	38.13	8.75	12.09	21.54
45	46.44	5.55	17.87	46.97	7.36	9.88	12.38
75	34.96	6.21	17.93	53.82	8.16	9.61	4.27
105	29.69	7.64	15.08	60.24	9.43	6.45	1.15

反應物:香茅醛			觸媒重量:	0.14 g			
觸媒種類: (15%)Ni+MCM-41(已還原)			接觸時間:	0.2 gh/mo	I		
反應溫度: 200			收集方式:	液針收集			
載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC	MTEO	MTO
15	75.96	5.25	43.30	44.73	2.49	2.13	2.10
45	63.03	7.68	40.45	43.05	4.71	2.40	1.71
75	62.11	11.07	38.63	38.11	8.63	2.38	1.17
105	58.40	20.61	31.79	32.13	12.75	2.08	0.64

反應物:香茅醛			觸媒重量:	0.14 g			
觸媒種類: (15%)Ni/Si-MCM-41(未還原)			接觸時間:	0.2 gh/mo	I		
反應溫度: 200			收集方式:	液針收集			
載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC	MTEO	MTO
15	55.29	2.16	0.32	54.89	42.63	0.00	0.00
45	42.03	2.14	0.51	52.51	44.84	0.00	0.00
75	34.27	7.05	0.80	48.79	43.36	0.00	0.00
105	24.78	6.66	0.69	44.42	48.23	0.00	0.00

反應物:香茅醛 鯏				觸媒重量: 0.14 g			
觸媒種類: (15%)Ni+MCM-41(未還原)			接觸時間]: 0.2 gh/mo	1		
反應溫度: 200			收集方式	: 液針收集			
載流時間	轉化率(mol%)	選擇率	(mol%)				
(min)	CTNAL	DMOOL	CTNOL	IPG	IPMC	MTEO	MTO
15	78.85	12.51	80.71	3.35	0.00	1.97	1.46
45	67.04	12.64	80.20	3.74	0.00	2.51	0.92
75	65.96	12.75	78.27	4.74	0.00	2.14	2.11
105	62.43	14.25	76.49	3.03	0.00	4.00	2.23

三. 環十二烷碳三烯在高壓批式反應器之氫化反應

反應物之簡稱為: trans,trans,cis-1,5,9 -cyclododecatriene (CDT); cyclododecadiene (CDD); cyclododecene (CDE); cyclododecane (CDA)

1. 攪拌轉速對催化反應的影響

反應物:環-	十二烷碳三烯		觸媒重量: 0.045	g	
觸媒種類: N	li (nano)	攪拌轉速: 200 rpm			
反應溫度:5	0		收集方式:液針收	集	
反應時間	轉化率(mol%)	選擇率 (mol%)			
(min)	CDT	CDD	CDE	CDA	
20	2.45	100.00	0.00	0.00	
40	8.70	100.00	0.00	0.00	
60	13.65	100.00	0.00	0.00	
80	18.41	76.94	0.00	23.67	
100	21.47	71.83	0.00	28.92	
120	25.20	69.40	0.00	31.41	

反應物:環-	十二烷碳三烯		觸媒重量: 0.045	g
觸媒種類: N	觸媒種類: Ni (nano) 攪拌轉速: 400 rpm			
反應溫度:5	50		收集方式:液針收	集
反應時間	轉化率(mol%)	選擇率 (mol%)		
(min)	CDT	CDD	CDE	CDA
20	3.31	100.00	0.00	0.00
40	13.52	57.97	14.97	27.99
60	24.27	59.28	15.61	26.00
80	35.30	53.85	14.60	32.60
100	47.78	42.97	18.16	40.16
120	58.44	39.43	19.23	42.71

反應物:環十	二烷碳三烯		觸媒重量: 0.045 g	
觸媒種類: Ni	(nano)		攪拌轉速: 600 rpm	
反應溫度: 50)		收集方式:液針收集	
反應時間	轉化率(mol%)	選擇率 (mol%)		
(min)	CDT	CDD	CDE	CDA
20	18.34	46.85	27.89	26.32
40	30.04	42.78	25.93	32.49
60	44.27	37.44	19.12	44.86
80	56.26	31.54	16.26	53.80
100	69.21	30.41	15.47	55.76
120	86.76	29.84	18.47	53.32

反應物:環十	二烷碳三烯		觸媒重量: 0.045 g	
觸媒種類: Ni	(nano)		攪拌轉速: 800 rpm	
反應溫度: 50)		收集方式:液針收集	
反應時間	轉化率(mol%)	選擇率 (mol%)		
(min)	CDT	CDD	CDE	CDA
20	19.99	48.50	44.27	0.00
40	35.27	46.49	45.38	8.99
60	86.00	26.53	35.10	39.88
80	93.59	24.00	33.82	43.77
100	96.28	22.20	34.66	44.77
120	96.77	21.99	37.56	42.06

反應物:環十	·二烷碳三烯		觸媒重量: 0.045 g	
觸媒種類: Ni	(nano)		攪拌轉速: 1000 rpm	ı
反應溫度: 50)		收集方式:液針收集	
反應時間	轉化率(mol%)	選擇率 (mol%)		
(min)	CDT	CDD	CDE	CDA
20	23.07	38.58	0.00	0.00
40	40.25	42.47	39.39	19.18
60	85.29	28.35	34.13	39.00
80	94.67	23.39	34.40	43.81
100	95.22	23.02	35.18	43.41
120	96.04	24.08	38.70	38.76

2.反應溫度對催化反應的影響

反應物:環-	十二烷碳三烯		觸媒重量: 0.045	g
觸媒種類: Ni (nano) 攪拌轉速: 800 rpm				m
反應溫度:4	0		收集方式:液針收	集
反應時間	轉化率(mol%)	選擇率 (mol%)		
(min)	CDT	CDD	CDE	CDA
20	2.20	100.00	0.00	0.00
40	15.05	41.62	22.62	37.03
60	37.96	34.70	25.10	41.62
80	53.25	39.75	21.32	40.26
100	60.19	36.14	27.90	37.31
120	76.39	32.68	27.50	41.26

反應物:環-	十二烷碳三烯		觸媒重量: 0.045	g
觸媒種類: N	li (nano)		攪拌轉速: 800 rp	m
反應溫度:6	60		收集方式:液針收	集
反應時間	轉化率(mol%)	選擇率 (mol%)		
(min)	CDT	CDD	CDE	CDA
20	36.71	41.74	46.28	12.95
40	72.39	39.22	42.66	19.21
60	90.34	30.41	33.30	37.72
80	93.01	27.40	26.84	47.35
100	95.11	25.96	29.90	45.73
120	97.07	20.16	32.88	48.66

反應物:環十	反應物:環十二烷碳三烯				
			pm		
反應溫度: 50			收集方式:液針收集		
反應時間	轉化率(mol%)	選擇率 (mol%)			
(min)	CDT	CDD	CDE	CDA	
20	3.74	100.00	0.00	0.00	
40	16.93	69.83	30.58	0.02	
60	19.23	48.89	19.48	32.74	
80	24.87	44.17	19.00	38.07	
100	25.72	44.75	18.89	37.59	
120	28.71	40.85	17.39	43.11	

3.	觸媒顆粒大	小對催化反	應的影響
----	-------	-------	------

反應物:環十	觸媒重量: 0.045 g				
觸媒種類: Ni (325 mesh)			攪拌轉速: 800 rpm		
反應溫度: 50			收集方式:液針收集		
反應時間	轉化率(mol%)	選擇率 (mol%)			
(min)	CDT	CDD	CDE	CDA	
20	3.70	53.31	30.01	17.55	
40	4.56	56.41	28.21	16.19	
60	4.81	56.16	23.86	20.84	
80	6.02	47.60	22.40	31.11	
100	6.80	39.34	21.42	40.59	
120	8.45	28.28	20.00	53.31	

反應物:環十	·二烷碳三烯	觸媒重量: 0.045 g			
觸媒種類: Ni (100 mesh)			攪拌轉速: 800 rpm		
反應溫度: 50			收集方式:液針收集		
反應時間	轉化率(mol%)	選擇率 (mol%)			
(min)	CDT	CDD	CDE	CDA	
20	1.80	36.37	32.51	32.40	
40	3.52	45.80	51.13	3.88	
60	4.53	41.15	37.86	22.08	
80	4.97	37.70	32.31	31.24	
100	5.91	32.34	30.49	38.59	
120	7.19	27.99	26.88	46.71	

簡 歷

姓 名: 饒光宇

籍 貫: 台灣省台北縣

學/經歷: 私立東海大學 化學系

(民國 85 年~民國 88 年)

私立東海大學 應用化學研究所

(民國 91 年~民國 94 年)

私立東海大學教育學程學分班

(民國 92 年~民國 94 年)

東海大學附設高中 實習教師

研討會論文:

- Kuang-Yu Jao, An-Nan Ko, "Catalytic Hydrogenation of t,t,c-1,5,9-cyclododecatriene over Nano-Nickel Particles and Nickel Containing Si-MCM-41"中國化學年會, 2004。
- <u>Kuang-Yu Jao(饒光宇)</u> and An-Nan Ko*(柯安男), "CATALYTIC HYDROGENATION OF CINNAMALDEHYDE AND CITRONELLAL OVER NANO NICKEL AND NICKEL SUPPORTED ON Si-MCM-41"第23屆台灣區觸媒與反應工 程研討會, 2005。