東海大學化學系

碩士論文

指導教授:黄承文 博士

毛細管電泳結合多孔洞中空纖維/液相微萃取 應用於三環抗憂鬱劑的分析

> Analysis of Tricyclic Antidepressants by Capillary Electrophoresis Coupled with Hollow Fibre-Based Liquid-Phase Microextraction

研究生:林士崇 撰 中華民國九十四年七月

摘要

憂鬱症是一種全身性的疾病,包括生理、情緒及思想。世界衛生 組織預測憂鬱症將是 21 世紀影響人類生活最重要的疾病之一。三環 抗憂鬱劑(Tricyclic Antidepressants; TCAs)如 Amitriptyline、Doxepin、 Imipramine 等,或稱傳統性抗憂鬱劑,為目前治療憂鬱症的第一線藥 物,於血漿中的治療濃度範圍大約在 100 至 300 µg/L。但當濃度超過 500µg/L 會有中毒的現象產生。這類藥物的分子量、結構與 pKa 值 都很相似,因此不易分離。

本研究利用管壁塗覆 PDMA (polydimethylacrylamide)的毛細管 (52 µm I.D. × 366 µm O.D. × 60 cm,有效長度 48 cm)配合 50 mM 磷酸鈉 (pH 3.0)緩衝溶液添加 0.5 mM β -環糊精,成功的以毛細管 電泳分離九種結構相似的三環抗憂鬱劑,並且順利分離其中具有幾何 異構物與鏡像異構物的分析物。結合多孔洞中空纖維管為主的液相微 萃取方法進行樣品前處理,配合 CE-UV 偵測,於水溶液中可得到 0.01 µM ~ 0.5 µM TCAs 的偵測極限,於血漿中可得到 0.25 µM ~ 0.8 µM TCAs 的偵測極限。血漿樣品中 TCAs 的回收率大於 93 %,相對標準 偏差小於 5.5%。實驗證明本研究所發展的方法可應用於人體血漿中 微量 TCAs 的分析。

目錄

摘要	Ι
目錄	Π
圖目錄	V
表目錄	VII

壹	、緒論	l
	、毛細管電泳的發展]	l
<u> </u>	、毛細管電泳的分離原理	3
Ξ	、毛細管電泳的分離模式(5
	1.毛細管區帶電泳(CZE) ····································	5
	2.微胞電動毛細管層析 (MEKC)	3
	3.毛細管凝膠電泳 (CGE) ·······	3
	4.毛細管等電聚焦法(CIEF) ·······1()
	5.毛細管等速電泳 (CITP) ·······1()
四、	·毛細管電泳的進樣方式	2
五、	、毛細管電泳的偵測方式	3
	1.紫外-可見光(UV-VIS)吸收偵測	3
	2.螢光放射偵測	1

六、三環抗憂鬱劑簡介15
七、液相微萃取簡介
八、研究動機
貳、實驗······40
一、儀器設備40
二、藥品
三、實驗方法45
1.儲存溶液(stock solution)的配製45
2.電泳緩衝溶液的配製 45
3.血漿樣品前處理 45
4.毛細管內壁鍵結相的製備 46
(a)毛細管的前處理 ·····46
(b)塗覆步驟 ······46
5.多孔洞中空纖維管為主的 LPME 萃取步驟 47
(a)水溶液品 ······47
(b)血漿樣品 ······48
6.樣品注入方式與毛細管清洗 48
參、結果與討論

一、毛細管的管壁塗覆49
二、DMA 濃度對管壁塗覆的影響
三、毛細管塗覆再現性55
四、緩衝溶液中添加β-環糊精對 TCAs 分離的影響
五、緩衝溶液濃度之影響
六、緩衝溶液 pH 值之影響
七、重力注射進樣時間之探討
八、最佳分離條件
九、液相微萃取濃縮配合毛細管電泳分析
十、血浆樣品分析

肆、	·論·····) 6
伍、	考文獻) 8

圖目錄

圖(1)毛細管電泳基本裝置4
圖(2)毛細管區帶電泳示意圖 7
圖(3)微胞電動毛細管層析示意圖9
圖(4)毛細管凝膠電泳示意圖 9
圖(5)毛細管等電聚焦法示意圖11
圖(6)毛細管等速電泳示意圖11
圖(7)LPME 裝置圖 ······27
圖(8)U字形結構 LPME 裝置圖 ······29
圖(9)Hollow fibre-based LPME 的基本原理
圖(10)主動傳輸方法的基本原理
圖(11)動態模式的 LPME ····································
圖(12)rod-like 結構 LPME 裝置圖
圖(13)U-shaped 結構 LPME 裝置圖
圖(14)TCAs 在一般毛細管中之電泳圖 50
圖(15)毛細管壁 PDMA 聚合反應的流程圖 ······· 52
圖(16)不同濃度 DMA 塗覆毛細管對 TCAs 分離的影響 54
圖(17)9種三環抗憂鬱劑的電泳分離結果
圖(18) 環糊精分子結構側視圖 60

圖(19)環糊精之化學結構圖 61
圖(20)環糊精輔助分離的主要機制63
圖 (21)9種 TCAs 在緩衝溶液中添加 0.4 mM β-CD 後的電泳圖.65
圖(22)緩衝溶液中添加不同濃度 β – CD 對 Thioridazine 之鏡像異構
物解析度的影響
圖(23)緩衝溶液中添加不同濃度β-CD對 Doxepin 之幾何異物解
析度的影響
圖(24)緩衝溶液添中加不同濃度β-CD對9種 TCAs 分離影響.68
圖(25)緩衝溶液添中加不同濃度β-CD對TCAs 遷移時間的影響
圖(26)不同濃度磷酸鈉緩衝溶液對9種 TCAs 分離的影響 71
圖(27)緩衝溶液 pH 值對分析物遷移時間的影響 74
圖(28)進樣時間對理論板數與訊號高度的影響 75
圖(29)進樣時間15秒之三環抗憂鬱劑電泳分離圖 77
圖(30)最佳條件下9種TCAs的電泳分離圖
圖 (31) Doxepin 之幾何異構物 ······ 80
圖 (32) 3 種 TCAs 經液相微萃取前後的比較 ······ 85

表目錄

表(1) 九種 TCAs 之分子結構、分子量與 pKa 值 17
表 (2) CE 在 TCAS 分析上的應用
表(3) Promazine 的遷移時間與訊號面積之 ANOVA 分析56
表(4) Trimipramine 的遷移時間與訊號面積之 ANOVA 分析56
表(5) Amitriptyline 的遷移時間與訊號面積之 ANOVA 分析57
表(6)Doxepin 的遷移時間與訊號面積之 ANOVA 分析 57
表(7)9種 TCAs 的分析檢量線與偵測極限 82
表(8)水溶液樣品中9種 TCAs 的 CE 分離再現性
表(9)液相微萃取後9種 TCAs 的分析檢量線與偵測極限86
表 (10) 經萃取處理前後 9 種 TCAs 偵測極限的比較88
表(11)經萃取後水溶液樣品中9種 TCAs 的 CE 分離再現性 ······ 89
表(12)4種TCAs在血漿中的分析檢量線與偵測極限91
表(13)血漿中4種TCAs經多孔洞中空纖維管為主的液相微萃取之
回收率
表 (14) Desipramine 回收率之 ANOVA 分析 94
表 (15) Imipramine 回收率之 ANOVA 分析 ······ 94
表 (16) Nortriptyline 回收率之 ANOVA 分析 ······ 94
表 (17) Amitriptyline 回收率之 ANOVA 分析 ······ 94

壹、緒論

一、毛細管電泳的發展

電泳 (electrophoresis) 是指帶電物質在電場中因受到吸引或排斥 而引起的遷移運動,利用這種速差移動作為分離的方式,稱作電泳技 術。電泳技術的發展已有百年的歷史,但其受重視是從 1937 年瑞典 科學家Tiselius成功地將人類血清蛋白質以電泳技術分為白蛋白、α球 蛋白、β球蛋白與γ球蛋白^[1],電泳技術從此受到重視。由於Tiselius 的卓越貢獻,他在 1948 年獲頒諾貝爾獎。

傳統電泳通常是在以凝膠(gel)、聚丙醯胺(polyacrylamide)或 是纖維素(cellulose)為介質的平板或管柱中進行。傳統電泳最大的 問題在於採用高電壓分離時所引起的焦耳熱,會造成平板從中心至兩 側或管柱內徑中的黏度與速度產生梯度變化,導致分析物區帶變寬、 降低分離效率,且其影響會隨電場強度的增加而加大,因此限制了高 電壓的使用範圍,也難以提高分離的速度。

為了改善傳統平板電泳的缺點,科學家發展出使電泳於細孔管或 毛細管中進行的方法。1967 年Hjerten採用毛細管繞其縱軸旋轉的方 式來削弱熱對流所造成的影響,成功地以電泳來分離無機離子、蛋白 質與核酸^[2]。1974 年Virtenen用 200~500 µm內徑的玻璃材質與聚四 氟乙烯材質的毛細管進行了電泳實驗,證實了能利用小內徑的毛細管

以控制焦耳熱的產生^[3]。1981年Jorgenson與Lukacs^[4-5]以75μm內徑 的石英毛細管柱,施加高電壓來分離經衍生後的胺基酸,證明毛細管 區帶電泳 (capillary zone electrophoresis, CZE)的確是一種高效率且 具實用價值的分離技術。

電泳是分離帶電物質的方法,不帶電的物質只會被電滲流帶動, 彼此的遷移率並無差異,因此早期無法使用毛細管電泳來進行分析。 1984年Terabe^[6]突破此限制,於緩衝溶液中添加高濃度的界面活性 劑,使其產生微胞,利用待測物分子在微胞和緩衝溶液之間的不同分 配係數來達成分離,這就是所謂的微胞電動毛細管層析法(micellar electrokinetic capillary chromatography, MECC或MEKC), 此技術擴展 了毛細管電泳的應用範圍。1985 年Tsuda^[7]結合毛細管電泳與液相層 析的特色,在毛細管中填充表面含有固定相的顆粒,施加高電壓進行 分離,這就是所謂的毛細管電層析(capillary electrochromatography, CEC)。同年Hjerten提出毛細管等電聚焦(capillary isoelectric focusing, CIEF),此技術成功地應用於蛋白質分析^[8]。1987年,Cohen和Kager 發表了毛細管凝膠電泳(capillary gel electrophoresis, CGE)^[9],主 要應用於蛋白質等生化大分子的分離。1988年Rose和Jorgenson成功 地利用毛細管電泳作為微量製備的工具^[10]。近年來則有熱門的微晶 片電泳法的出現,此技術將毛細管電泳的實用價值推上更高一層的里

毛細管電泳具有高分離效率、分析速度快、所需樣品量少等三大 特性,1988年商品化的毛細管電泳儀上市後^[14],更提高了使用上的 便利性,可廣泛的應用於藥物與DNA的鑑定分析^[15-17]、環境檢測^[18-20] 、生化醫學分析^[21-24]等各領域。而隨著毛細管電泳與質譜儀間介面 的開發趨於成熟^[25-26],CE-MS結合更可提供分析物之分子量與化學 結構的重要資訊。毛細管電泳已成為分析化學中舉足輕重的分析技 術。

二、毛細管電泳的分離原理

毛細管電泳(capillary electrophoresis, CE)的基本裝置如圖(1) 。電泳是依據樣品離子在電場下質荷比差異產生不同的泳動速度而達 成分離。毛細管材質通常為熔融矽,當管中緩衝溶液的pH \geq 2 時, 毛細管內壁表面的矽醇基(SiOH)會解離成SiO⁻而帶負電,此時緩 衝溶液中正離子會被管壁所吸引,形成電雙層(electric double layer)。 在外加電場的作用下,擴散層中的水合正離子會牽動整個溶液往陰極 方向移動,形成電滲流(electroosmotic flow, EOF)^[29]。樣品離子 向陰極移動的過程中,除了自身受電場作用而產生的泳動速度外,還 受到管內溶液電滲流的影響,樣品離子在毛細管中的淨移動速度(v)

圖(1)毛細管電泳基本裝置圖

是結合電滲流速度與本身泳動速度兩者向量和,以公式(1)表示:

$$v = v_e + v_{eo} = (\mu_e + \mu_{eo}) \cdot E = (\mu_e + \mu_{eo}) \frac{V}{L_t}$$
 (1)

式中各參數定義如下:

ν:電泳淨速度(m/s)
 ν_e: 樣品離子的泳動速度(m/s)
 ν_{eo}: 電滲流流速(m/s)
 μ_e: 電泳淌度(m²/V×s)

E:電場強度 (V/m) μ_{eo} : 電滲流淌度 $(m^2/V \times s)$

V: 外加電壓(V) $L_t: 毛細管總長度(m)$

一般情況下,毛細管表面帶負電,電滲流的方向是由正極到負極。由 於電滲流可以比離子的電泳淌度大一個數量級,能夠將所有離子推向 負極,故陰離子、中性物質與陽離子可往同一方向遷移而在一次分析 中得到分離。其中陽離子因為遷移方向與電滲流相同,所以移動最快 ;中性物質因不帶電荷,其遷移速度便等於電滲流的速度;而陰離子 則因為遷移方向與電滲流相反導致速度最慢。

毛細管電泳的分離效率可以理論板數(N)描述,如公式(2), 理論板數越高,表示分離效率越好。

$$N = \frac{L_{d}}{H} = \frac{L_{d}^{2}}{\delta^{2}} = \frac{(\mu_{e} + \mu_{eo}) \times L_{d} \times E}{2 \times D}$$
(2)

式中各參數定義如下:

H:理論版高(m) L_d:注入端到偵測器的距離(有效長度)(m) D:樣品離子在電泳溶液中的擴散係數(m²/s)

 δ^2 :變異度 (variance)

由公式(2)可觀察到,理論板數與電場強度成正比,而與離子的擴 散係數成反比。電場越大,分離效率越高。

三、毛細管電泳的分離模式

毛細管電泳技術至今已發展出多種模式,分離機制各不相同,其 命名通常按照其分離原理而來。

1.毛細管區帶電泳 (capillary zone electrophoresis, CZE)

在各種分離模式中,毛細管區帶電泳是最簡單也是應用最廣的 一種,如圖(2)。樣品離子依本身電荷與質量的差異,不同的離子區 帶以不同的速率移動而被分離。CZE應用範圍包含:胺基酸、蛋白質、 鏡像異構物、離子態物種的分離。此分離模式需注意的地方有兩項: 一、各分析物離子的電泳速度需不同;二、避免分析物離子或樣品基 質吸附在管壁上。此外,為了提高分離的效果,有時也會在緩衝溶液 中加入修飾劑,其中介面活性劑是使用最多的一種,在低於臨界微胞 濃度(critical micellar concentration, CMC)下,離子性界面活性劑

圖(2)毛細管區帶電泳示意圖

可使毛細管內壁改性,減少分析物在管壁的吸附。

2. 微胞電動毛細管層析 (micellar electrokinetic capillary

chromatography, MEKC)

微胞電動毛細管層析是唯一能分離中性溶質又可分離帶電離子 的電泳技術,方式是在電泳緩衝溶液中添加高濃度的界面活性劑。當 界面活性劑濃度超過其臨界微胞濃度,溶液中的界面活性劑分子聚集 形成微胞(micelle),微胞的疏水端向內排列,電荷端朝向緩衝溶液, 以微胞的疏水性中心作為偽固定相(pseudo-stationary phase)來進行 層析,如圖(3),不同分析物依其與微胞有不同的疏水依附性而在毛 細管內被分離,疏水性強的分析物與微胞的作用大,因此滯留在微胞 中的時間較長。

3.毛細管凝膠電泳 (capillary gel electrophoresis, CGE)

毛細管凝膠電泳主要用於分離生物大分子物質,如蛋白質、DNA 、核酸與碳水化合物等。在此操作模式中,毛細管內添加特定孔徑大 小的凝膠,其具有分子篩的功能,可作為電泳分離的介質。凝膠亦為 非傳導性的介質,故可減少溶質擴散而導致區帶變寬的現象。如圖(4) 所示,當樣品離子在一種類似網狀的環境中,於外加電場作用下由一 極往另一極移動,因樣品離子的形狀大小不同,所受的阻力也不同, 使移動速度產生差異因而達到分離的目的。CGE 的優點在於可施加

圖(3) 微胞電動毛細管層析示意圖

圖(4)毛細管凝膠電泳示意圖

較平板式凝膠電泳高 10 - 100 倍的電壓而不會產生焦耳熱效應。 4.毛細管等電聚焦法 (capillary isoelectric focusing, CIEF)

毛細管等電聚焦法是在一支具有 pH 梯度的毛細管中依據等電點 (isoelectric points, pI)不同而分離蛋白質或胺基酸等兩性物質的電泳 技術。如圖(5),在某一 pH 值區段中,兩性分析物離子的正電荷與 負電荷相等,淨電荷為零,在電場下分析物離子不向陽極或陰極移動 ,此時所處的 pH 值環境即是分析物的 pI,此過程稱為聚焦。聚焦效 應的起因是樣品若處於不等於其 pI 的 pH 值區域時,會重新具有淨電 荷,若帶正電會往陰極移動,反之則向陽極移動,在高電場作用下又 遷移回到 pH 值等於自身 pI 的區域。在 CIEF 中常利用塗覆或共價鍵 結的方式修飾毛細管壁以抑制電滲 流,防止兩性電解質在樣品聚焦 完成前就流出毛細管。

5. 毛細管等速電泳 (capillary isotachophoresis, CITP)

CITP 是一種等速移動界面的電泳技術,主要在非連續的電解質 系統下進行,如圖(6)。此非連續的電解質是由前導緩衝溶液(leading electrolyte)與殿後緩衝溶液(terminating electrolyte)所構成,前導 緩衝溶液形成前端層帶,殿後緩衝溶液形成末端層帶。分離時各種樣 品離子形成的區帶夾在前端層帶與末端層帶之間,一起以等速移動。 以分析陰離子為例,前導緩衝溶液的陰離子電泳速度需大於所有樣品

圖(6)毛細管等速電泳示意圖

離子的電泳速度,而殿後緩衝溶液的陰離子電泳速度需小於所有樣品 離子的電泳速度。施加電場時,陰離子向陽極移動,由於前導緩衝溶 液的陰離子移動速度最大,因此向陽極移動的速度最快,陸續接在後 面的是移動速度次之的各種分析物陰離子,最慢的是殿後緩衝溶液的 陰離子。CITP 實驗通常以固定電流的方式進行,由於每一區帶導電 度不同,電場強度不一樣,在分離過程中各區帶分析物會保持一定的 移動速度,達到分離之目的。

四、毛細管電泳的進樣方式

毛細管電泳常用的進樣方式包括電動進樣 (electrokinetic injection)與流動進樣 (hydrodynamic injection)⁽²⁹⁾兩種,而流動進 樣又包含壓力、真空與重力注入三種模式。電動進樣時各分析物的進 樣量會隨各種離子移動速率而不同,導致毛細管中樣品溶液組成與樣 品瓶中不同,在定量分析時容易有誤差,較適合用於定性分析。壓力、 真空與重力進樣方法原理相似,都是利用毛細管進樣端與流出端的壓 力差,使得樣品溶液進入管內,這三種進樣方式又以重力進樣最為簡 便。重力進樣 (或稱高度差進樣)是利用虹吸現象,將進樣端的樣品 瓶位置抬高超過出口端,使樣品溶液流入毛細管。除了以上兩種常用 的進樣方式之外,還有分液進量系統(split flowsyring injection system) ^[30]、旋轉型注射器(rotary-type injector)^[31]、微注射器(microinjector)
 ^[32]等,但較少使用。

五、毛細管電泳的偵測方式

在早期毛細管電泳的發展中,縮小毛細管內徑成為提高分離效率 的最佳方法,但卻也造成了毛細管承受樣品量太少與偵測光徑過短, 產生靈敏度不足的問題,因而限制其在微量分析上的應用,因此選擇 一高靈敏度的偵測方法是非常重要的。

管柱上光學偵測(on-column optical detection)不需介面或外接 偵測槽,可避免因檢測器間隙體積(dead volume)所帶來的解析度下 降現象,是目前廣泛使用的偵測模式。管柱上光學偵測法包含了紫外 -可見光吸收偵測與螢光放射偵測。

1.紫外-可見光(UV-VIS)吸收偵測

紫外-可見光(UV-VIS)吸收偵測為目前毛細管電泳應用最廣的 偵測方法。即使因為毛細管的內徑窄、偵測光徑短而造成偵測靈敏度 較差,但其所適用的分析物範圍廣,且儀器操作較簡單,所以它仍是 使用最普遍的偵測方式。進行偵測前,需將一小段毛細管的 polyimide 保護外膜去除,直接作為偵測視窗,對於具有紫外-可見光吸收性質 的樣品,如蛋白質、胺基酸、金屬錯合物離子皆可直接進行偵測。

紫外-可見光吸收偵測法靈敏度不高,但可藉由增長光徑來改善 靈敏度,常用的方法如氣泡型容槽(Bubble cell)^[33]、Z型容槽(Zshaped flow cell)^[34-35]。另外,亦可使用雷射為光源,來進行雙光束 (double - beam)校正背景雜訊的直接^[33]或間接^[36]紫外-可見光吸 收偵測,由延長光徑與抑制背景雜訊,可有效地提升紫外-可見光吸 收偵測法的靈敏度。

2.螢光放射偵測

螢光為一種光放射現象,當一個適當波長的光照射具有螢光性質 的分子,分子會吸收光而被激發到高能階狀態,且在極短時間(10⁸~ 10⁻⁴秒)內回到低能階狀態,同時以放光的形式把多餘的能量釋出, 此即為螢光。毛細管電泳的螢光放射偵測與HPLC的螢光放射偵測相 同,皆具有高靈敏度與選擇性。依照所使用的激發光源可分為傳統光 源激發螢光^[4,37]與雷射激發螢光^[38],以雷射激發螢光靈敏度較高, 因為雷射具有高強度、帶寬窄及同調性的特點,容易以透鏡聚焦在毛 細管視窗上,其單位面積有強大的能量,可有效地提高靈敏度。

近年來除了管柱上光學偵測外,還有其他配合毛細管電泳的偵測 法陸續開發出來,例如:導電度偵測法^[39]、安培偵測法^[40-42]、電化 學偵測法^[43-45]、化學放光偵測法^[46]等,然而這些方法皆需要特殊介 面的輔助,儀器設計較為複雜,因此應用性上較不普遍。 六、三環抗憂鬱劑簡介

憂鬱症是一種全身性的疾病,包括生理、情緒及思想。隨著社會的變遷,人口結構的改變,患憂鬱症的比例有增無減,世界衛生組織預測憂鬱症將是21世紀影響人類生活最重要的疾病之一。

目前治療憂鬱症的藥物可分為以下四大類^[47-48]:

- 一、 三環抗憂鬱劑 (Tricyclic antidepressants, TCAs), 如
 Amitriptyline、Imipramine、Doxepin 等,或稱傳統性抗憂鬱劑。
- 二、 選擇性血清素再吸收抑制劑 (Selective serotonic reuptake inhibitors, SSRIs), 如 Fluoxetine、Paroxetine 等,或稱第二代 抗憂鬱劑。
- 三、 單胺氧化酵素抑制抗憂鬱劑 (Monoamine oxidase inhibitors, MAOIs), 如 Phenelzine, moclobemide 等。
- 四、 其他: Trazoone, 一些 stimulants (ECT), 鋰鹽等, 也有人用來 治療憂鬱症。

所有類型的抗憂鬱劑對治療憂鬱症與恐慌症皆有效果,大多數的 醫師都使用 TCAs 為第一線藥物,因為它們的治療效果已建立,較具 安全性和容易服用。

本文所探討的對象為第一類的三環抗憂鬱劑(TCAs),主要有 Amitriptyline、Imipramine、Doxepin、Clomipramine、Desipramine、 Fluphenazine、Nortriptyline、Promazine 與 Thioridazine 9 種,其化學 結構、分子量、pKa 值列於表 (1),其中 Desipramine 與 Nortriptyline 為二級胺結構,其餘為三級胺結構。Thioridazine 具有鏡像異構物, Doxepin 具有幾何異構物。這些化合物皆屬於鹼性藥物,其結構與分 子量也非常相似。

Imipramine 為第一個被使用的三環抗憂鬱劑,1955 年瑞士的精神 科醫師 Roland Kuhn 曾把 Imipramine 給數百個精神分裂的病人使用, 但並未看到任何改善。Kuhn 同時也把 Imipramine 給憂鬱症的病人使 用,卻意外發現它有抗憂鬱的效果。1958年 Imipramine 開始被引進 臨床處方,隨後其他的三環抗憂鬱劑也陸續被使用。這類藥物主要作 用是在抑制腦內神經傳導物質如: norepinephrine、serotonin 與神經突 觸的作用。Imipramine 主要作用是消除或減輕憂鬱病徵、幫助睡眠, 另外亦有抗組織胺作用,藥效發生較慢,適合治療兒童的夜尿症。 Imipramine 去甲基即為 Desipramine, 在所有的 TCAs 中對中樞神經的 作用最小。Amitriptyline 有較強的鎮靜作用,主要作用與 Imipramine 相似,對於內生性憂鬱症的治療最有效,因此適用於情緒激動和失眠 的憂鬱症患者。Nortriptyline 是 Amitriptyline 的代謝產物,主要作用 與 Amitriptyline 相似,但幫助睡眠作用不明顯,是最安全的抗憂鬱藥 物。Clomipramine 主要作用與 Amitriptyline 相似,亦可用於強逼性障

表(1)九種TCAs之分子結構、分子量與pKa值^[100]

TCA	結構	分子量	рКа
Amitriptyline	CH-CH ₂ -CH ₂ -NMe ₂	277.4	9.4
Nortriptyline	CH-CH ₂ -CH ₂ -NHMe	263.37	9.7
Doxepin	CH-CH ₂ -CH ₂ -NMe ₂	279.38	9.19
Desipramine	N (CH 2) 3 – NHMe	266.38	10.2
Imipramine	$(CH_2)_3 - NMe_2$	280.40	9.49

Clomipramine	N Cl (CH ₂) ₃ -NMe ₂	314.85	9.49
Promazine	$(CH_2)_3 - NMe_2$	284.42	9.43
Fluphenazine	$\begin{array}{c} CH_2 - CH_2 - OH \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	437.52	7.21
Thioridazine	Me K C C C C C C C C S S S S S S S S S S S S S	370.58	9.66

礙與病徵。Doxepin 對於中樞神經抑制的效果最強,適合用在神經障 礙所引起的憂鬱。Thioridazine主要作用在促進睡眠、安定焦躁不安的 情緒,可經由注射讓病者快速安定下來。Fluphenazine 主要作用與 Thioridazine相同,但助睡眠作用不明顯,亦有長效注射劑,一般2~5 週注射一次。2003年,抗SARS藥物研發團隊發現七種三環抗憂鬱劑 可有效地抑制SARS病毒複製,其中又以Promazine效果尤佳^[49]。

抗憂鬱藥劑應從低劑量開始,並且緩慢的增加。以Amitriptyline 為例,一般病患每日劑量約75~300 mg,有效劑量為每日150 mg, 超過300 mg時,其治療效果並未明顯增加^(47,50)。三環抗憂鬱劑作用 於身體許多的神經突觸接受器,因此使用時需非常小心,以避免出現 副作用,常見的副作用有顫抖、記憶力衰減、心律不整、視力模糊、 性能力障礙等⁽⁵¹⁾,因此一般於睡前服用,如此副作用均發生在睡眠 期間,較不影響白天生活。三環抗憂鬱劑在血中的治療濃度範圍大約 為100 至 300 µg/L,若在血漿中的濃度超過500 µg/L,則會有中毒的 現象產生⁽⁵²⁾。

由於 TCAs 的廣泛使用,再加上服用這些藥物所產生的副作用與 過量中毒的危險,有必要開發靈敏、簡便的血中測定 TCAs 含量方法, 以達到藥物管制及血中濃度監測的目的。

目前已經有幾種技術被應用來偵測生化樣品中的 TCAs,如氣相

層析法(gas chromatography, GC)、高效能液相層析法(high performance liquid chromatography, HPLC)。

在GC分析方法中,Araujo^[53]等人以GC/氮磷偵測器分離血浆中 Imipramine與Desipramine兩種TCAs,偵測極限分別為15 ng/ml與20 ng/ml。Torre^[54]等人以固相萃取(solid-phase extraction, SPE)前處理 血浆樣品,配合GC/氮磷偵測器分離6種TCAs,偵測極限為1.2-5.8 ng/ml。Sporkert^[55]等人以頂空固相萃取(headspace solid phase extraction, HS-SPME)前處理技術配合GC/質譜儀(MS),分析頭髮 中的4種TCAs,偵測極限為0.5-1.0 ng/mg。Gasgupta^[56]等人以衍生 技術配合GC/MS,分析血浆中的Desipramine,偵測極限為2.0 ng /ml。Lee^[57]等人以頂空固相萃取處理血浆樣品,配合GC/火焰離子偵 測器分析4種TCAs,偵測極限為32-50 ng/ml。

血漿與尿液中的TCAs分析大多以HPLC為主。Theurillat^[58]等人 以液相萃取(liquid - liquid extraction, LLE)前處理技術,配合逆相 HPLC/UV分離血漿中6種TCAs,偵測極限為20-40 ng/ml。Yoshida^[59] 等人以HPLC/化學放光分析5種TCAs,在血漿中偵測極限為12-33.1 pg/ml。Kagan^[60]以氟化物溶劑(ethoxynonafluorobutan)取代正已烷 作為動相,配合HPLC/UV,成功分離6種TCAs。Karpinska^[61]等人 以逆相HPLC/UV分離2種TCAs,偵測極限皆為15 ng/ml。Kollroser^[62] 等人以HPLC/大氣壓力化學游離串連質譜儀 (APCI-

MS-MS)在12分鐘內分離血漿中7種TCAs。Ruiz-Angel⁽⁸³⁾等人分 別使用Eclipse XDB C8 與XTerra MS C18 兩種管柱,配合HPLC/ UV,成功分離7種TCAs。Trocewicz^[64]以支撑式液膜(supported liquid membrane, SLM)前處理尿液樣品,配合HPLC/UV偵測,在尿液中 TCAs的定量極限為1 ng/ml。在HPLC的分析方法中大部分使用UV偵 測器,由於UV偵測器的靈敏度不夠,不易偵測低濃度的TCAs。有人 改用質譜儀當偵測器來對體液檢品作分析,雖然改善了感度不佳的缺 點,但儀器價格昂貴。HPLC使用後所產生的大量有機廢液處理也是 一大問題。

CE是一種高效率的分離技術,對於許多藥物或生化樣品可提供 高解析力與快速的分析,再加上其所需樣品、試劑耗用量少等優點, 使之成為近年來頗受重視的分析方法,因此有人開始利用CE來分析 TCAs,相關文獻報導整理歸納於表(2)。Salomon⁽⁶⁵⁾等人首先調整 3-(cyclohexylamino)-2-hudroxy-1-propanesulfonic acid (CAPSO)緩衝 溶液的pH值和濃度,再添加甲醇於緩衝溶液中,可同時降低電滲流 與電泳遷移率,以CZE-UV偵測,成功的分離7種TCAs,於水溶液樣 品的偵測極限為 0.4 - 1.1 μg/ml。Spencer⁽⁶⁶⁾等人於critrate緩衝溶液中 添加carboxymethyl -β-cyclodextrin (CM-β-CD),配合管壁塗覆

表(2) CE 在 TCAs 分析上的應用

年代	TCAs	分析方法	條件	偵測極限	Reference
1991	Protriptyline Amitriptyline Notriptyline Imipramine Doxepin Nordoxepin Desipramine	CZE-UV	Column: 1 m ×75 µm I.D. Buffer: 50 mM CAPSO-16.2 mM NaOH with 7.9% methanol (pH 9.55)	水溶液樣品: 0.4-1.1 μg/ml	K. Salomon, et al. 〔65〕
1997	Carbamezepin Trimipramine Clomipramine Protriptyline Imipramine Desipramine Amitriptyline Notriptyline Opipramol	CZE-UV MEKC-UV	Column: 70 cm \times 50 µm I.D. coaing MAPS Buffer: For CZE : 10 mM citrate, 10 mM CM- β -CD (pH 6-7) For MEKC : 10 mM citrate, 20 mM SDS, 10 mM CM- β -CD (pH 5-7)		B. J. Spencer , et al. [66]

		1		1	
	Amitriptyline		Column:		
	Notriptyline		57 cm ×51 μm I.D.		
	Imipramine		Buffer:		
1009	Doxepin	CZE-UV	50 mM phosphate		C. W. Harrell , et al. [67]
1998	Nordoxepin		buffer, 0.06 % PUG,		
	Desipramine		20% methanol		
	Protriptyline		(pH 9.55)		
			Column:		
	Desipramine		75 cm ×50 μm I.D.		
	Notriptyline	NACE with	Buffer:	水次访洋口・	
1998	Imipramine	thermo-optical absorbance detection	40 mM ammonium	水溶液禄品· 0.1-0.5 μM	X. F. Li, et al. [68]
	Clomipramine		acetate,75%		
	Amitriptyline		methanol and 25%		
			acetonitrile		
			Column:		
	D · ·		80 cm ×50 μm I.D.		
	Desipramine		Buffer:	1	
	Notriptyline	NACE-ESI- MS	50 mM ammonium	水浴液禄品:	
1998	Imipramine		acetate,85%	0.5 -1.0 μM	X. F. Li, et al. [69]
	Clomipramine	1110	methanol and 15%		
	Amitriptyline		acetonitrile		
			Nebulizing gas:		
			0.41 L/min		

2001	Desipramine Amitriptyline Notriptyline Imipramine Maprotyline	SPE-NACE	Column: 106 cm ×180 µm I.D. Buffer: 1.0 M acetic acid, 25 mM ammonium acetate in acetonitrile	尿液樣品: 40-80 ng/ml 血漿樣品: 60-100 ng/ml	J.R. Veraaer, [70]
2002	Desipramyne Notriptyline Imipramine Doxepin Amitriptyline	CZE-UV	Column: 57 cm ×50 µm I.D. Buffer: 100 mM TMBD phosphate (pH 9.5)		D. A. Caterina (71)
2004	Desipramyne Notriptyline Imipramine Amitriptyline	LLE-NACE	Column: 48 cm ×50 μm I.D. Buffer: 50 mM ammonium acetate, 1.0M acetic acid in acetonitrile	血漿樣品: 30-50 ng/ml	D. C. Marcelo, et al. 〔72〕

% CM-β-CD : carboxymethyl -β-cyclodextrin

PUG : poly (n-undecylenyl - α -D-glucopyranoside)

NACE : nonaqueous capillary electrophoresis

TMBD : N,N,N',N'- tetramethyl-1,3-butanediamine

3 - (Trimethoxysilyl) propyl methacrylate以抑制電滲流,在CZE-UV 偵測下,可分離5種TCAs;而在利用sodium dodecvl sulfate (SDS) 介面活性劑的微胞電動毛細管層析系統下,可分離9種TCAs。Harrell ^[67]等人利用同時具有親水基與疏水基的非離子性介面活性劑poly (n-undecylenyl -α-D-glucopyranoside)(PUG),與適當比例的甲醇 混合添加於pH=9.5 的磷酸鈉緩衝溶液中,在15分鐘內可成功的分離 7 種TCAs。Li.^[68-69]等人利用非水相毛細管電泳(NACE)分別配合 thermo-optical absorbance detection與ESI-MS,分離5種TCAs,這兩 種偵測方法在水溶液樣品中的偵測極限皆為 0.1 - 0.5 µM。Veraart^[70] 利用固相微萃取為前處理技術,配合NACE-UV偵測,分析尿液與血 漿樣品中5種TCAs,在尿液中的偵測極限為40-80 ng/ml,血漿中 的偵測極限為 $60 - 100 \text{ ng/ml} \circ \text{Caterina}^{[71]}$ 於磷酸鈉緩衝溶液中添加 100 mM N,N,N',N'-tetramethyl-1,3-butanediamine (TEMED) 來降低 電滲流,以CZE-UV偵測,可成功的分離5種TCAs。Marcelo^[72]等人 利用液相-液相萃取為前處理技,配合NACE-UV偵測,分離血漿樣品 中4種TCAs, 偵測極限為 30 - 50 ng/ml。由於TCAs具有相似的結構 與pKa值,加上毛細管中電滲流的影響,導致TCAs在電泳中的遷移速 度相近而不易分離。上述文獻中大部分都是在電泳緩衝溶液中添加修 飾劑來抑制電滲流與分析物的電泳遷移率以達成分離目的。

七、液相微萃取簡介

雖然 CE 擁有高解析力、操作方便、樣品與試劑消耗量少等優點, 但由於一般 UV 偵測的光徑長度短、分析物注入量太少,其偵測極限 不易降低,對於分析生物樣品或環境樣品更受複雜基質影響,因此需 發展可提高分析物濃度並淨化樣品的萃取方法。

傳統的萃取法有液相萃取(LLE)和固相萃取(SPE)。液相萃取 是將適當有機溶劑加入水相樣品中,以分液漏斗將水相與有機相分 離,分析物因分配原理自水相樣品萃取至有機溶劑,接著移出有機 層,經濃縮後再導入儀器中分析。固相萃取是利用類似 HPLC 管柱填 充固定相為吸附載體,先將樣品溶液流過針筒狀管柱或碟狀的 SPE 薄膜,使分析物吸附於載體,再利用溶劑將分析物洗出,接著導入儀 器中分析。此兩種方法具有以下缺點:(1)時間冗長,尤其是需要經 過繁瑣的萃取步驟,易造成分析物流失而影響分析結果的準確性;(2) 需耗費大量的高純度有毒有機溶劑,廢棄有機溶劑更造成環境污染問 題。

為了改善傳統萃取法的缺點,近年來樣品萃取技術多朝著快速與 溶劑減量的方向發展。微小化的液相一液相萃取(liquid - liquid extraction;LLE) 與液相微萃取(liquid-phase microextraction;LPME) ^[73-76]自 1996 年開始已有報導,其典型裝置如圖(7)。LPME方法是

圖 (7) LPME裝置圖^[76]

在 GC 或 LC 注射針的尖端懸掛一滴疏水性有機液滴,置於水溶液樣 品中進行液相-液相萃取,當分析物被萃取進入有機液滴,再將有機 液滴收回注射針內,之後將有機液滴直接注入 GC 或 LC 進行分析。 由於分析物從體積較大(1-5 mL)的樣品溶液被萃取進入小體積(1-5 μL)的有機液滴,因此具有高濃縮倍率。但這種型式的液相微萃取有 一個嚴重的缺點,懸掛在注射針尖端的有機液滴在磁石攪拌下穩定性 不佳,經常會造成液滴損失。

為了改善上述的缺點,1999年Stig Pedersen-Bjergaard與Knut Einar Rasmussen 提出新型的LPME^[77-78],設計如圖(8)。它主要是使用一 段由聚丙烯製成的多孔洞中空纖維管支撐有機溶劑進行萃取,這種以 中空纖維管為主的液相微萃取有以下兩項優點:一、有機相不易損 失,由於萃取過程主要是在纖維管內進行,有機相會固定在纖維管的 孔洞中,即使在萃取過程中震動或攪拌,都不會使有機相損失。二、 價格便宜,且纖維管使用過一次即丟棄,可避免交叉污染的問題。

選用的中空纖維管其材質為聚丙烯,主要是因為聚丙烯製成的多 孔洞中空纖維管適用於多種有機溶劑,而在萃取期間有機溶劑可以固 定在纖維管的孔洞中。有機溶劑的選擇主要考慮以下三點:一、必須 與水不互溶,以避免在萃取期間有機溶劑損失;二、分析物在有機萃 取溶劑中的溶解度需高於其在水溶液樣品中;三、必須為低揮發性,

圖(8)U字形結構LPME裝置圖^[77]

才能防止萃取期間有機溶劑汽化,無法固定在纖維管的孔洞。一般最常使用的有機溶劑為 1-octanol^[77],主要是因為與其他有機溶劑相比,如 2-octanone、hexyl ether等,它在纖維管孔洞的穩定性最佳。

多孔洞中空纖維管為主的液相微萃取其基本原理如圖(9)所示。 進行萃取前先將纖維管短暫浸入有機萃取溶劑,使有機溶劑分子充滿 於纖維管的孔洞中。接著再將處理過的纖維管置入樣品水溶液中,對 於具酸鹼性質的分析物,需調整樣品水溶液的 pH 值。以鹼性分析物 為例,為了使分析物呈中性不帶電荷狀態,降低其在樣品水溶液的溶 解度, 需調整水溶液的 pH 值, 使其大於分析物的 pKa 值, 利於萃取 中性分析物到纖維管孔洞中的有機相。為了避免分析物在有機相達飽 和而萃取停止,可以在中空纖維管中提供一個水溶液接收相,形成 了一個三相系統。中空纖維管內的接收相其 pH 值需調低,使溶液成 酸性,當中性分析物到達有機相與接收相的接觸面後會質子化,以正 離子的型式進入接收相。大體積分子物質,如蛋白質,由於無法通過 中空纖維管的微小孔洞而進不了有機相,仍留在樣品水溶液中;酸性 物質在高 pH 的樣品水溶液中會解離而帶電荷,亦無法萃取到有機相 。中性物質不受酸鹼影響,可由樣品水溶液萃取進入有機相,但最後 會因為在有機相的濃度太高而擴散回到低濃度的樣品水溶液,因此多 孔洞中空纖維管為主的液相微萃取除了可提高濃縮倍率外,也具有

圖(9) Hollow fibre-based LPME 的基本原理

淨化樣品的能力。以上是以鹼性的分析物為例,若為酸性的分析物, 則樣品溶液與接收溶液的 pH 值需相反過來。

上面所提到的靜態三相萃取系統適用於分析物有高的分佈係數 ,可藉由擴散來進行萃取。若是對於一些分佈係數低的分析物,如具 親水性結構的化合物,不易利用擴散作用進行萃取,必須使用主動傳 輸的方法^[79],圖(10)為其基本原理。於pH=7.0樣品溶液中加入 一種具疏水基的離子對試劑,試劑會與分析物離子形成疏水性的離子 對中性混合物,此混合物可由樣品溶液萃取到纖維管孔洞中的有機相 ,當混合物到達有機相液膜與纖維管內部酸性接收水溶液的接觸面, 混合物會釋出分析物離子,使其進入接收溶液,而此過程是不斷循環 的。

上述所討論的皆是屬於靜態的液相微萃取,這種利用多孔洞中空 纖維管為主的液相微萃取也可在動態的模式下進行,如圖(11)所示 ^[80]。在二相的系統中,注射針內裝填少量的有機萃取溶劑,實驗前 將1~2 cm長的中空纖維管先浸置於有機溶劑中,使之填滿於纖維管 內部及孔洞,再將纖維管連接於注射針尖端,置入攪拌的樣品水溶液 中。萃取期間重複的抽推注射針,在抽回期間,含有分析物的有機相 被收集至注射針筒內;在推出期間,注射針筒裡的新鮮有機溶劑進入 纖維管內進行萃取。重複多次抽推後,注射針筒內可收集高濃度分析

A = analyte, R-COOH = carboxylic acid

圖(10)主動傳輸方法的基本原理^[79]

圖(11)動態模式的LPME^[80]

物。三相系統與二相的操作模式相似,不同之處在於將注射針筒裡的 有機溶劑換為水相接收溶液。動態模式與靜態模式相比,萃取速度較 快,但裝置較為複雜且有較多的實驗參數需考慮。

多孔洞中空纖維管為主的液相微萃取發展過程中,不同的裝置設 計陸續發表,如Pedersen-Bjergaard與Rasmussen 所報導的U形結構^[77] (見圖(8)),可提供良好的萃取效率,但在接收溶液的傳送上仍有 問題,不易自動化為其最大的缺點。而由Rasmussen、Kramer、 Pedersen-Bjergaard與Andress共同發展的rod-like結構^[81](見圖(12)), 可改善不易自動化的缺點,圖中纖維管上方錐型引導管可使注射針輕 易的將接收溶液注入纖維管中。由於注射針可通至纖維管的底部,方 便接收溶液的注入與取出。另外還有Muller所提出的U-shaped構造 (見圖(13))^[82],在纖維管一端連接一個漏斗狀的不銹鋼針,可作 為注射針的引導管,在不銹鋼針上面有一個Dent,用來支撐另一端未 封口的纖維管。此裝置也是利用注射針來傳送接收溶液,而未封口的 纖維管端可避免在傳送接收溶液時有氣泡形成。

多孔洞中空纖維管為主的液相微萃取具有價格低廉、濃縮倍率高、可淨化樣品、萃取速度快、避免交叉污染等優點,可適用的領域很廣,如藥物分析^[83-84]、環境分析^[85]、有機污染物分析^[86-87]等。此技術的操作模式有靜態、動態與主動傳輸系統,因此不同種類的分析

Tip for injection and collection of acceptor solution

圖(12) rod-like結構LPME裝置圖^[81]

圖(13) U-shaped結構LPME裝置圖^[82]

物可選擇其合適的操作模式來進行萃取。多孔洞中空纖維管為主的液 相微萃取與毛細管電泳結合,可在短時間內分析多種樣品,且具有較 低的偵測極限。目前最常使用的微萃取技術為固相微萃取(SPME), 但 SPME 主要適合搭配 GC 應用,較不適用於液相分離方法,如 HPLC 與 CE。多孔洞中空纖維管為主的液相微萃取則可適用於 HPLC 與 GC。

八、研究動機

由於三環抗憂鬱劑(TCAs)的廣泛使用,再加上服用這些藥物 所產生的副作用與過量中毒的危險,開發靈敏、簡便的血中 TCAs 分 析方法是必要的。在毛細管電泳方面,由於 TCAs 具有相似的化學結 構、分子量與 pKa 值,加上毛細管中電滲流的影響,導致 TCAs 在電 泳中的遷移速度相近而不易分離。於電泳緩衝溶液中添加修飾劑雖然 可以抑制電滲流而分離部份 TCAs,但對於具有鏡像異構物或幾何異 構物的 TCAs 還是無法分離。本研究嘗試利用管壁塗覆高分子聚合物 的毛細管配合 CE-UV 偵測,發展血漿中 TCAs 的分析方法。並以多 孔洞中空纖維管為主的液相微萃取進行血漿樣品前處理,期望獲得更 佳的分離效果與較低的偵測極限。

貳、實驗

一、儀器設備

- 1.高電壓電源供應器:Glassman High Voltage 公司(Whitehouse Station, NJ, USA)產品, Model PS/MJ 30P0400-11,提供直流電壓 0~30
 kV。高電壓起動線路與樣品注射計時裝置為實驗室中自行設計組 裝。
- 2.紫外光偵測器: Dynamax 公司(Reno, NV, USA)產品, Model UV –
 C,配合毛細管電泳,組裝為 CE-UV 偵測裝置。
- 3.數據處理:個人電腦,配合分析基礎開發中心(台中,台灣)『層 析總管』4.7版。
- 4.數位/類比轉換器:IOtech 公司(Cleveland, OH, USA)產品, Model Personal Dag/55。
- 5.雜訊抑制器:實驗室自行組裝,內含1秒的 RC low-pass filter,具 有過濾雜訊之功能。
- 6.過濾薄膜:TITAN 公司(San Diego, CA, USA)產品,直徑 25 mm,
 0.45 μm 孔徑。
- 7.酸鹼度計:Suntex 公司 (臺北,台灣)產品, Model SP-701。
- 8.毛細管: Polymicro Technologies 公司(Phoenix, AZ, USA)產品, Model TSP-050375t, 熔融矽材質(fused silica),內徑 52 µm,外徑

366 µm, 外覆聚乙烯胺 (polyimide)。

- 9.中空纖維: Membrana 公司(Wuppertal, Germany)產品, Model PP 150/330, Polypropylene 材質,內徑 330 µm, 膜厚 150 µm。
- 10.微量離心機: DENVILLE 公司 (Metuchen, NJ, USA) 產品, Model Micro 240A。
- 11.超音波震盪器: Branson 公司 (Danbury, CT, USA)產品, Model 1200。
- 12.電子加熱攪拌器: IKA 公司產品 (Wilmington, USA), Model Ceramag midi。
- 13.烘箱:Kwang Shen 公司(臺北,台灣)產品, Model KS-21。
- 14.天平:日本電子科學株式會社(Kyoto, Japan)產品, Model AJ-100。

二.藥品

- N,N-Dimethylacrylamide : (C5H9NO; DMA), Aldrich公司
 (Gillinoham, Dorset, UK)產品,分析級試藥,純度 99 %。
- 3 (Trimethoxysilyl) propyl methacrylate: (C₁₀H₂₀O₅Si; MPT),
 Fluka公司(Buchs, Switzerland)產品,分析級試藥,純度 99 %。
- N,N,N,N, -Tetramethylethylenediamine: (C₆H₁₆N₂; TEMED), Fluka 公司(Buchs, Switzerland)產品,分析級試藥,純度 99 %。
- Ammonium persulfate:((NH₄)₂ S₂O₈; APS), Sigma公司(St. Louis, MO, USA)產品,分析級試藥,純度98%。
- Amitriptyline hydrochloride:(C₂₀H₂₃N HCl), Sigma公司(St. Louis, MO, USA)產品,分析級試藥,純度98%。
- Clomipramine hydrochloride: (C₁₉H₂₃ClN₂ HCl), Sigma公司(St. Louis, MO, USA)產品,分析級試藥,純度98%。
- Desipramine hydrochloride: (C₁₈H₂₂N₂ HCl), Sigma公司(St. Louis, MO, USA)產品,分析級試藥,純度98%。
- B. Doxepin hydrochloride: (C₁₉H₂₁ NO HCl), Sigma公司(St. Louis, MO, USA)產品,分析級試藥,純度98%,(Z:15%,E:85%)。
- Fluphenazine dihydrochloride: (C₂₂H₂₆F₃N₃OS 2HCl), Sigma公司 (St. Louis, MO, USA)產品,分析級試藥。

- 10.Imipramine hydrochloride:(C₁₉H₂₄N₂ · HCl), Sigma公司(St. Louis, MO, USA)產品,分析級試藥。
- 11.Nortriptyline hydrochloride:(C₁₉H₂₁N · HCl), Sigma公司(St. Louis, MO, USA)產品,分析級試藥,純度98%。
- 12.Promazine hydrochloride:(C₁₇H₂₀N₂S·HCl),Sigma公司(St. Louis, MO, USA)產品,分析級試藥。
- Thioridazine hydrochloride: (C₂₁H₂₆N₂S₂ HCl), Sigma公司(St. Louis, MO, USA)產品,分析級試藥,純度99%。
- 14.Trimipramine: (C₂₀H₂₆N₂ · C₄H₄O₄), Sigma公司 (St. Louis, MO, USA)產品,分析級試藥,純度 99 %。
- 15.磷酸二氫鈉:(NaH2PO4 H2O; sodium dihydrogen phosphate monohydrate), E. Merck公司(Darmstadt, Germany)產品,純度
 99 %。
- 16.磷酸氫鈉:(Na₂HPO₄ 2H₂O; di-Sodium hydrogen phosphate dihydrat), E. Merck公司(Darmstadt, Germany)產品,純度 99 %。
- 17.辛醇:(C₈H₁₈O;1-octanol), Riedel-deHaën公司(Gmbh & Co. KG, Germany)產品。
- 18.β環糊精 (C₄₂H₇₀ O₃₅; β-Cyclodextrin), E. Merck公司 (Darmstadt, Germany)產品, HPLC級試藥。

- 19.甲醇: (CH₃OH; methanol), E. Merck公司(Darmstadt, Germany) 產品, HPLC級試藥。
- 20. 氰甲烷:(CH₃CN; acetonitrile), E. Merck公司(Darmstadt, Germany) 產品, HPLC級試藥。
- 21. 氫氧化鈉:(NaOH; sodium hydroxide), E. Merck 公司(Darmstadt, Germany)產品, HPLC 級試藥, 純度 99 %。
- 22. 醋酸: (CH₃COOH; acetic acid), E. Merck公司(Darmstadt, Germany) 產品, HPLC級試藥, 純度 99.8 %。
- 23.鹽酸:(HCl; hydrochloric acid), E. Merck 公司(Darmstadt, Germany)產品,濃度 37 %。
- 24.實驗所用之純水是將自來水先經過軟化與蒸餾後,再經由 Barnstead 公司(Dubuque, IA USA) NANO pure Ⅱ deionization system 純化處理。

三、實驗方法

1.儲存溶液 (stock solution) 的配製

以去離子水配製9種1.0 mM 三環抗憂鬱劑樣品儲存溶液,置於4℃冰箱,保存期約一個月。使用時以緩衝溶液稀釋至所需的濃度。

2. 電泳緩衝溶液的配製

以去離子水配製 50 mM磷酸鈉電泳緩衝溶液,於其中添加 0.5 mMβ-環糊精,並以 85 % H₃PO₄ 調整至pH=3.0。此溶液於 4℃ 冰箱中保存期約一個月。

3.血漿樣品前處理

以針筒抽取人血後放置於含有 EDTA 的乾燥試管裡,隨即以 700g 離心5分鐘取得血漿,保存於 -20℃冰箱中。血漿樣品分析前 需先去除其中的蛋白質大分子,本實驗以添加氰甲烷方式使蛋白質 沈澱去除。將 200 μl 氰甲烷加入 200 μl 含分析物的血漿樣品使蛋白 質沈澱,經離心 15 分鐘後,取出上層澄清液 200 μl,加入 800 μl 50 mM 磷酸鈉溶液 (pH = 10),成為 1.0 ml 的實驗樣品。

4.毛細管內壁鍵結相的製備

(a) 毛細管的前處理^[81]

取一長 60 cm、內徑 52 µm,外徑 366 µm 之毛細管,先以丙 酮流洗 10 分鐘,再以 1 M NaOH 流洗 30 分鐘,再用 0.1 M HCl 流洗 30 分鐘,接著再以去離子水流洗 10 分鐘,最後注入 10 % MPT (100 µl MPT+450 µl acetic acid+450 µl acetone) 10 分鐘。 然後將毛細管兩端以高分子材質墊片封口,置於室溫下,放至隔 天即可進行管壁塗覆。

(b) 塗覆步驟^[81]

以去離子水配製1%DMA1ml,接著將50μl10%(v/v) TEMED與50μl10%(w/v)APS加到900μl1%DMA,使總體 積成為1.0ml的混合溶液。將以上配製的混合溶液注入處理完成 的毛細管,再將毛細管兩端以高分子材質墊片封口,置入50℃ 烘箱,開始進行聚合反應,持續兩小時。兩小時後將毛細管取出, 放置室溫下冷卻,再以去離子水清洗10分鐘,將未反應的DMA 去除,塗覆手續即完成。新製備好的毛細管在使用前先以去離子 水清洗10分鐘。

5. 多孔洞中空纖維管為主的 LPME 萃取步驟

(a) 水溶液樣品

LPME萃取裝置如圖(8)^[80]。首先將 10 µl的 1-octanol 以10 µl GC注射針注入8 cm長的polypropylene材質中空纖維 管,靜置纖維管 5 秒,使 1-octanol滲入纖維管的孔洞,再將多 餘的 1-octanol以空針推出纖維管。纖維管的兩端各接1段毛細 管 (內徑 180 μm, 外徑 335 μm), 分別為4公分與8公分長。 8 公分毛細管端接一個 500 µl塑膠瓶,用來接收萃取完成的溶 液,而4公分毛細管的一端用來引入接收溶液(50mM磷酸鈉 溶液含 0.5 mM β-CD, pH = 3.0)。將 10 ml樣品溶液(pH = 10.0) 裝入置有小磁石的 10 ml棕色瓶,接著把處理好的纖維管浸入 樣品溶液中,以注射針將 10 µl的接收溶液注入纖維管,在 400 rpm攪拌速率下進行萃取 15 分鐘。以空針將纖維管中萃取液推 出並收集至 500 µl塑膠瓶,接著再重新注入 10 µl新鮮接收溶液 萃取 15 分鐘,共重複三次,總共收集 30 山的萃取溶液,接著 以CE-UV進行分析。

(b) 血漿樣品

LPME 萃取裝置與步驟同上節。不同之處為中空纖維管縮 短為3公分長,樣品溶液減少為500µl (pH=10.0),裝入置有 小磁石的1ml 塑膠瓶。實驗時以注射針將3µl 的接收溶液注入 管壁已浸泡1-octanol 的纖維管內,在400 rpm 攪拌速率下進行 萃取15分鐘。以空針將萃取液推出並收集至500µl 塑膠瓶,接 著再注入3µl 的新鮮接收溶液萃取15分鐘,重複萃取三次,總 共收集9µl 的萃取溶液。

6. 樣品注入方式與毛細管清洗

本實驗採用的樣品注入方式為重力注射,進樣時將高壓端的 毛細管提高 20 cm,浸入樣品溶液槽 5 秒,分析物會因虹吸作用 而導入毛細管中,此時再將進樣端毛細管放回電泳緩衝溶液槽 裡。實驗前,先以去離子水沖洗毛細管 15 - 20 分鐘,再用電泳 緩衝溶液沖洗 20 分鐘。實驗結束後,以去離子水沖洗毛細管 20 分鐘,將管中殘餘的電泳緩衝溶液趕出,使毛細管保存於去離子 水中。

參、結果與討論

一、毛細管的管壁塗覆

一般毛細管材質主要為熔融矽,當管中緩衝溶液的pH ≥ 2 時, 毛細管內壁表面的矽醇基(SiOH)會解離成SiO⁻而帶負電,帶正電 荷分析物會與管壁表面的負電荷作用,產生吸附現象而導致訊號峰拖 尾。另外,毛細管高表面積與體積比對散熱是相當有利的,但是也增 加了產生吸附的可能,特別是對一些具多電荷的蛋白質分析物吸附特 別嚴重。

本研究所探討的三環抗憂鬱劑(TCAs)屬於鹼性藥物,因此也 可能有吸附於管壁的問題。圖(14)顯示三種TCAs均會與管壁作用, 導致其訊號峰嚴重的拖尾。文獻中有多種降低分析物與管壁吸附作用 的方法,例如,增加緩衝溶液濃度,可降低管壁的表面電荷來減少分 析物與管壁的作用,但此方法常受限於電泳電流增加產生之焦耳熱會 破壞分離解析度。調整緩衝溶液pH值使分析物帶電性和毛細管壁相 似亦可減低吸附,但此方法常受限於電泳緩衝溶液pH值的選擇範 圍。另一種方法是修飾毛細管壁,修飾毛細管壁最常用的方法是先進 行管壁矽烷化,再鍵結上適合的官能基(R),形成Si-O-Si-R的型式^[88] 。雖然有很多可利用的R基可選擇,如polyacryamide、sulfonic acid、 maltose等,但矽氧鍵(Si-O-Si)只有在pH=4~7的範圍內才

Migration time (min)

圖 (14) TCAs 在一般毛細管中之電泳圖

緩衝溶液: 50 mM 磷酸鈉, pH = 3.0 毛細管: 52 μm I.D. × 366 μm O.D. × 60 cm (有效長度 48 cm) 分離電壓: 21 kV UV 偵測器: 波長: 210 nm 分析物: 1. Trimipramine、2. Amitriptyline、3. Doxepin, 皆為 50 μM 進樣方式: 重力注射; 20 公分高; 15 秒

較穩定,超過此範圍容易發生水解,限制了毛細管的穩定性。此外也 可直接以Si-C連接^[89],此種方法不需進行管壁矽烷化,而且在pH=2-8 的範圍非常穩定,但製作過程較為困難。另外還有管壁吸附聚合物 的方法,如polyethylene glycol(PEG)^[90],但此方法穩定性差,且 只適用於低pH範圍(2-4)。本實驗採用Hong等人所開發的方法^[9], 先將N,N-Dimethylacrylamide(DMA)以Si-O-C鍵結於毛細管壁,再 加入過硫酸胺(APS)進行聚合反應,形成中性的 polydimethylacrylamide (PDMA),聚合過程如圖 (15)。與前面敘述 的其他方法相比,這種塗覆可提供簡單、快速和再現性高等優點。根 據報導^[91],經塗覆PDMA的毛細管在pH = 8 的緩衝溶液中電滲流可 降至 $6 \times 10^{-6} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$,且管壁聚合形成的PDMA覆蓋了表面大部分負 電荷,減少管壁與分析物的吸附作用,提高分離效率。作者利用此方 法成功地分離鹼性與酸性蛋白質,對於cytochrome c的分離效率高達 12×10⁵ plates / m。此外, PDMA 塗覆的毛細管在pH=10 緩衝溶液中 也很穩定,至少可進行150次的蛋白質分離實驗,毛細管不會有衰退 的現象。另外此種表面鍵結PDMA的毛細管,可使用有機溶劑(如丙 酮、甲醇等)沖洗,因此也適用於非水相的毛細管電泳。

圖(15)毛細管壁PDMA聚合反應的流程圖^[91]

二、DMA 濃度對管壁塗覆的影響

不同濃度的DMA進行管壁塗覆對分離有不同的效率。為了探討 使用不同濃度DMA進行管壁塗覆對TCAs分離所造成的影響,以去離 子水配製 0.5、1.0 與 3.0 % (v/v) 的DMA來進行毛細管壁塗覆,並 選擇Amitriptyline、Doxepin、Promazine、Trimipramine四種分析物來 测試管柱的分離能力,得到圖(16)。圖中顯示隨著DMA濃度的提高, 四種TCAs的分離效果越好。TCAs的電泳遷移率與其帶電荷多寡有 關,由於Promazine與Trimipramine結構上有2個可質子化的N原子, 在pH=3 時帶正電量較大,往負極移動速度較快; Amitriptyline與 Doxepin只有一個可質子化的N原子,移動速度較慢。當毛細管壁未經 塗覆處理,由於Trimipramine與Amitriptyline的pka值非常相近(分別 為 9.37 與 9.40),移動速度相似,加上受管壁負電荷吸附與電滲流 $(6.5 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1})$ 的影響,導致訊號重疊,無法分開。使用 0.5%(v/v) DMA塗覆的毛細管, Trimipramine與Amitriptyline受電滲流 $(1.2 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1})$ 與管壁負電荷吸附的影響變小,分離效果得到 改善。當DMA的濃度增加至1.0%(v/v)時,電滲流降至 2.6×10⁻⁵ cm² V⁻¹ s⁻¹,而Trimipramine與Amitriptyline分離更加明顯。DMA的濃度再 提高至 3.0%(v/v) 時,電滲流降至 $5.7 \times 10^{-6} \text{ cm}^2 V^{-1} \text{ s}^{-1}$,但分離效果 似乎並未進一步提升,改變的只有遷移時間。

圖(16)不同濃度 DMA 塗覆毛細管對 TCAs 分離的影響

緩衝溶液: 50 mM 磷酸鈉, pH = 3.0
毛細管: 52 μm I.D. × 366 μm O.D. × 60 cm (有效長度 48 cm)
分離電壓: 21 kV
UV 偵測器: 波長: 210 nm
分析物: 1. Promazine、2. Trimipramine、3. Amitriptyline

4. Doxepin,皆為 50 μM
進樣方式:重力注射; 20 公分高; 10 秒

(A) 未塗覆管壁

(B) 塗覆 0.5% (v/v) DMA
(C) 塗覆 1.0% (v/v) DMA
(D) 塗覆 3.0% (v/v) DMA

當 DMA 的濃度越高,管壁的 PDMA 層越厚,遮蔽管壁表面負 電荷的效果越明顯,而分析物的遷移時間也越長,主要是因為電滲流 逐漸消失,分析物幾乎只能靠本身的泳動速度移動。為了顧及分離效 果與實驗時間,選擇濃度為 1.0% (v/v) 的 DMA 進行後續實驗的毛 細管壁塗覆。

三、毛細管塗覆再現性

為了探討毛細管塗覆 PDMA 方法的再現性,配製濃度 1.0 % (v/v)的 DMA 進行管壁塗覆,製備 5 支相同的毛細管,分別利用 重力進樣重複分析 50 μM Amitriptyline、Doxepin、Promazine、 Trimipramine 四種 TCAs 共 3 次,以變異數分析 (anaysis of variance, ANOVA)計算分析結果的再現性,列於表 (3)至表 (6)。從結果可 知,在α = 0.05 和組間與組內自由度為 (4,10)下,四種 TCAs 的遷 移時間與訊號面積經 ANOVA 所求得的 F 值皆小於臨界值,表示不僅 單一管柱的重複分析具有不錯的再現性,即使是使用不同的管柱對四 種 TCAs 的分析也有相近的結果,顯示管柱與管柱間也有不錯的再現 性。

- 表(3) Promazine 的遷移時間與訊號面積之 ANOVA 分析
 - (一) 遷移時間

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.036173	4	0.009043	0.867327	3.47805
組內	0.104267	10	0.010427		
總和	0.14044	14			
(二) 訊號	面積				
ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.14604	4	0.03651	1.548346	3.47805
組內	0.2358	10	0.02358		
總和	0.38184	14			

表(4) Trimipramine 的遷移時間與訊號面積之 ANOVA 分析

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.025507	4	0.006377	1.004727	3.47805
組內	0.063467	10	0.006347		
總和	0.088973	14			

(二) 訊號面積

(一) 遷移時間

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.12196	4	0.03049	3.345647	3.47805
組內	0.091133	10	0.009113		
總和	0.213093	14			

*表(3)與表(4)α=0.05, d.f. = 4,10

表(5) Amitriptyline 的遷移時間與訊號面積之 ANOVA 分析

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.026333	4	0.006583	3.428819	3.47805
組內	0.0192	10	0.00192		
總和	0.045533	14			

(二) 訊號面積

(一) 遷移時間

變源	SS	自由度	MS	F	臨界値
組間	0.333333	4	0.008333	1.748252	3.47805
組內	0.047667	10	0.004767		
總和	0.081	14			

表(6) Doxepin 的遷移時間與訊號面積之 ANOVA 分析

(•)	遷移	時間	
		- v		

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.014893	4	0.003723	2.820707	3.47805
組內	0.0132	10	0.00132		
總和	0.028093	14			

(二) 訊號面積

ANOVA	
-------	--

變源	SS	自由度	MS	F	臨界値
組間	0.141107	4	0.035277	1.304289	3.47805
組內	0.270467	10	0.027047		
總和	0.411573	14			

*表(5)與表(6) α =0.05, d.f.=4,10

四、緩衝溶液中添加 B-環糊精對 TCAs 分離的影響

初步實驗顯示使用管壁塗覆處理的毛細管可以改善4種 TCAs 的 分離效果,降低電滲流與管壁吸附的影響,於是嘗試將9種 TCAs 一 起注入管壁塗覆 PDMA 的毛細管進行分析,結果顯示於圖(17)。除 了 Fluoxetine、Promazine、Amitriptyline 與 Thioridazine 可分離外,其 餘五種 TCAs 仍無法分離。單純利用管壁塗覆 PDMA 高分子層的毛 細管還是無法將9種 TCAs 完全分離。因此決定嘗試在緩衝溶液中添 加 β-環糊精,以提高分離之選擇性。

環糊精(cyclodextrins)是由bacillus macerans澱粉酵素(amylase) 與澱粉及其相關化合物作用後產生的一系列寡糖(oligosaccharids) 產物,1891年被Villers發現^[92]。環糊精結構如兩端開口的圓桶(見 圖(18)),二級羥基(在每個葡萄糖單位的第二、三個碳上)位在較 寬口的一邊,所有的一級羥基(在每個葡萄糖單位的第六個碳上)位 在較窄口的一邊。無論一級或二級羥基均在圓桶外側,故為親水性; 而圓桶內側為為疏水性。 α 、 β 、 γ -cyclodextrin分別由6個、7個、8 個葡萄糖單體聚合而成,如圖(19),而內部空間大小以 γ -cyclodextrin 最大, β -cyclodextrin次之, α -cyclodextrin最小。

環糊精最早曾用在TLC中當作移動相添加物以分離鏡像異構物, 隨後亦被鍵結到LC固定相上成為對掌性固定相,在商業上可購買到

圖(17)9種三環抗憂鬱劑的電泳分離結果

緩衝溶液: 50 mM 磷酸鈉, pH = 3.0
毛細管: 52 μm I.D. × 366 μm O.D. × 60 cm (有效長度 48 cm) 管壁塗覆 PDMA
分離電壓: 18 kV
UV 偵測器: 波長: 210 nm
分析物: 1. Fluphenazine 2. Promazine 3. Desipramine
4. Imipramine 5. Doxepin 6. Clomipramine
7. Nortriptyline 8. Amitriptyline 9. Thioridazine
皆為 100 μM
進樣方式: 重力注射; 20 公分高; 5 秒

圖(18) 環糊精分子結構側視圖

圖(19) 環糊精之化學結構圖^[92]

- (a) α cyclodextrin
- (b) β cyclodextrin
- $(c) \gamma$ cyclodextrin

此類型的管柱,其中以β-cyclodextrin (β-CD)使用最廣泛。環糊 精最重要的特色之一是能與許多化合物形成主客錯合物 (host-guest complexes),利用其內部空間來容納外來的化合物分子。此現象應用 於許多方面,如藉著環糊精和藥物錯合製成藥碇,用來保護易被分解 、穩定性差的藥物,或改變藥物的溶解度增加其利用性^[93];在食品 應用方面,可降低食物風味的消失,並使其受氧化與光解的速度減緩^[94]。

腔包現象是指一個腔主(host)可允許其他客體(guest)進入其 腔中,而沒有任何共價鍵形成的現象^[95]。鏡像異構物和環糊精所形 成主客錯合物其穩定性不同,如圖(20),停留於環糊精內部的時間 有差異,這是造成分離的主要機制。在毛細管電泳的應用中,環糊精 本身不帶電,於電場中與電滲流速度相同,帶負電的分析物與環糊精 所形成的錯合物,因電荷密度降低,使分析物往負極移動的速度加快 ,反之,帶正電的分析物與環糊精所形成的錯合物,會使分析物往負 極移動的速度變慢,中性分析物則不受環糊精影響。另外環糊精在紫 外光範圍不會吸收,所以含環糊精的水溶液並不會提高偵測背景。這 種添加環糊精於電泳緩衝溶液來改進分離效果的應用,稱為環糊精修 篩毛細管電泳(cyclodextrin modified capillary electrophoresis)。Jelinek

圖(20) 環糊精輔助分離的主要機制

衝溶液分別加入D-葡萄糖、澱粉的分離結果比較,確立了環糊精其 環狀結構是影響分離的主要關鍵。1987年Snopek^[97]等人利用α、β、 γ-環糊精的添加來探討含鹵素(F、Cl、Br、I)取代基的苯甲酸, 其臨、間、對位的位置異構物分離的影響。Liu^[98]等人利用添加α、β-環糊精於緩衝溶液中分離peptides。

為了探討添加環糊精對9種TCAs分離的影響,於緩衝溶液中添 $m 0.4 \text{ mM}\beta - \text{CD}, 結果如圖(21)。原本圖(17)中只有Fluoxetine、$ Promazine、Amitriptyline與Thioridazine四種TCAs可完全分離,在添 $<math>m\beta - \text{CD}後, 9$ 種TCAs的分離明顯獲得改善,甚至Doxepin的幾何異 構物(peak 5a、5b)與Thioridazine的鏡像異構物(peak 9a、9b)也 可分離出來。兩個Thioridazine異構物訊號因無光學標準品確定其先後 順序,故以Thioridazine₁、Thioridazine₂分別表示兩種鏡像異構物。

本實驗進一步利用 CE-UV 探討 Thioridazine 的鏡像異構物和 Doxepin 的幾何異構物分離情形。對於遷移時間相近的兩分析物,解 析度(R)可用公式(3)表示:

$$R = \frac{2(t_2 - t_1)}{w_1 + w_2}$$
(3)

 t1:分析物1的遷移時間
 t2:分析物2的遷移時間

 w1:分析物1的時間寬度
 w2:分析物2的時間寬度

圖 (21) 9 種 TCAs 在緩衝溶液中添加 0.4 mM β-CD 後的電泳圖

緩衝溶液: 50 mM 磷酸鈉, pH = 3.0, 添加 0.4 mM β - CD 毛細管: 52 μm I.D. × 366 μm O.D. × 60 cm (有效長度 48 cm) 管壁塗覆 PDMA 分析物: 1. Fluphenazine 2. Promazine 3. Desipramine 4. Imipramine 5a. Z - Doxepin 5b. E - Doxepin 6. Clomipramine 7. Nortriptyline 8. Amitriptyline 9a. Thioridazine₁ 9b. Thioridazine₂, 皆為 100 μM

其他條件如圖(17)

使用未塗覆 PDMA 的毛細管進行實驗, 在緩衝溶液中逐漸增加β-CD 的濃度, 可發現當β-CD 添加濃度為0.45 mM 時, Thioridazine 的兩 鏡像異構物有最佳的解析度(2.53), 當β-CD 添加濃度為0.8 mM 時 Doxepin 的幾何異構物有最佳的解析度(7.76), 如圖(22) 與圖 (23)所示。

為尋求緩衝溶液中 B-CD 之最佳添加濃度來改善分離效果,本 實驗觀察緩衝溶液含 0.05 mM、0.1 mM、0.2 mM、0.4 mM、0.5 mM、 0.6 mM 及 0.8 mM β – CD,以 PDMA 塗覆毛細管對 9 種 TCAs 進行 電泳分離的影響,結果顯示於圖(24)。電泳緩衝溶液中未添加β-CD 時只有四種 TCAs 可完完分離 (peak 1、2、8、9)。 當 β-CD 的添加 濃度為 0.05 mM 時, 原本分不開的分析物漸漸開始分離, Thioridazine 的鏡像異構物(peak 9a、9b)也逐漸分開。當β-CD 的濃度太低, 與分析物形成腔包錯合物的機會較小,因此分離效果的改善不明顯。 隨著所加入 β – CD 濃度增加,分離效果越佳。當加入 β – CD 的濃度 達 0.5 mM 時,幾乎可完全分離所有的 TCAs,而 Thioridazine 的鏡像 異構物與 Doxepin 的幾何異構物 (peak 5a、5b) 也可以完全分開,但 對於 Desipramine 與 Imipramine 這兩個分析物 (peak 3、4), 由於結 構上只相差一個甲基,即使加入更多β-CD,也無法達成基線分離。 繼續增加 B-CD 濃度仍無法改善 Desipramine 與 Imipramine 的分離,

圖(22)緩衝溶液中添加不同濃度β-CD對 Thioridazine 之鏡像 異構物解析度的影響

圖(23)緩衝溶液中添加不同濃度β-CD對Doxepin之幾何異物 解析度的影響

圖(24)緩衝溶液添中加不同濃度β-CD對9種 TCAs 分離影響

緩衝溶液: 50 mM 磷酸鈉, pH = 3.0,添加不同濃度β-CD<
毛細管: 52 μm I.D. × 366 μm O.D. × 60 cm (有效長度 48 cm)
管壁塗覆 PDMA
分析物: 1. Fluphenazine 2. Promazine 3. Desipramine
4. Imipramine 5a. Z – Doxepin 5b. E – Doxepin
6. Clomipramine 7. Nortriptyline 8. Amitriptyline

9a. Thioridazine, 9b. Thioridazine, 皆為 100 µM

其他條件如圖(17)

改變的只有分析物的遷移時間。當緩衝溶液中有較高濃度的β - CD 時,分析物分佈在β - CD內部的量相對較高,對移動時間的影響較 大,如圖(25)。綜合以上的結果,選擇緩衝溶液中添加 0.5 mMβ-CD 以輔助9種 TCAs 的分離。

五、緩衝溶液濃度之影響

緩衝溶液濃度大小會影響毛細管壁電雙層與溶液黏稠度,進而 影響到分析物的移動速度與分離情形。為了解緩衝溶液濃度對 TCAs 分離結果的影響,本實驗配製五種磷酸鈉緩衝溶液 (pH = 3),濃度 分別為 20 mM、30 mM、50 mM、60 mM 與 70 mM,其中各含有 0.5 mM β-CD,由不同濃度緩衝溶液對 9 種 TCAs 電泳分離的情形來選 擇最適當的磷酸鈉濃度。

9 種 TCAs 的移動時間與磷酸鈉緩衝溶液濃度的變化顯示於圖 (26)。當緩衝溶液的濃度為 20 mM 時, Thioridazine 的鏡像異構物 無法分開 (peak 9), 而 E – Doxepin (peak 5b)與 Clomipramine (peak 6)分不開, Desipramine 和 Imipramine (peak 3、4)的分離效果也不 好。逐漸提高緩衝溶液的濃度,分離效果明顯改善;當緩衝溶液的濃 度到達 50 mM 時,每個分析物幾乎可以完全分離, Thioridazine 的鏡 像異構物與 Doxepin 的幾何異構物也可以分開。雖然 Desipramine 和

圖(25)緩衝溶液添中加不同濃度β-CD對 TCAs 遷移時間的影響

圖(26)不同濃度磷酸鈉緩衝溶液對9種TCAs分離的影響

緩衝溶液:磷酸鈉溶液,pH=3.0,添加0.5 mMβ-CD 毛細管:52 μm I.D. × 366 μm O.D. × 60 cm (有效長度48 cm) 管壁塗覆 PDMA

分析物: 1. Fluphenazine 2. Promazine 3. Desipramine 4. Imipramine 5a. Z – Doxepin 5b. E – Doxepin 6. Clomipramine 7. Nortriptyline 8. Amitriptyline 9a. Thioridazine₁ 9b. Thioridazine₂,皆為 100 µM

其他條件如圖(17)

Imipramine 無法達到基線分離,但 50 mM 磷酸鈉的分離效果較低濃 度下已有明顯改善。在一般的毛細管中,提高緩衝溶液濃度會造成分 析物的移動時間增長,原因是緩衝溶液濃度越高,溶液中離子強度越 大,使管壁電雙層壓縮,Zeta 電位降低,溶液黏稠度也增加,導致電 滲流變小。但本實驗所使用的是管壁塗覆高分子物質的毛細管,電滲 流幾乎不存在,故分析物移動時間的變化不明顯。另外,緩衝溶液濃 度越高,電泳電流亦會提高,產生更多的焦耳熱,造成分析帶變寬。 當緩衝溶液濃度為 60 mM、70 mM 時可發現,Desipramine 和 Imipramine 因分析帶的變寬,分離效果又變差。因此選擇濃度為 50 mM 的磷酸鈉緩衝溶液為最佳分析條件。

六、緩衝溶液 pH 值之影響

由於TCAs的pKa值介於 7.21 至 10.5 之間,為了使TCAs在電泳過 程中質子化帶正電荷,故設定緩衝溶液pH<4。另外由於本實驗所用 的毛細管已經過管壁塗覆處理,大部分的SiO⁻已被聚合物遮蔽住,分 析物正電荷與毛細管壁表面負電荷作用會減低。為了解緩衝溶液pH 值變化對 9 種TCAs分離的影響,本實驗使用 50 mM的磷酸鈉緩衝溶 液,以 85 %H₃PO₄調整pH值,分別配製成pH 2.0、pH 2.5、pH 3.0、 pH 3.25 與pH 3.5,再加入 0.5 mM β – CD,對 9 種TCAs的移動時間影 響顯示於圖(27)。由結果發現,在pH 2.0 時,分析物所帶的正電荷 較多,往負極的移動速度較快,但分離效果不盡理想,Z-Doxepin 會和Imipramine訊號重疊,而且Thioridazine的鏡像異構物亦無法完全 分離。當pH 3.0 時,雖然分離所花的時間較長,但上述的問題皆有改 善。繼續調高pH值,發現Fluphenazine的速度明顯減

慢,原因是其pKa為7.21,而其他TCAs的pKa值皆大於9,因此當 pH值提高時,Fluphenazine所帶的正電荷減少的情形最顯著,移動速 度減緩特別明顯,並且會與Promazine的訊號過於接近,分離不理想。 由圖(27)的結果可看出,電泳緩衝溶液pH3.0時為最佳分離條件。

七、重力注射進樣時間之探討

在毛細管電泳的實驗中,進樣時間所影響的為分析物注入毛細 管中的量,進樣時間越長則分析物進樣的量越多,因此可以提高分析 靈敏度。但若是進樣量太多,會降低毛細管的理論板數,反而使訊號 的解析度變差,因此本實驗針對進樣時間影響理論板數與訊號高度的 程度作探討。以 Desipramine 為測試分析物,採用重力注射方式,於 進樣端相對偵測端 20 cm 高度分別進樣 5~25 秒,結果如圖 (28)。 進樣時間越長,訊號高度越大,但理論板數亦會隨著進樣秒數增加而 下降。為了兼顧訊號解析度與分析物的偵測靈敏度,選擇兩線交點約

圖(27)緩衝溶液 pH 值對分析物遷移時間的影響

圖(28)進樣時間對理論板數與訊號高度的影響

分析物: 100 µM Desipramine

進樣方式:重力注射;20公分高

其他條件如圖(17)

15秒,應該會有最佳分析的效果。但實際應用在9種TCAs分析時, 15秒的進樣時間造成相臨的分析物訊號峰重疊而無法達成完全離, 如圖(29)。為達到完全分離的目的,選用分離效果最佳的5秒進樣時間進行9種TCAs的同時電泳分析,若分析少數的TCAs,仍可用較長時間注射。

八、最佳分離條件

综合以上實驗的結果,可歸納出最佳的分離條件如下:電泳緩 衝溶液組成為 50 mM 磷酸鈉 (pH 3.0)添加 0.5 mM β-環糊精,所使 用的毛細管預先經 1%(v/v)DMA 進行管壁塗覆聚合,樣品以 20 公 分高度利用重力進樣,時間 5 秒。在最佳條件下可成功的分離九種 TCAs,結果顯示於圖 (30),Doxepin 之幾何異構物與 Thioridazine 之鏡像異構物也可完全分離。

Fluphenazine (peak 1) 在 pH 3.0 時帶正電荷較多,且結構上具 一個羥基,極性最高,不易與 β -CD 作用形成暫時性錯合物,受 β -CD影響最小,因此移動最快。與其他的分析物相比 Thioridazine (peak 9)的兩端皆有強的疏水性結構,因此較容易進入 β -CD 的疏水性內 部,形成暫時性錯合物,所以移動最為緩慢。對於 Amitriptyline (peak 8)、Nortriptyline (peak 7)、Doxepin (peak 5) 這三個結構非常相似

圖(29)進樣時間15秒之三環抗憂鬱劑電泳分離圖

分析物: 1. Fluphenazine 2. Promazine 3. Desipramine 4. Imipramine 5a. Z – Doxepin 5b. E – Doxepin 6. Clomipramine 7. Nortriptyline 8. Amitriptyline 9a. Thioridazine₁ 9b. Thioridazine₂,皆為 100 μM

進樣方式:重力注射;20公分高,15秒 其他條件如圖(17)

圖(30)最佳條件下9種 TCAs 的電泳分離圖

緩衝溶液: 50 mM 磷酸鈉, pH = 3.0, 添加 0.5 mM β-CD 毛細管: 52 μm I.D. × 366 μm O.D. × 60 cm (有效長度 48 cm) 管壁塗覆 PDMA 分離電壓: 18 kV UV 偵測器: 波長: 210 nm 分析物: 1. Fluphenazine 2. Promazine 3. Desipramine 4. Imipramine 5a. Z – Doxepin 5b. E – Doxepin 6. Clomipramine 7. Nortriptyline 8. Amitriptyline 9a. Thioridazine₁ 9b. Thioridazine₂, 皆為 100 μM 進樣方式: 重力注射; 20 公分高; 5 秒

的分析物,結果顯示 Doxepin 的移動速度最快,原因可能是 Doxepin 的三環上有一個氧,極性較強,與β-CD結合形成的暫時性錯合物 較不穩定,所以移動速度較快。Doxepin 具有2個幾何異構物,如圖 (31), Doxepin 上的氧會受 β – CD 上的二級醇羥基吸引而進入 β – CD 形成腔包錯合物,由於 Z-Doxepin (peak 5a) 支鏈所造成空間立 體障礙較大,不易與 β -CD結合,移動速度較快。反之,E-Doxepin (peak 5b)的空間立體障礙較小,與 β -CD的結合較為穩定,移動 速度較慢。另外, Amitriptyline 在結構上比 Nortriptyline 多一個甲基, 疏水性較強,與β-CD的結合較為穩定,故移動較為緩慢。另一組 具有相似結構的分析物為 Desipramine (peak 3)、Imipramine (peak 4) 與 Clomipramine (peak 6)。 Desipramine 為 Imipramine 去甲基而得, 因此 Imipramine 的疏水性較強,與 β -CD 的結合較為穩定,移動較 Desipramine (peak 3) 緩慢。由實驗結果可發現,這三個分析物中以 Clomipramine 的移動速度最緩慢,推測是因為 Clomipramine 上的 Cl 基與β-CD上的二級醇羥基上產生氫鍵,因此形成的錯合物較為穩 定,故移動速度較慢。另外,Promazine(peak 2)移動速度較 Desipramine 快的原因可能是 Promazine 具疏水性的三環上有一個硫,所佔的立體 空較大,與β-CD相互作用較小,以致移動較快速。

E form

Z form

圖 (31) Doxepin 之幾何異構物

檢量線的製作是在最佳分離條件下進行。分別取添加有五種不同 濃度 TCAs 的水溶液樣品,將各樣品以重力進樣(20 cm,5 sec)方 式注入毛細管中。以 TCAs 的訊號面積對 TCAs 的濃度作圖,9種 TCAs 的分析檢量線與偵測極限列於表(7)。以訊號/雜訊比(S/N)為3所 對應的濃度定義為偵測極限,在水溶液樣品中9種 TCAs 的濃度偵測 極限範圍為 $0.4 \,\mu$ M~5.0 μ M。

為觀察 CE 分離的再現性,以相同步驟將 10 μM 各種分析物藉重 力進樣 (20 cm,5 sce),重複 CE-UV 偵測分析 7 次,計算結果的再 現性,列於表 (8)。遷移時間的相對標準偏差小於 0.8 %,訊號面積 的相對標準偏差小於 5.0 %,訊號高度的相對標準偏差小於 4.1 %,顯 示再現性佳。

81

偵測極限 檢量線範圍 線性相關係數 分析物 線性方程式 (r) (n=5) (μM) (μM) y = 1.68x +Fluphenazine $2.5 \sim 50$ 0.997 1.8 2.02 y = 1.37x + $2.5 \sim 50$ Promazine 0.996 2.0 1.38 y = 1.67x + $2.5 \sim 50$ 0.996 Desipramine 1.8 1.76 y = 1.62x +0.997 Imipramine $2.5 \sim 50$ 1.8 3.26 y = 1.57x + $0.75 \sim 7.5$ Z-Doxepin 0.995 0.6 0.74 y = 1.52x +4.3~42.5 0.994 E-Doxepin 3.6 0.62 y = 3.36x + $0.5 \sim 50$ Clomipramine 0.998 0.4 1.42 y = 4.21x + $0.5 \sim 50$ Nortriptyline 0.996 0.4 2.09 y = 4.13x +Amitriptyline $0.5 \sim 50$ 0.995 0.4 5.26 y = 1.10x +Thioridazine₁ $7.5 \sim 50$ 0.999 5.0 0.06 y = 1.18x +Thioridazine₂ 7.5~50 0.997 5.0 0.03

表(7)9種 TCAs 的分析檢量線與偵測極限

 ※實驗條件:緩衝溶液:50 mM 磷酸鈉,pH=3.0,添加 0.5 mM β-CD
 毛細管:52 μm I.D.× 366 μm O.D.× 60 cm (有效長度 48 cm)管壁塗覆 PDMA 分離電壓:18 kV UV 偵測器:波長:210 nm 進樣方式:重力注射;20 公分高;5 秒

表(8)水溶液樣品中9種TCAs的CE分離再現性

分析物	遷移時間的 相對標準偏差 (%)	訊號面積的 相對標準偏差 (%)	訊號高度的 相對標準偏差 (%)
Fluphenazine	0.63	3.34	3.22
Promazine	0.66	3.35	3.45
Desipramine	0.54	3.87	3.65
Imipramine	0.71	4.56	4.07
Z-Doxepin	0.53	4.67	3.34
E-Doxepin	0.50	4.73	3.40
Clomipramine	0.64	3.92	3.12
Nortriptyline	0.76	4.07	3.76
Amitriptyline	0.67	4.96	3.35
Thioridazine ₁	0.56	4.17	3.56
Thioridazine ₂	0.58	4.20	3.63

※ 實驗條件:同表 (7), n=7

九、液相微萃取濃縮配合毛細管電泳分析

由於生物樣品的基質通常很複雜,當分析生物樣品時常會遭遇 很多問題,這是分析水溶液標準樣品所沒有的,因此分析真實樣品一 般需經過前處理,以減低基質的干擾。本實驗探討以中空纖維管為主 的液相微萃取作為分析 TCAs 的樣品前處理方法。由於中空纖維管管 壁具有孔洞,可避免基質中一些大分子物質的干擾,同時中空纖維管 的價格便宜,使用一次後丟棄,可避免樣品交叉污染。萃取前先將纖 維管浸入 1-octanol, 使 1-octanol 滲入纖維管的孔洞中, 接著再將纖 維管置放於以 50 mM 磷酸鈉 (pH = 10) 配製成的 10 ml 水溶液樣品, 以注射針將 10 μ l 的接收溶液 (50 mM 磷酸鈉溶液含 0.5 mM β -CD, pH=3.0)注入纖維管內,在400 rpm 攪拌速率下進行萃取 15 分鐘, 以空針將萃取液推出至 500 µl 塑膠瓶收集,再將 10 µl 新鮮接收溶液 再注入纖維管,萃取 15 分鐘,重複萃取三次,總共收集 30 ul 的萃取 溶液,接著以 CE-UV 進行分析。圖(32)為3種濃度皆為 0.5 μM 的 TCAs 水溶液樣品,經萃取前後的電泳圖差別。在相同 TCAs 濃度下, 萃取後分析物訊號明顯變大,因此利用此萃取方法可偵測到更低的分 析物濃度。經多孔洞中空纖維管為主的液相微萃取前處理後,9種 TCAs 的分析檢量線與偵測極限列於表(9), 偵測極限範圍為 0.01 μM ~0.5 μM。比較表(7)與表(9)的檢量線斜率,發現經液相微萃取

84

圖(32)3種TCAs經液相微萃取前後的比較

分析物:1. Clomipramine、2. Nortriptyline、3. Amitriptyline, 濃度皆為 0.5 μM

其他實驗條件同圖(30)

分析物	檢量線範圍 (μM)	線性方程式	線性相關 係數(r) (n=5)	偵測極限 (μM)
Fluphenazine	0.1~50	y = 30.3x + 4.23	0.994	0.075
Promazine	0.1~50	y = 51.7x + 7.75	0.991	0.05
Desipramine	0.1~50	y = 81.8x + 11.5	0.996	0.05
Imipramine	0.1~50	y = 76.4x + 12.6	0.997	0.05
Z-Doxepin	0.06~7.5	y = 70.4x + 4.02	0.994	0.05
E-Doxepin	0.34~42.5	y = 68.3x + 3.26	0.997	0.25
Clomipramine	0.05~50	y = 131x - 2.13	0.998	0.03
Nortriptyline	0.02~50	y = 157x - 2.33	0.996	0.01
Amitriptyline	0.02~50	Y = 153x - 1.51	0.995	0.01
Thioridazine ₁	0.75~50	y = 33.7x + 3.39	0.999	0.50
Thioridazine ₂	0.75~50	y = 34.7x + 2.99	0.997	0.50

表(9)液相微萃取後9種TCAs的分析檢量線與偵測極限

* 實驗條件:

A:萃取部分 樣品溶液:50 mM 磷酸鈉含分析物,pH = 10.0,10 ml 接收溶液:50 mM 磷酸鈉,pH = 3.0 含 0.5 mM β-CD,(10 μl × 3) 有機溶劑:1-octanol Fibre:8 cm 萃取時間:15 分鐘 × 3

B:毛細管電泳部分與未經萃取的實驗條件相同

處理後斜率增大很多,主要是此萃取方法具有樣品濃縮的功能,因 此萃取後靈敏度提升。表(10)為經萃取處理前後其偵測極限的比較, 採用多孔洞中空纖維管為主的液相微萃取作為樣品前處理方法,可以 成功的降低各 TCAs 的偵測極限。

為觀察 CE 分離的再現性,以相同步驟將 10 μM 各種分析物經萃 取處理後,以重力進樣 (20 cm,5 sec)重複 CE-UV 偵測分析 7 次, 計算分析結果的再現性,列於表 (11)。遷移時間的相對標準偏差小 於 0.8 %,訊號面積的相對標準偏差小於 5.1 %,訊號高度的相對標準 偏差小於 4.0 %。與表 (8) 未經萃取前處理的再現性相比,並未有太 大的差異。

Sample	未經萃取處 理的偵測極 限(µM)	經萃取處理 的偵測極限 (μM)	濃縮倍率
Fluphenazine	1.8	0.08	23
Promazine	2.0	0.05	40
Desipramine	1.8	0.05	36
Imipramine	1.8	0.05	36
Z-Doxepin	0.6	0.05	12
E-Doxepin	3.6	0.25	15
Clomipramine	0.4	0.03	14
Nortriptyline	0.4	0.01	40
Amitriptyline	0.4	0.01	40
Thioridazine ₁	5.0	0.5	10
Thioridazine ₂	5.0	0.5	10

表(10)經萃取處理前後9種 TCAs 偵測極限的比較

表(11)經萃取後水溶液樣品中9種 TCAs 的 CE 分離再現性

分析物	遷移時間的 相對標準偏差 (%)	訊號面積的 相對標準偏差 (%)	訊號高度的 相對標準偏差 (%)
Fluphenazine	0.68	3.68	3.17
Promazine	0.72	3.44	3.56
Desipramine	0.55	3.94	3.79
Imipramine	0.63	4.36	3.97
Z-Doxepin	0.58	4.78	3.55
E-Doxepin	0.56	4.66	3.15
Clomipramine	0.69	4.03	3.45
Nortriptyline	0.68	4.18	3.65
Amitriptyline	0.75	5.04	3.43
Thioridazine ₁	0.62	4.33	3.66
Thioridazine ₂	0.64	4.26	3.70

※實驗條件:同表 (9), n=7

十、血浆樣品分析

人體血液中血漿成分約佔55%,其餘45%為血球蛋白。血漿的 化學成分非常複雜,包含蛋白質、醣類、鹽類與其他代謝廢物,若不 經前處理,容易影響儀器的偵測。為評估本方法分析血漿樣品的適用 性,取真實血漿樣品進行實驗。實驗使用的血漿來源為實驗室成員捐 獻,主要測試 Amitriptyline、Nortriptyline、Desipramine 與 Imipramine 四種 TCAs。首先將適量分析物添加於 200 µl 血漿,再將血漿樣品以 1:1的體積比例與氰甲烷混合,經由離心去除蛋白質沈澱,取澄清 液 200 ul, 再加入 50 mM 磷酸鈉溶液 (pH = 10) 300 ul, 使之成為體 積 500 µl 的樣品溶液,接著將浸泡過 1-octanol 的 3 cm 纖維管置放 其中,以注射針將 3 μl 的接收溶液 (50 mM 磷酸鈉溶液含 0.5 mM β-CD, pH = 3.0) 注入纖維管, 在 400 rpm 攪拌速率下進行萃取 15 分鐘,以空針將萃取液推出至 500 µl 塑膠瓶收集,重複萃取步驟三 次,總共收集9µl的萃取溶液,接著以CE-UV進行分析。

經多孔洞中空纖維管為主的液相微萃取處理後,血漿中4種 TCAs 的分析檢量線與偵測極限列於表(12)。在血漿中 Desipramine 與 Imipramine 的濃度偵測極限為 0.8 μM, Amitriptyline 與 Nortriptyline 的濃度偵測極限為 0.25 μM。比較不經液相微萃取的水溶液樣品(表 (7))與萃取後的血漿樣品(表(12))中 TCAs 檢量線斜率,可發

90

表(12)4種TCAs在血漿中的分析檢量線與偵測極限

分析物	檢量線範圍 (μM)	線性方程式	線性相關 係數(r) (n=5)	偵測極限 (μM)
Desipramine	1~50	y = 9.20x + 0.57	0.998	0.8
Imipramine	1~50	y = 8.72x + 1.81	0.996	0.8
Nortriptyline	0.3~50	y = 14.3x + 0.132	0.990	0.25
Amitriptyline	0.3~50	y = 13.6x + 0.713	0.998	0.25

※實驗條件:

A: 萃取部分 樣品溶液: 50 mM 磷酸鈉含分析物, pH = 10, 500 µl 接收溶液: 50 mM 磷酸鈉, pH = 3 含 0.5 mM β – CD, (3 µl×3) 有機溶劑: 1-octanol Fibre: 3 cm 萃取時間: 15 分鐘 × 3 B: 毛細管電泳部分 緩衝溶液: 50 mM 磷酸鈉, pH = 3, 添加 0.5 mM β – CD 毛細管: 52 µm I.D. × 366 µm O.D. × 60 cm (有效長度 48 cm)管 壁塗覆 PDMA 分離電壓: 21 kV UV 偵測器: 波長: 210 nm 進樣方式: 重力注射; 20 公分高; 20 秒 現萃取後血漿樣品中 TCAs 檢量線斜率較水溶液樣品大,主要原因是 此萃取方法有濃縮功能。若比較萃取後的血漿樣品(表(12))與經 液相微萃取的水溶液樣品(表(9))中 TCAs 檢量線斜率,則發現萃 取後血漿樣品中 TCAs 檢量線斜率較經過液相微萃取後水溶液樣品小 了許多,原因可能是血漿中的殘餘基質堵塞了中空纖維管孔洞,降低 了萃取效率,可見即使使用多孔洞中空纖維管仍無法完全避免血漿中 複雜基質干擾。

在探討回收率的實驗中,分別於血漿中添加5μM的Desipramine 與 Imipramine, 1.5μM的 Amitriptyline 與 Nortriptyline,以氯甲烷去 蛋白後再進行萃取,收取9μl 的萃取溶液,以重力注射的方式注入毛 細管電泳進行分析。實驗結果如表(13),4種 TCAs 回收率皆在93.5%以上,相對標準偏差(RSD)小於5.5%,代表添加的分析物絕大 部分都可由血漿基質中萃取出來。利用多孔洞中空纖維管為主的液相 微萃取不但可去除血漿中的大部分基質,避免分析受干擾,而且具濃 縮功能,操作簡單且快速。每種分析物分別進行5次萃取,每次萃取 進樣分析3次,以ANOVA 方法計算4種 TCAs 於不同次萃取結果之 回收率再現性,列於表(14)至(17)。在α=0.05和組間與組內自 由度為(4,10)下,4種 TCAs 利用 ANOVA 所求得的F值皆小於臨 界值,表示不僅同一次萃取有不錯的分析再現性,即使是不同次萃

92

表(13)血漿中4種TCAs經多孔洞中空纖維管為主的液相微萃取

之回收率

	Added	Found	Recovery	RSD (%)
sample	(µM)	(mean±SD)	(%)	(n = 5)
Desipramine	5	4.69±0.24	93.8	5.1
Imipramine	5	4.68±0.23	93.6	4.9
Nortriptyline	1.5	1.41±0.06	94.0	4.3
Amitriptyline	1.5	1.42±0.07	94.7	5.0

*實驗條件:同表(12)

表 (14) Desipramine 回收率之 ANOVA 分析

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.0354	4	0.00885	0.800181	3.47805
組內	0.1106	10	0.01106		
總和	0.146	14			

表 (15) Imipramine 回收率之 ANOVA 分析

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.0478	4	0.01195	1.796092	3.47805
組內	0.066533	10	0.006653		
總和	0.114333	14			

表 (16) Nortriptyline 回收率之 ANOVA 分析

ANOVA

變源	SS	自由度	MS	F	臨界値
組間	0.016667	4	0.004167	2.248201	3.47805
組內	0.018533	10	0.001853		
總和	0.0352	14			

表(17) Amitriptyline 回收率之 ANOVA 分析

ANOVA					
變源	SS	自由度	MS	F	臨界値
組間	0.016533	4	0.004133	1.29979	3.47805
組內	0.0318	10	0.00318		
總和	0.048333	14			

*表 (14) 至表 (17) α =0.05, d.f.=4,10

取,對四種 TCAs 的回收率也有相近的結果,顯示每次萃取之間也有不錯的再現性。

依據文獻報導^[47],以Amitriptyline為例,一般患者每日劑量約 75~300 mg,有效劑量為每日 150 mg,在血樣本中濃度範圍大約為 100 至 300 µg/L(0.36 µM~1.08 µM),若在血漿中的濃度超過 500 µg/L (1.80 µM),則會有中毒的現象產生。本方法對血漿中Amitriptyline 的偵測極限為 0.25 µM,因此本方法應適合直接應用於藥物動力學上 的探討,進行血漿中低濃度Amitriptyline的監測。

肆、結論

本研究利用管壁塗覆 PDMA 的毛細管和在緩衝溶液中添加β-環 糊精成功的分離九種結構相似的三環抗憂鬱劑,而且順利分離其中具 有幾何異構物與鏡像異構物的分析物。結合多孔洞中空纖維管為主的 液相微萃取方法進行樣品前處理,在水溶液樣品中可得到 0.01 μM~ 0.5 μM TCAs 的偵測極限,在血漿中可得到 0.25 μM~0.8 μM 的偵測 極限。TCAs 在血漿中的回收率大於 93 %,相對標準偏差小於 5.5 %。

文獻中分離TCAs大部分都是利用非水相毛細管電泳,本研究所 發展的以多孔洞中空纖維管為主的液相微萃取配合毛細管電泳分析 方法,最大優點是不需在緩衝溶液中添加有機溶劑即可分離九種三環 抗憂鬱劑,液相微萃取時一次所需的有機溶劑也低於 10 μL,不僅節 省成本也減少廢液產生。在偵測方面,本實驗所提出的CE-UV偵測配 合液相微萃取處理,靈敏度足以直接應用於藥物動力學上分析 TCAs。近年來多孔洞中空纖維管為主的液相微萃取的技術越趨成熟 ⁽⁹⁹⁾,不同的模式逐漸被開發,依分析物種類可選擇適合的萃取裝置 或萃取模式進行實驗,配合CE-UV偵測器應該可以得到更佳的偵測靈 敏度。

行政院衛生署統計資料顯示,每十萬人口因憂鬱症自殺的死亡率 從民國八十七年的7.561 增加到民國九十一年的9.99,憂鬱症對人類

96

的影響越趨嚴重,希望此分析方法能對抗憂鬱劑藥物的分析檢測有所 助益。

伍、參考文獻

- 1. A. Tiselius, Trans Faraday Soc., 23 (1937) 524-531
- 2. S. Hjerten, Chromatoger. Rev., 9 (1967) 122-239
- 3. R. Virtenen, Acta Polytech. Scand., 123 (1974) 1-67
- 4. J. W. Jorgenson, K. D. Lukacs., Anal. Chem., 53 (1981) 1298-1302
- 5. J. W. Jorgenson, K. D. Lukacs., Science., 222 (1983) 266-272
- S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, *Anal. Chem.*, 56 (1984) 111-113
- 7. T. Tsuda, Anal. Chem., 59 (1987) 521-523
- 8. S. Hjerten, M. D. Zhu, J. Chromatogr., 346 (1985) 265-270
- 9.A. S. Cohen, B. L. Karger, J. Chromatogr., 397 (1987) 409-417
- 10. D. J. Rose, J. W. Jorgenson, Anal. Chem., 60 (1988) 642-648
- 11. D. Figeys, D. Pinto, Anal. Chem., 72 (2000) 330A-335A
- D. R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Anal. Chem., 74 (2002) 2623-2636
- P.-A. Auroux, D. Iossifidis, A. Manz, Anal. Chem., 74 (2002)
 2637-2652
- 14. J. C. Touchstone, J. Liq. Chromatogr., 16 (1993) 1647-1665
- I. S. Lurie, R. F. X. Klein, T. A. D. Cason, M. J. LeBelle, R.
 Brenneisen, R. E. Weinberger, *Anal. Chem.*, 66 (1994) 4019-4026
- C. A. Kuffner, E. Marchi, J. M. Morgado, C. R. Rubio, *Anal. Chem.*,
 68 (1996) 241A-246A

- 17. Z. K. Shihabi, J. Chromatogr. A, 853 (1999) 349-354
- K. Bächmann, J. Boden, I. Haumann, J. Chromatogr. A, 626 (1992)
 259-265
- 19. Y. C. Chao, C. W. Whang, J. Chromatogr. A, 663 (1994) 229-237
- 20. E. D. Zlotorzynska, J. F. Dlouhy, J. Chromatogr. A, 685 (1994) 145-153
- 21. J. Schneede, P. M. Ueland, Anal. Chem., 67 (1995) 812-819
- 22. D. F. Swaile, M. J. Sepaniak, Anal. Chem., 63 (1991) 179-184
- 23. B. L. Hogan, E. S. Yeung, Anal. Chem., 64 (1992) 2841-2845
- 24. V. Dolinĺk, J. Dolnĺková, J. Chromatogr. A, 716 (1995) 269-277
- 25. J.Cai, J. Henion, J. Chromatogr. A, 703 (1995) 667-692
- 26. S. Y. Chang, E. S. Yeung, Anal. Chem., 69 (1997) 2251-2257
- 27. G. Ewing, R. A. Wallingford, T. M. Clefirowicz, Anal. Chem., 61 (1989) 292A-303A
- 28. A. Cohen, B. L. Karger, J. Chromatogr., 397 (1987) 409-417
- 29. X. Huang, M. J. Gordon, R. N. Zare, Anal. Chem., 60 (1988) 375-377
- 30. M. Deml, F. Foret, P. Boček, J. Chromatogr., 320 (1985) 159-165
- 31. T. Tsuda, T. Mizuno, J. Akiyama, Anal. Chem., 59 (1987) 799-800
- 32. R. A. Wallingford, A. G. Ewing, Anal. Chem., 59 (1987) 678-681
- 33. Y. Xue, E. S. Yeung, Anal. Chem., 65 (1993) 1988-1993
- 34. J. P. Chervet, R. E. J. Van Soest, M. Ursem, J. Chromatogr., 543

(1991) 439-449

- 35. S. E. Moring, R. T. Reel, R. E. J. Van Soest, *Anal. Chem.*, 65 (1993) 3454-3459
- 36. Y. Xue, E. S. Yeung, Anal. Chem., 65 (1993) 2923-2927
- M. Albin, R. Weinberger, E. Sapp, S. Moring, *Anal. Chem.*, 63 (1991)
 417-422
- 38. E. Gassmann, J. E. Kuo, R. N. Zare, Science., 230 (1985) 813-814
- 39. X. Huang, R. N. Zare, Anal. Chem., 63 (1991) 2193-2196
- 40. L. A. Colón, R. Dadoo, R. N. Zare, Anal. Chem., 65 (1993) 476-481
- 41. T. M. Olefirowicz, A. G. Ewing, J. Chromatogr., 499 (1990) 713-719
- 42. W. Jin, J. Zhang, J. Chromatogr. A, 868 (2000) 101-107
- 43. X. Huang, R. N. Zare, Anal. Chem., 63 (1991) 189-192
- 44. C. W. Whang, I. C. Chen, Anal. Chem., 64 (1992) 2461-2464
- 45. A. G. Ewing, J. M. Mesaros, P. F. G.avin, *Anal. Chem.*, 66 (1994) 527A-537A
- 46. W. F. Nielen, J. Chromatogr., 608 (1992) 85-92
- 47. 臺北市立中興醫院,中興藥訊第八期,93年12月
- 48. 東元綜合醫院藥劑部,電子藥訊第4期,93年8月
- 49. 國家衛生研究院電子報第 16 期, 92 年 10 月
- 50. 謝宜倫, 生達藥刊第71 期, 94 年 5 月
- 51. 朱麗玲, 奇美醫訊第66 期, 93 年 6 月
- 52. S. H. Preskorn, R. C. Dorey, G. S. Jerkovich, *Clin. Chem.*, 34 (1988) 822-826
- 53. A. Araujo, R. C. Pedroso, *Revista Brasileira de Cienias Farmaceuticas*, 37 (2001) 321-328
- 54. R. Torre, J. Ortuno, J.Pascual, S. Gonzana, J. Ballesta, *Therapeutic Drug Monitoring*, 20 (1998) 340-346
- 55. F. Sporkert, F. Pragst, *Forensic SciencE International*, 107 (2000)129-148
- 56. A. Gasgupta, A.P. Hart, J. Chromatogr. B, 693 (1997) 101-107
- 57. X. P. Lee, T. Kumazawa, K. Sato, S. Osamu, J. Chromatogr.Sci., 35 (1997) 302-308
- 58. R. Theurillat, W. Thormann, *J. Pharm. Biomed. Anal.*, 18 (1998) 751-760
- H. Yoshida, K. Hidaka, J. Ishida, H. Yoshikuni, H. Nohta, M. Yamaguchi, *Anal. Chim. Acta*, 413 (2000) 137-145
- 60. M. Z. Kagan, J. Chromatogr. A, 918 (2001) 293-302
- 61. J. Karpinska, B. Starczewska, J. Pharm. Biomed. Anal., 29 (2002) 519-525
- 62. M. Kollroser, C. Schober, *Therapeutic Drug Monitoring*, 24 (2002) 537-544
- M. J. Ruiz-Angel, S. Carda-Broch, E. F. Simo-Alfonso, M.C.
 Garcia-Alvarez-Coque, J. Pharm. Biomed. Anal., 32 (2003) 71-84
- 64. J. Trocewicz, J. Chromatogr. B, 801 (2004) 213-220
- 65. K. Salomon, Dean S. Burgi, John C. Helmer, J. Chromatogr. A, 549 (1991) 375-385

- 66. B. J. Spencer, Z. Wenbin, C. P. William, *Electrophoresis*, 18 (1997) 736-744
- 67. C. W. Harrell, A. Shahab, D. Joykrishna, P. Joe, M. W. Isiah, *Electrophoresis*, 19 (1998) 712-718
- 68. X. F. Li, C. S. Liu, R. Pieter, Jr. Eugene, C. E. Cerniglia, N. J. Dovichi, *Electrophoresis*, 19 (1998) 3178-3182
- 69. X. F. Li, C. S. Liu, R. Pieter, Jr. Eugene, C. E. Cerniglia, N. J. Dovichi, *Electrophoresis*, 19 (1998) 3183-3189
- 70. J. R. Veraaer, J. Chromatogr. A, 922 (2001) 339-346
- 71. D. A. Caterina, J. Pharm. Biomed. Anal., 30 (2002) 341-350
- 72. D. C. Marcelo, S. Hillebrand, F. M. Lancas, E. Carrilho, J. Chromatogr. B, 799 (2004) 127-132
- 73. M. A. Jeannot, F. Cantwell, Anal. Chem., 68 (1996) 2236-2240
- 74. M. A. Jeannot, F. Cantwell, Anal. Chem., 69 (1997) 235-239
- 75. V. He, H. E. Lee, Anal. Chem., 69 (1997) 4634-4640
- 76. L. Zhao, H. K. Lee, J. Chromatogr. A, 919 (2001) 381-388
- 77. S. Pedersen-Bjergarrd, K. E. Rasmussen, *Anal. Chem.*, 71 (1999) 2650-2656
- 78. S. Pedersen-Bjergarrd, K. E. Rasmussen, *Electrophoresis*, 21 (2000)579-585
- 79. T. S. Ho, T. G. Havorsen, S. Pedersen-Bjergarrd, K. E. Rasmussen, J. Chromatogr. A, 998 (2003) 61-72
- 80. L. Zhao, L. Zhu, H. K. Lee, Anal. Chem., 74 (2002) 2486-2492

- 81. S. Andersen, T. G. Havorsen, S. Pedersen-Bjergarrd, K. E. Rasmussen,L. Tanum, H. Refsum, *J. Pharm. Biomed. Anal.*, 33 (2003) 263-270
- 82. S. Mûller, M. Möder, S. Schrader, P. Popp, J. Chromatogr. A, 985
 (2003) 99-106
- T. G. Havorsen, S. Pedersen-Bjergarrd, K. E. Rasmussen, J. Chromatogr. A, 909 (2001) 87-93
- 84. T. G. Havorsen, S. Pedersen-Bjergarrd, K. E. Rasmussen, J. *Chromatogr. B*, 760 (2001) 219-224
- 85. L. Zhao, L. Zhu, H. K. Lee, J. Chromatogr. A, 924 (2001) 407-414
- 86. C. Basheer, H. K. Lee, J. P. Obbard, *J. Chromatogr. A*, 968 (2002) 191-199
- 87. L. Hou, G. Shen, H. K. Lee, J. Chromatogr. A, 985 (2003) 107-116
- 88. S. Hjerten, J. Chromatogr., 347 (1985) 191-198
- K. A. Cobb, V. Dolnik, M. Novotny, Anal. Chem., 62 (1990)
 2478-2483
- 90. G. Bruin, J. Chang, R Kuhlman, K. Zegers, J. Kraak, H. Poppe, J. *Chromatogr.*, 471 (1989) 429-436
- 91. W. Hong, M. Öhman, L. G. Blomberg, J. Chromatogr. A, 924 (2001)
 59-70
- 92. Villiers, A. Compt. Rend. Acad. Sci., 112 (1891) 536-543
- 93. J. Szejtli, Starch, 33 (1981) 387-393
- 94. J. Szejtli, *Cyclodextrin and their inclusion complexs*, Akademial kiado, Budapest, 1982.

- 95. 郭景鴻. 環聚糊精衍生物腔包現象螢光性質的研究, 東海大學碩 士論文, 台中, 1991.
- 96. I. Jelinek, J. Snopek, J. Chromatogr., 405 (1987) 379-384
- 97. J. Snopek, I. Jelinek, J. Chromatogr., 411 (1987) 153-159
- 98. I. Lui, K. A. Cobb, J. Chromatogr., 519 (1990) 189-197
- 99. K. E. Rasmussen, S. Pedersen-Bjergarrd, *Trend in Anal. Chem.*, 23 (2004) 1-10
- 100. C. J. Dratton (Ed.), *Comprehensive Medicine Chemistry*, Pergamon Press, Oxford, 1990.