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Abstract

This article introduces a class of unbalanced experimental designs, called split-factorial

nested designs, which allow for the estmation of both response surface effects (fixed ef-

fects of crossed factors) and variance components arising from nested random effects. An

iterated least squared (ITLS) method using sufficient statistics is given for calculating max-

imum likelihood estimates (ML) of the parameters in a mixed model. Simulation results

show that advantages for the unbalanced designs are greatest when error variance is small.

Key Words: central composite design; iterated least squares; variance components.
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1 Introduction

In many experimental settings, the measured response is affected not only by the fixed

effects of crossed factors, but also by the random effects (usually nested) of sampling and

measurement procedures. The fixed effect estimates can be used to optimize the process,

and knowing which variance source (variance component) is largest could help to focus

quality improvement of the process. Such estimation is necessiated by the need to indentify

various sources of variations, which is required to be controlled to improve the quality of the

final product. For example, in an experiment to study certain critical dimension of molded

part, machine settings such as mold zone temperatures, or screw speed could be the crossed

factors of interest while shift-to-shift variation, part-to-part variation, and measurement-to-

measurement variation might be the random effect. Balanced nested designs is usually used

for this purpose, owing to its simplicity for statistical analysis. However, balanced nested

designs have a defect in yielding more information on the lower level factors than on the

leading factors, which are higher in hierarchy. To eliminate this defect, we consider designs

that are mixtures of structures (Sq)2, (Sq)1 and (Sq)2/1 shown as tree diagrams in Figure

1. A nested design with q second-stage units will be denoted as (Hq)x,w,z, where x, w, and

z are the numbers of (Sq)2, (Sq)1 and (Sq)2/1 structures, respectively. Note that (Sq)2 and

(Sq)1 structures are balanced with two replicates and one replicate per second-stage unit,

respectively. Notation for those designs which include only structures of (Sq)2 and (Sq)1

will be (Hq)x,w, the omitted subscript z being understood to be zero. Also, (H2)0,0,z and

(H2)x,w are three-stage Bainbridge (1963) and Anderson (1961) designs, respectively. For

the estimation of response surface effects, the fixed effects of crossed factors are often studied

with a 2k, 3k factorial design or central composite design (ccd, see Myers and Montgomery

(1995)), where k is the number of crossed factors (denoted as A1, . . . , Ak). Both crossed
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Figure 1: Digrams of (Hq)x,w,z designs with q = 2, 3, 4.

factor effects and variance components could be estimated by performing a (Hq)x,w,z nested

design at each design point in a factorial design or ccd. However, this would require many

obervations, which often is not feasible or economical. For example, for ccd, the crossed factor

design points are the 2k factorial points augmented by 2k axial and nc central points of the

cube, which would require N = (q(2x+w + z)+ [q/2]z)× (2k +2k +nc) observations, where

[m] is the greatest integer ≤ m. To reduce the number of observations, we construct a split-

factorial nested design by taking a (Hq)x,0, (Hq)0,w or (Hq)0,0.z design at each crossed factor

design point. Our approach is motivated by the designs proposed by Bruce et al. (2002).

In their article, a methodology for designing a split factorial experiment is introduced for a

2k factorial design and q = 2d (where d is an integer) variance components associated with

nested random effects. The design points are split into q sub-experiments by d blocking

generators such that the sub-experiments gathers information on only one of the q variance

components, i.e., in the ith (i = 1, . . . , q) sub-experiment, a nested structure that branches

only at the ith level (into n branches, say) will be run at each of 2k−d design points. Under
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this designs, they showed that the ordinary least squared (OLS) estimator for fixed effects are

BLUE and the variance component estimators from the mean squared errors on the ANOVA

table are also minimum variance among unbiased quadratic estimators. In this note, similar

approaches would be implemented to ccd. For example, for ccd, a blocking generator can be

used to split the 2k factorial points into 2 sub-experiments, each with a (Hq)x,0 or (Hq)0,w

nested design. Similarly, we can use an even number of nc and split the axial and central

points into 2 sub-experiments. When w = 2x, the total observation N is reduced by half.

Table 1 shows a split-factorial nested design (denoted by 1
2
(Hq)x,0 + 1

2
(Hq)0,w) with crossed

factor design points from ccd (k = 3, nc = 4 and blocking generator B = A1A2A3). Note

that design points 1 through 8 denote 2k factorial points, points 9 through 14 denote the

axial points and points 15 through 18 denote the central points.

A response model for a split-factorial nested design is

Y = Xb + u, (1.1)

where Y is an N×1 vector of observations, X is an N×p matrix of estimable response surface

contrasts including a constant column, b is a vector of p unknown coefficient parameter;

u = Z1u1+. . .+Zcuc+e, ui ∼ N(0, σ2
i Imi

) for i = 1, . . . , c, e ∼ N(0, σ2
eIN); ui for i = 1, . . . , c

and e are all independent of one another. Thus, u ∼ N(0,V), with V =
∑c

i=1 σ2
i Gi + σ2

eIN

where Gi = ZiZi
T for i = 1, . . . , c. Note that Zi (i = 1, . . . , c) is an N × mi indicator

matrix associated with the ith variance component and ui is a mi × 1 vector consisting of

normally distributed independent random effect parameters associated with the ith variance

components. Note that for a three-stage nested design c is equal to 2.

Now, let θT = (bT, θT
2 ) where θT

2 = (σ2
1, . . . , σ

2
c , σ

2
e). In Section 2, an iterated least

squared method is proposed for calculating maximum likelihood (ML) estimation of θ in

model (1.1).
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Table 1: A split-factorial nested design 1
2
(Hq)x,0 + 1

2
(Hq)0,w with crossed factor design points

from ccd (k = 3, nc = 4 and B = A1A2A3)

TRT Design Point A1 A2 A3 B sub-exp.

1 1 -1 -1 -1 -1 (Hq)0,w

2 2 -1 -1 1 1 (Hq)x,0

3 3 -1 1 1 -1 (Hq)0,w

4 4 -1 1 -1 1 (Hq)x,0

5 5 1 -1 1 -1 (Hq)0,w

6 6 1 -1 -1 1 (Hq)x,0

7 7 1 1 -1 -1 (Hq)0,w

8 8 1 1 1 1 (Hq)x,0

9 9 -1.732 0 0 - (Hq)0,w

10 10 1.732 0 0 - (Hq)x,0

11 11 0 -1.732 0 - (Hq)0,w

12 12 0 1.732 0 - (Hq)x,0

13 13 0 0 -1.732 - (Hq)0,w

14 14 0 0 1.732 - (Hq)x,0

15 15 0 0 0 - (Hq)0,w

15 16 0 0 0 - (Hq)x,0

15 17 0 0 0 - (Hq)0,w

15 18 0 0 0 - (Hq)x,0
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2 Maximum likelihood estimation using ITLS

The non-linear estimation procedure used to obtain ML estimates in a split-factorial nested

desing is known as iterated least squares, denoted by ITLS (see Anderson 1961). What fol-

lows is a general discussion of the ITLS procedure. Briefly, the method consists of obtaining

from the data a set of linear statistics S1 needed to estimate b and a set of quadratic “statis-

tics” S2 (i.e., “pivotal quantities”, some of which may depend on b) needed to estimate the

variance components θ2. Let S = (ST
1 ,ST

2 )T and V ar(S) = Σ =

 Σ11 Σ12

Σ21 Σ22

.

We shall choose S1 and S2 such that Σ12 = Σ21 = 0. Note that this can always be

achieved because we could choose S1 = Y and S2 = vech(Q) to be a vector which contains

the elements from the upper triangle of Q = (Y−Xb)(Y−Xb)T . Next, let H be a matrix

of constants such that E(S) = Hθ. The ITLS estimator of θ (denoted by θ̂) proposed by

Anderson (1961) is the solution to the equation HTΣ−1Hθ = HTΣ−1S. It is proved by

Goldstein (1986) that the ITLS solution is ML if S1 and S2 are as we have just described

(provided that the ITLS solution is contained within the parameter space). However, the

ITLS method is most useful when we can use an orthogonal transformation to reduce the

number of elements in S1 and S2 to a smaller set of sufficient statistics. It is claimed by

Jennrich and Moore (1975) that if S contains the sufficient statistics for b, given the variance

components, and the sufficient statistics for the variance components, given b, then the ITLS

method will yield ML estimates. This is proved in Appendix under normality assumptions.

For a split-factorial p(Hq)x,0+(1−p)(Hq)0,w (0 ≤ p ≤ 1) design, S can be chosen such that

V ar(S) is diagonal. For example, consider the design given in Table 1. Let n1 and n2 be the

number of crossed factor points with a (Hq)0,w and (Hq)x,0 design, respectively. Let nc1 and

nc2 be the number of central points with a (Hq)0,w and (Hq)x,0 design, respectively; Consider
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the example given in Table 1. For i = 1, . . . , 14, let ȳi denote the mean of observations from

the ith design point of Table 1. Let ȳc1 denote the mean of observations from the 15th and

17th design point of Table 1 (i.e., the central points with a (Hq)0,w design). Similarly, let

ȳc2 denote the mean of observations from the 16th and 18th design point of Table 1 (i.e., the

central points with a (Hq)x,0 design). Let µi(b) (i = 1, . . . , 18) denotes the mean of the ith

design point, which is is a function of b. Note that µ15(b) = · · · = µ18(b), which are the mean

of central points. Let SSA1 and SSB1 denote the sum of squares for first-stage and second-

stage, repectively from the sub-experiment with (Hq)0,w designs. Let SSA2 and SSB2 and

SSE2 denote the sum of squares for first-stage, second-stage and error, respectively, from

the sub-experiment with (Hq)x,0 designs. Let E1 = qσ2
1 + σ2

2 + σ2
e , E2 = 2qσ2

1 + 2σ2
2 + σ2

e ,

E3 = σ2
2 + σ2

e , and E4 = 2σ2
2 + σ2

e . For a 1
2
(Hq)x,0 + 1

2
(Hq)0,w design described in Table 1,

the linear statistics for estimation of b and the quadratic statistics for estimation of variance

components θ2 along with their degrees of freedom, expectations and variances are shown

in Table 2. Thus, the statistics S = (ST
1 ,ST

2 )T is given by S1 = (ȳ1, . . . , ȳc1 , ȳc2)
T , and S2 =

(qw(ȳ1 − µ1)
2, . . . , 2nc2qx(ȳc2 − µ15)

2, SSA1, SSA2, . . . , SSE2)
T . Suppose that the response

data is fitted using a second-order model with b = (b0, b1, b2, b3, b11, b22, b33, b12, b13, b23)
T .

Thus, E[S1] = H1b, E[S2] = H2θ2, and

H =

 H1 0

0 H2

, where

H1 =



1 −1 −1 −1 1 1 1 1 1 1

1 −1 −1 1 1 1 1 1 −1 −1

. . . . . . . . . .

. . . . . . . . . .

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0


,
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and

H2 =



q 1 1

2q 2 1

. . .

. . .

q 1 1

2q 2 1

n1(w − 1)q n1(w − 1) n1(w − 1)

2n2(x− 1)q 2n2(x− 1) n2(x− 1)

0 n1w(q − 1) n1w(q − 1)

0 2n2x(q − 1) n2x(q − 1)

0 0 n2xq



.

Also, V ar(S) = Σ =

 Σ11 0

0 Σ22

 where Σ11 = Diag(v1, v2, . . . , v1, v2, v3, v4) and

Σ22 = Diag(v5, v6, . . . , v5, v6, v7, v8, v9, v10, v11).
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Table 2: Table 2. Linear and quadratic statistics for a 1
2
(Hq)x,0 + 1

2
(Hq)0,w design

Statistic df Expectation V ariance

ȳ1 - µ1(b) E1/wq = v1

ȳ2 - µ2(b) E2/2xq = v2

. . . .

. . . .

ȳ13 - µ13(b) E1/wq = v1

ȳ14 - µ14(b) E2/2xq = v2

ȳc1 - µ15(b) E1/nc1wq = v3

ȳc2 - µ15(b) E2/2nc2xq = v4

qw(ȳ1 − µ1(b))2 1 E1 2E2
1 = v5

2qx(ȳ2 − µ2(b))2 1 E2 2E2
2 = v6

. . . .

. . . .

qw(ȳ13 − µ13(b))2 1 E1 2E2
1 = v5

2qx(ȳ14 − µ14(b))2 1 E2 2E2
2 = v6

nc1qw(ȳc1 − µ15(b))2 1 E1 2E2
1 = v5

2nc2qx(ȳc2 − µ15(b))2 1 E2 2E2
2 = v6

SSA1 n1(w − 1) n1(w − 1)E1 2n1(w − 1)E2
1 = v7

SSA2 n2(x− 1) n2(x− 1)E2 2n2(x− 1)E2
2 = v8

SSB1 n1w(q − 1) n1w(q − 1)E3 2n1w(q − 1)E2
3 = v9

SSB2 n2x(q − 1) n2x(q − 1)E4 2n2x(q − 1)E2
4 = v10

SSE2 n2xq n2xqσ2
e 2n2xqσ4

e = v11
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Similar to Table 1, a split-factorial 1
2
(Hq)0,0,z + 1

2
(Hq)0,w design can be constructed by

replacing (Hq)x,0 of Table 1 with (Hq)0,0,z. For this case, S can not be chosen such that

V ar(S) is diagonal. To illustrate how to expediently handle a case with z 6= 0, consider

a (H4)0,0,z design. Let yijkl denote the lth measurement of the kth second stage unit from

the jth first stage unit in the ith design point. Allocate subscripts k = 1, 2, 3, 4 to the

second stage units left to right as they appear in the (S4)2/1 structure (Figure 1). For

the ith (i = 2, 4, . . . , 18) design point of Table 1, define y∗ij1 = yij11 + yij12 + yij21 + yij22,

y∗ij2 = yij31 +yij41, and a 2×2 matrix Ti =

 Ti11 Ti12

Ti12 Ti22

 , where Ti11 =
∑

j[y
∗
ij1−4µi(b)]2,

Ti12 =
∑

j[(y
∗
ij1 − 4µi(b))(y∗ij2 − 2µi(b))], Ti22 =

∑
j[y

∗
ij2 − 2µi(b)]2. Then

E[Ti] = ET = z

 E11 E12

E12 E22

 ,

where E11 = 16σ2
1 + 8σ2

2 + 4σ2
e , E12 = 8σ2

1, and E22 = 4σ2
1 + 2σ2

2 + 2σ2
e . Since Ti (i =

2, 4, . . . , 18) is a Wishart matrix with z degrees of freedom, we have

V ar(Ti) = ΣT =


2zE2

11 2zE11E12 2zE2
12

2zE11E12 z(E11E22 + E2
12) 2zE12E22

2zE2
12 2zE12E22 2zE2

22

 .

Define SSB2(2/1) =
∑

i

∑
j[yij11 + yij12 − yij21 − yij22]

2/4, SSB1(2/1) =
∑

i

∑
j[yij31 −

yij41]
2/2, and SSE2(2/1) =

∑
i

∑
j[(yij11−yij12)

2 +(yij21−yij22)
2]/4. Note that SSB2(2/1) and

SSB1(2/1) are sum of squares due to second stage units for sets with one replicate and two

replicates, respectively. Clearly, SSBs(2/1), s = 1, 2, is distributed as a chi-squared random

variable with n2z degrees of freedom multiplied by sσ2
2 + σ2

e and SSE2(2/1) is distributed

as a chi-squared random variable with 2n2z degrees of freedom multiplied by σ2
e . Let ȳ∗is

(i = 2, 4, . . . , 14;s = 1, 2) denote the mean of observations from y∗ijs; ȳ∗c2s
(s = 1, 2) denote the

mean of observations from y∗16js and y∗18js (i.e., central design points), and Tc2 = T16 + T18.
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For a 1
2
(H4)0,0,z + 1

2
(Hq)0,w design described above, the linear and quadratic statistics are

shown in Table 3. Based on Table 3, the statistics S, and its corresponding matrix H and

covariance matrix Σ can be obtained.
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Table 3. Linear and quadratic statistics for a 1
2
(Hq)0,0,z + 1

2
(Hq)0,w design

Statistic df Expectation V ariance

ȳ1 - µ1(b) E1/wq

ȳ∗21 - µ2(b) E11/16

ȳ∗22 - µ2(b) E22/4

. . . .

. . . .

ȳ13 - µ13(b) E1/wq

ȳ∗141 - µ14(b) E11/16

ȳ∗142 - µ14(b) E22/4

ȳc1 - µ15(b) E1/nc1wq

ȳ∗c21 - µ15(b) E11/16nc2

ȳ∗c22 - µ15(b) E22/4nc2

qw(ȳ1 − µ1(b))2 1 E1 2E2
1

T2 z ET ΣT

. . . .

. . . .

qw(ȳ13 − µ13(b))2 1 E1 2E2
1

T14 z ET ΣT

nc1qw(ȳc1 − µ15(b))2 1 E1 2E2
1

Tc2 nc2z nc2ET nc2ΣT

SSA1 n1(w − 1) n1(w − 1)E1 2n1(w − 1)E2
1

SSB1 n1w(q − 1) n1w(q − 1)E3 2n1w(q − 1)E2
3

SSB2(2/1) n2z n2zE4 2n2zE
2
4

SSB1(2/1) n2z n2zE3 2n2zE
2
3

SSE2(1/1) 2n2z 2n2zσ
2
e 4n2zσ

4
e
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3 Simulation Results

Using the ITLS procedure outlined above, simulation results were obtained for the split-

factorial nested designs p(Hq)x,0+(1−p)(Hq)0,w and p(Hq)0,0,z +(1−p)(Hq)0,w as described

in Table 2 and Table 3, respectively. Several SAS IML (SAS Institute, Inc. 2003) programs

were constructed to compute 5000 sets of ML estimates θ̂ = (b̂T , σ̂2
1, σ̂

2
2, σ̂

2
e)

T . Our computed

results were for k = 3 , nc = 4 (2k + 2k + nc = 18) and N = 72, 108, 144. For N = 72 (i.e.,

four observations per design point), the designs studied include 1
2
(H2)1,0 + 1

2
(H2)0,2 and

(H2)1,0 designs. For N = 108 (i.e., six observations per design point), the designs studied

include 1
2
(H4)0,0,1 + 1

2
(H3)0,2,

1
2
(H3)1,0 + 1

2
(H3)0,2, and (H3)1,0 designs. For N = 144

(i.e., eight observations per design point) the designs studied include 1
2
(H2)2,0 + 1

2
(H2)0,4,

1
2
(H4)1,0 + 1

2
(H4)0,2, (H2)2,0 and (H4)1,0 designs. The values of parameter b were chosen

based on an application dealing with effects on cracking of titanium alloy (see Exercise 6.5

of Myers and Montgomery (1995), page 269). The three factors are pouring temperature

(A1), titanium content (A2) and amount of grain refiner (A3). The design of crossed factor

effects are the same as listed in Table 1. The response data is fitted using a second-order

model. The estimated coefficients are then used as parameter values of b, which are b0 =

1.27003, b1 = −0.167164, b2 = −0.077662, b3 = 0.117, b11 = 0.060953, b12 = 0.0425,

b22 = 0.059286, b13 = −0.06, b23 = −0.0575, and b33 = 0.042619. The values of variance

components were chosen to give six sets of combination with (σ2
1, σ

2
2, σ

2
e) = (0.2, 0.4, 0.8),

(0.2, 0.8, 0.4), . . . , (0.8, 0.4, 0.2). Table 3 lists the simulated mean squared error (MSE) of

σ̂2
1, σ̂2

2 and σ̂2
e , (denoted by M(σ̂2

1), M(σ̂2
2) and M(σ̂2

e), respectively), and sum of the three

MSEs (denoted by M(θ̂2)). Table 3 also lists the sum of the simulated MSE of b̂0, b̂1, . . . , b̂23

(denoted by M(b)). Based on the simulation results of Table 3, we conclude that:

(i) Given N , for most of cases studied, the 1
2
(Hq)x,0 + 1

2
(Hq)0,w designs perform best for
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estimation of b.

(ii) Given N = 72, 144, if σ2
e/σ

2
i > 1 (i = 1, 2), then the balanced designs (H2)x,0 perform

best for estimation of θ2. However, if σ2
e/σ

2
i < 1 (i = 1, 2), then the 1

2
(H2)x,0 + 1

2
(H2)0,w

designs perform best. Increased efficiency for use of 1
2
(H2)x,0 + 1

2
(H2)0,w designs is largest

when σ2
1 is the largest.

(iii) Given N = 108, if σ2
e/σ

2
i > 1 (i = 1, 2), then the balanced design (H3)1,0 performs best

for estimation of θ2. However, if σ2
e/σ

2
i < 1 (i = 1, 2), then the 1

2
(H3)1,0 + 1

2
(H3)0,2 design

performs best. In this case, we found no advantage for the 1
2
(H4)0,0,1 + 1

2
(H3)0,2 design.
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Table 4. Simulated mean squared error of the ML estimate of θ̂

σ2
1 σ2

2 σ2
e N Design M(σ̂2

1) M(σ̂2
2) M(σ̂2

e) M(θ̂2) M(b̂)

0.2 0.4 0.8 72 1
2
(H2)1,0 + 1

2
(H2)0,2 0.065 0.179 0.297 0.541 0.699

0.2 0.4 0.8 72 (H2)1,0(balanced) 0.039 0.062 0.035 0.135 0.721

0.2 0.8 0.4 72 1
2
(H2)1,0 + 1

2
(H2)0,2 0.037 0.108 0.046 0.190 1.186

0.2 0.8 0.4 72 (H2)1,0(balanced) 0.038 0.093 0.009 0.140 1.165

0.4 0.2 0.8 72 1
2
(H2)1,0 + 1

2
(H2)0,2 0.147 0.121 0.246 0.514 0.720

0.4 0.2 0.8 72 (H2)1,0(balanced) 0.138 0.030 0.033 0.202 0.747

0.4 0.8 0.2 72 1
2
(H2)1,0 + 1

2
(H2)0,2 0.109 0.058 0.005 0.171 1.188

0.4 0.8 0.2 72 (H2)1,0(balanced) 0.139 0.071 0.002 0.212 1.370

0.8 0.2 0.4 72 1
2
(H2)1,0 + 1

2
(H2)0,2 0.254 0.026 0.022 0.303 0.807

0.8 0.2 0.4 72 (H2)1,0(balanced) 0.416 0.017 0.008 0.441 1.048

0.8 0.4 0.2 72 1
2
(H2)1,0 + 1

2
(H2)0,2 0.252 0.026 0.005 0.283 0.937

0.8 0.4 0.2 72 (H2)1,0(balanced) 0.437 0.025 0.002 0.464 1.211

0.2 0.4 0.8 108 1
2
(H4)0,0,1 + 1

2
(H3)0,2 0.123 0.095 0.070 0.288 0.607

0.2 0.4 0.8 108 1
2
(H3)1,0 + 1

2
(H3)0,2 0.042 0.089 0.126 0.257 0.561

0.2 0.4 0.8 108 (H3)1,0(balanced) 0.037 0.037 0.030 0.104 0.547

0.2 0.8 0.4 108 1
2
(H4)0,0,1 + 1

2
(H3)0,2 0.135 0.060 0.016 0.212 1.103

0.2 0.8 0.4 108 1
2
(H3)1,0 + 1

2
(H3)0,2 0.031 0.048 0.014 0.093 0.969

0.2 0.8 0.4 108 (H3)1,0(balanced) 0.038 0.051 0.008 0.097 0.992

0.4 0.2 0.8 108 1
2
(H4)0,0,1 + 1

2
(H3)0,2 0.145 0.092 0.064 0.302 0.553

0.4 0.2 0.8 108 1
2
(H3)1,0 + 1

2
(H3)0,2 0.103 0.053 0.090 0.246 0.561

0.4 0.2 0.8 108 (H3)1,0(balanced) 0.125 0.022 0.022 0.169 0.667

0.4 0.8 0.2 108 1
2
(H4)0,0,1 + 1

2
(H3)0,2 0.164 0.051 0.004 0.218 1.239

0.4 0.8 0.2 108 1
2
(H3)1,0 + 1

2
(H3)0,2 0.091 0.032 0.003 0.126 1.150

0.4 0.8 0.2 108 (H3)1,0(balanced) 0.135 0.038 0.002 0.175 1.188

0.8 0.2 0.4 108 1
2
(H4)0,0,1 + 1

2
(H3)0,2 0.221 0.090 0.015 0.326 0.726

0.8 0.2 0.4 108 1
2
(H3)1,0 + 1

2
(H3)0,2 0.209 0.014 0.011 0.234 0.740

0.8 0.2 0.4 108 (H3)1,0(balanced) 0.395 0.010 0.007 0.413 0.889

0.8 0.4 0.2 108 1
2
(H4)0,0,1 + 1

2
(H3)0,2 0.227 0.072 0.004 0.304 0.909

0.8 0.4 0.2 108 1
2
(H3)1,0 + 1

2
(H3)0,2 0.210 0.014 0.003 0.226 0.872

0.8 0.4 0.2 108 (H3)1,0(balanced) 0.414 0.014 0.002 0.430 1.032
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Table 4. (continued)

σ2
1 σ2

2 σ2
e N Design M(σ̂2

1) M(σ̂2
2) M(σ̂2

e) M(θ̂2) M(b̂)

0.2 0.4 0.8 144 1
2
(H2)2,0 + 1

2
(H2)0,4 0.025 0.047 0.034 0.106 0.410

0.2 0.4 0.8 144 (H2)2,0(balanced) 0.025 0.032 0.018 0.075 0.464

0.2 0.4 0.8 144 1
2
(H4)1,0 + 1

2
(H4)0,2 0.033 0.056 0.069 0.158 0.473

0.2 0.4 0.8 144 (H4)1,0(balanced) 0.035 0.026 0.017 0.077 0.553

0.2 0.8 0.4 144 1
2
(H2)2,0 + 1

2
(H2)0,4 0.025 0.042 0.009 0.077 0.860

0.2 0.8 0.4 144 (H2)2,0(balanced) 0.029 0.043 0.004 0.077 0.959

0.2 0.8 0.4 144 1
2
(H4)1,0 + 1

2
(H4)0,2 0.029 0.035 0.009 0.073 0.921

0.2 0.8 0.4 144 (H4)1,0(balanced) 0.036 0.034 0.004 0.075 1.040

0.4 0.2 0.8 144 1
2
(H2)2,0 + 1

2
(H2)0,4 0.050 0.030 0.028 0.108 0.344

0.4 0.2 0.8 144 (H2)2,0(balanced) 0.048 0.020 0.017 0.085 0.403

0.4 0.2 0.8 144 1
2
(H4)1,0 + 1

2
(H4)0,2 0.082 0.032 0.045 0.158 0.477

0.4 0.2 0.8 144 (H4)1,0(balanced) 0.115 0.015 0.016 0.146 0.599

0.4 0.8 0.2 144 1
2
(H2)2,0 + 1

2
(H2)0,4 0.054 0.033 0.002 0.089 0.955

0.4 0.8 0.2 144 (H2)2,0(balanced) 0.066 0.039 0.001 0.106 1.077

0.4 0.8 0.2 144 1
2
(H4)1,0 + 1

2
(H4)0,2 0.079 0.023 0.002 0.104 1.080

0.4 0.8 0.2 144 (H4)1,0(balanced) 0.126 0.027 0.001 0.154 1.249

0.8 0.2 0.4 144 1
2
(H2)2,0 + 1

2
(H2)0,4 0.079 0.013 0.008 0.099 0.413

0.8 0.2 0.4 144 (H2)2,0(balanced) 0.097 0.009 0.004 0.111 0.540

0.8 0.2 0.4 144 1
2
(H4)1,0 + 1

2
(H4)0,2 0.183 0.010 0.008 0.202 0.683

0.8 0.2 0.4 144 (H4)1,0(balanced) 0.355 0.007 0.004 0.366 0.947

0.8 0.4 0.2 144 1
2
(H2)2,0 + 1

2
(H2)0,4 0.081 0.013 0.002 0.096 0.539

0.8 0.4 0.2 144 (H2)2,0(balanced) 0.107 0.013 0.001 0.122 0.688

0.8 0.4 0.2 144 1
2
(H4)1,0 + 1

2
(H4)0,2 0.184 0.009 0.002 0.196 0.809

0.8 0.4 0.2 144 (H4)1,0(balanced) 0.371 0.009 0.001 0.381 1.093
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4 Discussion and Conclusion

However, the testing for lack-of-fit requires further investigation. In practice, it is not neces-

sary to split the factorial points into half as descirbed in Table 2 and Table 3. One can choose

different combination of the three structures, i.e., p1(Hq)x,0+p2(Hq)0,w+(1−p1−p2)(Hq)0,0,z,

where 0 ≤ pi ≤ 1. The optimal choices of q, pi x, w and z depend on the relative values of

the variance components and total sample size. Often there will be some prior data, or at

least some intuition, available concerning relative magnitudes of the variance components.

Then, based on the best prior information available, one can arrive at an optimal choice by

simulated MSEs of all possible designs.
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Appendix

Proof of equivalence of ITLS estimates and ML estimates

It is now shown that if S contains the sufficient statistics for b given the variance compo-

nents, and the sufficient statistics for the variance component given b, then the ITLS method

will yield maximum likelihood estimates under normality assumptions. Let the model be as

in (1.1) and let Z = [Z1,Z2, ...,Zc]. The log likelihood function for the multivariate normal

model is

2 log L = −tr
(
V−1Q

)
− log |V|+ constant,

where Q = (Y −Xb)(Y −Xb)T .

Let Pa be a matrix of orthonormal eigenvectors of Z(ZTZ)−ZT associated with the

eigenvalue one which has mutiplicity h and Pb be a matrix of orthonormal eignevectors

of Z(ZTZ)−ZT associated with the eigenvalue zero which has multiplicity N − h. Let

P = [Pa Pb] and Y∗ = PT (Y − E(Y)). Then

V∗ = PTVP = V ar(Y∗) =

 Da 0

0 Db


, where Db = σ2

c+1IN−h. Further simplification may not be possible for an arbitrary design,

but with a suitable choice of design it will be possible to choose Pa not dependent on θ2,
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but such that Da itself has the block diagonal structure

D1

. . .

Dl

Dl+1

. . .

Dl+r1

. . .

Dl+r1+r2

. . .

Dl+r1+...+ra


where for some integers l, r1, r2, . . . , ra, Di = PT

i VPi for i = 1, . . . , l + r1 + . . . + ra = k

(say), the Di for i > l are equal in groups, i.e.,

Dl+1 = . . . = Dl+r1 ,

Dl+r1+1 = . . . = Dl+r1+r2 ,

. .

. .

. .

Dl+r1+...+ra−1+1 = . . . = Dl+r1+...+ra

and E(PT
i Y) = E(Y∗

i ) = 0 for i > l.

Now let

Q∗ =

 Q∗
a 0

0 Q∗
b
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where

Q∗
a =


Q∗

11 . . . Q∗
1k

... . . .
...

Q∗
k1 . . . Q∗

kk



Q∗
b = PT

b [Y − E(Y)][Y − E(Y)]TPb

In (3) Q∗
ij = PT

i [Y − E(Y)][Y − E(Y)]TPj. Also put S = [ST
1 ST

2 ]T where

S1 =


PT

1 Y
...

PT
l Y

 ,S2 =



V ech(Q∗
11)

...

V ech(Q∗
ll)

V ech(Sr1)
...

V ech(Sra)

tr(Q∗
b)


,

Sr1 =
∑l+r1

i=l+1 PT
i YYTPi =

∑i=l+r1

i=l+1 Q∗
ii,

. .

. .

Sra =
∑i=l+r1...+ra

i=l+r1+...+ra−1+1 PT
i YYTPi =

∑i=l+r1+...+ra=k
i=l+r1+...+ra−1+1 Q∗

ii.

and Sri is a Wishart matrix with ri degrees of freedom (or a multiple of chi-square if Sri

is 1× 1) and tr(Q∗
b) is distributed as σ2

eχ
2
N−h.

Then S1,Sr1 , . . . ,Sra and tr(Q∗
b) are sufficient statistics for (bT, θT

2 ). To see this, note
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that the density function

f(Y) = (2π)0.5N |V|−0.5 exp[−0.5(Y −Xb)TV−1(Y −Xb)]

= (2π)−0.5N |V|−0.5 exp[−0.5(Y −Xb)TPV∗−1PT (Y −Xb)]

= (2π)−0.5N |V|−0.5 exp{−0.5[
k∑

i=1

(Y −Xb)TPiD
−1
i PT

i (Y −Xb)+

σ−2
e (Y −Xb)TPbP

T
b (Y −Xb)]}

= (2π)−0.5N |V|−0.5 exp{−0.5[
l∑

i=1

(Y −Xb)TPiD
−1
i PT

i (Y −Xb)+

k∑
i=l+1

YTPiD
−1
i PT

i Y + σ−2
c+1(Y −Xb)TPbP

T
b (Y −Xb)]}

= (2π)−0.5N |V|−0.5 exp{−0.5[
l∑

i=1

tr(D−1
i PT

i (Y −Xb)(Y −Xb)TPi)+

k∑
i=l+1

tr(D−1
i PT

i YYTPi) + σ−2
c+1tr(Q

∗
b)]}

= (2π)−0.5N |V|−0.5 exp{−0.5[
l∑

i=1

tr(D−1
i PT

i (Y −Xb)(Y −Xb)TPi)+

tr(D−1
l+r1

Sr1) + tr(D−1
l+r1+r2

Sr2) + . . . + tr(D−1
l+r1+...+ra

Sra) + σ−2
e tr(Q∗

b)]}

(1)

Thus, the density function depends on Y only through the statistics in S1,Sri
, for i =

1, . . . , a, and tr(Q∗
b). By the factorization criterion, S1,Sr1 , . . . ,Sra , and tr(Q∗

b) are joint

sufficient statistics for θ2 and b. Clearly, if b is known, the statistics Q∗
ii = PT

i (Y−Xb)(Y−

Xb)TPi (for i = 1, . . . , l) and Sr1 , . . . ,Sra ,

tr(Q∗
b) are sufficient for estimating the variance components (θ2). On the other hand, if the

variance components are known then the PT
i Y (for i = 1, . . . , l) are sufficient for b. Note

that the pivotal quantities, vech(Q∗
ii), for i = 1, . . . , l, contained in S2 depend on Y only
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through PT
i Y. The ITLS solution has to satisfy the following two equations.

b̂ = (HT
1 Σ−1

1 H1)
−1HT

1 Σ−1
1 S1 (A.1)

θ̂2 = (HT
2 Σ−1

2 H2)
−1HT

2 Σ−1
2 S2, (A.2)

where Σ1 = V ar(S1), E(S1) = H1b,Σ2 = V ar(S2) and

E(S2) = H2θ2 =



vech(D1)
...

vech(Dl)

vech(r1Dl+r1)
...

vech(raDl+r1+...+ra)

(N − h)σ2
e


Now log L = tr(V−1Q)− log|V|+ constant = tr(V∗−1Q∗)− log|V∗|+ constant.

The estimation equations for MLEs of b and θ2 are

∂L

∂b
= − ∂

∂b
tr(V∗−1Q∗) = 0 (A.3)

∂L

∂σ2
i

= − ∂

∂σ2
i

tr(V∗−1Q∗) + tr(V∗∂V∗−1

∂σ2
i

) = 0 (A.4)

for i = 1, . . . , c + 1

Equation (A.3) implies − ∂
∂b

tr(V∗−1Y∗Y∗T ) = 0

⇒ − ∂
∂b

tr(Y∗TV∗−1Y∗) = 0

⇒ − ∂
∂b

Y∗TV∗−1Y∗ = 0

⇒ − ∂
∂b

(S1 −H1b)TΣ−1
1 (S1 −H1b) = 0

⇒ b̂ = (H1Σ
−1
1 H1)

−1HT
1 Σ−1

1 S1

which is the same as (A.1). Equation (A.4) implies
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− ∂
∂σ2

i
tr(V∗−1Q∗

D) + tr(V∗ ∂V∗−1

∂σ2
i

) = 0 for i = 1, . . . , c, (A.5)

where

Q∗
D =

 Q∗
aD 0

0 Q∗
b

 , Q∗
aD =



Q∗
11 0

Q∗
22

.

.

.

0 Q∗
kk


,

Based on Goldstein’s (1986) result, solving (A.5) is equivalent to minimizing

G∗ = vech(Q∗
D −V∗)TΣ∗−1

2 vech(Q∗
D −V∗)

where Σ∗
2 = var[vech(Q∗

D)] Let E[vech(Q∗
D)] = vech(V∗) = H∗

2θ2. Now,

∂H∗

∂θ2
= 0

⇒ H∗T
2 Σ∗−1

2 H∗
2θ2 = H∗T

2 Σ∗−1
2 vech(Q∗

D)

⇒ HT
2 Σ−1

2 H2θ2 = HT
2 Σ−1

2 S2

⇒ θ̂2 = (HT
2 Σ−1

2 H2)
−1HT

2 Σ−1
2 S2, which is the same as (A.2).
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