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Abstract

It is an important research issue to deal with mixture models when missing

values occur in the data. In this paper, computational strategies using aux-

iliary indicator matrices are introduced for handling mixtures of multivariate

normal distributions in a more efficient manner, assuming that patterns of

missingness are arbitrary and missing at random. We develop a novelly struc-

tured EM algorithm which can dramatically save computation time and be

exploited in many applications, such as density estimation, supervised clus-

tering and prediction of missing values. In the aspect of multiple imputations

for missing data, we also offer a data augmentation scheme using the Gibbs

sampler. Our proposed methodologies are illustrated through some real data

sets with varying proportions of missing values.

Key words: Bayesian classifier; Data augmentation; EM algorithm; Incom-

plete features; Rao-Blackwellization.
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1. Introduction

Finite mixture models are known as powerful and flexible tools, which have

been fully developed and applied in various theoretic and real problems as they are

capable of modelling a wide range of densities, see monographs by Titterington et

al. (1985), McLachlan and Basford (1988) and McLachlan and Peel (2000). How-

ever, missing values frequently appear in many real-world multivariate data sets

that complicate data analyses and statistical inferences for practitioners. Missing

data imputation techniques under the assumption of multivariate normal model have

been well studied by Schafer (1997) and Liu (1999). In this decade, learning mixture

models from incomplete data becomes an important research issue in multivariate

analysis. The work on the use of Gaussian component was pioneered by Ghahra-

mani and Jordan (1994), denoted by GJ hereafter. They present how to implement

the Expectation- Maximization (EM) algorithm (Dempster et al. 1977) to compute

maximum likelihood (ML) estimates from multivariate data with arbitrary pattern

of missingness. They also compare the performance of EM imputation with a com-

mon mean imputation (MI) heuristic for the supervised classification of incomplete

features.

Due to rapid advance of computational developments, Bayesian sampling-based

approaches are usually considered as an alternative way in dealing with mixture

models. There are plenty of papers in the literature to address the problem of

fitting normal mixture models under Bayesian treatments. For example, Diebolt

and Robert (1994) employ the data augmentation (DA) technique of Tanner and

Wong (1987) as an approximation method for evaluating the posterior distribution
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and showed a duality principle. Escobar and West (1995) present a nonparamet-

ric Bayesian density estimation for Dirichlet process mixture models. Richardson

and Green (1997) and Zhang et al. (2004) propose a full Bayesian inference for a

normal mixture model with unknown number of components using the reversible

jump MCMC algorithm proposed by Green (1995). Stephens (2000) and Fruhwirth-

Schnatter (2001) demonstrate Baysian strategies for the elimination of label switch-

ing problems.

In this paper, we offer an efficient EM algorithm for the fitting of a likelihood-

based normal mixture model using partially observed data. To reduce computational

burden during the EM iterations, we incorporate two types of auxiliary binary in-

dicator matrices corresponding to the observed and unobserved components of each

datum. With strategies similar to EM, we also offer a DA computational technique

for efficiently imputing missing values and learning parameters using the Gibbs

sampler, which constructs a Markov chain that converges to a tractable posterior

distribution (Geman and Geman, 1984). The feature of the chosen prior distribu-

tions are weakly informative to avoid mathematical and computational pitfalls of

using improper priors in mixture model (Celex et al., 2000).

The rest of the paper proceeds as follows. In the next section, we describe the

model and its notations, and present some important statistical properties based on

the missing information framework. In Sections 3 and 4, two efficient EM and DA

algorithms are developed to cope with ML and Bayesian estimation, respectively.

We also investigate two issues regarding classification and prediction of incomplete

features from ML and Bayesian perspectives. In Section 5, some real data sets

are utilized to illustrate our proposed methodologies with varying proportions of
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artificially missing values. Also, empirical comparisons between ML and Bayesian

approaches in terms of classification and prediction accuracies for incomplete fea-

tures are demonstrated. Finally, some concluding remarks are given in Section 6.

2. A normal mixture model with missing information

In the normal mixture model, we assume that Y = (Y 1, . . . , Y n) form a p-dimensional

random sample from a population with g subclasses C1, . . . , Cg, and each Y j has the

density

f(Y j | Θ) =

g∑
i=1

wiφp (Y j |µi,Σi ) , wi ≥ 0,

g∑
i=1

wi = 1, (1)

where wi’s are mixing probabilities, φp(·|µ,Σ) denotes a p-dimensional multivari-

ate normal component density with mean µ and covariance matrix Σ, and Θ =

(w1, . . . , wg,µ1, . . . , µg,Σ1, . . . ,Σg) is the vector of mixture model parameters sub-

ject to
∑g

i=1 wi = 1 and Σi’s are positive definite matrices. Thus, there are

g(p + 1)(p + 2)/2− 1 distinct parameters in model (1).

Typically, in the EM framework, mixture models can be characterized as having

an incomplete data structure. It is convenient to formalize the missing part as a set

of membership labels Z = (Z1, . . . , Zn) with each label Zj = (Z1j, . . . , Zgj) being a

binary vector such that Zij = 1 if Y j belongs to component i and Zij = 0 otherwise.

Given the mixing probabilities ω, Z1, . . . , Zn independently follow a multinomial

distribution. We shall write Zj ∼M(1; w1, . . . , wg).

For notational simplicity, let

∆ij = (Y j − µi)
>Σ−1

i (Y j − µi), (2)

denote the Mahalanobis distance for Y j with respect to mean µi and covariance
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matrix Σi. The complete likelihood function for Θ is

Lc(Θ|Y ,Z) ∝
n∏

j=1

g∏
i=1

(
wi|Σi|−1/2 exp

(
− 1

2
∆ij

))Zij

. (3)

We consider the maximum likelihood estimation problem of model (1) when Y

are not completely observed. We further assume that the patterns of missingness

are arbitrary and missing at random (MAR), see Rubin (1976) and Little and Rubin

(2002) for more details. Generally speaking, MAR refers to the missingness depends

only on observed values but not on missing values.

Let Y j be partitioned into two components
(
Y o

j ,Y
m
j

)
, where Y o

j (po
j × 1) and

Y m
j ((p− po

j)× 1) denote the observed and missing components of Y j, respectively.

To facilitate the EM algorithm, it is advantageous to introduce two types of binary

indicator matrices, denoted by Oj and M j hereafter, corresponding to Y j such

that Y o
j = OjY j and Y m

j = M jY j, respectively. Notice that Oj and M j are

po
j × p and (p− po

j)× p matrices extracted from a p-dimensional identity matrix Ip

corresponding to row-positions of Y o
j and Y m

j in Y j, respectively. We then have

the following propositions.

Proposition 1. Suppose Y j is partitioned into two components (Y o
j , Y

m
j ), where

Y o
j = OjY j and Y m

j = M jY j. We thus have

Y j =

{
Y o

j , if po
j = p ;

O>
j Y o

j + M>
j Y m

j , if 1 ≤ po
j < p ,

and O>
j Oj + M>

j M j = Ip.

Proof: The proof is straightforward and hence is omitted.
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Proposition 2. Let Y j ∼
∑g

i=1 wiφp(Y j|µi,Σi), and let Y o
j and Y m

j be the ob-

served and missing components corresponding Y j, respectively. The marginal dis-

tribution of Y o
j is denoted by Y o

j ∼
∑g

i=1 wiφpo
j
(Y o

j |µo
ij,Σ

oo
ij ), where

φpo
j
(Y o

j |µo
ij,Σ

oo
ij ) = (2π)−po

j/2|Σoo
ij |−1/2 exp(−1

2
∆o

ij),

is the component density, and

µo
ij = Ojµi, Σoo

ij = OjΣiO
>
j , ∆o

ij = (Y j − µi)
>Soo

ij (Y j − µi),

Soo
ij = O>

j (OjΣiO
>
j )−1Oj. (4)

Consequently, Y m
j |Y o

j ∼
∑g

i=1 w∗
ijφp−po

j
(Y m

j |µm·o
ij ,Σmm·o

ij ), where

φp−po
j
(Y m

j |µm·o
ij ,Σmm·o

ij ) = (2π)−(p−po
j )/2|Σmm·o

ij |−1/2 exp(−1
2
∆m·o

ij ),

and

w∗
ij = wi φpo

j
(Y o

j |µo
ij,Σ

oo
ij )/

g∑

h=1

wh φpo
j
(Y o

j |µo
hj,Σ

oo
hj),

µm·o
ij = M j

(
µi + ΣiS

oo
ij (Y j − µi)

)
, Σmm·o

ij = EijΣiM
>
j ,

Eij = M j(Ip −ΣiS
oo
ij ), ∆m·o

ij = (Y j − µi)
>Smm·o

ij (Y j − µi),

Smm·o
ij = E>

ij(EijΣiM
>
j )−1Eij. (5)

Proof: The sketch of the proof is given in Appendix A.

To enhance the computational efficiency for estimation, we suggest to rearrange

Y according to unique missing patterns of the data. The procedure can be imple-

mented as follows:

(a) Build a binary indicator matrix, R = [rij]n×p, with each entry rij = 1 if Yij is

missing and rij = 0 otherwise.
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(b) Let z = R × b, where b = (21, 22, . . . , 2p)>. Note that the number of unique

missing patterns is equal to the number of unique elements in z.

(c) Denoting z∗ by sorting z in an ascending or descending order, we then re-

arrange Y according to the row positions of z∗ in z. This will yield clustering

of identical patterns of missingness in Y which are adjacent to each other.

3. An efficient EM procedure for ML estimation

Let Y o = (Y o
1, . . . , Y

o
n) and Y m = (Y m

1 , . . . , Y m
n ) denote the observed portion and

missing portion of the data, respectively. The complete-data log-likelihood function

can be reexpressed by

`c (Θ |Y o,Y m,Z )

= `c1 (w |Y o,Y m,Z ) + `c2 (Ψ |Y o,Y m,Z )

=

g∑
i=1

n∑
j=1

Zij log wi +
1

2

g∑
i=1

(
log |Σ−1|

n∑
j=1

Zij −
n∑

j=1

Zij(∆
o
ij + ∆m·o

ij )
)
, (6)

where ω = (w1, . . . , wg) and Ψ =
(
µ1, . . . , µg,Σ1, . . . ,Σg

)
. From (5), it is easy to

verify that Σ−1
i = Soo

ij + Smm·o
ij and O>

j Oj

(
Ip − ΣiS

oo
ij

)
= 0. Hence, we have the

following result.

Proposition 3. The conditional expectation of (6) is give by

Q(Θ|Θ̂(k)) = E
(
`c(Θ | Y o,Y m, Z) | Y o, Θ̂(k)

)

= Q1(w|Θ̂(k)) + Q2(Ψ|Θ̂(k)).

8



It follows that

Q1(w|Θ̂(k)) =

g∑
i=1

n∑
j=1

Ẑ
(k)
ij log wi, (7)

Q2(Ψ|Θ̂(k)) =
1

2

g∑
i=1

(
log |Σ−1

i |
n∑

j=1

Ẑ
(k)
ij − tr

(
Σ−1

i

n∑
j=1

Ω
(k)
ij

))
, (8)

where

Ω
(k)
ij = Ẑ

(k)
ij

((
Ŷ

(k)

ij − µi

)(
Ŷ

(k)

ij − µi

)>
+

(
Ip − Σ̂

(k)
i Ŝ

oo(k)

ij

)
Σ̂

(k)
i

)
, (9)

Ẑ
(k)
ij =

ŵ
(k)
i φpo

j

(
Y o

j

∣∣µ̂o(k)
ij , Σ̂

oo(k)
ij

)
∑g

h=1 ŵ
(k)
h φpo

j

(
Y o

j

∣∣µ̂o(k)
hj , Σ̂

oo(k)
hj

) , (10)

Ŷ
(k)

ij = µ̂
(k)
i + Σ̂

(k)
i Ŝ

oo(k)

ij

(
Y j − µ̂

(k)
i

)
, (11)

and Ŝ
oo(k)

ij is Soo
ij given in (4) with Σi replaced by Σ̂

(k)
i .

Proof: The detailed proof is shown in Appendix B.

By these propositions, a modified version of GJ’s EM algorithm can be imple-

mented as follows:

E-step: Given Θ = Θ̂(k), impute Ẑ
(k)
ij and Ŷ

(k)

ij for i = 1, . . . , g and j = 1, . . . , n,

using (10) and (11).

M-Step:

1. Update ŵ
(k+1)
i by maximizing (7) over wi, which leads to

ŵ
(k+1)
i =

1

n

n∑
j=1

Ẑ
(k)
ij .

2. Fix Σi at Σ̂
(k)
i , update µ̂

(k+1)
i by maximizing (8) over µi, which leads to

µ̂
(k+1)
i =

∑n
j=1 Ẑ

(k)
ij Ŷ

(k)

ij∑n
j=1 Ẑ

(k)
ij

.
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3. Fix µi at µ̂
(k+1)
i , update Σ̂

(k+1)
i by maximizing constrained (8) over Σi, which

leads to

Σ̂
(k+1)
i =

∑n
j=1 Ω̂

(k)

ij∑n
j=1 Ẑ

(k)
ij

,

where Ω̂
(k)

ij is Ω
(k)
ij in (9) with µi replaced by µ̂

(k+1)
i .

We remark two major advantages of the above EM algorithm:

(a) With auxiliary matrices Oj’s obtained at the initiation, there is no need to

take care of the associated row positions of missing values at each iteration.

(b) The implementation of M-step has low computational cost as it is similar to

the case of no missing values. Therefore, the modified EM algorithm is more

straightforward than the version of GJ.

Applying Bayes’ theorem, the posterior probability of the Y j belonging to Ci

can be estimated by

ŵ∗
ij = Pr

(
Zij = 1

∣∣Y o, Θ̂
)

=
ŵi φpo

j

(
Y o

j

∣∣µ̂o
ij, Σ̂

oo
ij

)
∑g

h=1 ŵhφpo
j

(
Y o

j

∣∣µ̂o
hj, Σ̂

oo
hj

) . (12)

By the ML classification theory (Basford and McLachlan, 1985), Y j is assigned

to Cs if ŵ∗
sj > ŵ∗

ij (i = 1, . . . , g; i 6= s).

Consequently, an ML predictor for the missing component Y m
j is gievn by

Ŷ
m

j = E
(
Y m

j

∣∣Y o, Θ̂
)

= M j

g∑
i=1

ŵ∗
ij

(
µ̂i + Σ̂i Ŝ

oo

ij

(
Y j − µ̂i

))
. (13)

4. A data augmentation scheme for Bayesian sampling

The Data augmentation (DA) of Tanner and Wong (1987) is a general and effective

algorithm for producing multiple imputation of missing data. The DA has been
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broadly applied in a variety of missing data problems, see for example, Schafer

(1997), Little and Rubin (2002) and references therein. In this section, we construct

an efficient DA algorithm that combines the latent variables Z and unobserved data

Y m for simulating the posterior density of Θ.

The DA algorithm consists of the imputation step (I-step) and the posterior

step (P-step). At the kth iteration, the I-step is defined by drawing imputations

of Zj’s and Y m
j ’s from the predictive distributions p(Zj | Y o,Θ(k)) and p(Y m

j |

Y o,Zj,Θ
(k)), respectively, and the P-step refer to generating Θ(k+1) from p(Θ |

Y o,Y m(k+1)

,Z(k+1)). To perform the Bayesian inference for mixture models, it is

necessary to choose a proper prior distribution for each parameter to avoid yielding

improper posterior distributions (Celeux et al., 2000). In univariate normal mixture

models, Diebolt and Robert (1994) and Richardson and Green (1997) have suggested

some conjugate prior distributions. In the context of multivariate version with

missing information, our chosen priors for the model parameters primarily follow

the suggestion of Stephens (2000). They are given by

w ∼ D(δ, . . . , δ),

µi ∼ Np

(
ξ, κ−1

)
(i = 1, . . . , g),

Σ−1
i |B ∼ Wp

(
2 α, (2B)−1

)
(i = 1, . . . , g),

B ∼ Wp

(
2γ, (2H)−1

)
,

where B is a p× p hyperparameter matrix, κ and H are p× p constant matrices, ξ

is a p × 1 constant vector, α, δ and γ are constant scalars, D(δ, . . . , δ) denotes the

symmetric Dirichlete distribution with density

f(w|δ) =
Γ(gδ)

Γ(δ)g
wδ−1

1 · · ·wδ−1
g−1(1− w1 − · · · − wg−1)

δ−1,
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and Wp(ν, A) denotes the Wishart distribution with density

f(U |ν, A) ∝ |A|−ν/2|U |(ν−p−1)/2 exp
(
− 1

2
tr(UA−1)

)
.

The joint prior distribution function of Θ and B is

π(Θ,B) ∝ wδ−1
1 · · ·wδ−1

g |B|gα+(2γ−p−1)/2 exp {−tr (HB)}

×
g∏

i=1

|Σ−1
i |(2α−p−1)/2 exp

(
− 1

2
(µi − ξ)>κ(µi − ξ)− tr

(
BΣ−1

i

) )
. (14)

Upon multiplying (3) and (14), we have the following joint posterior density:

p(Θ,B, Y m,Z|Y o)

∝ wδ−1
1 · · ·wδ−1

g | B |gα+(2γ−p−1)/2 exp
(− tr(HB)

)

×
g∏

i=1

exp
(
− 1

2
(µi − ξ)>κ(µi − ξ)

) ∣∣Σ−1
i

∣∣(2α−p−1)/2
exp

(− tr(BΣ−1
i )

)

×
n∏

j=1

g∏
i=1

(
wi | Σ−1

i |1/2 exp
(− 1

2
(∆o

ij + ∆m·o
ij )

))Zij

, (15)

where ∆o
ij and ∆m·o

ij are given in (4) and (5), respectively.

Proposition 4. The full conditional posteriors of Θ, B, Z and Y m are as follows

(the symbol “| · · · ” denotes conditioning on all other variables):

p(Zj|Y o,Θ) ∝
g∏

i=1

(
wiφpo

j
(Y o

j |µo
ij,Σ

oo
ij )

)Zij

,

p(Y m
j |Zij = 1, · · · ) ∝ exp

(
− 1

2

(
Y m

j − µm·o
ij

)>
Σmm·o−1

ij

(
Y m

j − µm·o
ij

))
,

p(w| · · · ) ∝
g∏

i=1

w
Pn

j=1 Zij+δ−1

i ,

p(µi| · · · ) ∝ exp
(
− 1

2

(
µi − µ∗

i

)>
Σ∗−1

i

(
µi − µi

))
,

p(B| · · · ) ∝ |B|(2(gα+γ)−p−1)/2 exp
(
− tr

(
B(H +

g∑
i=1

Σ−1
i )

))
,

p(Σ−1
i | · · · ) ∝

∣∣Σ−1
i

∣∣(α∗−p−1)/2
exp

(
− 1

2
tr

(
Σ−1

i Ai

))
,
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where µm·o
ij and Σmm·o

ij are given by (5), and

Σ∗
i =

(
Σ−1

i

n∑
j=1

Zij + κ
)−1

, (16)

µ∗
i = Σ∗

i

(
Σ−1

i

n∑
j=1

ZijY j + κξ
)
, (17)

α∗i =
n∑

j=1

Zij + 2α, (18)

Ai = 2B +
n∑

j=1

Zij (Y j − µi) (Y j − µi)
> , (19)

for i = 1, . . . , g and j = 1, . . . , n.

Proof: The proof is straightforward and hence is omitted.

In the simulation process, samples for Z, Y m, B and Θ are alternately generated,

the DA algorithm using the Gibbs sampler can be implemented as follows:

I-Step:

1. Given Θ, Y m and Y o, generate Zj from M(1; r1j, . . . , rgj), where

rij =
wiφpo

j

(
Y o

j |µo
ij,Σ

oo
ij

)
∑g

s=1 wsφpo
j

(
Y o

j |µo
sj,Σ

oo
sj

) .

2. Generate Y m
j given Zij = 1, Θ and Y o, from Np−po

j

(
µm·o

ij ,Σmm·o
ij

)
, where µm·o

ij

and Σmm·o
ij are as in (5).

P-Step:

1. Generate w given Z from D(n1 + δ, . . . , ng + δ), where ni =
∑n

j=1 Zij.

2. Generate µi given Z, Σi, Y o and Y m from Np (µ∗
i ,Σ

∗
i ) with µ∗

i and Σ∗
i given in

(17) and (16), respectively.
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3. Generate B given Σ1, . . . ,Σg from Wp(2γ
∗, (2H∗)−1), where γ∗ = gα + γ and

H∗ = H +
∑g

i=1 Σ−1
i .

4. Generate Σ−1
i given Z, µi, Y o and Y m from Wp

(
α∗i ,A

−1
i

)
, where α∗i and Ai are

given in (18) and (19), respectively.

To satisfy the “Principle of Stable Estimation” of Edwards et al. (1963) in

the Bayesian treatment, we need to specify (ξ, κ, α, γ,H) so as to be insensitive to

changes of the prior. Specifically, it is often to choose δ = 1. For ξ and κ, we let ξ

be the empirical mean vector and κ−1 = (1− η)−1diag{R2
1, . . . , R

2
p}, where η is the

percentage of missing values of the data which is used to adjust the flatness and Ri

is the range of the observed values of variable i. As a generalization of Richard and

Green (1997), we take α = p + 1, γ = (p + 1)/10 and H = 10κ.

We are interested in the classification and prediction problems for incomplete fea-

tures. Under certain conditions, quantites based on Rao-Blackwellization (Gelfand

and Smith, 1990) often greatly improve the precision of Monte Carlo estimates.

Given a set of converged Monte Carlo DA samples Θ(`) (` = 1, . . . , L), a Bayesian

predictor for Y m
j is given by

Ỹ
m

j =
1

L

L∑

`=1

E
(
Y m

j

∣∣Y o
j ,Θ

(`)
)

= M j
1

L

L∑

`=1

( g∑
i=1

r
(`)
ij

(
µ

(`)
i + Σ

(`)
i Soo(`)

ij

(
Y j − µ

(`)
i

)))
, (20)

where

r
(`)
ij =

w
(`)
i φpo

j

(
Y o

j

∣∣µ̂o(`)

i ,Σoo(`)

i

)
∑g

h=1 w
(`)
h φpo

j

(
Y o

j

∣∣µo(`)

h ,Σoo(`)

h

) .

Consequently, a Bayesian classifier for Y j can be estimated by averaging over
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the draws of Θ(`)

r̂∗ij = Pr(Zij = 1|Y o
j) ≈

1

L

L∑

`=1

r
(`)
ij . (21)

By the Bayesian classification rule, Y j is assigned to Cs if r̂∗sj > r̂∗ij (i =

1, . . . , g; i 6= s).

5. Experimental results

For illustration purposes, we start to apply results developed in Sections 2-4 to two

famous multivariate data sets. One is the iris data taken from Anderson (1935)

or Fisher (1936). It consists of 4-dimensional measurements in centimeters on the

attributes of petal length, petal width, septal length and septal width for 50 flower

specimens of each of three species: setsosa, versicolor, and virginica. The other

is the crabs data of Campbell and Mahon (1974) on the gensus Leptograpsus. It

consists of 5-dimensional morphological measurements on the attributes of width of

frontal lip, rear width, length along the mid-line of the carapace, maximum width

of the carapace and body depth for 50 crabs of each of four groups: blue male, blue

female, orange male and orange female. Both data sets are included as a part of the

R package, which is freely available at the web site http://cran.r-project.org.

To conduct experimental studies, we first generate 500 artificially missing data

sets by deleting at random from the three data sets under various specified missing

rate η (proportion of missing values) while we maintain each datum that has at least

one observed attribute. Table 1 presents the computation times of our developed

EM algorithm and those of using GJ-EM. All computations are solely carried out

by R package in the environment of a desktop PC (CPU: 3G-MHz/Intel Pentium

4 Processor; RAM: 1024 MB/DDR-400). Since the programming implementations
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Table 1: A comparison of CPU timings (in seconds) and relative reduced times

(RRT) between GJ-EM algorithm (old) and our proposed procedure (new) under

various missing rates. (Replications=500)

Data
η = 10% η = 20% η = 30%

old new RRT old new RRT old new RRT

iris 12.47 1.22 90.2% 21.51 1.61 92.5% 56.21 3.61 93.6%

crabs 34.72 3.27 90.6% 78.77 6.78 91.4% 265.01 20.68 92.2%

RRT=(old-new)/old×100%

have many characteristics (e.g., vector or matrix subroutines instead of loops), the

CPU times in Table 1 might not be directly comparable, but provide a sense of their

actual performances in a practical setting. As seen in the table, all computation

times are dramatically reduced over 90% by using the new EM procedure.

To exemplify the predictive performance for the EM and DA imputation meth-

ods, see Equations (13) and (20), together with the traditional mean imputation

(MI) method, known as “filling-in” with the sample mean of the associated at-

tribute, we utilize the pseudo-cross-validation (PSV) of Stone (1974) to evaluate

these three approaches. A relative tolerance of 10−8 for the log-likelihood function

and parameter estimates are used as the convergence criterion for the EM algorithm.

As for the DA algorithm, we take the ML estimates as the initialization and carry

out 2,000 iterations with the first 1,000 iterations as burn-in and the remaining 1,000

iterations as inference samples. It is noted that our chosen burn-in number is much

larger than needed based on checking the multivariate potential scale reduction fac-

tor (MPSRF) of Brooks and Gelman (1998). As for discrepancy measures, we use

the mean absolute error (MAE), the mean absolute relative error (MARE) and root
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Table 2: A comparison of prediction accuracies for MI, EM and DA imputations

with the standard deviations in parentheses for the iris data set. (Replications=500)

η
MAE MARE RMSE

MI EM DA MI EM DA MI EM DA

10% 0.812 0.213 0.210 0.697 0.100 0.099 1.062 0.285 0.280

(0.081) (0.026) (0.026) (0.186) (0.027) (0.027) (0.096) (0.050) (0.050)

20% 0.816 0.237 0.233 0.675 0.114 0.113 1.071 0.331 0.326

(0.053) (0.025) (0.025) (0.129) (0.031) (0.031) (0.065) (0.060) (0.060)

30% 0.820 0.268 0.259 0.684 0.138 0.132 1.078 0.395 0.380

(0.046) (0.023) (0.022) (0.097) (0.033) (0.032) (0.058) (0.061) (0.060)

40% 0.819 0.301 0.278 0.683 0.161 0.154 1.077 0.448 0.428

(0.035) (0.030) (0.026) (0.082) (0.038) (0.036) (0.041) (0.065) (0.063)

50% 0.817 0.346 0.325 0.675 0.198 0.188 1.074 0.522 0.495

(0.029) (0.031) (0.028) (0.084) (0.043) (0.041) (0.036) (0.063) (0.060)

mean square error (RMSE). Comparison results are listed in Tables 2 and 3. As

seen in the tables, we found that both EM and DA substantially outperform MI for

all cases. Furthermore, DA imputation exhibits considerable promising accuracy in

the prediction of missing values when compared to the EM imputation, especially

as the size of observed values becomes small (i.e., missing rate increases).

As another illustration, we attempt to explore classification accuracies between

the ML classifier (12) and the Bayesian classifier (21) via PSV. Experimental results

in Table 4 indicate that both classifiers are comparable at low-level missing, but

Bayesian classifier yields lower misclassification rates as the missing rate increases,

though improvements are not substantial.

Finally, we are interested in comparing behaviors of density estimation from ML-

fitted and Bayesian posterior predictive aspects. To illustrate this, we use the salmon
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Table 3: A comparison of prediction accuracies for MI, EM and DA imputations with

the standard deviations in parentheses for the crabs data set. (Replications=500)

η
MAE MARE RMSE

MI EM DA MI EM DA MI EM DA

10% 4.063 0.421 0.415 0.202 0.024 0.023 5.391 0.611 0.598

(0.337) (0.055) (0.050) (0.018) (0.003) (0.003) (0.427) (0.114) (0.105)

20% 4.008 0.484 0.474 0.200 0.027 0.026 5.343 0.714 0.693

(0.227) (0.041) (0.037) (0.012) (0.002) (0.002) (0.305) (0.090) (0.083)

30% 4.037 0.568 0.550 0.202 0.030 0.029 5.384 0.846 0.812

(0.169) (0.044) (0.041) (0.009) (0.002) (0.002) (0.225) (0.096) (0.091)

40% 4.036 0.662 0.632 0.203 0.035 0.033 5.381 0.977 0.932

(0.138) (0.044) (0.042) (0.007) (0.002) (0.002) (0.188) (0.092) (0.094)

50% 4.039 0.768 0.728 0.202 0.039 0.037 5.386 1.120 1.058

(0.108) (0.052) (0.050) (0.006) (0.002) (0.002) (0.142) (0.102) (0.100)

data taken from Johnson and Wichern (2002). This data set has two attributes, the

diameter of rings for the first-year freshwater growth and the diameter of rings for

the first-year marine growth, for each of 50 Alaskan-born and Canadian born salmon

fishes. The ML-fitted density estimation is obtained by plugging the ML estimates

into (1). As for Bayesian predictive density, it can be approximated by the use of

Rao-Blackwellization

p(y|Y o) =

∫
p(y|Y o,Θ)p(Θ|Y o)dΘ

≈ 1

L

L∑

`=1

p(y|Θ(`))

=
1

L

L∑

`=1

( g∑
i=1

w
(`)
i

(
(2π)−p/2|Σ(`)

i |−1/2 exp
(− 1

2
∆

(`)
ij

)))
, (22)

where ∆
(`)
ij = (y−µ

(`)
i )>Σ(`)−1

i (y−µ
(`)
i ) and Θ(`) (` = 1, . . . , L) is a set of converged

Monte Carlo samples generated from the DA algorithm.
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Table 4: A comparison of average misclassification rates (%) between ML and

Bayesian classifiers. (replicates=500)

η
Iris crabs

ML Bayesian ML Bayesian

0% 3.33 3.00 7.50 7.30

10% 3.85 3.75 9.75 9.50

20% 5.20 5.00 13.66 13.55

30% 6.90 6.10 19.22 18.80

40% 10.15 9.20 26.75 25.20

50% 13.42 12.30 35.21 33.00

The contour plots obtained by the ML-fitting and Bayesian predictive densities

(22) for both completely observed data (η = 0%) and both partially observed data

(η = 30%) are depicted in Figure 1, respectively. Both look similar when data

are not missing but using (22) seems to have a relatively smoother appearance.

In addition, we found that the ML-fitted contour shapes tend to be distorted at

high-level missing and even for moderate-level missing (η = 30%). However, the

distortion rarely happened while using (22). This indicates that Bayesian learning

is more resistant to missing values.
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Figure 1: ML and Bayesian density estimation for the two-component salmon data

(•, both attributes are completely observed; 4, one of the two attributes is missing).
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6. Conclusions

In this paper, two novel EM and DA computational algorithms for learning normal

mixture models under a missing information framework are presented. It should be

emphasized that our proposed procedures offer neat ways to program with low-cost

computation. Experimental results indicate that Bayesian treatment is a worthwhile

tool for mixture modelling under a considerable extent of missing information.

Recently, Bayesian and non-Bayesian robust mixture model modelling using the t

distribution has received notable attentions, see Peel and McLanclan (2000), Shoham

(2002), Lin et al. (2004) and Wang et al. (2004). Future work will make some kind

of comparisons theoretically or empirically among various competitive choices.

Appendix

A. Proof of Proposition 2

Suppose W ∼ Np(µ,Σ), then for any q×p matrix A with rank q (q ≤ p), we can

obtain AY ∼ Np(Aµ,AΣA>). With similar arguments, the marginal distributions

of Y o
j and Y m

j are

Y o
j = OjY j ∼

g∑
i=1

wi φpo
j
(µo

ij,Σ
oo
ij ), µo

ij = Ojµi, Σoo
ij = OjΣiO

>
j ,

Y m
j = M jY j ∼

g∑
i=1

wi φp−po
j
(µm

ij ,Σ
mm
ij ), µm

ij = M jµi, Σmm
ij = M jΣiM

>
j .

Note that the ∆ij in (2) can be reexpressed as

∆ij =

[
Y o

j − µo
ij

Y m
j − µm

ij

]> [
Σoo

ij Σom
ij

Σmo
ij Σmm

ij

]−1 [
Y o

j − µo
ij

Y m
j − µm

ij

]
, (23)
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where Σom
ij = OjΣiM

>
j and Σmo

ij = M jΣiO
>
j . Also, the second and third factors

on the right hand side of (23) can be represented by
[

Σoo
ij Σom

ij

Σmo
ij Σmm

ij

]−1

=

[
I −Σoo−1

ij Σom
ij

0 I

][
Σoo−1

ij 0

0 Σmm·o−1

ij

][
I 0

−Σmo
ij Σoo−1

ij I

]
,

and [
Y o

j − µo
ij

Y m
j − µm

ij

]
=

[
Oj(Y j − µi)

M j(Y j − µi)

]
=

[
Oj

M j

]
(Y j − µi).

We then have the following standard results:

Σmm·o
ij = Σmm

ij −Σmo
ij Σoo−1

ij Σom
ij

= M jΣiM
>
j −M jΣiO

>
j (OjΣiO

>
j )−1OjΣiM

>
j

= M j(Ip −ΣiS
oo
ij )ΣiM

>
j = EijΣiM

>
j ,

where Eij = M j(Ip −ΣiS
oo
ij ), Soo

ij = O>
j (OjΣiO

>
j )−1Oj.

Since

−Σmo
ij Σoo−1

ij Oj + M j = M j −M jΣiO
>
j (OjΣiO

>
j )−1Oj

= M j(Ip −ΣiS
oo
ij )

= Eij

and [
I 0

−Σmo
ij Σoo−1

ij I

][
Oj

M j

]
=

[
Oj

Eij

]
,

it suffices to show that

µm·o
ij = µm

ij + Σmo
ij Σoo−1

ij (Y o
j − µo

ij)

= M jµi + M jΣiO
>
j (OjΣiO

>
j )−1Oj(Y j − µi)

= M j

(
µi + ΣiS

oo
ij (Y j − µi)

)
.

Hence,

∆ij = (Y o
j − µo

ij)
>Σoo−1

ij (Y o
j − µo

ij) + (Y m
j − µm·o

ij )>Σmm·o−1

ij (Y m
j − µm·o

ij )

= (Y j − µi)
>(Soo

ij + Smm·o
ij )(Y j − µi)

= ∆o
ij + ∆m·o

ij ,
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where

∆o
ij = (Y o

j − µo
ij)
>Σoo−1

ij (Y o
j − µo

ij) = (Y j − µi)
>Soo

ij (Y j − µi),

∆m·o
ij = (Y m

j − µm·o
ij )>Σmm·o−1

ij (Y m
j − µm·o

ij ) = (Y j − µi)
>Smm·o

ij (Y j − µi),

Smm·o
ij = E>

ij(EijΣiM
>
j )−1Eij.

Using the fact that |Σi| = |Σoo
ij ||Σmm·o

ij | and above results, we have

f(Y m
j |Y o

j) =
f(Y j)

f(Y o
j)

=

∑g
i=1 wi φpo

j
(Y o

j |µo
ij,Σ

oo
ij ) φp−po

j
(Y m

j |Y o
j ,µ

m·o
ij ,Σmm·o

ij )∑g
i=1 wi φpo

j
(Y o

j |µo
ij,Σ

oo
ij )

=

g∑
i=1

w∗
ij φp−po

j
(Y m

j |Y o
j , µ

m·o
ij ,Σmm·o

ij ),

where w∗
ij = wi φpo

j
(Y o

j |µo
ij,Σ

oo
ij )/

∑g
h=1 wh φpo

j
(Y o

j |µo
hj,Σ

oo
hj).

B. Proof of Proposition 3

Letting Ẑ
(k)
ij = E

(
Zij

∣∣Y o, Θ̂(k)
)
, ξ̂

(k)

ij = E
(
ZijY j

∣∣Y o, Θ̂(k)
)
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Φ̂
(k)

ij = E
(
ZijY jY

>
j

∣∣Y o, Θ̂(k)
)
, we can show that
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(k)
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Since Y j = O>
j Y o

j + M>
j Y m

j and O>
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