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Abstract

In this paper, we propose a quantitative approach to modeling consumer

response to medium rectangle ad (300× 250 IMU or 75000 pixels) at a news context

Web site. The influences of ad positions, animation length, and exposure times on

the click-through rate (CTR) were designed as a factorial experiment with repeated

measures. Binary responses in serially correlated click data were collected. The

use of generalized estimating equations (GEEs) approach would be introduced to

fit logistic regression models with correlated binary data. A goodness-of-fit statis-

tic, quasilikelihood under the independent model information criterion (QIC) for

correlated models will be used for evaluating GEE-constructed models. The results

showed that a logistic regression model with order effect, two-factor interaction

effect of ad type and ad position, as well as ad position and animation length fit-

ted relatively well. In addition, GEE model with AR(1) working correlation also

has the smallest QIC, when comparing with other types of correlation structures.

Moreover, the graphical method is used to diagnose. Given promotion-type ad, the

combination of middle position and animation length of 7.5 seconds could provide

the highest ECTR.

Keywords: Advertisement Effectiveness, Browsing Performance, Click-

through Rate, Exposure Duration, Online Advertising Recycle Frequency



ii

Contents

1 INTRODUCTION 1

2 BRIEF REVIEW OF GLM’s 4

2.1 Independent Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The ML Estimating Equations for Binary Logistic Regression . . . . . . . 5

2.3 Parameter Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Generalized Estimating Equations (GEEs) . . . . . . . . . . . . . . . . . . 8

2.4.1 Estimating Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.2 Working correlation structure . . . . . . . . . . . . . . . . . . . . . 9

2.4.3 Estimating algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.4 Empirical variance estimators . . . . . . . . . . . . . . . . . . . . . 12

2.5 Diagnostics and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 RESEARCH METHODS 14

3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Apparatus and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Proposed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 GEE model with categorical predictors . . . . . . . . . . . . . . . . 20

3.5.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 21



iii

3.5.3 Strategies of model selection . . . . . . . . . . . . . . . . . . . . . . 21

4 RESULTS 23

5 CONCLUSIONS 43

List of Tables

1 Variables in the CTR Data Set . . . . . . . . . . . . . . . . . . . . . . . . 20

2 GEE parameter estimates, empirical standard error estimates, z-value, and

p-value for equation (35), including three types of working correlation struc-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 GEE parameter estimates, empirical standard error estimates, z-value, and

p-value for equation (36), including three types of working correlation struc-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 GEE parameter estimates, empirical standard error estimates, z-value, and

p-value of equation (37), including three types of working correlation struc-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 The QIC measures of fitted equation (37) for CTR data. . . . . . . . . . . 26

6 The estimated odds ratio among ad type and ad position under the condi-

tion of first ad and animation length of 7.5 seconds. . . . . . . . . . . . . . 30

7 The estimated odds ratio among ad type and ad position under first ad

and animation length of 7.5 seconds. . . . . . . . . . . . . . . . . . . . . . 30

8 The estimated odds ratio among position and animation length under fixed

first ad and commodities-type ad. . . . . . . . . . . . . . . . . . . . . . . . 31

9 The estimated odds ratio among position and animation length under fixed

first ad and commodities-type ad. . . . . . . . . . . . . . . . . . . . . . . . 32



iv

10 ECTR and 95% confidence interval of CTR among the nine combinations

of ad positions and types under animation length fixed at 7.5 seconds. . . . 33

11 ECTR and 95% confidence interval of CTR among the nine combinations

of ad positions and types under animation length fixed at 15 secons. . . . . 35

12 ECTR and 95% confidence interval of CTR among the nine combinations

of ad positions and types under animation length fixed at 30 seconds. . . . 35

13 ECTR and 95% confidence interval of CTR among the nine combinations

of ad positions and animation lengths under commodities-type advertising. 38

14 ECTR and 95% confidence interval of CTR among the nine combinations

of ad positions and animation lengths under fixed promotion type advertising. 40

15 ECTR and 95% confidence interval of CTR among the nine combinations

of ad positions and animation lengths under entertainment type advertising. 40

List of Figures

1 Advertising medium rectangle put on the high position of Web page in this

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Advertising medium rectangle put on the middle position of Web page in

this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Advertising medium rectangle put on the low position of Web page in this

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 The plot of the raw residuals against the fitted value, Ŷ ’s (predicted values
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1 INTRODUCTION

To attract online users’ attention, various kinds of animation are widely used on web-

sites, including animated online advertising. A widely used measurer for evaluating the

effectiveness of online advertising is the click-through rate (CTR)-that is, the proportion

of viewers who click on an online ad to visit the advertiser’s websites (Baltas, 2003; Han-

son, 2000). It is noteworthy that the pricing of internet advertising is often based on

CTR because advertisers demand results-oriented pricing and question the pricing model

of traditional media, which is based on mere impressions (Hofacker & Murphy, 1988; Cho

et al., 2001). Lin and Lin (2003) proposed a multiple logistic regression model to fit the

CTR data and the experimental results showed the two-factor interactions of Ad size

and Ad contents as well as the interaction of gender and Ad position were verified to

be significantly affecting CTR. Their results also showed that larger Ad size would have

better advertising click-through rate. Using commodities information and sale promotion

activity as Ad contents, subjects would have much more click through on medium rectan-

gle size (300×250 IMU or 75,000 pixels) than full banner size (28,080 pixels)and button

2 size (7,200 pixels), as well as have high click through rate on full banner than button

2. “Interactive Advertising” has clearly become a mainstream medium and one that can

no longer be ignored as a critical piece of any marketing mix (IAB, 2004). The revenue

results reported for 2004 confirm a very healthy environment for online advertising, for

both direct marketers seeking immediate performance results, as well as brand advertisers

looking to create or enhance an image, product or service.

Continuously, in this study we will investigate the influence of flash animation ad-

vertising on online advertising effectiveness. To clarify and quantify the effects of design

parameters, an experiments and after-experiment questionnaire survey will be used to
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collect the related data. With this study, the relationship between animation length and

advertising effectiveness as well as the relationship between exposure times and advertis-

ing effectiveness on the internet will be discussed.

When we concerned with the analysis of repeated measures of binary response data

and tried to find the relationship between CTR and a set of covariates, the response

variables will usually be correlated because repeated observations are made on the same

individual. However, the conventional generalized linear models (GLMs) proposed by

McCullagh and Nelder (1989) require that the observations in the data set are indepen-

dent. The generalized estimation equations (GEEs) methodology, introduced by Liang

and Zeger (1986), provides a method of analyzing correlated data that otherwise could be

modeled as a generalized linear model. The GEEs have solutions which are consistent and

asymptotically Gaussian even when time dependence is misspecified as we often expect.

A consistent variance estimate is also presented by Zeger and Liang (1986).

In this study, the use of the GEE approach with correlated binary data from an

experiment would be illustrated. This paper presents the logistic regression models to

the analysis of CTR data when independence and autocorrelated structures from each

subject are considered. The objectives of this paper are not only to give the ergonomic

guidelines on the design of animated online advertising and the introduction of GEEs to

the correlated responses, it also offers the advertisers a fair way to evaluate online ad-

vertising effectiveness. Moreover, our intension is to motivate what we consider to be a

widely applicable methodology for repeated observations.

The rest of this article is organized as follows. Section 2 describes the literatures of

GLMs and GEEs methodology. In section 3, research method and model proposed in

this study including the design of a factorial with complete randomization in repeated

measures will be described. After fitting some feasible models the quasilikelihood under
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the independent model information criterion (QIC) for correlated models will be used

for evaluating GEE-constructed models. Moreover, model diagnostics including graph-

ical assessment of residual analysis will be used to be the final check that the selected

model adequately fits the data. The results will show in section 4. The conclusion will be

summaried in section 5 of this paper.
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2 BRIEF REVIEW OF GLM’s

Generalized Linear Models (GLMs) was initially constructed by Wedderburn and

Neter in the mid-1970s. The GLM has been used widely for exploring the relationship

between response variable and prognostic factors. However, the conventional GLM pro-

posed by McCullagh and Neter (1989) require that the observations in the data set are

independent. Liang & Zeger (1986) and Zeger & Liang (1986) proposed the GEE method

which is an extension of GLM to the analysis of longitudinal data when the data struc-

ture is correlated. In this study, we focus on data sets comprising a short binary time

series and a set of time independent covariates for each subject. Given a single binary

response for each subject, logistic regression could be used to fit the relationship of re-

sponse variables and the covariates. With time series, however, methods that account for

time autocorrelation are necessary. We begin with a review of likelihood-based logistic

regression model for independent binary data. After illustrating the standard techniques

for building estimating equations of likelihood-based models, we review the generalized

estimating equation of generalized linear models which apply in the field of correlated

binary data.

2.1 Independent Binary Data

The standard procedures with independent binary data in the ordinary logistic re-

gression (OLR) model are described as follows:

1. Choose a distribution for the outcome variable.

2. Write the joint distribution for the data set.
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3. Convert the joint distribution to a likelihood function, in general, log-likelihood

function for the exponential family.

4. Generalized the likelihood via introduction of a linear combination of covariates and

associated coefficients.

5. Parameterize the linear combination of covariates to enforce range restrictions on

the mean and variance implied by the distribution.

6. Write the estimating equations for obtaining the solutions of unknown parameters.

In this paper, we propose a logistic model with GEE method to assess the relationship

between click-through rates and a set of covariates in which repeated measurements on

each subject was involved. The following sections are a short review of dependent binary

data.

2.2 The ML Estimating Equations for Binary Logistic Regres-

sion

Let (y1, . . . , yn) denote values of the outcomes from n individuals. Assume the outcome

of interest is dichotomous. Without loss of generality, a successful outcome is coded as 1

and a failure outcome is coded as 0. Let π is the probability of success and π ∈ [0, 1]. The

probability mass function of a Bernoulli distribution with mean π, and variance, π(1−π)

is

f(yi|π) = πyi(1− π)1−yi , yi = 0, 1, i = 1, 2, . . . , n (1)
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Now we have Bernoulli random variables with mean π and variance π(1 − π). The

likelihood function of n independent binary outcomes (y1, . . . , yn) is

L(π|y1, . . . , yn) =
n∏

i=1

πyi(1− π)1−yi

=
n∏

i=1

exp

{
yiln

(
π

1− π

)
+ ln(1− π)

}
. (2)

Replace the expected value π of the Bernoulli with µ and introduce the covariates

into the logistic regression model. Then we rewrite equation (2) into:

L(µ|y1, . . . , yn) =
n∏

i=1

exp

{
yiln

(
µi

1− µi

)
+ ln(1− µi)

}
. (3)

The log likelihood function is

`(µ|y1, . . . , yn) =
n∑

i=1

[
yiln

(
µi

1− µi

)
+ ln(1− µi)

]

=
n∑

i=1

[yiθi − ln{1 + exp(θi)}] , (4)

where θi = ln µi

1−µi
, i = 1, 2, . . . , n.

We introduce the relationship between the expected value and covariates using linear

predictor. Let (xi1, . . . , xip) denote values of explanatory variables for subject i. Then,

we defined the linear predictor as follows

ηi = xiβ, i = 1, . . . , n, (5)

where xi = (xi1, . . . , xip) and β = (β1, . . . , βp)
′.

The range of linear predictor is restricted by its distribution and variance. In this

case, the variance of the outcome is given by

V (yi) = µi(1− µi), 0 < µi < 1. (6)
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We have to parameterize using logit link to transform the linear predictor to enforce

a range (0, 1). The form is

g(µi) = ln
µi

1− µi

= θi = xiβ. (7)

Use the chain rule to obtain the likelihood equations Ψ(β) = 0 that derived as the

derivatives of the log likelihood as follows

∂`(β)

∂βj

=

[(
∂`(µ)

∂θi

)(
∂θi

∂µi

)(
∂µi

∂ηi

)(
∂ηi

βj

)]

=
n∑

i=1

(
yi − µi

µi(1− µi)

)(
∂µi

∂ηi

)
xi (8)

= 0, j = 1, . . . , p. (9)

2.3 Parameter Estimations

The solutions of the likelihood equations are obtained using optimization techniques.

These techniques iterate toward a solution by updating a set of current estimates to a

new set of estimates. Let the k-step set of estimates denote β(k). First, we give a initial

set of estimates β(0). Then the common approach employs a Taylor series expansion of

estimating equations given by Ψ(β) = 0, such that

0 = Ψ
(
β(0)

)
+

(
β − β(0)

)
Ψ′

(
β(0)

)
+

1

2

(
β − β(0)

)2

Ψ′′
(
β(0)

)
+ (ommitted terms)

Keeping only the first two terms, we have the linear approximation

0 ≈ Ψ
(
β(0)

)
+

(
β − β(0)

)
Ψ′

(
β(0)

)
,

β ≈ β(0) −
Ψ

(
β(0)

)

Ψ′
(
β(0)

)
.

(10)
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Rewriting this relationship of (10) in matrix notation, then we iterate to obtain a

solution using the relationship

β(k) = β(k−1) −
[

∂

∂β
Ψ

(
β(k−1)

)]−1

Ψ
(
β(k−1)

)

= β(k−1) −H−1s, (11)

where H is the Hessian (second derivative) matrix, and s is the gradient (first derivative)

vector of estimating equation, both evaluated at the current value of the parameter vector.

Thus, given a set of initial estimates β(0) as the starting step, we update our set of

estimates using the iterated relationship in equation (11).

2.4 Generalized Estimating Equations (GEEs)

Liang and Zeger (1986) proposed GEEs methodology to extend the OLR model for the

analysis of correlated binary data. The estimating equations of this method are related to

quasilikelihood methods in that there are no parametric assumptions. The utility of this

method is extended outside of the implied log-likelihood due to the work of Wedderburn

(1974). We started the introduction of quasilikelihood method and working correlation

structure.

2.4.1 Estimating Equation

Wedderburn extended the result by assuming that the variance function is a known

function of mean. Hardin & Hilbe (2003) were therefore free to choose any parameteriza-

tion of the mean and variance function and apply them in the derived estimating equation.

That implied that we choose functions are not from an exponential family member. Re-

sulting coefficient estimates are properly called maximum quasilikelihood estimates. It
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is a generalization of the likelihood. We can use the quasilikelihood estimating equation

with no restriction on the choice of the mean and variance functions. The estimation

equation were defined as follows.

Let Yij denote the outcome of jth measurement on ith subject for i = 1, . . . , n and

j = 1, . . . , t. Then, we let Yi = [Yi1, . . . , Yit]
′ represent the vector of measurements on the

ith subject and µi = [µi1, . . . , µit]
′ be the corresponding vector of means. In addition, let

Vi be the covariance matrix of Yi. The estimator vector of the parameters, β, is found

by solving the estimating equation.

Ψ(β) =
n∑

i=1

D′
iV

−1
i (Yi − µi) = 0, i = 1, . . . , n, (12)

where Di = ∂µi/∂β′ and the covariance matrix for ith subject is given by

Vi = A
1/2
i Ri(α)A

1/2
i (13)

where Ai is a n × n diagonal matrix with v(µij) as the jth diagonal element and Ri(α)

is the “working” correlation matrix. It is estimated in iterative fitting process using the

current value of the parameter vector β to compute appropriate functions of the Pearson

residual.

eij =
yij − µij√

v(µij)
(14)

2.4.2 Working correlation structure

We defined the dispersion parameter first.

φ̂ =
1

N − p

n∑
i=1

t∑
j=1

e2
ij, i = 1, . . . , n and j = 1, . . . , t, (15)

where N = n× t is the total number of measurements and p is the number of parameters

in model. The working correlation structures are categorized as follows
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1. Independent structure

The correlation matrix is build from the independent structure. The correlation

structure is assumed to be

Corr(Yij, Yij′ ) =

{
1, j = j′;

0, j 6= j
′
,

(16)

The structure is as follow.

R(α) =




1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1




. (17)

2. AR(1) structure

It may be more reasonable to assume a time dependence for the association if

the repeated observations within the subjects have natural order. The correlation

structure is assumed to be corr(yij, yij′) = α|j−j′|. In this case, the correlation matrix

is build from the AR(1) structure. The structure is as follow.

R(α) =




1 α1 . . . αt−1

α1 1 . . . αt−2

...
...

. . .
...

αt−1 αt−2 . . . 1




, (18)

where

α̂ =
1

(N? − p)φ

n∑
i=1

∑
j≤t−1

eijei,j+1, N? = n(t− 1). (19)

3. m-dependent structure
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In a special case, m = 2, the working correlation structure is as follows

R(α) =




1 α1 α2 0 . . . 0

α1 1 α1 α2 . . . 0

α2 α1 1 α1 . . . 0

0 α2 α1 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1




, (20)

which we can write the ijth cell of the matrix as follows

Corr(Yij, Yij′) =





1, |j − j′| = 0;

α|j−j′|, |j − j′| = 1, 2, . . . , m;

0, |j − j′| > m,

(21)

where

α̂k =
1

(Nk − p)φ

n∑
i=1

∑

j≤t−k

eijei,j+k, Nk = n(n− k). (22)

2.4.3 Estimating algorithm

Liang and Zeger (1986) computed a set of estimates β̂ and based on iterating between

a modified Fisher scoring for β̂ and moment estimation α̂ and φ̂. The modified iterative

procedure for β̂ is as follows.

1. Compute initial estimates of β with ordinary generalized linear model assuming

independence.

2. Compute the working correlations R(α) based on the standardized residuals, the

current β, and the a pre assumed working correlation structure R(α), for example,

“independent”, “AR(1)”, or “m-dependent”.
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3. Compute an estimate of the covariance:

V̂i = φA
1
2
i R̂i(α)A

1
2
i (23)

4. Update β:

β̂
(k+1)

= β̂
(k) − [

n∑
i=1

D̂′
iV̂

−1
i D̂i]

−1[
n∑

i=1

D̂′
iV̂

−1
i (Yi − µ̂i)] (24)

5. Iterate steps 2-4 until convergence.

2.4.4 Empirical variance estimators

An empirical variance estimator can be used to estimate covariance matrix of β̂.

This variance estimator is also referred to as a “sandwich” or “robust” estimator. The

empirical estimator covariance matrix of β̂ is given by

V̂R = I−1
0 I1I

−1
0 , (25)

where

I0 =
n∑

i=1

D′
iV

−1
i

∂µi

∂β
(26)

I1 =
n∑

i=1

D′
iV

−1
i Cov(Yi)V

−1
i

∂µi

∂β
. (27)

It has the property of consistent estimator of the covariance matrix of β̂, even if the

working correlation matrix is misspecified, that is, if Cov(Yi) 6= Vi then is replaced by

an estimate, such as

(Yi − µi(β̂))′(Yi − µi(β̂)) (28)
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2.5 Diagnostics and Testing

Pan (2001) introduced a useful criterion measure that is qusilikeoihood information

criterion (QIC). The measure is called QIC and we can use it to choose between several

competing correlation structures. It is defined as follows

QIC = −2Q
(
g−1(xβ̂)

)
+ 2trace(Â−1

I V̂R) (29)

where Q(y; g−1(xβ̂)) is the value of the quasilikelihood computed using the coefficients

from the model with the given correlation structure. We can calculate Q(y; g−1(xβ̂)) as

follows

Q(y; g−1(xβ̂)) =
n∑

i=1

t∑
j=1

{yij log(µ̂ij/(1− µ̂ij)) + log(1− µ̂ij)}. (30)

In addition, ÂI is the covariance matrix obtained by fitting an independence model. It is

defined by

ÂI = −H−1, (31)

where H is the Hessian matrix evaluated using the parameter estimates on the last it-

eration. V̂R is based on equation (25) that means the modified sandwich estimate of

variance from the model with the given correlation structure.
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3 RESEARCH METHODS

3.1 Participants

Fifty-four undergraduate and graduate students from Tunghai University voluntarily

participated in this study. The participant pool consisted of 45 females and 9 males,

ranging in age of surfing internet from 0.5 to 14.5 years.

3.2 Apparatus and Materials

This study used a Pentium IV desktop computer with Microsoft’s Internet Explore

6.0. The animated online ads used Microsoft MSpaint, Microsoft Frontpage 2000, Macro-

media Dreamweaver 4.0 (2000), Ulead PhotoImpact 6.0 (2000), and Ulead Graphic In-

terchange Format (GIF) Animator 4.0. Information gathered from each participant in-

cluded a background questionnaire and a browsing task with the records of click-through.

Each participant continuously viewed 15 different ads imposed on a single Web page

with different e-news. A digital video camera recorder (SONY DCR-PC330) was used

to record every movement of a mouse that happened in the process of experiment. Ads

were positioned in the “High”, “Middle”, and “Low” pages, approximately (see Figure

1, 2, 3, respectively). When designing web pages,“High” is defined as absolute posi-

tion, and it’s coordinate is “left=694, and top=0.” “Middle” coordinate is “left=694, and

top=268.” “Low” coordinate is “left=694, and top=518.” Sizes of advertisements were

standard medium rectangle Interactive Marketing Unit (300×250 IMU) in accordance

with the Internet Advertising Bureau (IAB) size guidelines for advertisements on the Web

(http://www.iab.net/standards/adunits.asp/). Each advertisement was manipulated to
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be 3 different animation lengths (7.5, 15, and 30 seconds) and 3 different exposure times

(1, 3, and more than 3 cyclical times) with company logos and products constantly dis-

played. Animation on the online advertisement consisted of flashing of words and graphs

which were shown as 3 different exposure times 3 different animation lengths, and 3 dif-

ferent positions. Based on the factorial design with complete randomization in repeat,

each subject was randomly assigned one of twenty-seven treatment combinations.

3.3 Experimental Procedure

Participants were shown a single Web page and asked to complete a browsing task

one page at a time. 15 different online ads will accompany with e-news shown on the Web

page. Before beginning, participants were given a few minutes to familiarize themselves

with the content of the page. Participants were informed that all information needed to

complete the browsing tasks was present within the web pages, including free clicking

through the ad shown in the same page. Each subject was asked for viewing 15 different

online ads and then the data with or without click-through would be taken by a digital

video camera recorder (SONY DCR-PC330). After the task was completed, participants

were asked to respond to the reasons of clicking through ads or not in terms of after-

experiment questionnaire.

3.4 Experimental Design

Three-factor factorial with repeated measures was used in this study to collect the

click-through data of repeated measures. Doyle et al. proposed a theory as follows: click

through will be greater if the banner ad is placed approximately 1/3 of the way down
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Figure 1: Advertising medium rectangle put on the high position of Web page in this

study.

the page. Based on their results, the placement of the ad down the screen would increase

click-through 77% for the Photodisc ad, however, the Webreference ad showed the same

trend, but the result was not statistically significant. In this study, the medium rectangle

ads were placed on the three different positions (high, middle, and low placements). The

other factors are design factors of animation ads, animation length and exposure times of

advertising. The three levels of animation length and exposure times are 7.5, 15, and 30

seconds as well as 1, 3, and more than 3 times respectively. There are totally twenty-seven

treatment combinations in this experiment. Two subjects as the experimental units would

be randomly assigned to one of twenty-seven treatment combinations as the replicates.
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Figure 2: Advertising medium rectangle put on the middle position of Web page in this

study.

Fifteen different advertisings would be exposed in 3 different ad contents, commodities

information, sale promotion, and entertainments which are arranged randomly and each

consisting of 5 different ads for each subject and the corresponding click through data of

repeated measures would be collected from this experiment.

3.5 Proposed Models

In this study, each subject will be assigned 15 different advertising and their click-

through data will also be recorded. Using the notation (xi, yij), i = 1, . . . , 54, j =
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Figure 3: Advertising medium rectangle put on the low position of Web page in this study.

1, . . . , 15, to denote the covariates vector of dimensions p corresponding to the ith subject

and the jth binary outcome of clicking through for the ith subject. We start by supposing

that the distribution of Yij is Bernoulli, given an covariate vector xi as follows.

f(yij|xi) = π
yij

ij (1− πij)
1−yij

= exp

[
yij log

πij

1− πij

+ log(1− πij)

]

= exp [yijθij − log{1 + exp(θij)}] . (32)

We denote by πij be the probability of success at time j for the ith subject. It implies

that πij = P (Yij = 1). Then, we assume multiple logistic model with GEEs approach as
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follows

logit(πij) = θij

= log [πij/(1− πij)]

= x′iβ, (33)

where β is a vector of model parameters. The covariates vector consists of the order of

repeated measures, gender, position, animation length , exposure times, the two-factor

interaction with position and animation length, the two-factor interaction with position

and exposure times, and the two-factor interaction with animation length and exposure

times. Table 1 showed the coding sheet describing the variables of the CTR data set. In

this study, we use GEE approach to fit the logistic regression models and apply to CTR

data.

Base on the equation (33), we rewrite the GEE model with p category predictors as

follows,

logit P (Yij = 1|xi1, . . . , xip) = β0 + β1xi1 + . . . + βpxip, (34)

such that the odds ratio given by

OR =
P (Yij = 1|xi1, . . . , xi,p−1, xip = 1)/P (Yij = 0|xi1, . . . , xi,p−1, xip = 1)

P (Yij = 1|xi1, . . . , xi,p−1, xip = 0)/P (Yij = 0|xi1, . . . , xi,p−1, xip = 0)
= exp(βp).

It represents the ratio of the odds of a given predictors containing pth variable if

the outcome of response equals 1 compared to the odds of a given predictors excluding

pth variable if the outcome of response equals 0. Next, we define dummy variable to all

category predictors.
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Table 1: Variables in the CTR Data Set

Name(Abbreviation) Description Codes/Values

Order(O) the order of the repeated measurements 1, 2, . . . , 15

Gender(G) the gender of the participants 1 = Female

2 = Male

Type the type of advertising 1 = Commodities Information

2 = Sale Promotion

3 = Entertainments

Position(P) the layout position of a middle 1 = High

rectangular advertising 2 = Middle

3 = Low

Animation Length(L) the animation length of ad 7.5, 15, and 30 seconds

Exposure Times(T) the exposure times of advertising 1, 3, and more than 3 times

3.5.1 GEE model with categorical predictors

A GEE model was fitted containing variables for order, gender, two dummy vari-

ables for type, two dummy variables for position , two dummy variables for animation

length,and two dummy variables for exposure times. Define the notation of the covariates

in the logistic regression model with categorical factors as follows,

G =

{
1, if gender is female;

0, else.

Type1 =

{
1, if ad type is commodities information;

0, else.

Type2 =

{
1, if ad type is sale promotion;

0, else.
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P1 =

{
1, if ad position is high;

0, else.

P2 =

{
1, if ad position is middle;

0, else.

L1 =

{
1, if animation length is 7.5 seconds;

0, else.

L2 =

{
1, if animation length is 15 seconds;

0, else.

T1 =

{
1, if exposure times is 1 time;

0, else.

T2 =

{
1, if exposure times is 3 times;

0, else.

3.5.2 Parameter estimation

In this study, SAS/STAT Release 9.1 was used to fit the proposed model. “PROC

GENMOD” provides a support of GEE in the logistic regression model. “REPEATED”

statement followed by the “MODEL” statement in GENMOD procedure was used to spec-

ify the working correlation structure including “Independent”, “AR(1)” or “m-dependent”.

The parameters estimates of OLR model are used to be the initial values of iteratively

fitting algorithm in the GEE model.

3.5.3 Strategies of model selection

Traditionally, comparison of observed to predicted values in logistic regression is based

on the log likelihood function. Akaike’s information criterion (AIC) is one useful measure

to assess the goodness-of-fit of fitted model. QIC is introduced to apply in assessing
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quasilikelihood based model by Pan (2001). In this study, we used QIC measures to

assess goodness-of-fit of fitted model.

First, we began the complex model to fit model with three types working correlation

structures, respectively. Second, remove nonsignificant parameters in the fitted model.

Repeated the second step until all parameter of fitted model is significant. Then, we

calculated the QIC of final fitted model with three different working correlation structures.

Final, we chose the final model with the smallest QIC measure.

After choosing the final model, we draw the scatter plot of raw residual versus fitted

value. Use the plot to check the fitted model.
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4 RESULTS

According to the results of the experiment we’ve collected 15 repeated binary obser-

vations from the 54 subjects. We began a complex model of multiple logistic regression

by GEEs approach with “Independent”, “AR(1)” and “m-dependent (m = 2)” working

correlation structures, respectively. The model is

logit(πij) = β0 + β1O + β2G + β3Type1 + β4Type2 + β5P1 + β6P2 + β7Type1 × P1

+β8Type1 × P2 + β9Type2 × P1 + β10Type2 × P2 + β11L1 + β12L2

+β13Type1 × L1 + β14Type1 × L2 + β15Type2 × L1 + β16Type2 × L2

+β17T1 + β18T2 + β19Type1 × T1 + β20Type1 × T2 + β21Type2 × T1

+β22Type2 × T2 + β23P1 × L1 + β24P1 × L2 + β25P2 × L1 + β26P2 × L2

+β27P1 × T1 + β28P1 × T2 + β29P2 × T1 + β30P2 × T2 + β31L1 × T1

+β32L1 × T2 + β33L2 × T1 + β34L2 × T2. (35)

The parameters estimates ,the corresponding standard errors estimates , z-value, and

p-value in model (35) are showed in Table 2. Remove all nonsignificant parameters in

Table 2 and refit a model as follows.

logit(πij) = β0 + β1O + β2G + β3Type1 + β4Type2 + β5P1 + β6P2 + β7Type1 × P1

+β8Type1 × P2 + β9Type2 × P1 + β10Type2 × P2 + β11L1 + β12L2

+β13P1 × L1 + β14P1 × L2 + β15P2 × L1 + β16P2 × L2. (36)

The parameters estimates, their standard error estimates, z-value, and p-value in

model (36) are showed in Table 3. Remove gender and refit a model as follows.
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Table 2: GEE parameter estimates, empirical standard error estimates, z-value, and p-value

for equation (35), including three types of working correlation structures.

Independent m-dependent (m = 2) AR(1)

Parameters Estimate SE Z Pr > |Z| Estimate SE Z Pr > |Z| Estimate SE Z Pr > |Z|

Intercept -2.9326 1.1523 -2.54 0.0109* -2.8306 1.1473 -2.47 0.0136* -2.8392 1.1123 -2.55 0.0107*

O 0.1113 0.0200 5.56 <.0001* 0.1253 0.0220 5.70 <.0001* 0.1181 0.0202 5.86 <.0001*

G 1.3046 0.4897 2.66 0.0077* 1.3475 0.5243 2.57 0.0102* 1.2990 0.4975 2.61 0.0090*

Type1 0.6078 0.6934 0.88 0.3808 -0.1937 0.6839 -0.28 0.7770 0.2671 0.6254 0.43 0.6693

Type2 -0.2016 0.5636 -0.36 0.7206 -0.5014 0.7565 -0.66 0.5075 -0.3991 0.5548 -0.72 0.4720

P1 -0.6866 0.9997 -0.69 0.4922 -0.7818 0.9862 -0.79 0.4279 -0.6023 0.9869 -0.61 0.5417

P2 -1.8531 1.1164 -1.66 0.0969 -1.8346 1.1028 -1.66 0.0962 -1.6828 1.1159 -1.51 0.1316

Type1 × P1 -0.1620 0.4818 -0.34 0.7366 0.2693 0.5214 0.52 0.6055 -0.1899 0.4899 -0.39 0.6982

Type1 × P2 0.0515 0.6112 0.08 0.9329 0.3794 0.6210 0.61 0.5413 -0.0301 0.5837 -0.05 0.9589

Type2 × P1 0.2446 0.4961 0.49 0.6220 0.7483 0.5679 1.32 0.1877 0.3617 0.5122 0.71 0.4800

Type2 × P2 1.3255 0.4605 2.88 0.0040* 1.5788 0.6117 2.58 0.0099* 1.2502 0.5286 2.36 0.0180*

L1 -0.3525 1.0807 -0.33 0.7443 -0.4408 1.0793 -0.41 0.6830 -0.4645 1.0551 -0.44 0.6598

L2 0.5441 1.3148 0.41 0.6790 0.3792 1.2710 0.30 0.7654 0.4092 1.2918 0.32 0.7514

Type1 × L1 -0.1019 0.6655 -0.15 0.8784 0.1021 0.6879 0.15 0.8821 0.0727 0.6537 0.11 0.9115

Type1 × L2 0.1046 0.5090 0.21 0.8372 0.2472 0.4883 0.51 0.6127 0.2543 0.4624 0.55 0.5823

Type2 × L1 -0.4436 0.4859 -0.91 0.3612 -0.1477 0.6686 -0.22 0.8252 -0.2511 0.5486 -0.46 0.6471

Type2 × L2 -0.4295 0.4260 -1.01 0.3133 -0.0463 0.4786 -0.10 0.9229 -0.2296 0.4287 -0.54 0.5923

T1 0.7636 1.0501 0.73 0.4671 0.7095 1.0221 0.69 0.4876 0.6688 1.0155 0.66 0.5101

T2 0.6586 1.1499 0.57 0.5668 0.4957 1.1812 0.42 0.6747 0.4805 1.1320 0.42 0.6712

Type1 × T1 -0.7407 0.5825 -1.27 0.2036 -0.4253 0.5960 -0.71 0.4755 -0.6453 0.5466 -1.18 0.2378

Type1 × T2 -0.6698 0.5046 -1.33 0.1844 -0.5670 0.5397 -1.05 0.2934 -0.3942 0.4940 -0.80 0.4248

Type2 × T1 -0.8607 0.4558 -1.89 0.0590 -0.7287 0.5677 -1.28 0.1993 -0.7547 0.4643 -1.63 0.1041

Type2 × T2 -0.2469 0.4888 -0.51 0.6135 0.0729 0.5568 0.13 0.8958 -0.1732 0.4911 -0.35 0.7243

P1 × L1 1.4069 0.9832 1.43 0.1525 1.2616 0.9861 1.28 0.2008 1.2944 0.9817 1.32 0.1873

P1 × L2 1.1534 1.0561 1.09 0.2748 1.1482 1.0365 1.11 0.2680 1.1308 1.0530 1.07 0.2829

P2 × L1 2.6556 0.9256 2.87 0.0041* 2.5042 0.9401 2.66 0.0077* 2.5252 0.9307 2.71 0.0067*

P2 × L2 1.1163 1.2802 0.87 0.3832 0.9665 1.3020 0.74 0.4579 1.0471 1.2876 0.81 0.4161

P1 × T1 0.7934 1.0510 0.75 0.4503 0.5427 1.0337 0.53 0.5996 0.7010 1.0441 0.67 0.5019

P1 × T2 -0.8903 1.1646 -0.76 0.4446 -0.9114 1.1840 -0.77 0.4414 -0.8667 1.1724 -0.74 0.4598

P2 × T1 0.2899 1.3487 0.21 0.8298 0.1800 1.3602 0.13 0.8947 0.2744 1.3367 0.21 0.8373

P2 × T2 1.0494 1.1034 0.95 0.3416 0.8874 1.1293 0.79 0.4320 0.9754 1.1184 0.87 0.3831

L1 × T1 -1.3509 1.0446 -1.29 0.1960 -1.3214 1.0735 -1.23 0.2183 -1.2126 1.0423 -1.16 0.2447

L1 × T2 -1.0141 1.0723 -0.95 0.3443 -1.1025 1.1260 -0.98 0.3275 -0.9902 1.0783 -0.92 0.3584

L2 × T1 -1.3255 1.2160 -1.09 0.2757 -1.3176 1.2074 -1.09 0.2751 -1.2743 1.2109 -1.05 0.2926

L2 × T2 -1.4277 1.1457 -1.25 0.2127 -1.2893 1.1536 -1.12 0.2637 -1.3440 1.1421 -1.18 0.2393

Note: “ * ” denotes statistically significance at α = 0.05

Table 3: GEE parameter estimates, empirical standard error estimates, z-value, and p-value

for equation (36), including three types of working correlation structures.

Independent m-dependent (m = 2) AR(1)

Parameters Estimate SE Z Pr > |Z| Estimate SE Z Pr > |Z| Estimate SE Z Pr > |Z|

Intercept -2.1705 0.8075 2.69 0.0072* -2.1482 0.8457 -2.54 0.0111* -2.2025 0.7968 -2.76 0.0057*

O 0.1179 0.0216 5.45 <.0001* 0.1297 0.0225 5.75 <.0001* 0.1211 0.0211 5.74 <.0001*

G 0.9368 0.5901 1.59 0.1124 0.9820 0.6111 1.61 0.1080 0.9447 0.5812 1.63 0.1041

Type1 0.1696 0.3884 0.44 0.6624 -0.4967 0.4294 -1.16 0.2474 0.0285 0.4019 0.07 0.9434

Type2 -0.7052 0.3715 1.90 0.0577 -0.7148 0.4939 -1.45 0.1478 -0.7680 0.4137 -1.86 0.0634

P1 -0.4334 0.7463 0.58 0.5614 -0.7431 0.7742 -0.96 0.3372 -0.4213 0.7393 -0.57 0.5687

P2 -1.0465 0.7132 1.47 0.1423 -1.3742 0.7097 -1.94 0.0528 -1.0088 0.6843 -1.47 0.1404

Type1 × P1 -0.3288 0.4556 0.72 0.4705 0.2783 0.4984 0.56 0.5766 -0.3058 0.4653 -0.66 0.5110

Type1 × P2 -0.1289 0.5576 0.23 0.8172 0.4388 0.5713 0.77 0.4424 -0.1244 0.5381 -0.23 0.8172

Type2 × P1 0.0033 0.4783 0.01 0.9946 0.6709 0.5617 1.19 0.2324 0.1915 0.4919 0.39 0.6971

Type2 × P2 1.0305 0.4419 2.33 0.0197* 1.5615 0.5787 2.70 0.0070* 1.0520 0.4968 2.12 0.0342*

L1 -1.2541 0.6536 1.92 0.0550 -1.2761 0.6806 -1.87 0.0608 -1.2198 0.6568 -1.86 0.0633

L2 -0.3622 0.9353 0.39 0.6986 -0.3303 0.9207 -0.36 0.7198 -0.3211 0.9323 -0.34 0.7305

P1 × L1 1.0325 1.1017 0.94 0.3487 0.9587 1.1257 0.85 0.3944 0.9654 1.0996 0.88 0.3799

P1 × L2 0.9347 1.1191 0.84 0.4036 0.9222 1.1196 0.82 0.4101 0.9087 1.1124 0.82 0.4140

P2 × L1 2.3719 0.9256 2.56 0.0104* 2.3560 0.9445 2.49 0.0126* 2.3085 0.9131 2.53 0.0115*

P2 × L2 0.8858 1.1890 0.74 0.4563 0.8212 1.1913 0.69 0.4906 0.8357 1.1894 0.70 0.4823

Note: “ * ” denotes statistically significance at α = 0.05
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Table 4: GEE parameter estimates, empirical standard error estimates, z-value, and p-value

of equation (37), including three types of working correlation structures.

Independent m-dependent (m = 2) AR(1)

Parameters Estimate SE Z Pr > |Z| Estimate SE Z Pr > |Z| Estimate SE Z Pr > |Z|

Intercept -1.3651 0.6580 -2.07 0.0380* -1.2815 0.6728 -1.90 0.0568 -1.3902 0.6458 -2.15 0.0313*

O 0.1156 0.0207 5.58 <.0001* 0.1283 0.0218 5.88 <.0001* 0.1189 0.0202 5.90 <.0001*

Type1 0.1915 0.3826 0.50 0.6168 -0.5456 0.4485 -1.22 0.2238 0.0395 0.4002 0.10 0.9213

Type2 -0.7019 0.3749 -1.87 0.0611 -0.6867 0.5131 -1.34 0.1808 -0.7630 0.4237 -1.80 0.0718

P1 -0.3136 0.7959 -0.39 0.6936 -0.6461 0.8371 -0.77 0.4402 -0.2961 0.7907 -0.37 0.7081

P2 -1.0152 0.7887 -1.29 0.1981 -1.3848 0.7927 -1.75 0.0807 -0.9738 0.7615 -1.28 0.2009

Type1 × P1 -0.2969 0.4492 -0.66 0.5086 0.3422 0.5228 0.65 0.5128 -0.2811 0.4635 -0.61 0.5442

Type1 × P2 -0.1571 0.5569 -0.28 0.7778 0.4951 0.5884 0.84 0.4001 -0.1494 0.5389 -0.28 0.7816

Type2 × P1 0.0405 0.4804 0.08 0.9328 0.7280 0.5817 1.25 0.2107 0.2352 0.4974 0.47 0.6363

Type2 × P2 1.0214 0.4459 2.29 0.0220* 1.5658 0.6043 2.59 0.0096* 1.0365 0.5088 2.04 0.0416*

L1 -1.2261 0.6678 -1.84 0.0663 -1.2669 0.7033 -1.80 0.0716 -1.1959 0.6683 -1.79 0.0735

L2 -0.2197 0.9560 -0.23 0.8182 -0.1964 0.9464 -0.21 0.8356 -0.1779 0.9527 -0.19 0.8518

P1 × L1 0.6006 1.0718 0.56 0.5752 0.5331 1.1107 0.48 0.6312 0.5356 1.0696 0.50 0.6166

P1 × L2 0.6525 1.1313 0.58 0.5641 0.6439 1.1335 0.57 0.5700 0.6246 1.1223 0.56 0.5779

P2 × L1 2.1750 0.9534 2.28 0.0225* 2.1467 0.9903 2.17 0.0302* 2.1160 0.9419 2.25 0.0247*

P2 × L2 0.8679 1.2238 0.71 0.4782 0.8025 1.2304 0.65 0.5142 0.8146 1.2234 0.67 0.5055

Note: “ * ” denotes statistically significance at α = 0.05

logit(πij) = β0 + β1O + β2Type1 + β3Type2 + β4P1 + β5P2 + β6Type1 × P1

+β7Type1 × P2 + β8Type2 × P1 + β9Type2 × P2 + β10L1

+β11L2 + β12P1 × L1 + β13P1 × L2 + β14P2 × L1 + β15P2 × L2. (37)

The parameters estimates, their standard error estimates, z-value, and p-value in

model (37) are showed in Table 4. It showed that the two-factor interaction effect of ad

type and position (Type × P ), the interaction effect of position and animation length

(P × L), as well as the order effect (“O”) were statistically significant at α = 0.05.

Furthermore, we calculated the QIC for the fitted model (37) with three different

working correlation structures. The results of QIC values based on three working correla-

tion were showed in Table 5. GEE model with AR(1) working correlation has the smallest

value of QIC. According to Pan’s (2001) suggestion, model (38) with AR(1) working cor-

relation structure was selected to fit CTR data well.
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Table 5: The QIC measures of fitted equation (37) for CTR data.

Working correlation DF QIC Quasilikelihood α1 α2

Autoregressive 794 1001.205 -448.1486 0.3523 0.1241

m-dependent (m = 2) 794 1023.534 -455.9307 0.3618 0.3912

Independent 794 1001.214 -447.5849 0 0

The fitted equation is

logit(π̂ij) = −1.3902 + 0.1189O + 0.0395Type1 − 0.7630Type2

−0.2961P1 − 0.9738P2 − 0.2811Type1 × P1

−0.1494Type1 × P2 + 0.2352Type2 × P1 + 1.0365Type2 × P2

−1.1959L1 − 0.1779L2 + 0.5356P1 × L1 + 0.6246P1 × L2

+2.116P2 × L1 + 0.8146P2 × L2. (38)

We also tried out some other possible candidates for the “working correlation”, for

example , m-dependent with m = 1 or 2; the results of model selection were almost

unchanged. One possible reason for this is that the estimate of the covariance matrix of

the logistic regression coefficients is robust. That is, the GEEs method has the property of

being a consistent estimator of the covariance matrix of the estimators of logistic regression

coefficients even if the working correlation matrix is mispecified (Zeger and Liang, 1986).

For identifying the systematic departure, we checked the scatter plot of residuals

against the fitted values in Figure 4. The scatter plot of residuals looks like to be lopsided

across the fitted values but the spread of the residuals was not too large. The reason

we guess was partly due to the highly negative correlations between the residuals and

the fitted values for the correlated binary data. The scatter plot of residuals against

follow-up time orders (denoted by “O”) by the model (38), in Figure 5, also showed that
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Figure 4: The plot of the raw residuals against the fitted value, Ŷ ’s (predicted values by

the model (38)).

the order effect on the CTR data is important. We tried to add other curvilinear effects

into the model, there was no further improvement in the diagnostic scatter plots. Both

quantitative results (the p-value in Table 4), QIC in Table 5, and graphical diagnosis

(Figures 4 and 5) showed that the current model (38) fitted the data acceptably.

Moreover, using the fitted model (38) to calculate the odds ratio (OR) and to estimate

the click-through-ratio for all treatment combinations. We transformed the equation (38)

to the estimated odds of click-through as follows.
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Figure 5: The plot of the raw residuals against time order.

π̂ij

1− π̂ij

= exp




−1.3902 + 0.1189O + 0.0395Type1 − 0.7630Type2

−0.2961P1 − 0.9738P2 − 0.2811Type1 × P1

−0.1494Type1 × P2 + 0.2352Type2 × P1

+1.0365Type2 × P2 − 1.1959L1 − 0.1779L2

+0.5356P1 × L1 + 0.6246P1 × L2 + 2.116P2 × L1

+0.8146P2 × L2.




(39)

According to model (39), the estimated odds ratios for all treatment combinations

were calculated and shown in Tables 6, 7, 8 and 9 respectively. First, we considered the

odds ratios between the interaction effect of ad type and ad position (Type×L). Under

the condition of first ad and animation length of 7.5 seconds, we compared the odds of

two different ad position with the same ad type.

For instance, under the first ad and animation length of 7.5 seconds, O = 1, L1 =
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1, L2 = 0, given ad is promotion-type, T1 = 0, T2 = 1 , given ad position is middle,

P1 = 0, P2 = 1, substitute the preceding values into equation (38), logit(π̂) = −1.0515;

by contrast, for ad position is low, logit(π̂) = −3.2302. Changing ad position from low

to middle, a multiplicative effect of exp(2.1787) = 8.8348 on the odds that subject would

click through this ad (Y = 1). At the same condition except ad position, the odds equals

0.0636 for an high position, 0.3494 for a middle position, for which odds ratio is 0.1820 or

1/0.1820 = 5.49 for the middle against high positions. As for the odds of high against low

positions we have odds equal 0.063577 for an high position, and 0.03955 for a low position,

for which odds ratio is 1.6075. In other words, the odds of click through ad of middle

position is slightly greater than low and high ones, given the ad type is sale promotion.

Similarly, we obtained other odds ratios under different conditions of ad types (Table 6).

When the ad type is commodities-type, the odds of click through ad of middle position

is greater than low and high ones. Given the ad is entertainment-type , the result is also

similar to the ones of commodities-type ads.

In addition, we also compared the odds of two different ad types under the same ad

position (Table 7). Given the positions of ad are high and middle, the odds of click

through ad of any two kinds of ad types are not significantly different. However, given

the position of ad is low, the odds of click through ads of sale promotion type is smaller

than commodities-type and entertainment-type ads.

Meanwhile, we also considered the odds ratios between the interaction effect of posi-

tion and animation length (P × L) under the condition of first ad and commodities-type

ad (Table 8). Given the position of ad is high, the odds of click through ad of animation

length of 15 seconds is slightly greater than 7.5 seconds. Given the position is middle,

the odds of click through ad animation length of 7.5 seconds is slightly greater than 30
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Table 6: The estimated odds ratio among ad type and ad position under the condition of

first ad and animation length of 7.5 seconds.

Compare Base

Type Position Type Position Odds Ratio

Commodities High Commodities Low 0.9593

Commodities Middle Commodities Low 2.6988

Commodities High Commodities Middle 0.3554

Promotion High Promotion Low 1.6075

Promotion Middle Promotion Low 8.8348

Promotion High Promotion Middle 0.1820

Entertainment High Entertainment Low 1.2706

Entertainment Middle Entertainment Low 3.1337

Entertainment High Entertainment Middle 0.4055

Table 7: The estimated odds ratio among ad type and ad position under first ad and

animation length of 7.5 seconds.

Compare Base

Position Type Position Type Odds Ratio

High Commodities High Entertainment 0.7854

High Promotion High Entertainment 0.5899

High Commodities High Promotion 1.3314

Middle Commodities Middle Entertainment 0.8959

Middle Promotion Middle Entertainment 1.3146

Middle Commodities Middle Promotion 0.6815

Low Commodities Low Entertainment 1.0403

Low Promotion Low Entertainment 0.4663

Low Commodities Low Promotion 2.2311
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Table 8: The estimated odds ratio among position and animation length under fixed first

ad and commodities-type ad.

Compare Base

Position Animation Length Position Animation Length Odds Ratio

High 7.5 High 30 0.5167

High 15 High 30 1.5631

High 7.5 High 15 0.3305

Middle 7.5 Middle 30 2.5095

Middle 15 Middle 30 1.8902

Middle 7.5 Middle 15 1.3276

Low 7.5 Low 30 0.3024

Low 15 Low 30 0.8370

Low 7.5 Low 15 0.3613

seconds. Given the position is low, the odds of click through ad animation length of 15

and 30 seconds are both greater than 7.5 seconds.

Next, we also considered the odds ratios of two different ad positions that are condi-

tional on the first ad, commodities-type ad, and the animation length (Table 9). Given

animation length is 7.5 seconds, the odds of click through ad of middle position is greater

than high and low positions. It’s partly similar to the results in Table 6 (for commodities-

type ads). Given animation length is 15 seconds, the odds ratios among any two kinds of

positions are not significantly different. Given animation length is 30 seconds, the odds

of click through ad in low position is greater than middle one.

After discussing the odds ratios between the interaction effects of Type×P and P ×
L, we would calculate the estimated click-through-ratio (ECTR) as follows. Using the

equation (37) with AR(1) structure in GEEs, the estimated click through rate would be
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Table 9: The estimated odds ratio among position and animation length under fixed first

ad and commodities-type ad.

Compare Base

Animation Length Position Animation Length Position Odds Ratio

7.5 High 7.5 Low 0.9593

7.5 Middle 7.5 Low 2.6988

7.5 High 7.5 Middle 0.3554

15 High 15 Low 1.0485

15 Middle 15 Low 0.7345

15 High 15 Middle 1.4276

30 High 30 Low 0.5615

30 Middle 30 Low 0.3252

30 High 30 Middle 1.7263

calculated.

π̂it =

exp




−1.3902 + 0.1189O + 0.0395Type1 − 0.7630Type2

−0.2961P1 − 0.9738P2 − 0.2811Type1 × P1

−0.1494Type1 × P2 + 0.2352Type2 × P1

+1.0365Type2 × P2 − 1.1959L1 − 0.1779L2

+0.5356P1 × L1 + 0.6246P1 × L2 + 2.116P2 × L1

+0.8146P2 × L2




1 + exp




−1.3902 + 0.1189O + 0.0395Type1 − 0.7630Type2

−0.2961P1 − 0.9738P2 − 0.2811Type1 × P1

−0.1494Type1 × P2 + 0.2352Type2 × P1

+1.0365Type2 × P2 − 1.1959L1 − 0.1779L2

+0.5356P1 × L1 + 0.6246P1 × L2 + 2.116P2 × L1

+0.8146P2 × L2




. (40)

ECTR and 95% confidence interval of CTR among ad position and ad type that given

conditions on first ad and the 3 different animation lengths (see Tables 10-12). ECTR

in Table 10, for example, under first ad and animation length fixed at 7.5 seconds, O =

1, L1 = 1, L2 = 0, given middle position and promotion-type ad , P1 = 0, P2 = 1, T1 =
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Table 10: ECTR and 95% confidence interval of CTR among the nine combinations of ad

positions and types under animation length fixed at 7.5 seconds.

Animation Length (7.5 seconds) 95% C.I.

Ad Position Ad Type ECTR Lower Upper

High Commodities 0.0780 0.0208 0.2520

High Promotion 0.0598 0.0139 0.2234

High Entertainment 0.0973 0.0261 0.3028

Middle Commodities 0.1923 0.0733 0.4175

Middle Promotion 0.2589 0.1067 0.5056

Middle Entertainment 0.2100 0.0870 0.4257

Low Commodities 0.0811 0.0395 0.1591

Low Promotion 0.0380 0.0169 0.0834

Low Entertainment 0.0782 0.0327 0.1755

0, T2 = 1, and logit(π̂) = −1.0515. Using equation (40), we have exp(−1.0515)/[1 +

exp(−1.0515)], this is, ECTR equal 0.2589. From Table 10, we drew ECTR plot as

Figure 6. We could find that the greatest ECTR (0.2589) is the combination of middle

position and promotion-type ad, and the smallest ECTR (0.0380) is the combination of

low position and promotion-type ad, under animation length fixed at 7.5 seconds and the

first ad (O = 1). Similarly, from Table 11, we could draw ECTR plot in Figure 7. The

greatest ECTR (0.2459) is the combination of high position and entertainment-type ad

under animation length fixed at 15 seconds and first ad (O = 1). From Table 12, Figure 8

showed the plot of ECTR. From the plot, we found that the greatest ECTR (0.2259) is the

combination of low position and commodities type ad and the smallest ECTR (0.0867) is

the combination of middle position and commodities type ad under animation length.

In addition, we also calculated ECTR and 95% confidence interval of CTR among

ad position and animation length that given conditions on first ad and 3 different ad
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Figure 6: The plot of ECTR at ad positions and ad types under fixed animation length

fixed at 7.5 seconds.
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Table 11: ECTR and 95% confidence interval of CTR among the nine combinations of ad

positions and types under animation length fixed at 15 secons.

Animation Length (15 seconds) 95% C.I.

Ad Position Ad Type ECTR Lower Upper

High Commodities 0.2039 0.1040 0.3609

High Promotion 0.1613 0.0818 0.2934

High Entertainment 0.2459 0.1292 0.4173

Middle Commodities 0.1521 0.0438 0.4128

Middle Promotion 0.2084 0.0637 0.5046

Middle Entertainment 0.1668 0.0427 0.4732

Low Commodities 0.1963 0.0514 0.5241

Low Promotion 0.0987 0.0194 0.3772

Low Entertainment 0.1901 0.0424 0.5544

Table 12: ECTR and 95% confidence interval of CTR among the nine combinations of ad

positions and types under animation length fixed at 30 seconds.

Animation Length(30 seconds) 95% C.I.

Ad Position Ad Type ECTR Lower Upper

High Commodities 0.1408 0.0530 0.3243

High Promotion 0.1096 0.0401 0.2659

High Entertainment 0.1726 0.0716 0.3606

Middle Commodities 0.0867 0.0368 0.1908

Middle Promotion 0.1222 0.0523 0.2599

Middle Entertainment 0.0958 0.0420 0.2038

Low Commodities 0.2259 0.0765 0.5067

Low Promotion 0.1156 0.0374 0.3056

Low Entertainment 0.2190 0.0739 0.4963
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Figure 7: The plot of ECTR at ad position and ad type under animation length fixed at

15 seconds.
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Figure 8: The plot of ECTR at ad position and ad type under animation length fixed at

30 seconds.
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Table 13: ECTR and 95% confidence interval of CTR among the nine combinations of ad

positions and animation lengths under commodities-type advertising.

Commodities-type advertising 95% C.I.

Ad Position Animation length ECTR Lower Upper

High 7.5 0.0780 0.0208 0.2520

High 15 0.2039 0.1040 0.3609

High 30 0.1408 0.0530 0.3243

Middle 7.5 0.1923 0.0733 0.4175

Middle 15 0.1521 0.0438 0.4128

Middle 30 0.0867 0.0368 0.1908

Low 7.5 0.0811 0.0395 0.1591

Low 15 0.1963 0.0514 0.5241

Low 30 0.2259 0.0765 0.5067

types (Tables 13-15). From Table 13, given ad type is commodities-type advertising, the

greatest ECTR (0.2259) is the combination of low position and animation length held

at 30 seconds and the smallest ECTR (0.0780) is the combination of high position and

animation length held at 7.5 seconds. The ECTR plot is shown in Figure 9. From Table

14, given the condition of promotion-type ad, the ECTR (0.2589) of middle position and

animation length of 7.5 seconds is the greatest, and low position and animation length of

7.5 seconds is the smallest (0.0380). The ECTR plot is shown in Figure 10. In addition

the greatest ECTR is the treatment combination of high position and animation length

of 15 seconds; the smallest ECTR is low position and animation length of 7.5 seconds

under fixed entertainment type ad.

In summary, the best and worst combinations of ECTR would give the ad designers

and advertisers an more objective guideline to determine the golden layout for different

ad types.
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Figure 9: The plot of ECTR at ad position and ad type under fixed commodities-type

advertising.
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Table 14: ECTR and 95% confidence interval of CTR among the nine combinations of ad

positions and animation lengths under fixed promotion type advertising.

Promotion-type Advertising 95% C.I.

Ad Position Animation length ECTR Lower Upper

High 7.5 0.0598 0.0139 0.2234

High 15 0.1613 0.0818 0.2934

High 30 0.1096 0.0401 0.2659

Middle 7.5 0.2589 0.1067 0.5056

Middle 15 0.2084 0.0637 0.5046

Middle 30 0.1222 0.0523 0.2599

Low 7.5 0.0380 0.0169 0.0834

Low 15 0.0987 0.0194 0.3772

Low 30 0.1156 0.0374 0.3056

Table 15: ECTR and 95% confidence interval of CTR among the nine combinations of ad

positions and animation lengths under entertainment type advertising.

Entertainment-type Advertising 95% C.I.

Ad Position Animation length ECTR Lower Upper

High 7.5 0.0973 0.0261 0.3028

High 15 0.2459 0.1292 0.4173

High 30 0.1726 0.0716 0.3606

Middle 7.5 0.2100 0.0870 0.4257

Middle 15 0.1668 0.0427 0.4732

Middle 30 0.0958 0.0420 0.2038

Low 7.5 0.0782 0.0327 0.1755

Low 15 0.1901 0.0424 0.5544

Low 30 0.2190 0.0739 0.4963
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Figure 10: The plot of ECTR at ad position and ad type under fixed promotion-type

advertising.
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Figure 11: The plot of ECTR at ad position and ad type under fixed entertainment-type

advertising.
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5 CONCLUSIONS

In this study, the multiple logistic regression models with GEEs approach under the

consideration of correlation structures were used to fit a CTR data. The empirical results

have shown that the GEEs model is more appropriate than considering the outcomes as

independent. We summarized the main results as follows.

1. To assess the relationship between responses of click-through of consumers and

design factors of medium rectangle advertising, a multiple logistic regression model

using GEEs methods with AR(1) correlation structure were verified to fit the data

acceptably.

2. Both quantitative results, z-test based on the p-value and goodness-of-fit test statis-

tic QIC, and graphical diagnosis of residual plots showed that the fitted equation

(38) fits adequately. The results indicated that time order, two-factor interaction

of ad type and ad position, as well as the interaction of ad position and animation

length are statistically significant.

3. Given promotion-type ad, the combination of middle position and animation length

of 7.5 seconds could provide the highest ECTR. (Hofacker & Murphy, 1988; Cho et

al, 2001) proposed that the pricing of internet advertising is often based on CTR.

The results would provide to ad designers and advertisers an to determine the golden

layout or the pricing of internet advertising.

4. However, given commodities-type ad, the combination of position and animation

length could be different from the ones of promotion-type ad. We’ve found the

combination of lower position and animation length of 30 seconds would provide
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higher ECTR (0.2259) than others. In addition, we’ve also found the combination

of upper position and animation length of 15 seconds would result in higher ECTR

(0.2459) than other combinations given that entertainment-type ad.
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