hERE I P BB

PEB AT REER R B

—_—

Construction and Performance Evaluation of

Cluster of Linux PC Clusters Environment

e

ABATIRRERE YT FAIEAISOFREY » NPT o R ¥ ik NAT

(Network Address Trandation) # 4] k2= % # & k%t 2 & (Cluster of Clusters,

CoCs) > iz enfie * » fis % £ 5 & (Multi-cluster) o Ji& # pb Hjie > A # 107

nip A R E R P ABEFEOERRA RS- B 2

= ‘_";t'] L 7

S p AE DT OLEIIE A RL AP o ¥ - 3 5o BB W IPVARRIRR LT

* NAT FEpra L5 X Feanp JRERL P Sr 2 o477 B Bail A %3 &

R..

ZEAPOIEFF S oPAL AR SEFEAPERE T -2 AR
fHL R EEOTE XV BBt R R TS RO i fedy

Flo $Z MR EHE BT 2R ERN DA AP EFY 2 b MP T A

PR REF I EEE CAEN I R T FANERT AT o

MaEF @ BATHEE - FEEE CEE VY oLl eREEEE

[y

Abstract

Multi-cluster with NAT (Network Address Tranglation) isakind of building cluster of
clusters (CoCs) in parallel processing, we can easily combine two or more PC clusters
which had setting on difference place to form a big one parallel system to reach the
acceptable performance and resolving the issue of insufficient public IP address. In
thisthesis, it includesthree parts: First we construct aCoCswith four PC clusterswhich
connected with NAT on difference place in LAN environment. Second, we build a
monitor system in our system in order to control and observe this system in a
convenient way; this monitor system also has aclient with mobile availability for users
without computers. Third, we evaluate our system different MPI parallel programs for
the analysis of different parallel models.

Keywords : PC Clusters, Cluster Computing, Cluster of Clusters, Message Passing,

NAT

Acknowledgements

| would like to thank all of these people who have supported and hel ped me through the
completion of this thesis and all of my working for the business of our lab. In
particular, | would like to thank my advisor, Dr. Chao-Tung Yang, who introduced me
to paralel computing and give me the broad support and guidance. | would also like
to Professor Kuan-Ching Li, Professor Wen-Chung Chiang, Professor Chao-Chin Wu,
and Professor Cheng-Chung Chu for the valuable comments and advice given while
serving on my reading committee.

There are many people whom | would like to thank, my classmate Shih-Chieh
Yen give me the discussion for the origina idea of my thesis. The members of HPC
lab includes Chuan-Lin Lai, Po-Chi Shih, and Yi-Chun Hsiung, and group-mate
Ping-Yi Chen and al the other members of HPC lab, they have give me a lot of
support of completing my thesis. | would like aso thanks the people who support
and encourage me for thisresearch. Thanks for your help and considerations.

Finally, I would like to thank my family, my girl friend, and al of my friends.

Because of your unconditional support | could made this thesis complete.

Contents

BB B s [
ADSIFACT ...t r e n e i
ACKNOWIEAGEMENTS ... i
(0] (= 01 £ TP S PRSPPI v
LISt Of TADIES ...t %
LISt Of FIQUI S, ettt Vi
Chapter 1 INtrOQUCTION ..o 1
L1 MIOTIVELION. ...ttt bbbt ne b e s 1

1.2 CONEITDULIONS......c.eeeieieieeieee ettt bbb 2

1.3 TNeSIS OrganiZaiONceeeeeieierie ettt 3
Chapter 2 BacKgrOUNGcooeeiiiieieiiiesieeieeiee e sn e 4
2.1 BEOWUIT CIUSLEN ..ottt e 4

2 R 1 [G USSP 5

2.3 Message Passing INTEITaCE.........coviiieeeeeee e 6
2.3 L MPICH ...ttt 6

2.3 2 LAM et 6

2.4 MUIti-Cluster ENVIFONMENTScvoiiierieniieieeeeeesee st 7
2.4.1 Grid Computing ENVIFONMENES.........cccooeiirerenineeieeeeeseesee e 7

2.4.2 Network Address Tranglation...........ccoeererereneneneeeeeesesee e 8

2.4.3 GALEWAYS.eeeueeeieeieeee ettt sttt n e sne b e nreenreeane 8

244 PIOXIES.....ceiueeuieieeeete sttt sttt ettt s et et sb e bt bttt e s ettt nenne s 9

2.4.5 Comparisons Among These TechnolOgies..........cccevveerieienencreneneens 9

2.5 Monitor systems For BEOWUIT CIUSLENcovriiiiiiriere e 9
Chapter 3 System Implementationccoeeeieieneneneseeeeeeeee e 11
3.1 Multi-cluster With NAT SettingS.......ccceoeieerereriene e 11

3.2 Monitor System Design and Implementationc.cccceveeeeeeieneneneneneens 14
Chapter 4 Experimental RESUILS.........cooiiiiiieiee e 21
4.1 Experimental ENVIFONMENtccooiiireeieeeenese s 21

4.2 Performance COMPAITSONS.coueiuirierieriereeeeeeseessessesee e ssesseseessessessesseseesnes 23
4.2. 1 MatrixX MUItiPlCEIION.cc.oiviiieiieieeieeeee e 23

4.2.2 Pl COMPUEBLION ...ttt se s snesne e 27

4.2.3 Prime NUMDer GENErationcceoeeeererieniene e 29

4. 2.4 BUCKEL SOM......ccueiueieeieiesie sttt sb e 32

Chapter 5 Conclusions and FUTUr@ WOIKcccecerireiinineneseeeeseeseesee e 36
BibDlIOGrADNY ... 37

List of Tables

Table 4.1: Hardware specificationcc.cceeeene
Table 4.2: Test setting of single and multi-clusters

List of Figures

Figure 2.1: LogiC VIew Of aPC CIUSLENccoiiiiiieieieeeeresese e 6
Figure 3.1: NOW usiNg fOUr SMP PCS.......cccoiiiieieeresie e 12
Figure 3.2: A simple PC form consists of two PC CIUSLENS..........ccccevieiieieiincnenicne 14
Figure 3.3: Overview of MONITOr SYSIEMceeiiierierieresie e 16
Figure 3.4: MoNitor SyStem arChiteCUIE...........cocveieiereriese e 16
Figure 3.5: Software architecture of our monitor SYSteMccoceveieiereneneneneees 17
Figure 3.6: Home page created with PHP and RRDTOO.............ccooiiiiineniiiiieees 18
Figure 3.7: Platform information Page...........cooveeereeriereniise e 18
Figure 3.8: The overall system information webpage of one cluster platform............ 19
Figure 3.9: The detail system information webpage...........ccooveieiiiiiinenieee 19
Figure 3.10: Monitoring SCreen 0N PDAooc i 20

Figure 4.1: Experimental environment in HPC Lab consisting of four PC clusters....22
Figure 4.2: Comparison of matrix multiplication when the matrix size is equal to 512

.. 26
Figure 4.3: Comparison of matrix multiplication when the matrix size is equal to 1024
.. 26
Figure 4.4: Comparison of matrix multiplication when the matrix size is equal to 2048
.. 27
Figure 4.5: Comparison on MPI jobs starting locations in matrix multiplication....... 27
Figure 4.6: Comparison of the Pl problem when the subspaces are equa to
1,000,000,000........ceuereemeerereeeenenreseeneesesreseeesie e e see s ese b ne e se e enesaeea 28
Figure 4.7: Comparison of the Pl problem when the subspaces are equa to
2,100,000,000......c.cceeuereeeenertereenerieseeneere e seee e e ss e be e re e e ene e ea 29
Figure 4.8: Comparison on MPI jobs starting locationsin Pl problem 29
Figure 4.9: Comparison of the prime problem when the range is equal to 25,000,000
.. 31
Figure 4.10: Comparison of the prime problem when the range is equal to 50,000,000
.. 31
Figure 4.11: Comparison on MPI jobs starting locations in the prime problem.......... 32
Figure 4.12: Comparison of the bucket sort problem when the sizes are equal to 65,536
.. 34
Figure 4.13: Comparison of the bucket sort problem when the array sizes are equal to
LL048,576......eeeeeeieeie ettt ettt et nae e 34

Figure 4.14: Comparison on MPI jobs starting locations in the bucket sort problem .35

Vi

Chapter 1

| ntroduction

1.1 Motivation

Extraordinary technological improvements over the past few years in areas such as
microprocessors, memory, networks, and software have made it possible to assemble
groups of inexpensive personal computers and/or workstations into a cost effective
system that functions in concert and possesses tremendous processing power. Cluster
computing is not new, but in company with other technical capabilities, particularly in
the area of networking, this class of machinesisbecoming a high-performance platform
for parallel and distributed applications[3, 4, 9, 22, 26].

Inexpensive systems such as Beowulf clusters have become increasingly popular
in both commercial and academic sectors of bioinformatics community. Clusters
typically consist of a master node that distributes the bioinformatics application
amongst the other nodes (slave nodes).

In our laboratory, we have several Linux PC clusters. Their configurations usually
consisted of one master node and three, seven or more slave nodes with dual -processor
SMPfor reaching maximal performance. Unfortunately, the public IP addresses are not
enough for setting used on all slave nodes. It means that the virtual 1P addressis used
for slave nodes in a PC cluster. If we want to use a cluster with 64 CPUs or more for
some experimentation like gene sequence analysis or large computing job. Currently,
our hardware setting is not suitable for allocating all computing resources. Therefore, to
find a solution that can combine more Linux PC clusters for parallel computing is our
main motivation in thisthesis.

Multi-cluster with NAT (Network Address Translation) is a kind of building

cluster of clusters (CoCs) [2] in parallel processing, we can easily combine two or more

1

PC clusters which had setting on difference place to form a big one parallel system to
reach the acceptable performance and resolving the issue of insufficient public IP
address. Performance is one of the important concerns of both cluster users and
system developers. However, thereis no clear and widely accepted CoCs performance
definition. In this thesis, we built a multi-cluster with four PC clusters which
connected with NAT on difference placein LAN environment. We use many parallel
applications like the matrix multiplication application to measure the MPI message
passing library in our testing environment and finding out the performance issue and
some characteristics of building it.

Monitoring the status of a Beowulf-style cluster can be a daunting task for any
system administrator, especialy if the cluster consists of more than a dozen nodes.
While Linux is extremely stable, hardware problems can cause nodes to crash or
become inaccessible, and chasing down problem nodes in a500-node cluster is painful.
M anaging and monitoring acluster is both atedious and challenge task, since each node
is designed as a stand a one system rather than apart of aparallel architecture. Beowulf
systems will need a richer set of software tools to improve usability and
re-configurability.

We present our effort to resolve this problem by developing a PC cluster
monitoring system. This system also provides web service and application to monitor
for large scale clusters or grid environment.

1.2 Contributions

We conduct our multi-cluster system that with NAT mechanism that shows in our
testing parallel application it has good performance and in the additional evaluation
we could find that the machine availability could reflect the performance on
multi-cluster environment. We aso conduct our effort on the monitor system of

cluster, we use the master-slave architecture to implement our monitor and make a

2

specia client for mobile equipments based on Java. We can easily monitor in
everywhere even if we don’t have a generic computer, we could also receive the
cluster status on our mobile devices.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, we review the Cluster
Computing, introduction of Linux OS, the two magor implementations of Message
Passing Interface, and related work. In chapter 3, we introduce our multi-cluster
system and discuss details of technologies used in the construction of such platform
and present our cluster monitor system, while our experimental results are discussed

in chapter 4. Finally, in chapter 5, we list some conclusion and feature work.

Chapter 2

Background

2.1 Beowulf Cluster

A Beowulf cluster uses multi-computer architecture, as depicted in Figure 2.1. It
features a parallel computing system that consists of one or more master nodes and
available compute nodes, or cluster nodes, interconnected viawidely available network
interconnects. All of the nodesin atypical Beowulf cluster are commodity systems-PCs,
workstations, or servers-running commodity software such as Linux.

The master node acts as a server for Network File System (NFS) and as a gateway
to the outside world. As an NFS server, the master node provides user file space and
other common system software to the compute nodesviaNFS. Asa gateway, the master
node allows users to gain access through it to the compute nodes. Usually, the master
node is the only machine that is also connected to the outside world using a second
network interface card (NIC). The sole task of the compute nodesis to execute parallel
jobs. In most cases, therefore, the compute nodes do not have keyboards, mice, video
cards, or monitors. All access to the client nodes is provided via remote connections
from the master node. Since compute nodes do not need to access machines outside the
cluster, nor do machines outside the cluster need to access compute nodes directly,
compute nodes commonly use private IP addresses, such as the 10.0.0.0/8 or
192.168.0.0/16 address ranges.

From a user’s perspective, a Beowulf cluster appears as a Massively Pardlel
Processor (MPP) system [1]. The most common methods of using the system are to
access the master node either directly or through Telnet or remote login from personal

workstations [26]. Once on the master node, users can prepare and compile their

parallel applications, and also spawn jobs on a desired number of compute nodesin the
cluster. Applications must be written in parallel style and use the message-passing
programming model. Jobs of a parallel application are spawned on compute nodes,
which work collaboratively until finishing the application. During the execution,
compute nodes use standard message-passing middleware, such as Message Passing
Interface (MPI) [14, 15] and Parallel Virtua Machine (PVM) [20], to exchange
information.

Cluster computing focuses on platforms consisting of often homogeneous
interconnected nodes in a single administrative domain:

I Clustersoften consist of PCs or workstations and relatively fast networks,

I Cluster components can be shared or dedicated,

I Application focus is on cycle-steaing computations, high-throughput

computations, and distributed computations.

2.2 Linux

Linux is a robust, free and reliable POSIX compliant operating system. Severd
companies have built businesses from packaging Linux software into organized
distributions; RedHat is an example of such acompany. Linux provides the features
typically found in standard UNIX such as multi-user access, preemptive multi-tasking,
demand-paged virtual memory and SMP support. In addition to the Linux kernel, a
large amount of applications, system software and toolsare also freely available. This
makes Linux the preferred operating system for clusters.

The idea of the Linux cluster is to maximize the performance-cost ratio of
computing by using low-cost commodity components and free-source Linux and GNU
software to assemble a paraléel and distributed computing system. Software support
includes the standard Linux/GNU environment, including compilers, debuggers,

editors, and standard numerical libraries. Coordination and communication among the

5

processing nodes is a key requirement of parallel-processing clusters. In order to
accommodate this coordination, developers have created software to carry out the
coordination and hardware to send and receive the coordinating messages. Messaging
architectures such as MPI and PVM, alow the programmer to ensure that control and
data messages take place as needed during operation.

Parallel Applications o

Cluster Management Tools Master Node

Message Passing Library
Linux
File Server

Compute

Nodes
—=T=

=]
C 17

Compute Nodes

Figure 2.1: Logic view of aPPC Cluster

2.3 Message Passing I nterface

There are many MPI implementations for parallel processing [5, 18, 24]; most of the
used librariesare MPICH [16] and LAM [10].

2.3.1MPICH

MPICH isarobust and flexible implementation of the MPI (Message Passing Interface).
MPI is often used with parallel or distributed computing projects. MPICH is a
multi-platform, configurable system (development, execution, libraries, etc) for MPI.
It can achieve parallelism using networked machines or using multitasking on asingle
machine.

232 LAM

LAM is an implementation of the Message Passing Interface (MPI) parallel standard

that is especialy friendly to clusters. It includes a persistent runtime environment for

parallel programs, support for al of MPI-1, and a good chunk of MPI-2, such as the
dynamic functions, one-way communication, C++ bindings, and MPI-10O.

2.4 Multi-Cluster Environments

The components of personal-computer is cheaper today and the ratio of cost to price
is even more vauable when we use the Bewulf cluster for paralel processing and
applications. When we purchase groups of PC to build a Beowulf cluster in batches.
The problem is that we can’t easily import the devices such as the main processor
which was appeared years ago because of the Moore’s Law. We could not get higher
performance because we can’t easily combine these heterogeneous computational
resources.

We have several ways to combine our heterogenous cluster to build a new
computational resource to get a better performancein recent years[13, 19]. Thisisa
domain of Grid Computing. The purpose of the Grid Computing is that we can get
any type of resources to resolve many of demanding problems[6, 7]. In other words,
reseachers has many contributions about to use the improvements or the extentions of
MPI implementation, for combination of getting higher computational power.

The overall solutions of coupling serveral clusters into a distributed computing
enviroment with MPI can be divided into four ways [17].

2.4.1 Grid Computing Environments

If al of our cluster nodes have public IP addresses there are no major problem. In
such situation we can build a large computing farm using the Grid-enabled MPI
Implementation [2, 23]. All nodes of cluster platform need install the Grid
Computing middleware such as GLOBUS [6]. In GLOBUS the inter-cluster
communication in Grid Computing enviroment is using the GLOBUS-10 mechanism,
intra-cluster communication is still using the suppoted MPI libraries. MPICH-G2 is

the implementaion of the widely distributed MPICH-library for Grid-envrionment that

7

support GLOBUS. It implements a device for MPICH and giving the user the
possibilities to rely on many GLOUS mechanisms like authentication and
authorizations.

2.4.2 Network Address Translation

If we don’t have many public IP address used for the cluster nodes, the previous
solution is not directly available. The Grid-enabled solution needs the support of
middleware support. In the Grid Computing environment all IP address must be
public IP addresses. The Beowulf type clusters are usually connected together with the
private IP addresses. The packets with private addresses are normally not routed
through the public IP address area. In a Local Area Network (LAN) enviroment it’s
still might be possibly to grouping the clusters, because the packets in LAN will be
traveling over the switch or router by the specialy solution, network address
trandation (NAT) [21].

NAT is a mechanism to map IP addresses. It usually couples with the packet
filting, mangling, and |P masquerade, the mechanism map the private |P address by a
public IP address. This mechanism need a node that has the availability to connect
between the public and private network. This node privides IP forwarding of outgoing
packets in the private network and keeping track all incoming packets to correct node
in the private network.

2.4.3 Gateways

Another solution of coupling the clusters is the one of gateway node. The gateway is
the node that connect the public IP network and persisted in the MPI commnunication
world in the MPI mechanisms. It provides the machenisms that joining the MPI jobs
and managing the message passing over the network. Every nodes in the MPICH-G2
has the avail ability of being a gateway node.

PACX-MPI [8], a MPI implementation of coupling the clusters to a distributed

8

high-performace computing system. Unlike the MPICH-G2 using the Grid Computing
environment, PACX-MPI has its two level hierarchy of network structure, one for
inter-cluster communication that perform on a TCP/IP network with high latancy
network, while the other is providing the low-latency, high bandwidth network for
intra-cluster communication with vendor-supported MPI library. To reach this godl, it
uses a daemon-based system to handle these two types of communication level.

2.4.4 Proxies

The proxies are the application service that provide the private and public IP address
communication, which is unlike NAT proxies are in the user space solution. The
proxy server would have sufficient knowledge to handle the inside and outside
communication. Stampi is the example MPI implementation with proxy mechanism.
An usually used solution to this solution isthe SOCKS v5 server [11].

2.4.5 ComparisonsAmong These Technologies

In general, Beowulf-Cluster usualy using private ip address to inter-connected
together and in fact, we have many single clusters that in seperated locations. The
grid computing environment providing too much mechanisms and each of the grid
computing member would install the grid middleware, if we want to fastly build a
multi-cluster environment, these addtional software installtion will cause more
overhead in our configuration. The gateway solution is suited when we have more
high-speed inter-cluster connection network and we don’t want to use TCP/IP for
inter-cluster communication. The Linux kernel now provide the system level of IP
filter and NAT module, we don’t need to choose the SOCK'S solution for building our
multi-cluster, so we choose NAT solution to combine our single clusters to a
multi-cluster.

2.5 Monitor systems For Beowulf Cluster

Severa tools have been developed to monitor a large number of machines as

9

stand-alone hosts as well as hostsin acluster. These tools can be useful because they
monitor the availability of services on ahost and detect if ahost is overloaded, but they
do not generaly provide performance monitoring information at the level of detall
needed to tune the performance of aBeowulf cluster. In contrast with existing systems,
which usually display information only graphically, our project integrates performance
monitoring with scheduling systems. In the following sections, we discuss open-source
cluster-monitoring tools.

Ganglia [12] is an Open Source project (available on SourceForge at

http://ganglia.sourceforge.net) with a BSD license. It grew out of the University of

Cdifornia, Berkeley, Millennium Cluster Project (see

http://www.millennium.berkel ey.edu) in collaboration with the National Partnership for

Advanced Computational Infrastructure (NPACI) Rocks Cluster Group. Ganglia
provides a complete, real-time monitoring and execution environment based on a
hierarchical design. It uses a multicast listen/announce protocol to monitor node
status, and uses a tree of point-to-point connections to coordinate clusters of clusters
and aggregate their state information. Ganglia uses the extensible Markup Language
(XML) to represent data, external Data Representation (XDR) for compact binary data
transfers, and an open source package called RRDTool for data storage (in Round
Robin databases) and for graphical visualization.

The SMILE Cluster Management System (SCMS) [25] is an extensible
management tool for Beowulf clusters. SCMS provides a set of tools that help users
monitor, submit commands, and query system status, maintain system configuration,

and more. System monitoring is limited to heartbest-type measurements.

10

http://ganglia.sourceforge.net
http://www.millennium.berkeley.edu

Chapter 3

System I mplementation

3.1 Multi-cluster with NAT Settings

In this section, the construction procedure is described. We used dual-processor
motherboards to reduce the number of boxes to eight, and thus, minimizing the space
needed for storage as shown in Figure 3.1 (and the footprint of the cluster). This
structure impacts performance because two processors share the memory bus (which
causes bus contention but reduces the hardware cost) since only one case, motherboard,
hard drive, etc.,, are needed for two processors. We ruled out the option of
rack-mounting the nodes, essentially to reduce cost, but chose to use standard
mid-tower caseson shelves. Thisapproach isoccasionally given the name of LOBOS
(lots of boxes on shelves).

The idea of the Linux cluster is to maximize the performance-cost ratio of
computing by using low-cost commodity components and free-source Linux and GNU
software to assemble a paralel and distributed computing system. Software support
includes the standard Linux/GNU environment, including compilers, debuggers,
editors, and standard numerical libraries. Coordination and communication among
the processing nodes is a key requirement of parallel-processing clusters. In order to
accommodate this coordination, developers have created software to carry out the
coordination and hardware to send and receive the coordinating messages. Messaging
architectures such as MPI or Message Passing Interface, and PVM or Paralld Virtua
Machine, to allow the programmer to ensure that control and data messages take place

as needed during operation.

11

CPU CPU CPU CPU

et Rt

Network
Device

CPU CPU

< System Bus > < System Bus >

Network
Device

High Speed Network

Storage Storage
Device i i Device

Figure 3.1: NOW using four SMP PCs

When we have many single clusters and wonder build them as a big and single
computation resource with NAT, The master node of our single cluster are connected
with inter- and intra-cluster networks. Key point is that how could we configure our
master nodes of many of our single clusters and make them could communicated over
the network.

In general, a PC cluster is constructing by using Linux as their OS environment.
The kernel version 2.4 and latter provides a subsystem called Netfilter. It operates a
packet filtering job in kernel stack. We use this feature for IP-Masquerade, a solution
of network address translation (NAT), in the setting, we just open the capability of
packet forwarding module. The reason is that we do not need to protect any type of
attack form Internet; we just want to make the client that can communicate around the
public network. 1P-Masquerade in Linux has several ways to be enabled. You should
use the root account to perform the following commands.

The building steps of multi-cluster in each cluster’s master node are list below.

First, you can use “sysctl” command to enable kernel IP forward function like this

12

command “sysctl -w net.ipv4.ip_forward=1". Another way, you can change the
“Iproc/sys/net/ipv4/ip_forward” valueto 1. Then, you can use “iptables” command
to change Netfilter trains, before this configuration you should load kernel module
includeip_tablesand iptable_nat through “modprobe” or “insmod” command, after
modulesloaded. The command islike below:

iptables-t nat -A POSTROUTING -0 <eth> -s <private net> -] MASQUERADE
under the command, the “eth” parameter is the mapped to your master node’s public
address interface and the “private_net” parameter is your cluster’s private network
address, if your private network is 192.168.1.0 and its netmask is 255.255.255.0. You
should type “192.168.1.0/24”.

After enabling the NAT support for each cluster’s master node, if we want to
combine these clusters together, we must build a static routing path that causes every
node in this environment can pass messages to each other.

We use a simple example to explain this concept. In Figure 3.2, if we have two
2-client clusters Cluster A and Cluster B. In their private network setting, Cluster A
and Cluster B should configure different private network address like as 192.168.1.0
and 192.168.2.0 or other, respectively. After IP-Masquerade in Linux kernel, we can
look each master node as a network router, in this concept, we don’t mind that private
network couldn’t route between public networks because every cluster master node in
our setting is in public network. Our configuration is concentrated on made the
routing policy to each cluster master. The policy is simple, if we must combine N
cluster together, each master must add (N-1) route trains to satisfy each cluster
communications together.

In this example for cluster A, we can add this command to add a routing train on
this cluster master:

route add —net 192.168.2.0 netmask 255.255.255.0 gw <cluster B master |P >

13

For cluster B, we also add the command on cluster master:
route add —net 192.168.1.0 netmask 255.255.255.0 gw <cluster A master |P >
After this configuration and master node is set to use IP-Masquerade. We easily
can combine the two Linux PC clusters for applying MPI parallel applications for

obtain large computation power.

Public network .)

Cluster A master node Cluster B master node

Private network AQ) Private network B O
Cluster Anode 1 Cluster A node 2 Cluster B node 1 Cluster B node 2
Cluster A Cluster B

Figure 3.2: A simple PC form consists of two PC clusters

3.2 Monitor System Design and I mplementation
The concept of our monitor system isto improve the availability of monitor system in
the distributed computing environment. Nowadays, the monitor system is not well
developed on user requirements. So we started on the user interaction and the manner
of application executing, and developed the applications by the portability of the Java
Virtual Machine. Our system can be divided into three applications of the Cluster
architecture:
I Observe server: The role of the Observe server is running the collect
daemon that getting the information of each cluster’s total information that

observing from the master node and replicate the datato their local file based

14

database for the usage of the web interface,

I Master node: The master node executes the master daemon that could
collect the information of their slave nodes to their local file based database
and response the Observe server,

I Slavenode: All other nodes of our cluster must to run the slave daemon. The
dlave program must get information in user specific metrics like CPU speed,
available size of memory, load of this node and other information user
interested in.

In the other side, we have a separate role to display and control our cluster in

another way, there are two types of thisrole:

I Web portal: We use two tools that generate the web service for controlling
and displaying the information of our system; first we use the drawing tool
caled Round Robin Database Tool (RRDtool) to draw the state chart from
the collected information in the Observe server. Second is the web front-end
portal created by PHP, when user is connecting to the portal, he can retrieve
the information by the state chart and control the system by the web interface.

I PDA application: The mobile devices are not suit for displaying detail
information and remote controlling. We need to simplify our information
and design the appropriate interface for this usage. The Java application
framework is suitable for thistype of application and we choose it to develop
our ssimple application. Implementation of this work is connecting the
Observe server and gets all metrics of our information and directly displaying
these to aclassified format.

Our system has been implemented for machines with a private network; it resides
on one node, which controlsall the others with remote commands. That choice allows

easy installation and upgrade, and need to have daemons running on computing and

15

service nodes. On the other hand this choice can scale if the number of nodesis huge.
The software has been implemented for managing a cluster of clusters, on public
networks.

The flow of this system is shown in Figure 3.3, the master nodes can collect the
system information from its dave nodes in the multiple Linux PC clusters. Then the
Observe server will gather all information from master nodes, and send to Web server
for displaying form remote users and applications. The system architecture and
software architecture are shown in Figure 3.4 and Figure 3.5. Also, the Observe

server will be called to provide services and information form the Web server.

Remote @ @
S
N

User

. Web
Observe 1 _ s
Server > Server
=
Hub S Hubj

Master Nodes

£

| Sy iy
ADD

Slave N

=
<]

des Slave Nodes

Figure 3.3: Overview of monitor system

’—>lf User or App I‘ﬁ

R e

[Web service | | scheduter |
e

LQbserve Server & Dgl
— T
~

[\7 Master & Local DB I

et
l\, Slaves |

Figure 3.4: Monitor system architecture

16

Observe Server

-H Time
ot
—

iasiei iode Slaie Noies

Figure 3.5: Software architecture of our monitor system

The functions of three daemons in our system are listed as below:

I Slave Daemon: The Slave daemon can obtain the related system information
of each slave node form Kernel, and provide the servicesto its Master nodein
the PC cluster,

I Master Daemon: The Master Daemon is responsible to collect the system
information from all slave nodesin its cluster, and put the related information
into Local Database. Local Database is used for the purpose that will not
alow the high load of master node for an instant. The function of Local
Database can be view as a buffer,

I Collect Daemon: Thisdaemon isrunning on the Observe Server. It isused for
collecting the system information of each master node of multiple Linux PC
clusters. It can provide services by using database to applications or the
remote users.

All server daemons are written in C and the web portal interface is written in
PHP, We could get some information through our web portal and they are shown from
Figure 3.6 to Figure 3.9. For the user without computer, we have also implemented a

JAVA-based PDA version of our monitor shown in Figure 3.10.

17

High Perfermance Computing Lab

Summary Grid | Task Submit | Task Status | FTP Log

HPC Cluster Information

amd-dual hiroyuki

- -5

Name / Info Load Averages 1-Min, 5-Min, 15-Min Load %CPU System, Users, Nice, Idle

and Cluster Load Average Last Day and Cluster Memory Last Day

1 Hosts total

1 Hosts running
[2 CPUSs)

0 Host dawin

HRITLI0 TA0L 7 1001
TII0 TA0L 2 VoL

1200 18100 : f : 12: 00 18:00 00: 00
O 1-Min Load W Total CPUs [NHodes W Application vsed B cached O euffered O Free

6 and-dual Cluster Load Average Last Day

4 Hosts total

4 Hosts running
tRCPIIg

and-dual Cluster Memory Last Day

2‘Dc—

Figure 3.6: Home page created with PHP and RRDTool
High Performance Computing Lab

1430 TH0L 2 T00L

" Summaw ‘G d |f)ld”i’.age ‘

HPC Cluster Information

Total: 3 Units connected, 16 Hosts total, B Hosts running, (7 CPUs, 11782 MHz), 11 Host down

amd Cluster Total 8 Hosts 1 Hosts running ¢ 2 CPUs [4267 MHz 1) 7 Host down | Legend
Total: Load Average 0.00 | Memory 2016 MBytes | 47 processes running

Amdi am amds amdd amds amds amd? amds

ol EECIIES® L LR L Ll O ook
““” nnn nnn nnn nnn nnn nnn nnn
Oproe Qproc Oproc 0proc Oprac Oproc Qproc

proc

amd-d Ual ClUSter Tatal 4 Hosts 1 Hosts running ¢ 2 CPUs [3333 MHz |1 3 Host down | Legend
Total: Load Average 0.00 | Memary 501 MBytes | 55 processas minning

amd-dusl 1 amd dualz amd dual? amd duald
1% (2)
e 0% () 0% o D% @
“ “” n nn n nn n nn
pm 0 proc 0pos 0proc

hiI’OVUI(i Cluster Total 4 Hosts 3 Hosts running 1 3 CPUs T 4181 MHz 11 1 Host down | Lenend
Figure 3.7: Platform information page

18

and-dual Cluster Load Average Last Day

8.0 o
6.0 &
4.0 g
2.0
0.0
16: 00 00:00 05: 00 1200
O 1-Min Load M Total <PUs [Nodes
and-dual Cluster Running Process Last Day §
180 i
i 100 5 w 280G
£ Al
o &0 104
0
18100 00: 00 0800 1z:00 0.0

M Running Frocesses

There are 4 hosts (8 CPUs) running

There are 0 host down

€

and-dual Cluster Memory Last Day

18:00 00: 00 08:00

M vused M shared B cached O euffered O Free

1z:00

A3 Ta0L ¢ T0OLEY

and-dual . and-duall

and-dual . and-dual2

I

and-dual . and-dual3

and-dual . and-duala

100 m

Z0m

sm

fLan 1o ¢ oo

130 1901) Tornm

ftan xan ¢ wolow

Figure 3.8: The overall system information webpage of one cluster platform

i3 1anL) oo

amd-dual . amd-duall Load Average Last Day

and-dual .amd—duall Running Process Last Day

200 m = | 7
il 10 f
100 m | | et q
all 2 20 5
o A o
18: 00 00:00 08: 00 1200 18100 00: 00 082 00 12:00
[1-Min Load B S-Min Load M 15-Min Load M Running Frocesses
and-dual .and-duall CPU Last Day g amd-dual .and-duall Ethernet Last Day g
100 = %
i s0 gl 500 g
& g = z
o o % 1.1 A Al
18100 00: 00 08: 00 12100 18100 00: 00 08: 00 12;00
B System B Users [Wice [Tdle B Transmit Bytes [Receive Eytes
and-dual .and-duall Memory Last Day g and-dual .and-duall Disk Last Day g
600 M 3 :
w Al v 200 i
s aoonm | B } i } s
= eoonm il = 100 t | H
: I I
18: 00 00: 00 0E: 00 12: 00 1800 00: 00 [E=Hu 1200

B Used M Shared M Cached [0 Buffered [Free

B Read W Write

T304/ Teeiads
=
a
=}

Bytes
Bytes

{1201 ¢ Jouiau)

L T301 2 100048

Pages
o
n

Pages

{1901 ¢ 1001048

Figure 3.9: The detail system information webpage

19

Figure 3.10: Monitoring screen on PDA

20

Chapter 4

Experimental Results

4.1 Experimental Environment

Table 4.1 shows the hardware specification of our testing environment. The network
topology is shown as in Figure 4.1. The hardware specifications of them are list in
Table 4.1. Our inter-cluster connection are build on the Fast Ethernet that giving the

speed of 100 Mb/s.

Table 4.1: Hardware specification

of total
CPU Memory Network Type Cluster hostname
node
Dual AMD AthlonMP | Master 2GB 1Gbpsfor
] Four nodes amdl
2400+ Slave 1GB intra-cluster
Dua AMD Athlon MP 100Mbps for
512MB) Four nodes amd-dual 1
1800+ intra-cluster
Dua AMD Athlon MP | Master 2GB 1Gbpsfor
) Four nodes amd-dual 01
2000+ Slave 1GB intra-cluster
Dua AMD Master 1GB 1Gbpsfor
) Four nodes amd64-dual 01
Athlon 64 3000+ Slave 1GB intra-cluster

The configuration steps of multi-cluster are listed below.
I Firgt, get al information of public and private |P addresses of these four
cluster’s master on executing “ifconfig” command,
I Second, al the slave nodes default gateway should be the cluster’s
master node in the file named “/etc/sysconfig/network”,
I Third, setting the configurations for the master node of three clusters

with the follows in upper section we described,

21

Glgablt p— T)

amd-dual1
Thu.edu.tw
router L
Core switch in
csie.thu.edu.tw
amd-dual01 amd64-dual01
Gigabit Ethernet Gigabit Ethernet

Wy ooy

Figure 4.1: Experimental environment in HPC Lab consisting of four PC clusters

In order to compare the difference of various numbers of nodes in multi-cluster
combination and our single cluster, we set three cases in the multi-cluster in Table 4.2.
In each multi-cluster settings, each node of our cluster has dua CPUs, so the case
named “mc8” has four nodes, while the others are the same. In every multi-cluster case
is aso including the master node of each single cluster to build with. We can regard
mc8 cluster as the eight CPUs case of heterogeneous cluster with Fast Ethernet because
the master are connected inthe LAN environment, and we can use this case to compare
the performance to other single clustersin our testing cases.

To compare the performance differences of mc16 and mc32 with single cluster
that has the same numbers of CPUs. We build the sc16 and sc32 clusters that the
hardware components are the same as amd-dual 01, but sc16 is build with 8 nodes and
sc32 is build with 16 nodes, and their intra-cluster network environment is Gigabit
Ethernet. We can use these two single clusters to compare the total difference when

we evaluate with mc16 and mc32.

22

In another approach, we want to know how the starting node of the MPI job does
influence the performance of each testing case. We use the master nodes of our four

single clusters to evaluate this issue. We will discuss this issue in the rear of each

testing case.
Table 4.2: Test setting of single and multi-clusters
Numbers of nodes
Type
amdl amd-duall | amd-dua0l | amd64-dua 01

mc8 1 node 1 node 1 node 1 node
mcl6 2 nodes 2 nodes 2 nodes 2 nodes
mc32 4 nodes 4 nodes 4 nodes 4 nodes

In choosing implementation of the MPI library, we use MPICH to build for our
experimentation because the new version of LAM/MPI that’s after 6.5.8 could not suite
to multi-cluster in private to public IP address translation. We use the MPICH 1.2.6 to
compile our experimental program in the multi-cluster environment. In our
experimental environment, we have two different hardware platform 1386 for AMD
ATHLON MP and x86 64 for AMD ATHLON 64 platform, so we should make
different binary codes for MPICH implementation and of course, the experiment binary
codes are also expected.

4.2 Performance Comparisons

In order to compare our multi-cluster performance, we choose four paralel
applications for evaluations: Matrix multiplication, Pl computation, prime number
generation, and the bucket sort.

4.2.1 Matrix Multiplication

The matrix operation derives a resultant matrix by multiplying two input matrices, a

and b, where matrix aisamatrix of N rows by P columns and matrix b is of Prows by

23

M columns, and then the resultant matrix c is of N rows by M columns. The seria

realization of this operation is quite straightforward as listed below:
for(k=0; k<M; k++)
for(i=0; i<N; i++){
c[i][K]=0.0;
for(j=0; j<P; j++)
cli][K]+=ali][j]* b[i][K];
}

Its al gorithm requires n® multiplications and n* additions, leading to a sequential
time complexity of O(n®. For matrix multiplication, the smallest sensible unit of
work isthe computation of one element in theresult matrix. Itispossibleto dividethe
work into even smaller chunks, but any finer division would not be beneficial because
of the number of processor is not enough to process, i.e., n° processors are needed.

In the Figure 4.2, 4.3, and 4.4, we could find out the and64-dual01 |eads the
performance in these four single clusters because of its new architecture and the
optimization for the x86_64 architecturein new kernel 2.6. The amd-dual 1 cluster has
the worst performance because of its network speed is only 100Mbps speed and the
CPU clock is the slowest of these four single clusters. We can also check the
performance of amd-duall and mc8. It shows that when the matrix size increased
the performance of both cases are lower than other cases in the 100M bps network.

In the performance evaluation resultsin Figure 4.2 shows the performance benefit
in the multi-cluster system. First the performances of the mc8, mcl6 and mc32
clusters are between the performance of amdl and amd64-dual01 these two clusters.
When the matrix size is not very large, the communication overhead occur the
execution time of mc32 and mc8 are very closely. But we can get the better
performance in the mc16 cluster.

When the matrix size increased as in Figure 4.3 and Figure 4.4, it shows if we

increase our nodesto 16 to execute the matrix multiplication program, we could get the

24

best performance changes. The case of the matrix size increasing to 2048, the
performances of single clusters are not the same in the Figure 4.2 and Figure 4.3, but
multi-cluster also shows the better performance in the mcl6 and mc32 settings.
Though, the case of mc8 shows the worst performance because the network speed of
the mc8 cluster is the Fast Ethernet and in normal LAN environment communications
that is like the case of amd-dual1.

When we compare our multi-cluster settings with single cluster settings with
matrix multiplication, our program must send the divided matrix as a multiplier and
the full matrix as multiplicand with traditional block send and receive functions. We
could find that when the matrix sizeis 512 in Figure 4.2, sc32 could not have the poor
performance than the mc32 because the communication over the single cluster is
running through a single switch that has bigger intra-.communication bandwidth.
The results in larger matrix size are more significant when we have strong
intra-communication bandwidth in Figure 4.3 and Figure 4.4. In this type of paralle
processing type that has large message passing over the computation nodes, the
multi-cluster only has little advantage even has bed performance.

In the experiment on starting node of the MPI job. Asshownin Figure4.5, we
respectively conduct the relation in the execution time and the availability of the MPI
job start location. We can get the better performance when we choose the
amd64-dual01 as the node for job starting than other nodes, the amd1 is the second
fast, the amd-dualOl is the third and the last is the amd-dual. It could be compared
with the performance of single cluster in Figure 4.2, 4.3 and 4.4. We can find out
that if we choose node that gets better performance in single cluster case to starting
the MPI job, we can get better performance when we combine our single cluster to

multi-cluster.

25

3,500
3,000
2,500
2,000
1,500
1,000

500

Processing time (ms)

Matrix Multiplication

7
DN

Eamd-duall
Elamd-dual01
amdl
amd64-dual0l
[mc8

Bmcl6

Bmc32

B scl6

Esc32

Matrix size = 512

Figure 4.2: Comparison of matrix multiplication when the matrix sizeis equal to 512

25,000

20,000

15,000

10,000

Processing time (ms)

5,000

Matrix Multiplication

B amd-duall

B amd-dual01
EBamdl

B amd64-dual01
@M mc8

Bmcl6

B mc32

B scl6

B sc32

Y777/
DO

Matrix size = 1024

Figure 4.3: Comparison of matrix multiplication when the matrix sizeis equal to 1024

26

Matrix Multiplication
180,000 B amd-duall

__ 160,000 Elamd-dual0l

£ 140,000 — N\ Hamd1

g 120,000 [\ 7 amd64-dualol

= 100,000 — \ mmc8

£ 80,000 | \7 Bmcl6

& 60,000 (— \ / Emc32

E 40,000 — \/ EHscl6

Esc32
20,000 |— \/
0 & A
Matrix size = 2048
Figure 4.4: Comparison of matrix multiplication when the matrix sizeis equal to 2048
Choosen of MPI start node in Matrix Multiplication with all nodes
120,000
— 100,000 §
» 80,000 N= N amd-duall
2 60,000 \%E @ amd-dua01
£ ’ \%E Bamdl
® 40,000 N/= M amd64-dualol
: N
T 20,000 \/ =
size =512 size = 1024 size = 2048

Figure 4.5: Comparison on MPI jobs starting locations in matrix multiplication

4.2.2 PI Computation

The PI computation program calculates the value of Pl by numerical integration in
order to estimate the area of the curve f(x)=4/(1+x?) between 0 and 1. We can
compute an approximation by dividing the interval zero and one into numbers of

subintervalsto each parallel process and then let each parallel process compute the area

of their own subset.

27

Asthe previous section we first compare the performances of four single clusters.
The order of processing timein descending order is amd64-dual 01, amdl, amd-dual 01,
and the last is amd-dual1 cluster and this result is no matter the subspaces is bigger.
The results reflect the processing time on different MPI jobs starting nodes in Figure
4.8.

In Figure 4.6 and Figure 4.7 we could find out that the case of mc16 and mc32
have good performance when the node increasing. Comparing this result with the
mc8, it shows the communication in heterogeneous cluster with eight CPUs in the
Fast Ethernet environment has very heavy overhead and when we add more nodes the
problem is dividing to smaller sets that cause good performance.

The totally performance comparison of mc16, mc32, sc16, and sc32 is described
below. The MPI program of the PI problem broadcasts divided part of each
computation node with MPI_Broadcast function and last the master receive the results
using MPI_Reduce function; the communication overhead of this problem is very
small, and this problem speed is not the primary factor. So the results of multi or

single clusters are aimost the same.

Pl Problem
8,000 B amd-duall
7,000 Edamd-dual0l
g 6,000 Hamdl
© £ amd64-dual0l
2 5,000
> 4,000 § M mc8
£ \ Bmcl6
§ 3,000 \ EImc32
£ 2,000 \ /Z Hscl6
1,000 \/ = @532
0 & A iy
Subspaces: 1,000,000,000

Figure 4.6: Comparison of the Pl problem when the subspaces are equa to 1,000,000,000

28

PI Problem
16,000 Hamd-duall
14,000 B amd-dualol
£ 12,000 [— Bamdl
g 8,000 % M mc8
g ’ \ B mcil6
£ 4000 [\ /? Hscl6
2,000 |[— \/ @sc32
. N\
Subspaces: 2,100,000,000
Figure 4.7: Comparison of the Pl problem when the subspaces are equal to 2,100,000,000
Choosen of MPI start node in Pl Problem with all nodes
4,000
3,500 N
n %
£ 3,000 §¢ —|
B amd-duall
g oo N | e,
2 2,000 \% [| Bamad1
= -
2 1,500 \\W \% | |mamd64-dualol
[&]
© 1,000 \ \ / .
a /
N N
o LN N/
Subspaces: 1,000,000,000 Subspaces: 2,100,000,000
Figure 4.8: Comparison on MPI jobs starting locationsin Pl problem
4.2.3 Prime Number Generation

This problem is to generate the largest prime number between 1 and one given
number. For instance we want to find the largest prime number between 1 and
20,000,000. A parallel program that initially runs on alead node and sends the task of
testing number 101-200 to node 1, and sends the task of testing number 201-300 to
node 2, and so on.

return whatever primes a slave node has discovered to the lead node. When all nodes

29

Along with the testing task, there would also be an instruction to

have completed their tasks, there will have a message to tell you how many primes are
found and what the biggest prime number is.

In this case, we evaluate two different integer ranges to observe the performance.
The performance comparisons are shown in Figure 4.9 and Figure 4.10. In our
environment when the available nodes increased like mc16 and mc32, we have the
better performance than single cluster settings. So the performance ratio increased
regardless the problem size even when we add our number of nodes to 32.

The order of processing time in descending order is amdl, amd64-dualOl,
amd-dual 01 and amd-dual 1. The amd1 leads the performance of single cluster and the
reason is that the prime number generation is not using the float-point computation
power, this problem needs the integer computation performance. The bogomips
value shows the integer performance of specific processor in the kernel information
that consisting in /proc/cpuinfo file. The bogomips value of amd1l is4230.52 and the
bogomips value of the and64-dual01 is 3915.77, so we can use this value to explain
why the amd1 |leads the performance.

In the prime number generation problem, however the communication through
each computation node is very frequency and the size for each communication is very
small, the primary factor for this problem is the computing power of each processor.
So in the totally performance evauation of this problem, the mc16 and mc32 still has
the advantage than the sc16 and sc32.

We still evaluate the performances on starting node of the MPI job; we can
compare it in Figure 4.11 with performances in single clusters in Figure 4.9 and
Figure 4.10. The performance of single clusters reflects the starting node of the MPI

job.

30

16,000
14,000
12,000
10,000
8,000
6,000
4,000
2,000

Processing time (ms)

Prime Problem

DAY

B amd-duall

Ed amd-dual0l
amd64-dual0l
@ amdl

M mc8

Bmcl6

B mc32

Hscl6

B sc32

Range: 25,000,000

Figure 4.9: Comparison of the prime problem when the range is equal to 25,000,000

40000
35000
30000
25000
20000
15000
10000

5000

Processing time (ms)

Prime Problem

Y7777,
HHMIIMY

B amd-duall

B amd-dual0l
amd64-dual0l
amdl

M mc8

B mcl6

B mc32

Bsc16

B sc32

Range: 50,000,000

Figure 4.10: Comparison of the prime problem when the range is equal to 50,000,000

31

Choosen of MPI start node in Prime Problem with all nodes
10,000
9,000 <
% 8,000 %7
S
g (000 \/ R amd-duall
£ 6000 \/ | |@amd-duao1
g 000 \ | | |Bamd64-dualol
.2 2,000 \ | Il]lamdl -dua
am
§ 3,000 \V‘ \ ||
& 2,000 \/ \ -
1,000 \/ \ ||
o L NV N
Range: 25,000,000 Range: 50,000,000

Figure 4.11: Comparison on MPI jobs starting locations in the prime problem

4.2.4 Bucket Sort

This problem is that we have a amount of unsorted numbers in alist and we want to
sort it to anumerical order. The bucket sort utilizes a divide-and-conquer method to
solve this problem. In parallel version of the bucket sort, there are n numbers in a
unsorted list and p processors to solve problem. First we partition this list to p
regions, one region for each processor. Each processor maintains p “small” buckets
and separates the numbers in its region into its own small buckets. These small
buckets are then emptied into the p final buckets for sorting, which requires each
processor to send one small bucket to each of the other processors.

We also use two different size of array to test our single and multi-clusters. In
Figure 4.12 and Figure 4.13 show the performance difference between single and
multi-clusters. We observe that the andl aso lead the single cluster performance as
we have described in Section 4.2.3 and this results a so reflect the starting node of the
MPI job. This case aso shows that when we use 8 CPUs cluster like mc8 the bucket
sort application brings the communication overhead and when we increase our

number of nodes like mc16 and mc32 we finally get good performance.

32

The different of bucket sort and the prime number generation is that because the
bucket sort communication overhead is heavy than the prime number in data
exchange, We find out that un the MPI jobs starting locations comparison in Figure
4.14, The size of the array could not effect the performance of this problem, the
multi-cluster performance would be very closely in this case. Totally we can
observe when we build a multi-cluster using 16 nodes and 32 nodes we could till
conduct good performance in this case of jobs.

In the totally performance evaluation for multi and single clusters with mc16,
mc32, sc16, and sc32, the property for communication overhead is likely as the matrix
multiplication problem and the computation is very heavy with each computation
node. When we use the small a list for sorting, the single cluster has the better
performance but using larger size of list in Figure 4.13 the network advantage for
single cluster couldn’t help too much in this problem. The computation advantage
for multi-cluster could eliminate the communication overhead in this type of problem.
$So in large computation and communication overhead are both exist such like this
problem, multi-cluster could get some advantage even has the same performance in

single cluster.

33

Bucketsort Problem

450 B amd-duall

400 B amd-dualol
’g 350 B amd64-dual0l
o 300 \ B amdl
£ 7
= 250 \ / M mc8
-?, 200 \/ B mcl6
§ 150 \/ B mc32
o
& 100 \ / Biscl6

50 \/ [sc32
0 N\
Array size is 65,536

Figure 4.12: Comparison of the bucket sort problem when the sizes are equal to 65,536

Bucketsort Problem

120,000

B amd-duall
100,000 B amd-dual0l
% 50,000 \% 223(154-%&'01
g 40,000 § % 2?;13;2
20,000 .
) \\ é sc

Array size is 1,048,576

Figure 4.13: Comparison of the bucket sort problem when the array sizes are equal to 1,048,576

Processing time(ms)

7,000
6,000
5,000
4,000
3,000
2,000
1,000

Choosen of MPI start node in Bucket sort Problem with all nodes

N

amd-duall
[amd-dua01

B amd64-dual0l
Mamdl

|

77777

Array size = 65,536 Array size = 1,048,576

Figure 4.14: Comparison on MPI jobs starting locations in the bucket sort problem

35

Chapter 5

Conclusions and Future work

To build a cluster computing platform, we commonly inter-connect a number of
personal computers or workstations to achieve high computing power. In genera
case, we don’t have enough space for setting up many PCs on it, and questions we are
concerned about arises, for instance, network topology, electric power, and
management question etc. Then we can use several places for setting up a number of
machines on each place, and enable networking for transparent computing on each
cluster node for enable an enormous nodes cluster in LAN environment. Inthisthess,
we use the NAT mechanism to inter-connect two or more clustersto connect abig one.
An experimental environment we use four different speeds of PC cluster in a
Fast-Ethernet inter-cluster network environment for testing many parallel applications.
We could find that the multi-cluster with NAT bring us the more computation power.
The NAT mechanism is a easier way to build such a multi-cluster environment than
other solutions. In the future we would like to evaluate different message passing
library such as PVM or different implementations of MPI to help us enhance the
performance in multi-cluster setting, or integrate the multi-cluster environment with

scheduler system and the second generation Beowul f-Cluster architecture.

36

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

T. Anderson, D. Culler, and D. Patterson, A Case for Network of Workstations,
|[EEE Micro, 15(1):54-64, Feb. 1995.

D. Balkanski, M. Trams, W. Rehm, “Communication middleware systems for
heterogeneous clusters: a comparative study”, Proc. of 2003 IEEE International
Conference on Cluster Computing, pp 504- 507, |IEEE Computing Society, 2003.
R. Buyya, High Performance Cluster Computing: System and Architectures, Vol.
1, Prentice Hall PTR, NJ, 1999.

R. Buyya, High Performance Cluster Computing: Programming and Applications,
Vol. 2, Prentice Hall PTR, NJ, 1999.

F. Cappello, O. Richard, D. Etiemble, “Understanding performance of SMP
clusters running MPI programs”, Future Generation Computer Systems, (17) pp
711-720, Elsevier Science, 2001

I. Foster and C. Kesselman, “The Grid: Blueprint for a Future Computing
Infrastructure”, Morgan Kaufmann Publishers, 1999.

I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling
scalable virtual organizations,” International Journal of Supercomputing
Applications, vol. 15(3), 2001.

E. Gabriel, M. Resch, T. Beisdl, and R. Kdler, “Distributed computing in a
heterogeneous computing environment”, Proc. of the 5th European PVM/MPI
Users Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pp 180-187, Springer-Verlag, 1998.

Al GEIST, Cluster Computing: The Wave of the future, Springer Verlag Lecture

Notes in Computer Science, May 1994.

[10] LAM/MPI officia site, http://www.lam-mpi.org/.

37

http://www.lam-mpi.org/

[11] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “SOCKS
Protocol Version 57, RFC 1928, Internet Engineering Task Force, 1996.

[12] M. L. Massie, B. N. Chun, D. E. Culler,” The ganglia distributed monitoring
system: design, implementation, and experience”’, Parallel Computing, (30) pp
817-840, Elsevier Science, 2004.

[13] M. Matsuda, T. Kudoh, Y. Ishikawa, “Evaluation of MPI Implementations on
Grid-connected Clusters using an Emulated WAN Environment”, Proc. of the 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid

(CCGRID '03), IEEE Computing Society, 2003.

[14] Message Passing Interface Forum, http://www.mpi-forum.org/.
[15] MPI Forum. “MPI: A message-passing interface standard”. International
Journal of Supercomputer Applications, 8 (3/4) 165-416, 1994.

[16] MPICH officia site, http://www-unix.mcs.anl.gov/mpi/mpich/.

[17] M. Miiller, M. Hess, E. Gabridl, “Grid enabled MPI solutions for Clusters”, Proc.
of the 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGRID '03), IEEE Computing Society, 2003.

[18] K. N. Nguyenand T. T. Le, “Evauation and Comparison Performance of Various
MPI Implementations on an OSCAR Linux Cluster”, Proc. of the International
Conference on Information Technology: Computers and Communications
(ITCC.03), IEEE Computing Society, 2003.

[19] H. Ong and P. A. Farrell, “Performance Comparison of LAM/MPI, MPICH, and
MVICH on a Linux Cluster connected by a Gigabit Ethernet Network,”
Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta, October
10-14, 2000.

[20] PVM — Pardld Virtual Machine, http://www.epm.ornl.gov/pvm.

[21] P. Srisuresh and K. Egevang, “Traditional IP Network Address Trandator

38

http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.epm.ornl.gov/pvm

(Traditional NAT),” RFC 3022, Internet Engineering Task Force, 2001.

[22] T.L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese, How to Build a Beowulf:
A Guide to the Implementation and Application of PC Clusters, 2nd Printing, MIT
Press, Cambridge, Massachusetts, USA, 1999.

[23] Y. Tanaka, M. Sato, M. Hirano, H. Nakada, S. Sekiguchi, “Performance
Evauation of a Firewall-compliant Globus-based Wide-area Cluster System”,
Proc. of the Ninth IEEE International Symposium on High Performance
Distributed Computing, pp 121-128. IEEE Computing Society, 2000.

[24] D. Turner and X. Chen, “Protocol-dependent message-passing performance on
Linux clusters”, Proc. of the 2002 IEEE International Conference on cluster
computing, pp 187-194, IEEE Computing Society, 2002.

[25] P. Uthayopas and A. Rungsawang, “SCMS: An Extensible Cluster Management
Tool for Beowulf Clusters”, Supercomputing 99, Portland (OR), 1999.

[26] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers, Prentice Hall PTR, NJ,
1999.

[27] C. T. Yang, C. C. Hung, and C. C. Soong, “Paralel Computing on Low-Cost
PC-Based SMPs Clusters,” Proc. of the 2001 International Conference on
Parallel and Distributed Computing, Applications, and Techniques (PDCAT

2001), Taipei, Taiwan, pp 149-156, July 2001.

39

