
東海大學

資訊工程與科學研究所

碩士論文

指導教授：楊 朝 棟 博士

多重個人電腦叢集系統之建置與評估

Construction and Performance Evaluation of

Cluster of Linux PC Clusters Environment

研 究 生：廖 峻 陞

中華民國九十四年六月

 i

摘要

在個人電腦叢集於平行處理領域的發展中，我們可以使用網路位置轉換 NAT

(Network Address Translation) 機制來建置叢集系統叢集 (Cluster of Clusters,

CoCs)，這類的應用也稱為多重叢集 (Multi-cluster)。應用此技術，我們可以將不

同的個人電腦叢集系統透過高速的網路設備將其整合成一個單一且大型的平行

處理系統並且可以得到令人滿意的效能。另一方面，在目前 IPv4網路環境之下，

真實 IP位置 (Public IP Address) 嚴重的不足，而使用多重叢集的架構也能為我

們省下多餘的網路位置。在這篇論文裡面，會包含以下三個部份：第一部份是利

用 NAT 技術在東海大學的內部網路內將四套分散在不同地點的個人電腦叢集來

建置我們的多重叢集。第二部份是為了方便使用多重叢集我們建置了一套在叢集

系統上面運行的監控系統，並且可以透過手持的行動裝置來進行機器的監控和控

制。第三部份則是對這個平台進行效能的分析，我們會利用不同的 MPI 平行程

式的實例來進行多重叢集系統對於不同平行程式架構下的分析。

關鍵字： 個人電腦叢集、多重叢集、叢集計算、訊息傳遞、網路位置轉換

 ii

Abstract

Multi-cluster with NAT (Network Address Translation) is a kind of building cluster of

clusters (CoCs) in parallel processing, we can easily combine two or more PC clusters

which had setting on difference place to form a big one parallel system to reach the

acceptable performance and resolving the issue of insufficient public IP address. In

this thesis, it includes three parts: First we construct a CoCs with four PC clusters which

connected with NAT on difference place in LAN environment. Second, we build a

monitor system in our system in order to control and observe this system in a

convenient way; this monitor system also has a client with mobile availability for users

without computers. Third, we evaluate our system different MPI parallel programs for

the analysis of different parallel models.

Keywords：PC Clusters, Cluster Computing, Cluster of Clusters, Message Passing,

NAT

 iii

Acknowledgements

I would like to thank all of these people who have supported and helped me through the

completion of this thesis and all of my working for the business of our lab. In

particular, I would like to thank my advisor, Dr. Chao-Tung Yang, who introduced me

to parallel computing and give me the broad support and guidance. I would also like

to Professor Kuan-Ching Li, Professor Wen-Chung Chiang, Professor Chao-Chin Wu,

and Professor Cheng-Chung Chu for the valuable comments and advice given while

serving on my reading committee.

There are many people whom I would like to thank, my classmate Shih-Chieh

Yen give me the discussion for the original idea of my thesis. The members of HPC

lab includes Chuan-Lin Lai, Po-Chi Shih, and Yi-Chun Hsiung, and group-mate

Ping-Yi Chen and all the other members of HPC lab, they have give me a lot of

support of completing my thesis. I would like also thanks the people who support

and encourage me for this research. Thanks for your help and considerations.

Finally, I would like to thank my family, my girl friend, and all of my friends.

Because of your unconditional support I could made this thesis complete.

 iv

Contents

摘要...i
Abstract...ii
Acknowledgements .. iii
Contents ...iv
List of Tables ..v
List of Figures..vi
Chapter 1 Introduction..1

1.1 Motivation..1
1.2 Contributions..2
1.3 Thesis Organization ...3

Chapter 2 Background ..4
2.1 Beowulf Cluster ...4
2.2 Linux ..5
2.3 Message Passing Interface ...6

2.3.1 MPICH..6
2.3.2 LAM..6

2.4 Multi-Cluster Environments ..7
2.4.1 Grid Computing Environments...7
2.4.2 Network Address Translation..8
2.4.3 Gateways...8
2.4.4 Proxies...9
2.4.5 Comparisons Among These Technologies ..9

2.5 Monitor systems For Beowulf Cluster ...9
Chapter 3 System Implementation ...11

3.1 Multi-cluster with NAT Settings .. 11
3.2 Monitor System Design and Implementation ..14

Chapter 4 Experimental Results...21
4.1 Experimental Environment ..21
4.2 Performance Comparisons ...23

4.2.1 Matrix Multiplication..23
4.2.2 PI Computation ...27
4.2.3 Prime Number Generation ..29
4.2.4 Bucket Sort..32

Chapter 5 Conclusions and Future work...36
Bibliography ...37

 v

List of Tables

Table 4.1: Hardware specification ...21
Table 4.2: Test setting of single and multi-clusters..23

 vi

List of Figures

Figure 2.1: Logic view of a PC Cluster ...6
Figure 3.1: NOW using four SMP PCs..12
Figure 3.2: A simple PC form consists of two PC clusters ..14
Figure 3.3: Overview of monitor system ...16
Figure 3.4: Monitor system architecture..16
Figure 3.5: Software architecture of our monitor system ..17
Figure 3.6: Home page created with PHP and RRDTool...18
Figure 3.7: Platform information page...18
Figure 3.8: The overall system information webpage of one cluster platform............19
Figure 3.9: The detail system information webpage..19
Figure 3.10: Monitoring screen on PDA..20
Figure 4.1: Experimental environment in HPC Lab consisting of four PC clusters....22
Figure 4.2: Comparison of matrix multiplication when the matrix size is equal to 512

..26
Figure 4.3: Comparison of matrix multiplication when the matrix size is equal to 1024

..26
Figure 4.4: Comparison of matrix multiplication when the matrix size is equal to 2048

..27
Figure 4.5: Comparison on MPI jobs starting locations in matrix multiplication27
Figure 4.6: Comparison of the PI problem when the subspaces are equal to

1,000,000,000...28
Figure 4.7: Comparison of the PI problem when the subspaces are equal to

2,100,000,000...29
Figure 4.8: Comparison on MPI jobs starting locations in PI problem29
Figure 4.9: Comparison of the prime problem when the range is equal to 25,000,000

..31
Figure 4.10: Comparison of the prime problem when the range is equal to 50,000,000

..31
Figure 4.11: Comparison on MPI jobs starting locations in the prime problem..........32
Figure 4.12: Comparison of the bucket sort problem when the sizes are equal to 65,536

..34
Figure 4.13: Comparison of the bucket sort problem when the array sizes are equal to

1,048,576..34
Figure 4.14: Comparison on MPI jobs starting locations in the bucket sort problem .35

 1

Chapter 1

Introduction

1.1 Motivation

Extraordinary technological improvements over the past few years in areas such as

microprocessors, memory, networks, and software have made it possible to assemble

groups of inexpensive personal computers and/or workstations into a cost effective

system that functions in concert and possesses tremendous processing power. Cluster

computing is not new, but in company with other technical capabilities, particularly in

the area of networking, this class of machines is becoming a high-performance platform

for parallel and distributed applications [3, 4, 9, 22, 26].

Inexpensive systems such as Beowulf clusters have become increasingly popular

in both commercial and academic sectors of bioinformatics community. Clusters

typically consist of a master node that distributes the bioinformatics application

amongst the other nodes (slave nodes).

In our laboratory, we have several Linux PC clusters. Their configurations usually

consisted of one master node and three, seven or more slave nodes with dual-processor

SMP for reaching maximal performance. Unfortunately, the public IP addresses are not

enough for setting used on all slave nodes. It means that the virtual IP address is used

for slave nodes in a PC cluster. If we want to use a cluster with 64 CPUs or more for

some experimentation like gene sequence analysis or large computing job. Currently,

our hardware setting is not suitable for allocating all computing resources. Therefore, to

find a solution that can combine more Linux PC clusters for parallel computing is our

main motivation in this thesis.

Multi-cluster with NAT (Network Address Translation) is a kind of building

cluster of clusters (CoCs) [2] in parallel processing, we can easily combine two or more

 2

PC clusters which had setting on difference place to form a big one parallel system to

reach the acceptable performance and resolving the issue of insufficient public IP

address. Performance is one of the important concerns of both cluster users and

system developers. However, there is no clear and widely accepted CoCs performance

definition. In this thesis, we built a multi-cluster with four PC clusters which

connected with NAT on difference place in LAN environment. We use many parallel

applications like the matrix multiplication application to measure the MPI message

passing library in our testing environment and finding out the performance issue and

some characteristics of building it.

Monitoring the status of a Beowulf-style cluster can be a daunting task for any

system administrator, especially if the cluster consists of more than a dozen nodes.

While Linux is extremely stable, hardware problems can cause nodes to crash or

become inaccessible, and chasing down problem nodes in a 500-node cluster is painful.

Managing and monitoring a cluster is both a tedious and challenge task, since each node

is designed as a stand alone system rather than a part of a parallel architecture. Beowulf

systems will need a richer set of software tools to improve usability and

re-configurability.

We present our effort to resolve this problem by developing a PC cluster

monitoring system. This system also provides web service and application to monitor

for large scale clusters or grid environment.

1.2 Contributions

We conduct our multi-cluster system that with NAT mechanism that shows in our

testing parallel application it has good performance and in the additional evaluation

we could find that the machine availability could reflect the performance on

multi-cluster environment. We also conduct our effort on the monitor system of

cluster, we use the master-slave architecture to implement our monitor and make a

 3

special client for mobile equipments based on Java. We can easily monitor in

everywhere even if we don’t have a generic computer, we could also receive the

cluster status on our mobile devices.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, we review the Cluster

Computing, introduction of Linux OS, the two major implementations of Message

Passing Interface, and related work. In chapter 3, we introduce our multi-cluster

system and discuss details of technologies used in the construction of such platform

and present our cluster monitor system, while our experimental results are discussed

in chapter 4. Finally, in chapter 5, we list some conclusion and feature work.

 4

Chapter 2

Background

2.1 Beowulf Cluster

A Beowulf cluster uses multi-computer architecture, as depicted in Figure 2.1. It

features a parallel computing system that consists of one or more master nodes and

available compute nodes, or cluster nodes, interconnected via widely available network

interconnects. All of the nodes in a typical Beowulf cluster are commodity systems-PCs,

workstations, or servers-running commodity software such as Linux.

The master node acts as a server for Network File System (NFS) and as a gateway

to the outside world. As an NFS server, the master node provides user file space and

other common system software to the compute nodes via NFS. As a gateway, the master

node allows users to gain access through it to the compute nodes. Usually, the master

node is the only machine that is also connected to the outside world using a second

network interface card (NIC). The sole task of the compute nodes is to execute parallel

jobs. In most cases, therefore, the compute nodes do not have keyboards, mice, video

cards, or monitors. All access to the client nodes is provided via remote connections

from the master node. Since compute nodes do not need to access machines outside the

cluster, nor do machines outside the cluster need to access compute nodes directly,

compute nodes commonly use private IP addresses, such as the 10.0.0.0/8 or

192.168.0.0/16 address ranges.

From a user’s perspective, a Beowulf cluster appears as a Massively Parallel

Processor (MPP) system [1]. The most common methods of using the system are to

access the master node either directly or through Telnet or remote login from personal

workstations [26]. Once on the master node, users can prepare and compile their

 5

parallel applications, and also spawn jobs on a desired number of compute nodes in the

cluster. Applications must be written in parallel style and use the message-passing

programming model. Jobs of a parallel application are spawned on compute nodes,

which work collaboratively until finishing the application. During the execution,

compute nodes use standard message-passing middleware, such as Message Passing

Interface (MPI) [14, 15] and Parallel Virtual Machine (PVM) [20], to exchange

information.

Cluster computing focuses on platforms consisting of often homogeneous

interconnected nodes in a single administrative domain:

l Clusters often consist of PCs or workstations and relatively fast networks,

l Cluster components can be shared or dedicated,

l Application focus is on cycle-stealing computations, high-throughput

computations, and distributed computations.

2.2 Linux

Linux is a robust, free and reliable POSIX compliant operating system. Several

companies have built businesses from packaging Linux software into organized

distributions; RedHat is an example of such a company. Linux provides the features

typically found in standard UNIX such as multi-user access, preemptive multi-tasking,

demand-paged virtual memory and SMP support. In addition to the Linux kernel, a

large amount of applications, system software and tools are also freely available. This

makes Linux the preferred operating system for clusters.

The idea of the Linux cluster is to maximize the performance-cost ratio of

computing by using low-cost commodity components and free-source Linux and GNU

software to assemble a parallel and distributed computing system. Software support

includes the standard Linux/GNU environment, including compilers, debuggers,

editors, and standard numerical libraries. Coordination and communication among the

 6

processing nodes is a key requirement of parallel-processing clusters. In order to

accommodate this coordination, developers have created software to carry out the

coordination and hardware to send and receive the coordinating messages. Messaging

architectures such as MPI and PVM, allow the programmer to ensure that control and

data messages take place as needed during operation.

SD

Ω

PROFESSIONAL WORKSTATION
AP400

SD

Ω

PROFESSIONAL WORKSTATION
AP400

SD

Ω

PROFESSIONAL WORKSTATION
AP400

SD

Ω

PROFESSIONAL WORKSTATION
AP400

SD

Ω

PROFESSIONAL WORKSTATION
AP400

SD

Ω

PROFESSIO NAL WORKSTATION
AP400

SD

Ω

PROFESSIONAL WORKSTATION
AP400

SD

Ω

PROFESSIONAL WORKSTATION
AP400

SD

Super Stack II
Switc h 3300

SUPER
STACK

3C16980

M oduleStatus 3 ComUnit

1 2
3 4
5 6
7 8

1 2 3 4 5 6 7 8 9 10 11 12

13 1415 16 17 18 19 2021 22 23 24
1 2 3 4 5 6 7 8 9 10 11 12

green =
enabled, l ink OK
flas hing green

disabled, l ink OK
off = l ink fa i l

13 1415 16 17 18 19 2021 22 23 24

Pack et
Status
Pack et
Status

1x

13x

6x

18

7x

19x

12x

24

Figure 2.1: Logic view of a PC Cluster

2.3 Message Passing Interface

There are many MPI implementations for parallel processing [5, 18, 24]; most of the

used libraries are MPICH [16] and LAM [10].

2.3.1 MPICH

MPICH is a robust and flexible implementation of the MPI (Message Passing Interface).

MPI is often used with parallel or distributed computing projects. MPICH is a

multi-platform, configurable system (development, execution, libraries, etc) for MPI.

It can achieve parallelism using networked machines or using multitasking on a single

machine.

2.3.2 LAM

LAM is an implementation of the Message Passing Interface (MPI) parallel standard

that is especially friendly to clusters. It includes a persistent runtime environment for

 7

parallel programs, support for all of MPI-1, and a good chunk of MPI-2, such as the

dynamic functions, one-way communication, C++ bindings, and MPI-IO.

2.4 Multi-Cluster Environments

The components of personal-computer is cheaper today and the ratio of cost to price

is even more valuable when we use the Bewulf cluster for parallel processing and

applications. When we purchase groups of PC to build a Beowulf cluster in batches.

The problem is that we can’t easily import the devices such as the main processor

which was appeared years ago because of the Moore’s Law. We could not get higher

performance because we can’t easily combine these heterogeneous computational

resources.

We have several ways to combine our heterogenous cluster to build a new

computational resource to get a better performance in recent years [13, 19]. This is a

domain of Grid Computing. The purpose of the Grid Computing is that we can get

any type of resources to resolve many of demanding problems [6, 7]. In other words,

reseachers has many contributions about to use the improvements or the extentions of

MPI implementation, for combination of getting higher computational power.

The overall solutions of coupling serveral clusters into a distributed computing

enviroment with MPI can be divided into four ways [17].

2.4.1 Grid Computing Environments

If all of our cluster nodes have public IP addresses there are no major problem. In

such situation we can build a large computing farm using the Grid-enabled MPI

Implementation [2, 23]. All nodes of cluster platform need install the Grid

Computing middleware such as GLOBUS [6]. In GLOBUS the inter-cluster

communication in Grid Computing enviroment is using the GLOBUS-IO mechanism,

intra-cluster communication is still using the suppoted MPI libraries. MPICH-G2 is

the implementaion of the widely distributed MPICH-library for Grid-envrionment that

 8

support GLOBUS. It implements a device for MPICH and giving the user the

possibilities to rely on many GLOUS mechanisms like authentication and

authorizations.

2.4.2 Network Address Translation

If we don’t have many public IP address used for the cluster nodes, the previous

solution is not directly available. The Grid-enabled solution needs the support of

middleware support. In the Grid Computing environment all IP address must be

public IP addresses. The Beowulf type clusters are usually connected together with the

private IP addresses. The packets with private addresses are normally not routed

through the public IP address area. In a Local Area Network (LAN) enviroment it’s

still might be possibly to grouping the clusters, because the packets in LAN will be

traveling over the switch or router by the specially solution, network address

translation (NAT) [21].

NAT is a mechanism to map IP addresses. It usually couples with the packet

filting, mangling, and IP masquerade, the mechanism map the private IP address by a

public IP address. This mechanism need a node that has the availability to connect

between the public and private network. This node privides IP forwarding of outgoing

packets in the private network and keeping track all incoming packets to correct node

in the private network.

2.4.3 Gateways

Another solution of coupling the clusters is the one of gateway node. The gateway is

the node that connect the public IP network and persisted in the MPI commnunication

world in the MPI mechanisms. It provides the machenisms that joining the MPI jobs

and managing the message passing over the network. Every nodes in the MPICH-G2

has the availability of being a gateway node.

PACX-MPI [8], a MPI implementation of coupling the clusters to a distributed

 9

high-performace computing system. Unlike the MPICH-G2 using the Grid Computing

environment, PACX-MPI has its two level hierarchy of network structure, one for

inter-cluster communication that perform on a TCP/IP network with high latancy

network, while the other is providing the low-latency, high bandwidth network for

intra-cluster communication with vendor-supported MPI library. To reach this goal, it

uses a daemon-based system to handle these two types of communication level.

2.4.4 Proxies

The proxies are the application service that provide the private and public IP address

communication, which is unlike NAT proxies are in the user space solution. The

proxy server would have sufficient knowledge to handle the inside and outside

communication. Stampi is the example MPI implementation with proxy mechanism.

An usually used solution to this solution is the SOCKS v5 server [11].

2.4.5 Comparisons Among These Technologies

In general, Beowulf-Cluster usually using private ip address to inter-connected

together and in fact, we have many single clusters that in seperated locations. The

grid computing environment providing too much mechanisms and each of the grid

computing member would install the grid middleware, if we want to fastly build a

multi-cluster environment, these addtional software installtion will cause more

overhead in our configuration. The gateway solution is suited when we have more

high-speed inter-cluster connection network and we don’t want to use TCP/IP for

inter-cluster communication. The Linux kernel now provide the system level of IP

filter and NAT module, we don’t need to choose the SOCKS solution for building our

multi-cluster, so we choose NAT solution to combine our single clusters to a

multi-cluster.

2.5 Monitor systems For Beowulf Cluster

Several tools have been developed to monitor a large number of machines as

 10

stand-alone hosts as well as hosts in a cluster. These tools can be useful because they

monitor the availability of services on a host and detect if a host is overloaded, but they

do not generally provide performance monitoring information at the level of detail

needed to tune the performance of a Beowulf cluster. In contrast with existing systems,

which usually display information only graphically, our project integrates performance

monitoring with scheduling systems. In the following sections, we discuss open-source

cluster-monitoring tools.

Ganglia [12] is an Open Source project (available on SourceForge at

http://ganglia.sourceforge.net) with a BSD license. It grew out of the University of

California, Berkeley, Millennium Cluster Project (see

http://www.millennium.berkeley.edu) in collaboration with the National Partnership for

Advanced Computational Infrastructure (NPACI) Rocks Cluster Group. Ganglia

provides a complete, real-time monitoring and execution environment based on a

hierarchical design. It uses a multicast listen/announce protocol to monitor node

status, and uses a tree of point-to-point connections to coordinate clusters of clusters

and aggregate their state information. Ganglia uses the extensible Markup Language

(XML) to represent data, external Data Representation (XDR) for compact binary data

transfers, and an open source package called RRDTool for data storage (in Round

Robin databases) and for graphical visualization.

The SMILE Cluster Management System (SCMS) [25] is an extensible

management tool for Beowulf clusters. SCMS provides a set of tools that help users

monitor, submit commands, and query system status; maintain system configuration,

and more. System monitoring is limited to heartbeat-type measurements.

http://ganglia.sourceforge.net
http://www.millennium.berkeley.edu

 11

Chapter 3

System Implementation

3.1 Multi-cluster with NAT Settings

In this section, the construction procedure is described. We used dual-processor

motherboards to reduce the number of boxes to eight, and thus, minimizing the space

needed for storage as shown in Figure 3.1 (and the footprint of the cluster). This

structure impacts performance because two processors share the memory bus (which

causes bus contention but reduces the hardware cost) since only one case, motherboard,

hard drive, etc., are needed for two processors. We ruled out the option of

rack-mounting the nodes, essentially to reduce cost, but chose to use standard

mid-tower cases on shelves. This approach is occasionally given the name of LOBOS

(lots of boxes on shelves).

The idea of the Linux cluster is to maximize the performance-cost ratio of

computing by using low-cost commodity components and free-source Linux and GNU

software to assemble a parallel and distributed computing system. Software support

includes the standard Linux/GNU environment, including compilers, debuggers,

editors, and standard numerical libraries. Coordination and communication among

the processing nodes is a key requirement of parallel-processing clusters. In order to

accommodate this coordination, developers have created software to carry out the

coordination and hardware to send and receive the coordinating messages. Messaging

architectures such as MPI or Message Passing Interface, and PVM or Parallel Virtual

Machine, to allow the programmer to ensure that control and data messages take place

as needed during operation.

 12

Figure 3.1: NOW using four SMP PCs

When we have many single clusters and wonder build them as a big and single

computation resource with NAT, The master node of our single cluster are connected

with inter- and intra-cluster networks. Key point is that how could we configure our

master nodes of many of our single clusters and make them could communicated over

the network.

In general, a PC cluster is constructing by using Linux as their OS environment.

The kernel version 2.4 and latter provides a subsystem called Netfilter. It operates a

packet filtering job in kernel stack. We use this feature for IP-Masquerade, a solution

of network address translation (NAT), in the setting, we just open the capability of

packet forwarding module. The reason is that we do not need to protect any type of

attack form Internet; we just want to make the client that can communicate around the

public network. IP-Masquerade in Linux has several ways to be enabled. You should

use the root account to perform the following commands.

The building steps of multi-cluster in each cluster’s master node are list below.

First, you can use “sysctl” command to enable kernel IP forward function like this

 13

command “sysctl -w net.ipv4.ip_forward=1”. Another way, you can change the

“/proc/sys/net/ipv4/ip_forward” value to 1. Then, you can use “iptables” command

to change Netfilter trains, before this configuration you should load kernel module

include ip_tables and iptable_nat through “modprobe” or “insmod” command, after

modules loaded. The command is like below:

iptables -t nat -A POSTROUTING -o <eth> -s <private_net> -j MASQUERADE

under the command, the “eth” parameter is the mapped to your master node’s public

address interface and the “private_net” parameter is your cluster’s private network

address, if your private network is 192.168.1.0 and its netmask is 255.255.255.0. You

should type “192.168.1.0/24”.

After enabling the NAT support for each cluster’s master node, if we want to

combine these clusters together, we must build a static routing path that causes every

node in this environment can pass messages to each other.

We use a simple example to explain this concept. In Figure 3.2, if we have two

2-client clusters Cluster A and Cluster B. In their private network setting, Cluster A

and Cluster B should configure different private network address like as 192.168.1.0

and 192.168.2.0 or other, respectively. After IP-Masquerade in Linux kernel, we can

look each master node as a network router, in this concept, we don’t mind that private

network couldn’t route between public networks because every cluster master node in

our setting is in public network. Our configuration is concentrated on made the

routing policy to each cluster master. The policy is simple, if we must combine N

cluster together, each master must add (N-1) route trains to satisfy each cluster

communications together.

In this example for cluster A, we can add this command to add a routing train on

this cluster master:

route add –net 192.168.2.0 netmask 255.255.255.0 gw <cluster B master IP >

 14

For cluster B, we also add the command on cluster master:

route add –net 192.168.1.0 netmask 255.255.255.0 gw <cluster A master IP >

After this configuration and master node is set to use IP-Masquerade. We easily

can combine the two Linux PC clusters for applying MPI parallel applications for

obtain large computation power.

Figure 3.2: A simple PC form consists of two PC clusters

3.2 Monitor System Design and Implementation

The concept of our monitor system is to improve the availability of monitor system in

the distributed computing environment. Nowadays, the monitor system is not well

developed on user requirements. So we started on the user interaction and the manner

of application executing, and developed the applications by the portability of the Java

Virtual Machine. Our system can be divided into three applications of the Cluster

architecture:

l Observe server: The role of the Observe server is running the collect

daemon that getting the information of each cluster’s total information that

observing from the master node and replicate the data to their local file based

 15

database for the usage of the web interface,

l Master node: The master node executes the master daemon that could

collect the information of their slave nodes to their local file based database

and response the Observe server,

l Slave node: All other nodes of our cluster must to run the slave daemon. The

slave program must get information in user specific metrics like CPU speed,

available size of memory, load of this node and other information user

interested in.

In the other side, we have a separate role to display and control our cluster in

another way, there are two types of this role:

l Web portal: We use two tools that generate the web service for controlling

and displaying the information of our system; first we use the drawing tool

called Round Robin Database Tool (RRDtool) to draw the state chart from

the collected information in the Observe server. Second is the web front-end

portal created by PHP, when user is connecting to the portal, he can retrieve

the information by the state chart and control the system by the web interface.

l PDA application: The mobile devices are not suit for displaying detail

information and remote controlling. We need to simplify our information

and design the appropriate interface for this usage. The Java application

framework is suitable for this type of application and we choose it to develop

our simple application. Implementation of this work is connecting the

Observe server and gets all metrics of our information and directly displaying

these to a classified format.

Our system has been implemented for machines with a private network; it resides

on one node, which controls all the others with remote commands. That choice allows

easy installation and upgrade, and need to have daemons running on computing and

 16

service nodes. On the other hand this choice can scale if the number of nodes is huge.

The software has been implemented for managing a cluster of clusters, on public

networks.

The flow of this system is shown in Figure 3.3, the master nodes can collect the

system information from its slave nodes in the multiple Linux PC clusters. Then the

Observe server will gather all information from master nodes, and send to Web server

for displaying form remote users and applications. The system architecture and

software architecture are shown in Figure 3.4 and Figure 3.5. Also, the Observe

server will be called to provide services and information form the Web server.

Figure 3.3: Overview of monitor system

Figure 3.4: Monitor system architecture

 17

Figure 3.5: Software architecture of our monitor system

The functions of three daemons in our system are listed as below:

l Slave Daemon: The Slave daemon can obtain the related system information

of each slave node form Kernel, and provide the services to its Master node in

the PC cluster,

l Master Daemon: The Master Daemon is responsible to collect the system

information from all slave nodes in its cluster, and put the related information

into Local Database. Local Database is used for the purpose that will not

allow the high load of master node for an instant. The function of Local

Database can be view as a buffer,

l Collect Daemon: This daemon is running on the Observe Server. It is used for

collecting the system information of each master node of multiple Linux PC

clusters. It can provide services by using database to applications or the

remote users.

All server daemons are written in C and the web portal interface is written in

PHP, We could get some information through our web portal and they are shown from

Figure 3.6 to Figure 3.9. For the user without computer, we have also implemented a

JAVA-based PDA version of our monitor shown in Figure 3.10.

 18

Figure 3.6: Home page created with PHP and RRDTool

Figure 3.7: Platform information page

 19

Figure 3.8: The overall system information webpage of one cluster platform

Figure 3.9: The detail system information webpage

 20

Figure 3.10: Monitoring screen on PDA

 21

Chapter 4

Experimental Results

4.1 Experimental Environment

Table 4.1 shows the hardware specification of our testing environment. The network

topology is shown as in Figure 4.1. The hardware specifications of them are list in

Table 4.1. Our inter-cluster connection are build on the Fast Ethernet that giving the

speed of 100 Mb/s.

Table 4.1: Hardware specification

CPU Memory Network Type
of total

node
Cluster hostname

Dual AMD AthlonMP

2400+

Master 2GB

Slave 1GB

1Gbps for

intra-cluster
Four nodes amd1

Dual AMD Athlon MP

1800+
512MB

100Mbps for

intra-cluster
Four nodes amd-dual1

Dual AMD Athlon MP

2000+

Master 2GB

Slave 1GB

1Gbps for

intra-cluster
Four nodes amd-dual01

Dual AMD

Athlon 64 3000+

Master 1GB

Slave 1GB

1Gbps for

intra-cluster
Four nodes amd64-dual01

The configuration steps of multi-cluster are listed below.

l First, get all information of public and private IP addresses of these four

cluster’s master on executing “ifconfig” command,

l Second, all the slave nodes default gateway should be the cluster’s

master node in the file named “/etc/sysconfig/network”,

l Third, setting the configurations for the master node of three clusters

with the follows in upper section we described,

 22

Figure 4.1: Experimental environment in HPC Lab consisting of four PC clusters

In order to compare the difference of various numbers of nodes in multi-cluster

combination and our single cluster, we set three cases in the multi-cluster in Table 4.2.

In each multi-cluster settings, each node of our cluster has dual CPUs, so the case

named “mc8” has four nodes, while the others are the same. In every multi-cluster case

is also including the master node of each single cluster to build with. We can regard

mc8 cluster as the eight CPUs case of heterogeneous cluster with Fast Ethernet because

the master are connected in the LAN environment, and we can use this case to compare

the performance to other single clusters in our testing cases.

To compare the performance differences of mc16 and mc32 with single cluster

that has the same numbers of CPUs. We build the sc16 and sc32 clusters that the

hardware components are the same as amd-dual01, but sc16 is build with 8 nodes and

sc32 is build with 16 nodes, and their intra-cluster network environment is Gigabit

Ethernet. We can use these two single clusters to compare the total difference when

we evaluate with mc16 and mc32.

 23

In another approach, we want to know how the starting node of the MPI job does

influence the performance of each testing case. We use the master nodes of our four

single clusters to evaluate this issue. We will discuss this issue in the rear of each

testing case.

Table 4.2: Test setting of single and multi-clusters

Numbers of nodes
Type

amd1 amd-dual1 amd-dual01 amd64-dual01

mc8 1 node 1 node 1 node 1 node

mc16 2 nodes 2 nodes 2 nodes 2 nodes

mc32 4 nodes 4 nodes 4 nodes 4 nodes

In choosing implementation of the MPI library, we use MPICH to build for our

experimentation because the new version of LAM/MPI that’s after 6.5.8 could not suite

to multi-cluster in private to public IP address translation. We use the MPICH 1.2.6 to

compile our experimental program in the multi-cluster environment. In our

experimental environment, we have two different hardware platform i386 for AMD

ATHLON MP and x86_64 for AMD ATHLON 64 platform, so we should make

different binary codes for MPICH implementation and of course, the experiment binary

codes are also expected.

4.2 Performance Comparisons

In order to compare our multi-cluster performance, we choose four parallel

applications for evaluations: Matrix multiplication, PI computation, prime number

generation, and the bucket sort.

4.2.1 Matrix Multiplication

The matrix operation derives a resultant matrix by multiplying two input matrices, a

and b, where matrix a is a matrix of N rows by P columns and matrix b is of P rows by

 24

M columns, and then the resultant matrix c is of N rows by M columns. The serial

realization of this operation is quite straightforward as listed below:

for(k=0; k<M; k++)
 for(i=0; i<N; i++){
 c[i][k]=0.0;
 for(j=0; j<P; j++)
 c[i][k]+=a[i][j]*b[j][k];
 }

Its algorithm requires n3 multiplications and n3 additions, leading to a sequential

time complexity of Ο(n3). For matrix multiplication, the smallest sensible unit of

work is the computation of one element in the result matrix. It is possible to divide the

work into even smaller chunks, but any finer division would not be beneficial because

of the number of processor is not enough to process, i.e., n2 processors are needed.

In the Figure 4.2, 4.3, and 4.4, we could find out the amd64-dual01 leads the

performance in these four single clusters because of its new architecture and the

optimization for the x86_64 architecture in new kernel 2.6. The amd-dual1 cluster has

the worst performance because of its network speed is only 100Mbps speed and the

CPU clock is the slowest of these four single clusters. We can also check the

performance of amd-dual1 and mc8. It shows that when the matrix size increased

the performance of both cases are lower than other cases in the 100Mbps network.

In the performance evaluation results in Figure 4.2 shows the performance benefit

in the multi-cluster system. First the performances of the mc8, mc16 and mc32

clusters are between the performance of amd1 and amd64-dual01 these two clusters.

When the matrix size is not very large, the communication overhead occur the

execution time of mc32 and mc8 are very closely. But we can get the better

performance in the mc16 cluster.

When the matrix size increased as in Figure 4.3 and Figure 4.4, it shows if we

increase our nodes to 16 to execute the matrix multiplication program, we could get the

 25

best performance changes. The case of the matrix size increasing to 2048, the

performances of single clusters are not the same in the Figure 4.2 and Figure 4.3, but

multi-cluster also shows the better performance in the mc16 and mc32 settings.

Though, the case of mc8 shows the worst performance because the network speed of

the mc8 cluster is the Fast Ethernet and in normal LAN environment communications

that is like the case of amd-dual1.

When we compare our multi-cluster settings with single cluster settings with

matrix multiplication, our program must send the divided matrix as a multiplier and

the full matrix as multiplicand with traditional block send and receive functions. We

could find that when the matrix size is 512 in Figure 4.2, sc32 could not have the poor

performance than the mc32 because the communication over the single cluster is

running through a single switch that has bigger intra-communication bandwidth.

The results in larger matrix size are more significant when we have strong

intra-communication bandwidth in Figure 4.3 and Figure 4.4. In this type of parallel

processing type that has large message passing over the computation nodes, the

multi-cluster only has little advantage even has bed performance.

In the experiment on starting node of the MPI job. As shown in Figure 4.5, we

respectively conduct the relation in the execution time and the availability of the MPI

job start location. We can get the better performance when we choose the

amd64-dual01 as the node for job starting than other nodes, the amd1 is the second

fast, the amd-dual01 is the third and the last is the amd-dual1. It could be compared

with the performance of single cluster in Figure 4.2, 4.3 and 4.4. We can find out

that if we choose node that gets better performance in single cluster case to starting

the MPI job, we can get better performance when we combine our single cluster to

multi-cluster.

 26

Matrix Multiplication

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Matrix size = 512

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Figure 4.2: Comparison of matrix multiplication when the matrix size is equal to 512

Matrix Multiplication

0

5,000

10,000

15,000

20,000

25,000

Matrix size = 1024

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Figure 4.3: Comparison of matrix multiplication when the matrix size is equal to 1024

 27

Matrix Multiplication

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

Matrix size = 2048

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Figure 4.4: Comparison of matrix multiplication when the matrix size is equal to 2048

Choosen of MPI start node in Matrix Multiplication with all nodes

0

20,000

40,000

60,000

80,000

100,000

120,000

size = 512 size = 1024 size = 2048

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dua01
amd1
amd64-dual01

Figure 4.5: Comparison on MPI jobs starting locations in matrix multiplication

4.2.2 PI Computation

The PI computation program calculates the value of PI by numerical integration in

order to estimate the area of the curve 2() 4 /(1) f x x= + between 0 and 1. We can

compute an approximation by dividing the interval zero and one into numbers of

subintervals to each parallel process and then let each parallel process compute the area

of their own subset.

 28

As the previous section we first compare the performances of four single clusters.

The order of processing time in descending order is amd64-dual01, amd1, amd-dual01,

and the last is amd-dual1 cluster and this result is no matter the subspaces is bigger.

The results reflect the processing time on different MPI jobs starting nodes in Figure

4.8.

In Figure 4.6 and Figure 4.7 we could find out that the case of mc16 and mc32

have good performance when the node increasing. Comparing this result with the

mc8, it shows the communication in heterogeneous cluster with eight CPUs in the

Fast Ethernet environment has very heavy overhead and when we add more nodes the

problem is dividing to smaller sets that cause good performance.

The totally performance comparison of mc16, mc32, sc16, and sc32 is described

below. The MPI program of the PI problem broadcasts divided part of each

computation node with MPI_Broadcast function and last the master receive the results

using MPI_Reduce function; the communication overhead of this problem is very

small, and this problem speed is not the primary factor. So the results of multi or

single clusters are almost the same.

PI Problem

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Subspaces: 1,000,000,000

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Figure 4.6: Comparison of the PI problem when the subspaces are equal to 1,000,000,000

 29

PI Problem

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Subspaces: 2,100,000,000

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd1
amd64-dual01
mc8
mc16
mc32
sc16
sc32

Figure 4.7: Comparison of the PI problem when the subspaces are equal to 2,100,000,000

Choosen of MPI start node in PI Problem with all nodes

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Subspaces: 1,000,000,000 Subspaces: 2,100,000,000

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dua01
amd1
amd64-dual01

Figure 4.8: Comparison on MPI jobs starting locations in PI problem

4.2.3 Prime Number Generation

This problem is to generate the largest prime number between 1 and one given

number. For instance we want to find the largest prime number between 1 and

20,000,000. A parallel program that initially runs on a lead node and sends the task of

testing number 101-200 to node 1, and sends the task of testing number 201-300 to

node 2, and so on. Along with the testing task, there would also be an instruction to

return whatever primes a slave node has discovered to the lead node. When all nodes

 30

have completed their tasks, there will have a message to tell you how many primes are

found and what the biggest prime number is.

In this case, we evaluate two different integer ranges to observe the performance.

The performance comparisons are shown in Figure 4.9 and Figure 4.10. In our

environment when the available nodes increased like mc16 and mc32, we have the

better performance than single cluster settings. So the performance ratio increased

regardless the problem size even when we add our number of nodes to 32.

The order of processing time in descending order is amd1, amd64-dual01,

amd-dual01 and amd-dual1. The amd1 leads the performance of single cluster and the

reason is that the prime number generation is not using the float-point computation

power, this problem needs the integer computation performance. The bogomips

value shows the integer performance of specific processor in the kernel information

that consisting in /proc/cpuinfo file. The bogomips value of amd1 is 4230.52 and the

bogomips value of the amd64-dual01 is 3915.77, so we can use this value to explain

why the amd1 leads the performance.

In the prime number generation problem, however the communication through

each computation node is very frequency and the size for each communication is very

small, the primary factor for this problem is the computing power of each processor.

So in the totally performance evaluation of this problem, the mc16 and mc32 still has

the advantage than the sc16 and sc32.

We still evaluate the performances on starting node of the MPI job; we can

compare it in Figure 4.11 with performances in single clusters in Figure 4.9 and

Figure 4.10. The performance of single clusters reflects the starting node of the MPI

job.

 31

Prime Problem

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Range: 25,000,000

Pr
oc

es
si

ng
 ti

m
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Figure 4.9: Comparison of the prime problem when the range is equal to 25,000,000

Prime Problem

0

5000

10000

15000

20000

25000

30000

35000

40000

Range: 50,000,000

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Figure 4.10: Comparison of the prime problem when the range is equal to 50,000,000

 32

Choosen of MPI start node in Prime Problem with all nodes

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

Range: 25,000,000 Range: 50,000,000

P
ro

ce
ss

in
g

tim
e(

m
s)

amd-dual1
amd-dua01
amd64-dual01
amd1

Figure 4.11: Comparison on MPI jobs starting locations in the prime problem

4.2.4 Bucket Sort

This problem is that we have a amount of unsorted numbers in a list and we want to

sort it to a numerical order. The bucket sort utilizes a divide-and-conquer method to

solve this problem. In parallel version of the bucket sort, there are n numbers in a

unsorted list and p processors to solve problem. First we partition this list to p

regions, one region for each processor. Each processor maintains p “small” buckets

and separates the numbers in its region into its own small buckets. These small

buckets are then emptied into the p final buckets for sorting, which requires each

processor to send one small bucket to each of the other processors.

We also use two different size of array to test our single and multi-clusters. In

Figure 4.12 and Figure 4.13 show the performance difference between single and

multi-clusters. We observe that the amd1 also lead the single cluster performance as

we have described in Section 4.2.3 and this results also reflect the starting node of the

MPI job. This case also shows that when we use 8 CPUs cluster like mc8 the bucket

sort application brings the communication overhead and when we increase our

number of nodes like mc16 and mc32 we finally get good performance.

 33

The different of bucket sort and the prime number generation is that because the

bucket sort communication overhead is heavy than the prime number in data

exchange, We find out that un the MPI jobs starting locations comparison in Figure

4.14, The size of the array could not effect the performance of this problem, the

multi-cluster performance would be very closely in this case. Totally we can

observe when we build a multi-cluster using 16 nodes and 32 nodes we could still

conduct good performance in this case of jobs.

In the totally performance evaluation for multi and single clusters with mc16,

mc32, sc16, and sc32, the property for communication overhead is likely as the matrix

multiplication problem and the computation is very heavy with each computation

node. When we use the small a list for sorting, the single cluster has the better

performance but using larger size of list in Figure 4.13 the network advantage for

single cluster couldn’t help too much in this problem. The computation advantage

for multi-cluster could eliminate the communication overhead in this type of problem.

So in large computation and communication overhead are both exist such like this

problem, multi-cluster could get some advantage even has the same performance in

single cluster.

 34

Bucketsort Problem

0

50

100

150

200

250

300

350

400

450

Array size is 65,536

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Figure 4.12: Comparison of the bucket sort problem when the sizes are equal to 65,536

Bucketsort Problem

0

20,000

40,000

60,000

80,000

100,000

120,000

Array size is 1,048,576

P
ro

ce
ss

in
g

tim
e

(m
s)

amd-dual1
amd-dual01
amd64-dual01
amd1
mc8
mc16
mc32
sc16
sc32

Figure 4.13: Comparison of the bucket sort problem when the array sizes are equal to 1,048,576

 35

Choosen of MPI start node in Bucket sort Problem with all nodes

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Array size = 65,536 Array size = 1,048,576

P
ro

ce
ss

in
g

tim
e(

m
s)

amd-dual1
amd-dua01
amd64-dual01
amd1

Figure 4.14: Comparison on MPI jobs starting locations in the bucket sort problem

 36

Chapter 5

Conclusions and Future work

To build a cluster computing platform, we commonly inter-connect a number of

personal computers or workstations to achieve high computing power. In general

case, we don’t have enough space for setting up many PCs on it, and questions we are

concerned about arises, for instance, network topology, electric power, and

management question etc. Then we can use several places for setting up a number of

machines on each place, and enable networking for transparent computing on each

cluster node for enable an enormous nodes cluster in LAN environment. In this thesis,

we use the NAT mechanism to inter-connect two or more clusters to connect a big one.

An experimental environment we use four different speeds of PC cluster in a

Fast-Ethernet inter-cluster network environment for testing many parallel applications.

We could find that the multi-cluster with NAT bring us the more computation power.

The NAT mechanism is a easier way to build such a multi-cluster environment than

other solutions. In the future we would like to evaluate different message passing

library such as PVM or different implementations of MPI to help us enhance the

performance in multi-cluster setting, or integrate the multi-cluster environment with

scheduler system and the second generation Beowulf-Cluster architecture.

 37

Bibliography

[1] T. Anderson, D. Culler, and D. Patterson, A Case for Network of Workstations,

IEEE Micro, 15(1):54-64, Feb. 1995.

[2] D. Balkanski, M. Trams, W. Rehm, “Communication middleware systems for

heterogeneous clusters: a comparative study”, Proc. of 2003 IEEE International

Conference on Cluster Computing, pp 504- 507, IEEE Computing Society, 2003.

[3] R. Buyya, High Performance Cluster Computing: System and Architectures, Vol.

1, Prentice Hall PTR, NJ, 1999.

[4] R. Buyya, High Performance Cluster Computing: Programming and Applications,

Vol. 2, Prentice Hall PTR, NJ, 1999.

[5] F. Cappello, O. Richard, D. Etiemble, “Understanding performance of SMP

clusters running MPI programs”, Future Generation Computer Systems, (17) pp

711-720, Elsevier Science, 2001

[6] I. Foster and C. Kesselman, “The Grid: Blueprint for a Future Computing

Infrastructure”, Morgan Kaufmann Publishers, 1999.

[7] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling

scalable virtual organizations,” International Journal of Supercomputing

Applications, vol. 15(3), 2001.

[8] E. Gabriel, M. Resch, T. Beisel, and R. Keller, “Distributed computing in a

heterogeneous computing environment”, Proc. of the 5th European PVM/MPI

Users' Group Meeting on Recent Advances in Parallel Virtual Machine and

Message Passing Interface, pp 180-187, Springer-Verlag, 1998.

[9] Al GEIST, Cluster Computing: The Wave of the future, Springer Verlag Lecture

Notes in Computer Science, May 1994.

[10] LAM/MPI official site, http://www.lam-mpi.org/.

http://www.lam-mpi.org/

 38

[11] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “SOCKS

Protocol Version 5”, RFC 1928, Internet Engineering Task Force, 1996.

[12] M. L. Massie, B. N. Chun, D. E. Culler,” The ganglia distributed monitoring

system: design, implementation, and experience”, Parallel Computing, (30) pp

817-840, Elsevier Science, 2004.

[13] M. Matsuda, T. Kudoh, Y. Ishikawa, “Evaluation of MPI Implementations on

Grid-connected Clusters using an Emulated WAN Environment”, Proc. of the 3rd

IEEE/ACM International Symposium on Cluster Computing and the Grid

(CCGRID’03), IEEE Computing Society, 2003.

[14] Message Passing Interface Forum, http://www.mpi-forum.org/.

[15] MPI Forum. “MPI: A message-passing interface standard”. International

Journal of Supercomputer Applications, 8 (3/4) 165-416, 1994.

[16] MPICH official site, http://www-unix.mcs.anl.gov/mpi/mpich/.

[17] M. Müller, M. Hess, E. Gabriel, “Grid enabled MPI solutions for Clusters”, Proc.

of the 3rd IEEE/ACM International Symposium on Cluster Computing and the

Grid (CCGRID’03), IEEE Computing Society, 2003.

[18] K. N. Nguyen and T. T. Le, “Evaluation and Comparison Performance of Various

MPI Implementations on an OSCAR Linux Cluster”, Proc. of the International

Conference on Information Technology: Computers and Communications

(ITCC.03), IEEE Computing Society, 2003.

[19] H. Ong and P. A. Farrell, “Performance Comparison of LAM/MPI, MPICH, and

MVICH on a Linux Cluster connected by a Gigabit Ethernet Network,”

Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta, October

10-14, 2000.

[20] PVM – Parallel Virtual Machine, http://www.epm.ornl.gov/pvm.

[21] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator

http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.epm.ornl.gov/pvm

 39

(Traditional NAT),” RFC 3022, Internet Engineering Task Force, 2001.

[22] T. L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese, How to Build a Beowulf:

A Guide to the Implementation and Application of PC Clusters, 2nd Printing, MIT

Press, Cambridge, Massachusetts, USA, 1999.

[23] Y. Tanaka, M. Sato, M. Hirano, H. Nakada, S. Sekiguchi, “Performance

Evaluation of a Firewall-compliant Globus-based Wide-area Cluster System”,

Proc. of the Ninth IEEE International Symposium on High Performance

Distributed Computing, pp 121-128. IEEE Computing Society, 2000.

[24] D. Turner and X. Chen, “Protocol-dependent message-passing performance on

Linux clusters”, Proc. of the 2002 IEEE International Conference on cluster

computing, pp 187-194, IEEE Computing Society, 2002.

[25] P. Uthayopas and A. Rungsawang, “SCMS: An Extensible Cluster Management

Tool for Beowulf Clusters”, Supercomputing 99, Portland (OR), 1999.

[26] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications

Using Networked Workstations and Parallel Computers, Prentice Hall PTR, NJ,

1999.

[27] C. T. Yang, C. C. Hung, and C. C. Soong, “Parallel Computing on Low-Cost

PC-Based SMPs Clusters,” Proc. of the 2001 International Conference on

Parallel and Distributed Computing, Applications, and Techniques (PDCAT

2001), Taipei, Taiwan, pp 149-156, July 2001.

