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Abstract

In this paper, we present how the CIR model guarantees interest rates against negative

values in detail and what the prices of both discount bonds and European call options

are when interest rates are assumed to follow the CIR model. In addition, we simulate

European call option values on a U.S. 10-Y treasury bond in the CIR model by explicit

finite difference and Monte Carlo methods. The former principle requires that the first two

moments of both the modified and the real models be equal. It is presented in Hull and

White (1990). The latter is used for the basic Monte Carlo method by Boyle (1977). Finally,

we find that the effectiveness of the numerical computation by explicit finite difference is

better than that by the basic Monte Carlo methods.

Keywords: CIR model, treasury bond, European option, explicit finite difference method,

Monte Carlo method
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2.2 The Itô Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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p p(t, T ), the price at time t of a zero coupon bond with maturity date T

B(·) The money account process

r(·) The interest rate process

χ2
n,δ A non-central chi-square distribution with n d.f. and noncentral parameter δ

Γ The Gamma function

V The value of an European call option

vii



Chapter 1

Introduction

In the last twenty years, interest-rate-contingent claims have become increasingly pop-

ular. The values of these securities are closely related to the shape and the stochastic

movements of the term structure. Therefore, numerous models have been developed to

simulate the interest rate movements.

The first appealing framework is due to Vasicek (1977) [21] who was the first to give an

explicit characterization of the term structure. Vasicek proposed an Ornstein-Uhlenbeck

process for the short interest rate. This process offers the interesting characteristic of mean

reversion which is consistent with the observed market interest rate behavior. However, it

has several drawbacks. The major disadvantage is that it can lead to negative rates.

The problem of negative rates was solved by Dothan (1978) [6], Courtadon (1982) [7]

who proposed a one-factor lognormal model and also by Cox, Ingersoll and Ross (CIR)

(1985) [5] who suggested a square root model. The latter leads to analytical solutions for

the prices of both discount bonds and European call options. For this reason its use was

widely spread in the market; and despite the publication of more consistent theoretical

models, the CIR model is still respected as a benchmark for pricing interest rate claims.

In this paper, we present how the CIR model guarantees interest rates against negative

values in detail and what the prices of both discount bonds and European call options

are when interest rates are assumed to follow the CIR model. In addition, we simulate

European call option values on a U.S. 10-Y treasury bond in the CIR model by explicit

finite difference and Monte Carlo methods. The former principle requires that the first two

moments of both the modified and the real models be equal. It is presented in Hull and
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White (1990) [14]. The latter is used for the basic Monte Carlo method by Boyle (1977)

[1].

The paper is organized as follows. In Chapter 2, we introduce basic ideas in stochastic

processes and Brownian motion. Chapter 3 is an introduction to the bond market and

the Cox-Ingersoll-Ross (CIR) interest rate model (1985) [5]. In Chapter 4, we show the

results of using explicit finite difference and Monte Carlo methods to value a 10-Year bond.

Finally, some concluding remarks are made in Chapter 5.
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Chapter 2

Mathematical Preliminaries

Some mathematical relationships and stochastic concept in the interest rate model for

later use are reviewed here.

2.1 Brownian Motion and Martingale

General assumptions

Let (Ω,F , P ) be a probability space with sample space Ω, σ-algebra F and probability

measure P .

Definition 2.1 Let X = {X(t) : t ≥ 0} be a stochastic process if for all t, X(t) is a

random variable ; that is, X(t, ω) : [0,∞) × Ω → R, {ω : X(t, ω) ∈ (a, b)} ∈ F , for all

a < b.

Definition 2.2 A standard Brownian motion, W = {W (t) : t ≥ 0} has the following

properties :

1. W (0) = 0 a.s.; Technically, P{ω : W (0, ω) = 0} = 1,

2. W (t) is a continuous function of t, for all ω,

3. If 0 = t0 ≤ t1 ≤ ... ≤ tn, then the increments

W (t1)−W (t0), · · · ,W (tn)−W (tn−1)
i.i.d.∼ N(0, ti − ti−1), i = 1, 2, · · · , n.

3



Definition 2.3 Let {F(t) : t ∈ I} be a family of sub-σ-algebra of F , I be an ordered

index set with F(s) ⊂ F(t) for s < t, s, t ∈ I. Such a family {F(t) : t ∈ I} is called a

filtration.

Definition 2.4 A stochastic process X = {X(t) : t ≥ 0} on (Ω,F , P ) is an F(t)-

measurable or F(t)-adapted if

σ
(
X(t)

)
⊂ F(t),

that is,

{X(t) ∈ (a, b)} ⊂ F(t), ∀ a < b.

Definition 2.5 A stochastic process X = {X(t) : t = t ≥ 0} on (Ω,F , P ) is an P -

martingale with respect to filtration {F(t) : t ≥ 0} if

1. EP

(|X(t)|) < ∞, t ≥ 0,

2. X(t) is an F(t)-adapted, t ≥ 0,

3. EP

(
X(t + 1) | F(t)

)
= X(t), 0 ≤ t ≤ s.

Theorem 2.1 A standard Brownian motion W = {W (t) : t ≥ 0}, is a martingale.

Proof. If s < t, then W (t)−W (s) is independent of F(s) and

E
(
W (t)

∣∣ F(s)
)

= E
(
W (t)−W (s) + W (s)

∣∣ F(s)
)

= E
(
W (t)−W (s)

∣∣ F(s)
)

+ E
(
W (s)

∣∣ F(s)
)

= E
(
W (t)−W (s)

)
+ W (s)

= W (s).

If s ≥ t , then

E
(
W (t)

∣∣ F(s)
)

= W (t).

Thus

E
(
W (t)

∣∣ F(s)
)

= W (t ∧ s).

4



Definition 2.6 Let Π = {t0, t1, ..., tn} be a partition of [0, T ]. The mesh of the partition

is defined to be

‖Π‖ = max
k=0,1,··· ,n−1

(tk+1 − tk).

We then define the quadratic variation of a function f on a interval [0, T ] is

〈f〉(T ) = lim
‖Π‖→0

n−1∑

k=0

|f(tk+1)− f(tk)|2.

Theorem 2.2 Let W (t), t ≥ 0 be an standard Brownian motion. Then

〈W 〉(T ) = T,

or more precisely,

P{ω ∈ Ω : 〈W (·, ω)〉(T ) = T} = 1.

Proof. Let Π = {t0, t1, · · · , tn} be a partition of [0, T ]. To simplify notation, set

Dk = W (tk+1)−W (tk)

and

QΠ =
n−1∑

k=0

D2
k

=
n−1∑

k=0

|W (tk+1)−W (tk)|2

We want to show

lim
‖Π‖→0

(QΠ − T ) = 0

Note

QΠ − T =
n−1∑

k=0

[
D2

k − (tk+1 − tk)
]

and

Dk = W (tk+1)−W (tk) ∼ N(0, tk+1 − tk), k = 0, 1, · · · , n− 1.
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Then

E(QΠ − T ) = E
( n−1∑

k=0

[
D2

k − (tk+1 − tk)
])

=
n−1∑

k=0

[
E(D2

k)− (tk+1 − tk)
]

=
n−1∑

k=0

[
V ar(Dk)− (tk+1 − tk)

]

= 0.

Since for i 6= j Di and Dj are independent, the terms

D2
i − (tk+1 − tk) and D2

j − (tk+1 − tk)

are also independent. Thus

V ar( QΠ − T ) = V ar
( n−1∑

k=0

[
D2

k − (tk+1 − tk)
])

=
n−1∑

k=0

V ar
(
D2

k − (tk+1 − tk)
)

=
n−1∑

k=0

E
([

D2
k − (tk+1 − tk)

]2
)

=
n−1∑

k=0

E
(
D4

k − 2(tk+1 − tk)D
2

k + (tk+1 − tk)
2
)

=
n−1∑

k=0

[
E(D4

k)− 2(tk+1 − tk)E(D2
k) + (tk+1 − tk)

2
]

=
n−1∑

k=0

[
3(tk+1 − tk)

2 − (tk+1 − tk)
2
]

( if X is normal with mean 0 and variance σ2, then E(X4) = 3σ4 )

= 2
n−1∑

k=0

(tk+1 − tk)
2

≤ 2 ‖Π‖
n−1∑

k=0

(tk+1 − tk)

= 2 ‖Π‖T.
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We have

E(QΠ − T ) = 0,

V ar(QΠ − T ) ≤ 2‖Π‖T.

As ‖Π‖ → 0, V ar(QΠ − T ) → 0, so

lim
‖Π‖→0

(QΠ − T ) = 0.

Remark 2.1 We know that

E
[(

W (tk+1)−W (tk)
)2 − (tk+1 − tk)

]
= 0.

We showed above that

V ar
[(

W (tk+1)−W (tk)
)2 − (tk+1 − tk)

]
= 2(tk+1 − tk)

2.

When (tk+1− tk) is small, (tk+1− tk)
2 is very small, and we have the approximate equation

(
W (tk+1)−W (tk)

)2 ' (tk+1 − tk),

which we can write informally as

dW (t)dW (t) = dt.

2.2 The Itô Calculus

The Itô Calculus is described for a class of processes known as Itô Integral which we now

define.

Definition 2.7 Define the measure

L2[0, T ] := L2
(
[0, T ], Ω,F , {F(t)}t∈[0,T ], P

)

:=
{
{X(t),F(t)}t∈[0,T ] real value stochastic process

∣∣

{X(t)}t∈[0,T ] is F(t)−measurable, and E
(∫ T

0
X2(t) dt

)
< ∞.

}

7



To define a norm on L2[0, T ], we set

‖X‖2
T := E

(∫ T

0

X2(t) dt
)
.

This is the well-known L2-norm.

Definition 2.8 Fix T > 0. Let δ ∈ L2[0, T ] be a process and let W = {W (t) : t ≥ 0},
be a Brownian motion with associated filtration F(t), t ≥ 0, and the following properties :

1. s ≤ t =⇒ F(s) ⊂ F(t),

2. W (t) is F(t)-adapted, ∀ t,

3. For t ≤ t1 ≤ · · · ≤ tn, the increment W (t1) −W (t), · · · ,W (tn) −W (tn−1) are inde-

pendent of F(t).

Then we define the Itô Integral

I(t) =

∫ t

0

δ(u) dW (u), t ≥ 0 . (2.1)

2.2.1 The Itô integral of a simple process

Let Π = {t0, t1, · · · , tn} be a partition of [0, T ]. Assume that δ is constant on each subin-

terval [tk, tk+1] (see Fig. 2.1). We call such δ a simple function. Then the Itô integral I(t)

can be given by :

I(t) =





δ(t0)
[
W (t)−W (t0)

]
, 0 ≤ t ≤ t1,

δ(t0)
[
W (t1)−W (t0)

]
+ δ(t1)

[
W (t)−W (t1)

]
, t1 ≤ t ≤ t2,

...

δ(t0)
[
W (t1)−W (t0)

]
+ · · ·+ δ(tn−1)

[
W (t)−W (tn−1)

]
, tn−1 ≤ t ≤ tn.

In general, if tk ≤ t ≤ tk+1,

I(t) =
k−1∑
j=0

δ(tj)
[
W (tj+1)−W (tj)

]
+ δ(tk)

[
W (t)−W (tk)

]
.

8



t0 = 0 t1 t2 t3 t4 = T

δ(t) = δ(t0)

δ(t) = δ(t1)

δ(t) = δ(t2)

δ(t) = δ(t3)

Figure 2.1: An simple function δ.

Adaptedness For each t, I(t) is F(t)-measurable.

Linearity If

I(t) =

∫ t

0

δ(u) dW (u), J(t) =

∫ t

0

γ(u) dW (u)

then

I(t)± J(t) =

∫ t

0

(
δ(u)± γ(u)

)
dW (u)

and

cI(t) =

∫ t

0

cδ(u) dW (u),

where c is constant.

Martingale I(t) is a martingale.

We prove the martingale property for the simple process case.

Theorem 2.3 (Martingale Property)

I(t) =
k−1∑
j=0

δ(tj)
[
W (tj+1)−W (tj)

]
+ δ(tk)

[
W (t)−W (tk)

]
, tk ≤ t ≤ tk+1

is a martingale.

Proof. Let 0 ≤ s < t be given. We treat the more difficult case that s and t are in

different subintervals, i.e., there are partition points t` and tk such that s ∈ [ t`, t`+1] and

9



t ∈ [tk, tk+1](see Fig. 2.2). Write

I(t) =
`−1∑
j=0

δ(tj)
[
W (tj+1)−W (tj)

]
+ δ(t`)

[
W (t`+1)−W (t`)

]

+
k−1∑

j=`+1

δ(tj)
[
W (tj+1)−W (tj)

]
+ δ(tk)

[
W (t)−W (tk)

]
.

We compute conditional expectations :

t` t`+1 tk tk+1

s t

· · ·

Figure 2.2: Showing s and t in different partitions.

E
[ `−1∑

j=0

δ(tj)
(
W (tj+1)−W (tj)

) ∣∣ F(s)
]

=
`−1∑
j=0

δ(tj)
(
W (tj+1)−W (tj)

)
,

E
[
δ(t`)

(
W (t`+1)−W (t`)

) ∣∣ F(s)
]

= δ(t`)
(
E

[
W (t`+1)

∣∣ F(s)
]−W (t`)

)

= δ(t`)
[
W (ts)−W (t`)

]
,

and

E
[ k−1∑

j=`+1

δ(tj)
(
W (tj+1)−W (tj)

) ∣∣ F(s)
]

=
k−1∑

j=`+1

E

[
E

[
δ(tj)

(
W (tj+1)−W (tj)

) ∣∣ F(tj)
] ∣∣ F(s)

]

=
k−1∑

j=`+1

E

[
δ(tj)

(
E

[
W (tj+1)

∣∣ F(tj)
]−W (tj)

) ∣∣ F(s)

]

=
k−1∑

j=`+1

E
[
δ(tj)

(
W (tj)−W (tj)

) ∣∣ F(s)
]

= 0,

10



E
[
δ(tk)

(
W (t)−W (tk)

) ∣∣ F(s)
]

= E

[
δ(tk)

(
E

[
W (t)

∣∣ F(tk)
]−W (tk)

) ∣∣ F(s)

]

= E
[
δ(tk)

(
W (tk)−W (tk)

) ∣∣ F(s)
]

= 0.

Then

E
[
I(t)

∣∣ F(s)
]

=
`−1∑
j=0

(
δ(tj)

(
W (tj+1)−W (tj)

))
+ δ(t`)

(
W (ts)−W (t`)

)

= I(s).

Theorem 2.4 (Itô Isometry)

E
[
I2(t)

]
= E

[∫ t

0

δ2(u) du
]
.

Proof. To simplify notation, assume t = tk, so

I(t) =
k∑

j=0

δ(tj)
[
W (tj+1)−W (tj)

]

Each W (tj+1)−W (tj) has expectation 0, and different W (tj+1)−W (tj) are independent.

I2(t) =
( k∑

j=0

δ(tj)
[
W (tj+1)−W (tj)

])2

=
k∑

j=0

δ2(tj)
[
W (tj+1)−W (tj)

]2

+2
∑
i<j

δ(ti) δ(tj)
[
W (ti+1)−W (ti)

] [
W (tj+1)−W (tj)

]
.

11



Since the cross terms have expectation zero,

E
[
I2(t)

]
=

k∑
j=0

E
[
δ2(tj)

(
W (tj+1)−W (tj)

)2
]

=
k∑

j=0

E
[
δ2(tj) (tj+1 − tj)

]
(by Remark 2.1)

= E
[ k∑

j=0

( ∫ tj+1

tj

δ2(u) du
)]

= E
[ ∫ t

0

δ2(u) du
]

2.2.2 The general Itô integral

Let δ be a process (not necessarily a simple process). We now define

∫ T

0

δ(t) dW (t) = lim
n→∞

∫ T

0

δn(t) dW (t),

where {δn}∞n=1 is a sequence of simple processes.

The only difficulty with this approach is that we need to make sure the above limit exists. To

proof the above limit exists, we are in need of Theorem below.

Theorem 2.5 An arbitrary δ ∈ L2[0, T ] can be approximated by a sequence of simple

processes δn. More precisely: There exists a sequence of simple processes {δn}∞n=1 such that

lim
n→∞

E
( ∫ T

0

(
δn(t)− δ(t)

)2
dt

)
= 0.

Proof. Define

δn =
n2n∑

k = 1

(k − 1

2n

)
1[ k−1

2n ≤δ< k
2n ] + n1[δ≥n],

where 1 is an indicator function. Because δ ∈ L2[0, T ], it follows that δn ∈ L2[0, T ] and δn

is a sequence of simple processes(see Fig. 2.3 and Fig. 2.4).

Note

δn ≤ δn+1.
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If δ(ω) < ∞, then for all large enough n

∣∣ δ(ω)− δn(ω)
∣∣≤ 1

2n → 0.

If δ(ω) = ∞, then δn(ω) = n →∞. Since L2-norm is defined by

‖δ‖2
T := E

(∫ T

0

δ2(t) dt
)

< ∞,

then

lim
n→∞

E
( ∫ T

0

(
δn(t)− δ(t)

)2
dt

)
= 0.

We have defined

In(T ) =

∫ T

0

δn(t) dW (t),

for every n. Suppose n and m are large positive integers. Then

V ar
[
In(T )− Im(T )

]
= E

[( ∫ T

0

[
δn(t)− δm(t)

]
dW (t)

)2]

= E
[ ∫ T

0

[
δn(t)− δm(t)

]2
dt

]
(by Itô Isometry)

= E
[ ∫ T

0

( ∣∣ δn(t)− δ(t) + δ(t)− δm(t)
∣∣ )2

dt
]

≤ 2 E
[ ∫ T

0

∣∣ δn(t)− δ(t)
∣∣2 dt

]
+ 2 E

[ ∫ T

0

∣∣ δm(t)− δ(t)
∣∣2 dt

]
,

(by (a + b)2 ≤ 2a2 + 2b2)

0 1/2 1 δ

1/2

1

23/21/4 3/4 5/4 7/4

δ1

Figure 2.3: n = 1
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0 1/2 1 δ

1/2

1

δ2

3/2

2

23/21/4 3/4 5/4 7/4

Figure 2.4: n = 2

which is small. This guarantees that the sequence {In(T )}∞n=1 has a limit.

We now define

I(t) =

∫ t

0

δ(u) dW (u),

where δ is any adapted, square-integrable process.

Adaptedness For each t, I(t) is F(t)-measurable.

Linearity If

I(t) =

∫ t

0

δ(u) dW (u), J(t) =

∫ t

0

γ(u) dW (u)

then

I(t)± J(t) =

∫ t

0

(
δ(u)± γ(u)

)
dW (u)

and

cI(t) =

∫ t

0

cδ(u) dW (u),

where c is constant.

Martingale I(t) is a martingale.

Itô Isometry E
[
I2(t)

]
= E

[∫ t

0
δ2(u) du

]
.
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2.2.3 Itô Formula

We want a rule to ”differentiate” expressions of the form f(W (t)), where f(x) is a differ-

entiable function. If W (t) were also differentiable, then the ordinary chain rule would

give

d

dt
f
(
W (t)

)
= f ′

(
W (t)

)
W ′(t),

which could be written in differential notation as

df
(
W (t)

)
= f ′

(
W (t)

)
W ′(t) dt

= f ′
(
W (t)

)
dW (t).

However, W (t) is not differentiable, and in particular has nonzero quadratic variation, so

the correct formula has an extra term, namely,

df
(
W (t)

)
= f ′

(
W (t)

)
dW (t) + 1

2
f ′′

(
W (t)

) (
dW (t)

)2

= f ′
(
W (t)

)
dW (t) + 1

2
f ′′

(
W (t)

)
dt (by Remark 2.1)

This is Itô formula in differential form. Integrating this, we obtain Itô formula in integral

form:

f
(
W (t)

)− f
(
W (0)

)
=

∫ t

0

f ′
(
W (u)

)
dW (u) +

1

2

∫ t

0

f ′′
(
W (u)

)
du.

Definition 2.9 (Geometric Brownian Motion) Geometric Brownian motion is

S(t) = S(0) exp
{

σW (t) +
(
µ− 1

2
σ2

)
t
}

,

where µ and σ > 0 are constant.

Define

f(t, x) = S(0) exp
{

σx +
(
µ− 1

2
σ2

)
t
}

,

so

S(t) = f
(
t,W (t)

)
.

Since

ft =
(
µ− 1

2
σ2

)
f, fx = σf, fxx = σ2f,
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according to Itô’s formula,

dS(t) = df
(
t,W (t)

)

=
(
µ− 1

2
σ2

)
f dt + σf dW (t) + 1

2
σ2f dt

= µS(t) dt + σS(t) dW (t).

Thus, Geometric Brownian motion in differential form is

dS(t) = µS(t) dt + σS(t) dW (t),

and Geometric Brownian motion in integral form is

S(t) = S(0) +

∫ t

0

µS(u) du +

∫ t

0

σS(u) dW (u).

By Itô’s formula, we also get the import theorem below.

Theorem 2.6 Let W (t) be a Brownian motion and δ(t) a nonrandom function. Then

the Itô Integral

I(t) =

∫ t

0

δ(u) dW (u), t ≥ 0

is a Gaussian process with its mean function m(t) = 0 and its covariance function

ρ(s, t) =

∫ s∧t

0

δ2(u) du, s ≥ 0, t ≥ 0.

Proof. Note

dI(t) = δ(t)dW (t).
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By Itô’s formula, for θ ∈ R,

deθI(s) = eθI(s)θ dI(s) +
1

2!
eθI(s)θ2

(
dI(s)

)2
,

= θeθI(s)δ(s) dW (s) +
1

2
θ2eθI(s)δ2(s) ds,

eθI(s) = eθI(0) + θ

∫ s

0

eθI(u)δ(u) dW (u) +
1

2
θ2

∫ s

0

eθI(u)δ2(u) du,

E
(
eθI(s)

)
= eθI(0) +

1

2
θ2

∫ s

0

E
(
eθI(u)

)
δ2(u) du,

d

ds
E

(
eθI(s)

)
=

1

2
θ2δ2(s)E

(
eθI(s)

)
,

E
(
eθI(s)

)
= eθI(0) exp

{1

2
θ2

∫ s

0

δ2(u) du
}

= exp
{1

2
θ2

∫ s

0

δ2(u) du
}

.

This show that I(s) is normal with mean 0 and variance
∫ s

0
δ2(u) du.

Let 0 ≤ s ≤ t.

By Itô’s formula,

deθI(t) = θeθI(t)δ(t) dW (t) +
1

2
θ2eθI(t)δ2(t) dt.

Integrate form s to t to get

eθI(t) = eθI(s) + θ

∫ t

s

eθI(u)δ(u) dW (u) +
1

2
θ2

∫ t

s

eθI(u)δ2(u) du.

Note

E
(∫ t

s

eθI(u)δ(u) dW (u)
∣∣∣ F(s)

)

= E
(∫ t

0

eθI(u)δ(u) dW (u)
∣∣∣ F(s)

)
−

∫ s

0

eθI(u)δ(u) dW (u)

= 0.
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Then

E
(
eθI(t)

∣∣∣ F(s)
)

= eθI(s) +
1

2
θ2

∫ t

s

E
(
eθI(u)

∣∣∣ F(s)
)
δ2(u) du,

d

dt
E

(
eθI(t)

∣∣∣ F(s)
)

=
1

2
θ2δ2(t)E

(
eθI(t)

∣∣∣ F(s)
)
, t ≥ s,

E
(
eθI(t)

∣∣∣ F(s)
)

= eθI(s) exp
{1

2
θ2

∫ t

s

δ2(u) du
}

, t ≥ s.

Thus the moment generating function for
(
I(s), I(t)

)
, 0 ≤ s ≤ t, is

E
(
eθ1I(s)+θ2I(t)

∣∣∣ F(s)
)

= eθ1I(s)E
(
eθ2I(t)

∣∣∣ F(s)
)

= e(θ1+θ2)I(s) exp
{1

2
θ2
2

∫ t

s

δ2(u) du
}

,

E
(
eθ1I(s)+θ2I(t)

)

= E
(
E

(
eθ1I(s)+θ2I(t)

∣∣∣ F(s)
))

= E
(
e(θ1+θ2)I(s) exp

{1

2
θ2
2

∫ t

s

δ2(u) du
})

= exp
{1

2
(θ1 + θ2)

2

∫ s

0

δ2(u) du
}

exp
{1

2
θ2
2

∫ t

s

δ2(u) du
}

= exp
{1

2
(θ2

1 + 2θ1θ2)

∫ s

0

δ2(u) du +
1

2
θ2
2

∫ t

0

δ2(u) du
}

= exp





1

2
[θ1 θ2]




∫ s

0
δ2(u) du

∫ s

0
δ2(u) du

∫ s

0
δ2(u) du

∫ t

0
δ2(u) du





 θ1

θ2






 .
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This show that
(
I(s), I(t)

)
is jointly normal with

E
(
I(s)

)
= E

(
I(t)

)
= 0,

E
(
I2(s)

)
=

∫ s

0

δ2(u) du,

E
(
I2(t)

)
=

∫ t

0

δ2(u) du,

E
(
I(s)I(t)

)
=

∫ s

0

δ2(u) du.

Remark 2.2 By Theorem 2.5 and Theorem 2.6 , we known when δ(t) a deterministic

function, the Itô Integral I(t) is also a Gaussian process with its mean function m(t) = 0

and its covariance function

ρ(s, t) =

∫ s∧t

0

δ2(u) du.

2.3 Change of measure - Cameron-Martin-Girsanov

Theorem

Theorem 2.7 (Cameron-Martin-Girsanov Theorem) Suppose W (t), 0 ≤ t ≤ T, is

a Brownian motion on a probability space (Ω,F , P ), F(t), 0 ≤ t ≤ T , is a filtration, and

λ(t) ∈ L2[0, T ]. Define a new measure Q by

Q(A) =

∫

A

M dP, ∀ A ∈ F ,

where M(t) = exp
(
− ∫ t

0
λ(s) dW (s)− 1

2

∫ t

0
λ2(s) ds

)
.

Then the process

W̃ (t) = W (t) +

∫ t

0

λ(s) ds

is a Q Brownian motion.

To prove Cameron-Martin-Girsanov Theorem, we are in need of some Theorem, Lemma

and Remark below.
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Theorem 2.8 Let M =
{
M(t) : t ∈ [0, T ]

}
be a stochastic process on a probability space

(Ω,F , P ) and

M(t) = exp
(
−

∫ t

0

λ(s) dW (s)− 1

2

∫ t

0

λ2(s) ds
)
.

Then M(t) is a F(t)-martingale under P .

Proof. In fact,

dM(t) = M(t) · [−λ(t) dW (t)− 1
2
λ2(t) dt + 1

2
λ2(t) dt

]

= −λ(t)M(t) dW (t).

Then

EP

(
dM(t)

∣∣ Ft

)
= EP

(−λ(t)M(t) dW (t)
∣∣ F(t)

)

= −λ(t)M(t)EP

(
dW (t)

∣∣ F(t)
)

= 0.

Remark 2.3 In Fig.2.5, Fig.2.6, and Fig.2.7, we take λ(s) = 1, λ(s) = s2 + 2s + 3, and

λ(s) = cos(s/30) , respectively. If t are large, then EP

(
dM(t)

∣∣ Ft

)
= 0 a.s. . This shows

that M(t) is a F -martingale under P .

Remark 2.4 The new measure Q described in Cameron-Martin-Girsanov Theorem is a

probability space. For all A ∈ F ,

Q(A) =

∫

A

MT (ω) dP (ω)

=

∫

Ω

1AMT (ω) dP (ω)

= EP (1AM(T )),

where 1 is an indicator function. Since M(t) ≥ 0 for all t ≥ 0, we have Q(A) ≥ 0 for all

A ∈ F . If A,B ∈ F , A ∩B = ∅, then

Q(A ∪B) =

∫

A∪B

MT (ω) dP (ω)

=

∫

A

MT (ω) dP (ω) +

∫

B

MT (ω) dP (ω)

= Q(A) + Q(B).
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Figure 2.5: λ = 1
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Figure 2.6: λ(s) = s2 + 2s + 3
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Figure 2.7: λ(s) = cos(s/30)

And we have

Q(Ω) =

∫

Ω

MT (ω) dP (ω)

= EP

(
M(T )

)

= EP

(
M(T )

∣∣ F(0)
)

= M(0)

= 1.

Remark 2.5 For all A ∈ F ,

Q(A) =

∫

A

dQ(ω) =

∫

Ω

1A(ω) dQ(ω) = EQ(1A).

Also,

Q(A) =

∫

Ω

1AMT (ω) dP (ω) = EP

(
1AM(T )

)
.

Thus

EQ

(
1A

)
= EP

(
1AM(T )

)
.

Lemma 2.1 Let 0 ≤ t ≤ T . If X is F(t)-measurable, then

EQ(X) = EP (XM(t)).
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Proof. Since M(t), 0 ≤ t ≤ T , is a martingale under P , then

EQ(X) = EP

(
XM(T )

)
= EP

[
EP

(
XM(T )

∣∣ F(t)
)∣∣∣ F(0)

]

= EP

[
X · EP

(
M(T )

∣∣ F(t)
)]

= EP

(
XM(t)

)
.

Lemma 2.2 (Baye’s Rule) If X is F(t)-measurable and 0 ≤ s ≤ t ≤ T , then

EQ

(
X

∣∣ F(s)
)

=
1

M(s)
· EP

(
XM(t)

∣∣ F(s)
)
.

Proof. For A ∈ F(s) ⊂ F(t), we have

EQ

[
1A

1
M(s)

EP

(
XM(t)

∣∣ F(s)
)]

= EP

[
1AEP

(
XM(t)

∣∣ F(s)
)]

( by Lemma 2.1)

= EP

[
1AXM(s)

]
( by Theorem 2.8)

= EQ

[
1AX] ( by Lemma 2.1 again)

= EQ

[
EQ

(
1AX

∣∣ F(s)
)]

= EQ

[
1AEQ

(
X

∣∣ F(s)
)]

Thus

EQ

(
X

∣∣ F(s)
)

=
1

M(s)
· EP

(
XM(t)

∣∣ F(s)
)
.

Theorem 2.9 Using the description of Cameron-Martin-Girsanov Theorem, we have

the martingale property

EQ

(
W̃ (t)

∣∣ F(s)
)

= W̃ (s), 0 ≤ s ≤ t ≤ T.
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Proof. We first check that W̃ (t)M(t) is a martingale under P . Recall

dW̃ (t) = λ(t) dt + dW (t),

dM(t) = −λ(t)M(t) dW (t).

Then

d(W̃ (t)M(t)) = W̃ (t) dM(t) + M(t) dW̃ (t) + dW̃ (t) dM(t)

= −W̃ (t)λ(t)M(t) dW (t) + M(t)λ(t) dt + M(t) dW (t)− λ(t)M(t) dt

= (−W̃ (t)λ(t)M(t) + M(t)) dW (t).

Therefore, for 0 ≤ s ≤ t ≤ T ,

EP

(
d
(
W̃ (t)M(t)

) ∣∣ F(s)
)

= EP

((−W̃ (t)λ(t)M(t) + M(t)
)
EP

(
dW (t)

∣∣ F(t)
)∣∣∣ F(s)

)

= 0.

Next we use Baye’s Rule. For 0 ≤ s ≤ t ≤ T ,

EQ

[
W̃ (t)

∣∣ F(s)
]

= 1
M(s)

EP

(
W̃ (t)M(t)

∣∣ F(s)
)

= 1
M(s)

W̃ (s)M(s)

= W̃ (s).

proof of Cameron-Martin-Girsanov Theorem .

To show the process W̃ (t), 0 ≤ t ≤ T , is a standard Brownian motion we verify it satisfies

Definition 2.2 . First,

W̃ (0) = W (0) +

∫ 0

0

λ(u) du = 0.

Second, since W (t) is continuous a.s. and an indefinite integral is a continuous process,

then W̃ (t) is a continuous process a.s. . Finally, take

X(t) =

∫ t

0

(θ − λ(u)) dW (u), θ ∈ R.
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Then

deX(t) = eX(t)
[(

θ − λ(t)
)

dW (t) + 1
2

(
θ − λ(t)

)2
dt

]

eX(t) = eX(0) +

∫ t

0

(
θ − λ(u)

)
eX(u) dW (u) +

1

2

∫ t

0

(
θ − λ(u)

)2
eX(u) du

EP ( eX(t) ) = 1 +
1

2

∫ t

0

(
θ − λ(u)

)2
EP (eX(u)) du

d
dt

EP (eX(t)) = 1
2

(
θ − λ(t)

)2
EP (eX(t))

EP ( eX(t) ) = eX(0) exp
{1

2

∫ t

0

(
θ − λ(u)

)2
du

}

= exp
{1

2

∫ t

0

(
θ − λ(u)

)2
du

}
.

For all t ∈ [0, T ], the moment generating function of W (t) under Q is

EQ

[
eθW (t)

]
= EP

[
M(t)eθW (t)

]

= EP

[
exp

{
−

∫ t

0

λ(u) dW (u)− 1

2

∫ t

0

λ2(u) du
}
· exp

{∫ t

0

θ dW (u)
}]

= exp
{
−1

2

∫ t

0

λ2(u) du
}

EP

[
exp

{∫ t

0

(
θ − λ(u)

)
dW (u)

}]

= exp
{
−1

2

∫ t

0

λ2(u) du
}
· exp

{1

2

∫ t

0

(
θ − λ(u)

)2
du

}

= exp
{
−θ

∫ t

0

λ(u) du +
1

2
θ2

∫ t

0

1 du
}

Thus

W (t) ∼ NQ(−
∫ t

0

λ(u) du, t).

That is ,

W̃ (t) = W (t) +

∫ t

0

λ(u) du ∼ NQ(0, t).

By Theorem 2.9, we have W̃ (t) is a Q-martingale. Thus for 0 = t0 ≤ t1 ≤ · · · ≤ tn = T ,

then the increments

W̃ (t1)− W̃ (t0), · · · , W̃ (tn)− W̃ (tn−1)
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are independent, normal, and

EQ

[
W̃ (ti)− W̃ (ti−1)

]
= 0,

EQ

[(
W̃ (ti)− W̃ (ti−1)

)2]
= ti − ti−1, i = 1, 2, · · · , n.

Remark 2.6 In Fig.2.8, Fig.2.9, and Fig.2.10, we take λ(s) = 1, λ(s) = s2 + 2s + 3, and

λ(s) = cos(s/30), respectively. The process W̃ isn’t a P Brownian motion, it has a shift

that dependents on λ.
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Figure 2.8: λ = 1
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Figure 2.9: λ(s) = s2 + 2s + 3
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Figure 2.10: λ(s) = cos(s/30)
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Chapter 3

Bonds and the Cox-Ingersoll-Ross

Model

3.1 Generalities

Since we can treat a coupon bond as a linear combination of zero coupon bonds for

each time of maturity, then the bond market we will study is mainly the market of zero

coupon bond. Given a filtered probability space (Ω,F , P ).

Definition 3.1 A zero coupon bond with maturity date T , also called a T-bond, is a

contract which guarantees the holder one dollar to be paid on the date T . The price at

time t of a bond with maturity date T is denoted by p(t, T ).

We now make an assumption to guarantee the existence of a sufficiently rich bond market.

Assumption 3.1

1. For every T > 0, there exists a market for T-bonds.

2. For every fixed T , the process {p(t) : 0 ≤ t ≤ T} is an optional stochastic process

with p(t, t) = 1 for all t.

3. For every fixed t, p(t, T ) is P -a.s. continuously differentiable in the T-variable. This

partial derivative is often denoted by

pT (t, T ) =
∂p(t, T )

∂T
.
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Given the bond market above, we may now define a number of interest rates, and the

basic construction is as follows. Suppose that we are standing at time t, and let us fix two

other points in time, T and T + ε, with t < T < T + ε. The immediate project is to write

a contract at time t which allows us to make an investment of one dollar at time T , and

to have a deterministic rate of return, determined at the contract time t, over the interval

[T, T + ε]. This can easily be achieved as follows.

1. At time t we sell one T-bond. This will give us p(t, T ) dollars.

2. We use this income to buy exactly p(t, T )/p(t, T + ε) T-bonds. Thus our net invest-

ment at time t equals zeros;

p(t, T )− p(t, T )

p(t, T + ε)
p(t, T + ε) = 0.

3. At time T the T-bond matures, so we are obliged to pay out one dollar.

4. At time T + ε the T + ε-bonds mature at one dollar a piece, so we will receive the

amount p(t, T )/p(t, T + ε) dollars.

5. The net effect of all this is that, based on a contract at t, an investment of one dollar at

time T has yielded p(t, T )/p(t, T +ε) at time T +ε. We now determine the equivalent

constant short rate of interest over this period as the solution R to the equation

p(t, T )

p(t, T + ε)
= exp{ε ·R(t, T, T + ε)} · 1.

Based on this argument we proceed to the formal definitions.

Definition 3.2

1. The forward rate for [T, T + ε] contracted at t is defined as

R(t, T, T + ε) = − log p(t, T + ε)− log p(t, T )

ε
.

2. The spot rate, R(T, T + ε), for the period [T, T + ε] is defined as

R(T, T + ε) = R(T, T, T + ε).
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3. The instantaneous forward rate with maturity T , contracted at t is defined by

f(t, T ) = lim
ε→0

R(t, T, T + ε) = −∂ log p(t, T )

∂T
.

4. The instantaneous short rate at time t is defined by

r(t) = f(t, t).

We thus see that the bond market is different from any other market that we have con-

sidered so far, in the sense that the bond market contains an infinite number of assets (one

bond type for each time of maturity). The basic goal in interest rate theory is roughly that

of investigating the relations between all these different bonds. Somewhat more precisely

we may pose the following general problems, to be studied below.

• What is a reasonable model for the bond market above?

• Is it possible to derive arbitrage free bond prices from a specification of the dynamics

of the short rate of interest?

• Given a model for the bond market, how do you compute prices of interest rate

derivatives , such as a European call option on an underlying bond ?

3.2 Bond pricing and martingale measures

We now go on to define the money account process B and introduce martingale measures

into the bond market to model bond price.

Definition 3.3 The money account process is defined by

B(t) = exp
{∫ t

0

r(u) du
}

,

i.e. 



dB(t) = r(t)B(t) dt,

B(0) = 1.

where {r(t) : t ≥ 0} is an interest rate process.
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Definition 3.4 (Risk-neutral measure) A risk-neutral measure (sometimes called

a martingale measure) is any probability measure, equivalent to the market measure P ,

which makes all discounted asset prices martingales.

In what follows, we model the interest rate and bond prices processes in a generalised

Black-Scholes framework. That is we assume that W (t) is a standard Brownian motion and

the filtration F(t) is the augmentation of the filtration generated by W (t). The dynamics

of the various processes are given as follows:

Short rate dynamics:

dr(t) = a(t, T )dt + b(t, T )dW (t), (3.1)

Forward rate dynamics:

df(t, T ) = α(t, T )dt + β(t, T )dW (t). (3.2)

Bond price dynamics:

dp(t, T ) = p(t, T )η(t, T )dt + p(t, T )ϕ(t, T )dW (t), (3.3)

We assume that in the above formula the coefficients meet standard conditions required

to guarantee the existence of the various processes - that is, existence of solutions of the

various stochastic differential equations. Therefore for every fixed T , discounted bond prices

is

d
(

p(t, T )
B(t)

)
= p(t, T ) d

(
1

B(t)

)
+ 1

B(t)
dp(t, T )

=
[
η(t, T )− r(t)

]
p(t, T )
B(t)

dt + ϕ(t, T )
p(t, T )
B(t)

dW (t),

so P is a risk-neutral measure if and only if η(t, T ), the mean rate of return of p(t, T ) under

P , is the interest rate r(t). If the mean rate of return of p(t, T ) under P is not r(t) at each

time t and for each maturity T , we should change to a risk-neutral measure Q under which

the mean rate of return is r(t). In order to change measure, we take

λ(t, T ) =
η(t, T )− r(t)

ϕ(t, T )
.
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Then

d
(p(t, T )

B(t)

)
=

p(t, T )

B(t)
ϕ(t, T )

(
λ(t, T ) dt + dW (t)

)
.

By Cameron-Martin-Girsanov Theorem, there exists a measure Q such that the process

W̃ (t) = W (t) +

∫ t

0

λ(s) ds

is a Q Brownian motion. Since

EQ

[
d
(p(t, T )

B(t)

) ∣∣∣ F(t)
]

= EQ

[p(t, T )

B(t)
ϕ(t, T ) dW̃ (t)

∣∣∣ F(t)
]

=
p(t, T )

B(t)
ϕ(t, T )EQ

[
dW̃ (t)

∣∣∣ F(t)
]

= 0,

then Q is a risk-neutral measure.

Remark 3.1 If we interpret η as the growth rate of the tradable, r as the growth rate

of the riskless bond and ϕ as a measure of the risk of the asset, then

λ(t, T ) =
η(t, T )− r(t)

ϕ(t, T )
,

is the rate of extra return (above the risk-free rate) per unit of risk. As such it is often

called the market price of risk.

Lemma 3.1 Consider a fixed T-bond, and that Q is a risk neutral martingale measure.

Then the price process for the T-bond is given by

p(t, T ) = EQ

[
exp

{
−

∫ T

t

r(u) du
} ∣∣∣ F(t)

]
, 0 ≤ t ≤ T.

where {r(t) : 0 ≤ t ≤ T} is an interest rate process.

Proof. Under the risk neutral martingale measure Q, discounted bond prices is a

martingale, then

p(t, T )

B(t)
= EQ

[p(T, T )

B(T )

∣∣∣ F(t)
]
.
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Thus

p(t, T ) = B(t)EQ

[
1

B(T )

∣∣∣ F(t)
]

= EQ

[
exp

{
− ∫ T

t
r(u) du

} ∣∣∣ F(t)
]
, 0 ≤ t ≤ T .

3.3 The Cox-Ingersoll-Ross Model

In this section we turn to the problem of how to model an arbitrage free family of zero

coupon bond price processes {p(·, T ) : T ≥ 0}.
By Lemma 3.1, the price, p(t, T ), depends upon the behavior of the short rate of

interest over the interval [t, T ], then a natural starting point is to give the dynamics of the

short rate of interest. Let us model the short rate, under a fixed martingale measure Q, as

the solution of the equation (3.1)

dr(t) = a(t, r(t))dt + b(t, r(t))dW (t),

where W is a Q Brownian motion.

Examples of short rate models include the following.

1. Vasicek model : dr(t) = k(µ− r(t))dt + γdW (t), where k, µ, γ are constants;

2. Cox-Ingersoll-Ross (CIR) model : dr(t) = k(µ−r(t))dt+σ
√

r(t)dW (t), where k, µ, σ

are constants;

3. Ho-Lee model : dr(t) = Φ(t)dt + γdW (t), where Φ(t) =
µ(t)

k(t)
and γ is a constant.

4. Hull-White (extended Vasicek) model : dr(t) = k(t)(µ(t)− r(t))dt + γ(t)dW (t);

5. Hull-White (extended CIR) model : dr(t) = k(t)(µ(t)− r(t))dt + σ(t)
√

r(t)dW (t).

We have noted that in the Vasicek and Ho-Lee models for r(t), because r(t) is Gaus-

sian, there is a positive probability that r(t) < 0. The Cox-Ingersoll-Ross (CIR) model

for r(t) provides a stochastic differential equation for r(t), the solution of which is always

nonnegative.
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Suppose we have n independent Brownian motions W1(t),W2(t), · · · ,Wn(t) on a prob-

ability space (Ω,F , P ) and n Orstein-Uhlenbeck processes X1(t), X2(t), · · · , Xn(t) given by

equations

dXj(t) = −1

2
kXj(t) dt +

1

2
σ dWj(t), j = 1, 2, · · · , n, (3.4)

where k > 0 and σ > 0 are constants and Xj(0) ∈ R are given.

We take

X̃j(t) = e
1
2
kt Xj(t). ( X̃j(0) = Xj(0) )

Note

dX̃j(t) =
∂X̃j(t)

∂t
dt +

∂X̃j(t)

∂Xj(t)
dXj(t) +

1

2!

∂2X̃j(t)

∂X2
j (t)

(dXj(t))
2

=
1

2
ke

1
2
ktXj(t) dt + e

1
2
kt dXj(t)

=
1

2
σe

1
2
kt dWj(t).

Then

X̃j(t)− X̃j(0) =

∫ t

0

1

2
σe

1
2
ku dWj(u)

implies

Xj(t) = e−
1
2
kt

[
Xj(0) +

1

2
σ

∫ t

0

e
1
2
ku dWj(u)

]
. (3.5)

Since ∫ t

0

e
1
2
ku dWj(u)

is a Itô integral, then, by Remark 2.2, Xj(t) is normal with its mean function

mj(t) = e−
1
2
ktXj(0) (3.6)

and its covariance function

ρ(s, t) = ρ
(
Xj(s), Xj(t)

)

= e−
1
2
kse−

1
2
ktρ

(
X̃j(s), X̃j(t)

)

= e−
1
2
k(s+t)

∫ s∧t

0

(1

2
σe

1
2
ku

)2
du

=
1

4
σ2e−

1
2
k(s+t)

∫ s∧t

0

eku du.
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Thus its variance function is

ρ(t, t) =
σ2

4
e−kt

∫ t

0

eku du

=
σ2

4
e−kt

[1

k
eku

∣∣∣
t

0

]

=
σ2

4k

[
1− e−kt

]
.

(3.7)

Consider the process

r(t) := X2
1 (t) + X2

2 (t) + · · ·+ X2
n(t) ≥ 0.

If n = 1, we have r(t) = X2
1 (t) and for each t,

P{r(t) > 0} = 1,

but(see Fig. 3.1)

P{There are infinitely many values of t > 0 for which r(t) = 0} = 1.

If n ≥ 2,(see Fig. 3.2)

P{There is at least one value of t > 0 for which r(t) = 0} = 0.

Let f(x1, x2, · · · , xn) = x2
1 + x2

2 + · · ·+ x2
n. Then

fxj
= 2 xj

and

fxixj
=





2, i = j,

0, i 6= j,
i, j = 1, 2, · · · , n.
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Figure 3.1: If k = 0.205714, σ = 0.055855, and X1(0) = 0.2369, then r(t) is a process above.

Thus, by Itô’s formula,

dr(t) =

( n∑
j=1

∂r(t)

∂Xj(t)
dXj(t)

)
+

1

2

∑
1≤i,j≤n

∂2r(t)

∂Xi(t) ∂Xj(t)
dXi(t) dXj(t)

=
n∑

j=1

2Xj(t)

[
−1

2
kXj(t) dt +

1

2
σ dWj(t)

]
+

1

2

∑
1≤j≤n

2 dXj(t) dXj(t)

= −k

n∑
j=1

X2
j (t) dt + σ

n∑
j=1

Xj(t) dWj(t) + n
(1

4
σ2 dt

)

= k
(nσ2

4k
− r(t)

)
dt + σ

√
r(t)

n∑
j=1

Xj(t)√
r(t)

dWj(t).

Define

W (t) =
n∑

j=1

∫ t

0

Xj(u)√
r(u)

dWj(u).

Since ∫ t

0

Xj(u)√
r(u)

dWj(u), j = 1, 2, · · · , n,

36



0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (t)

r(
t)

=
X

2 1(t
)+

X
2 2(t

)

Figure 3.2: If k = 0.205714, σ = 0.055855, and X1(0) = 0.1675, X2(0) = 0.1675, then r(t)

is a process above.

are Itô integrals, then W (t) is a martingale and

dW (t) =
n∑

j=1

Xj(t)√
r(t)

dWj(t),

(
dW (t)

)2
=

n∑
j=1

X2
j (t)

r(t)
dt =

r(t)

r(t)
dt = dt.

Thus W (t) is a Brownian motion and we have

dr(t) = k
(nσ2

4k
− r(t)

)
dt + σ

√
r(t) dW (t).

Definition 3.5 A Cox-Ingersoll-Ross (CIR) process is the process defined by an equation

of the form

dr(t) = k
(
µ− r(t)

)
dt + σ

√
r(t) dW (t).

where k > 0, µ > 0, and σ > 0 are constants.

Take

n =
4kµ

σ2
> 0.
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When n happens to be an integer, we have the representation

r(t) =
n∑

j=1

X2
j (t) ≥ 0,

but we do not require n to be an integer.

If n < 2 ( i.e. µ < σ2

2k
), then

P{There are infinitely many values of t > 0 for which r(t) = 0} = 1.

This is not a good parameter choice.

If n ≥ 2 ( i.e. µ ≥ σ2

2k
), then

P{There is at least one value of t > 0 for which r(t) = 0} = 0.

With the CIR process, one can derive formulas under the assumption that n =
4kµ
σ2 is a

positive integer. Thus n Orstein-Uhlenbeck processes construct the process r(t) which is

nonnegative.

Suppose here is the distribution of r(t) for fixed t > 0. Let r(0) > 0 be given. Then

X2
1 (0) + X2

2 (0) + · · ·+ X2
n(0) = r(0).

Since Xj(t), j = 1, 2, · · · , n, is normal with mean function mj(t) (3.6) and variance function

ρ(t, t) (3.7), then

Xj(t) = mj(t) +
√

ρ(t, t)Zj,

where Zj
i.i.d.∼ N(0, 1), j = 1, 2, · · · , n.

Thus ( Xj(t)√
ρ(t, t)

)2

=
( mj(t)√

ρ(t, t)
+ Zj

)2 i.i.d.∼ χ2
1,δj

,

where j = 1, 2, · · · , n, χ2
1,δj

is a non-central chi-square distribution with 1 degree of freedom

(d.f.) and noncentral parameter δj and

δj =
m2

j(t)

ρ(t, t)

=
4kX2

j (0)

σ2(ekt − 1)
.
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Since

r(t) = ρ(t, t)
n∑

j=1

( Xj(t)√
ρ(t, t)

)2

,

then the distribution of r(t) is ρ(t, t) =
σ2

4k
(1 − e−kt) times a non-central chi-square with

n =
4kµ

σ2
degrees of freedom and non-central parameter δ, where δ =

n∑
j=1

δj.

Howevrer, consider the chi-square density having n degrees of freedom and non-central

parameter δ, given by

fχ2
n,δ

(
y; δ

)
=

e−
δ
2

2δ
n
4
− 1

2

e−
y
2 y

n
4
− 1

2 In
2
−1

(√
δy

)
, (3.8)

where Iν is the modifired Bessel function of order ν, given by

Iν(x) =
(x

2

)2
∞∑

j=0

(x
2
)2j

j! Γ(ν + j + 1)
.

Take

r = ny =
σ2

4k
(1− e−kt)y ≥ 0.

Thus the density of r(t) is

gχ2
n,δ

(
r; δ

)
=

e−
δ
2

2 δ
n
4
− 1

2

e−
r
2n

( r

n

)n
4
− 1

2
In

2
−1

(√
δ
r

n

) ∣∣∣dy

dr

∣∣∣

=
e−

δ
2

2 n δ
n
4
− 1

2

e−
r
2n

( r

n

)n
4
− 1

2
In

2
−1

(√
δ
r

n

)
(3.9)

Remark 3.2 As t →∞, mj(t) → 0 and ρ(t, t) = σ2

4k
. We have

r(t) = ρ(t, t)
n∑

j=1

( Xj(t)√
ρ(t, t)

)2

.

Then the limiting distribution of r(t) is σ2

4k
times a chi-square with n =

4kµ
σ2 degrees of

freedom (d.f.).

Note the chi-square density with
4kµ
σ2 d.f. is

g(y) =
1

Γ
(

2kµ
σ2

)
2

2kµ

σ2

y
2kµ−σ2

σ2 e−
y2

2 .
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Take r = σ2

4k
y. The limit density for r(t) is

h(r) =
1

Γ
(

2kµ
σ2

)
2

2kµ

σ2

(4k

σ2 r
) 2kµ−σ2

σ2

e−
2k
σ2 r

∣∣∣dy

dr

∣∣∣

=
(

2k
σ2

) 2kµ

σ2 1

Γ
(

2kµ
σ2

) r
2kµ

σ2 −1 e−
2k
σ2 r.

This is the Gamma density parameters
2kµ
σ2 and σ2

2k
and is denoted by G(

2kµ
σ2 , σ2

2k
).

Then the mean and variance of r(t) are

E(r(t)) =
2kµ
σ2 · σ2

2k
= µ,

V ar(r(t)) =
2kµ
σ2 ·

(
σ2

2k

)2

=
µσ2

2k
.

3.4 Bond prices in the CIR model

The interest rate process r(t) is given by

dr(t) = k
(
µ− r(t)

)
dt + σ

√
r(t) dW (t),

where r(0) is given. The bond price process is

p(t, T ) = E
[
e−

R T
t r(u) du

∣∣∣ F(t)
]
.

Note

e−
R t
0 r(u) du · p(t, T ) = E

[
e−

R T
0 r(u) du

∣∣∣ F(t)
]
.

Then e−
R t
0 r(u) du ·p(t, T ) is a martingale. Since p(t, T ) is random only through a dependence

on r(t), then we take the process p(t, T ) is the function p(r(t), t, T ) evaluated at r(t) and

denoted p := p(r(t), t, T ).

Note

d
(
e−

R t
0 r(u) du · p

)

= e−
R t
0 r(u) du

{[−r(t)p + pt

]
dt + pr dr(t) +

1

2!
prr

(
dr(t)

)2
}

= e−
R t
0 r(u) du

{[−r(t)p + pt + prk(µ− r(t)) +
1

2
prrσ

2r(t)
]
dt + prσ

√
r(t) dW (t)

}
.
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Since e−
R t
0 r(u) du · p is a martingale, then

E
[
d(e−

R t
0 r(u) du · p)

∣∣∣ F(t)
]

= 0

implies

e−
R t
0 r(u) du

[
−r(t) p + pt + prk

(
µ− r(t)

)
+

1

2
prrσ

2r(t)
]
dt

+e−
R t
0 r(u) duprσ

√
r(t)E

(
dW (t)

∣∣∣ F(t)
)

= 0.

By E
(
dW (t)

∣∣ F(t)
)

= 0, we obtain the partial differential equation

−r(t)p + pt + prk
(
µ− r(t)

)
+

1

2
prrσ

2r(t) = 0, (3.10)

where 0 ≤ t ≤ T , r(t) ≥ 0.

If we take the terminal condition that is

p(r(t), T, T ) = 1, r(T ) ≥ 0,

then this equation has a closed form solution.

We look for a solution of the form (Affine Term Structure),

p(r(t), t, T ) = e−r(t)C(t,T )−A(t,T ), (3.11)

where C(T, T ) = 0, A(T, T ) = 0.

Note

pt =
(−r(t)Ct(t, T )− At(t, T )

)
p,

pr = −C(t, T )p,

prr = C2(t, T )p.

Then the equation (3.10) is

−r(t)p + p
[−r(t)Ct(t, T )− At(t, T )

]− C(t, T )p k
(
µ− r(t)

)

+
1

2
C2(t, T )p σ2r(t) = 0

implies

−r(t)p
[−1− Ct(t, T ) + kC(t, T ) +

1

2
σ2C2(t, T )

]
+ p

[−At(t, T )− µkC(t, T )
]

= 0.
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Since p > 0, then for each r(t)

−1− Ct(t, T ) + kC(t, T ) +
1

2
σ2C2(t, T ) = 0, · · · · · · Riccati equation

At(t, T ) + µkC(t, T ) = 0,

(3.12)

where C(T, T ) = 0, and A(T, T ) = 0.

In order to solute C(t, T ), we introduce another dependent variable U(t, T ) such that

C(t, T ) =
Ut(t, T )

1
2
σ2U(t, T )

= 2Ut(t, T )
(
σ2U(t, T )

)−1

.

(3.13)

where U(t, T ) 6= 0, for all t.

Differentiating C(t, T ) with respect to t we get

Ct(t, T ) = 2Utt(t, T )
(
σ2U(t, T )

)−1

− 2Ut(t, T )
(
σ2U(t, T )

)−2(
σ2Ut(t, T )

)
(3.14)

Substituting C(t, T ) and Ct(t, T ) into (3.12),

−1−
[
2Utt(t, T )

(
σ2U(t, T )

)−1

− 2Ut(t, T )
(
σ2U(t, T )

)−2(
σ2Ut(t, T )

)]

+k
[
2Ut(t, T )

(
σ2U(t, T )

)−1]
+

1

2
σ2

[
2Ut(t, T )

(
σ2U(t, T )

)−1]2

= 0

implies

−1− 2
(
σ2U(t, T )

)−1

Utt(t, T ) + 2kUt(t, T )
(
σ2U(t, T )

)−1

= 0 (3.15)

Multiplying both sides of the the equation (3.15) by σ2U(t, T ), we have

2Utt(t, T )− 2kUt(t, T ) + σ2U(t, T ) = 0. (3.16)

The auxiliary equation is given by

(2D2 − 2kD + σ2)U(t, T ) = 0, (3.17)

where D =
d

dt
.

The solution to this quadratic in D is given by

D1 =
k +

√
k2 + 2σ2

2
,

D2 =
k −√k2 + 2σ2

2
.

(3.18)
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The general solution to the differential equation (3.16) will be given by

U(t, T ) = aeD1t + beD2t, (3.19)

where D1 and D2 are two values of D and a, b are constants.

Since the time starts at t and ends at T , then we rewrite the equation (3.19) as

U(t, T ) = a∗e−D1(T−t) + b∗e−D2(T−t), (3.20)

where a∗ = aeD1T , b∗ = beD1T are also constants.

Take τ =
1

2

√
k2 + 2σ2. Then

U(t, T ) = a∗e−( k
2
+τ)(T−t) + b∗e−( k

2
−τ)(T−t). (3.21)

Note the derivative of U(t, T ) with respect to t will be given by

Ut(t, T ) = −a∗e−( k
2
+τ)(T−t)(

k

2
+ τ)− b∗e−( k

2
−τ)(T−t)(

k

2
− τ). (3.22)

Substituting U(t, T ) and Ut(t, T ) into the equation (3.13), we get

C(t, T ) =
( 2

σ2

)−a∗e−( k
2
+τ)(T−t)(k

2
+ τ)− b∗e−( k

2
−τ)(T−t)(k

2
− τ)

a∗e−( k
2
+τ)(T−t) + b∗e−( k

2
−τ)(T−t)

,

=
(−2

σ2

)a∗e−τ(T−t)(τ + k
2
)− b∗eτ(T−t)(τ − k

2
)

a∗e−τ(T−t) + b∗eτ(T−t)
.

(3.23)

Let

a∗ = τ − k

2
,

b∗ = τ +
k

2
.

Then

C(t, T ) =
eτ(T−t) − e−τ(T−t)

(τ + k
2
)eτ(T−t) + (τ − k

2
)e−τ(T−t)

. (3.24)

Take

A(t, T ) = −2kµ

σ2
ln

[
2τe

k
2
(T−t)

(τ + k
2
)eτ(T−t) + (τ − k

2
)e−τ(T−t)

]
. (3.25)
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Check

At(t, T ) = −2kµ

σ2

(τ + k
2
)eτ(T−t) + (τ − k

2
)e−τ(T−t)

2τe
k
2
(T−t)

2τe
k
2
(T−t)

[
(τ − k

2
)(τ + k

2
)eτ(T−t) − (τ + k

2
)(τ − k

2
)e−τ(T−t)

]

[
(τ + k

2
)eτ(T−t) + (τ − k

2
)e−τ(T−t)

]2

= −kµ
eτ(T−t) − e−τ(T−t)

(τ + k
2
)eτ(T−t) + (τ − k

2
)e−τ(T−t)

= −kµC(t, T ).

(3.26)

Thus the solution (3.12) is given by

C(t, T ) =
sinh

(
τ(T − t)

)

τcosh
(
τ(T − t)

)
+

1

2
ksinh

(
τ(T − t)

) ,

A(t, T ) = −2µk

σ2
log

[
τe

1
2
k(T−t)

τcosh
(
τ(T − t)

)
+ 1

2
ksinh

(
τ(T − t)

)
]
.

(3.27)

where τ =
1

2

√
k2 + 2σ2, cosh(u) =

eu + e−u

2
, sinh(u) =

eu − e−u

2
.

3.5 European Options on a bond

The value at time t of the European call option on a bond in the CIR model is

V
(
t, r(t)

)
= E

[
e−

R T1
t r(u) du · (p(T1, T2)−K

)+
∣∣∣ F(t)

]
, (3.28)

where K is the expiration value, T1 is the expiration time of the option, T2 is the maturity

time of the bond, 0 ≤ t ≤ T1 ≤ T2, and r(t) is a CIR process.

Let the terminal condition be given

V
(
T1, r(T1)

)
=

(
p
(
r(T1), T1, T2

)−K
)+

, r(T1) > 0.

As usual,

e−
R t
0 r(u) du · V (

t, r(t)
)

= E
[
e−

R T1
0 r(u) du · (p(T1, T2)−K

)+
∣∣∣ F(t)

]
.
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Then e−
R t
0 r(u) du · V (t, r(t)) is a martingale, and we denote V := V (r(t), t, T1).

Note

d
(
e−

R t
0 r(u) du · V

)

= e−
R t
0 r(u) du

{[−r(t) · V + Vt

]
dt + Vr dr(t) +

1

2!
Vrr (dr(t))2

}

= e−
R t
0 r(u) du

{[−r(t)V + Vt + Vrk
(
µ− r(t)

)
+

1

2
Vrrσ

2r(t)
]
dt + Vrσ

√
r(t) dW (t)

}
,

Since e−
R t
0 r(u) du · V is a martingale, then

E
[
d
(
e−

R t
0 r(u) du · V ) ∣∣∣ F(t)

]
= 0

implies

e−
R t
0 r(u) du

[
−r(t)V + Vt + Vrk

(
µ− r(t)

)
+

1

2
Vrr σ2r(t)

]
dt

+e−
R t
0 r(u) duVrσ

√
r(t)E

(
dW (t)

∣∣∣ F(t)
)

= 0.

By E
(
dW (t)

∣∣ F(t)
)

= 0, we obtain the partial differential equation

−r(t)V
(
t, r(t)

)
+ Vt

(
t, r(t)

)
+ Vr

(
t, r(t)

)
k
(
µ− r(t)

)
+

1

2
Vrr

(
t, r(t)

)
σ2r(t) = 0, (3.29)

where 0 ≤ t ≤ T1, r(t) ≥ 0.
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Chapter 4

Numerical Computation

The object of interest rate modelling is often used to find the prices for derivatives. The

chapter explores our numerical methods, explicit finite difference and Monte Carlo methods

to pricing the bond option.

4.1 Valuing Bond Option Prices by the Explicit Finite

Difference Method

Following Section 3.5, we know an European call option on bond in the CIR model,

with price V , satisfies the equation,

−r(t)V
(
t, r(t)

)
+ Vt

(
t, r(t)

)
+ Vr

(
t, r(t)

)
k
(
µ− r(t)

)
+

1

2
Vrr

(
t, r(t)

)
σ2r(t) = 0, (4.1)

where 0 ≤ t ≤ T1, T1 is the expiration time of the option, and r satisfies

dr(t) = k
(
µ− r(t)

)
dt + σ

√
r(t) dW (t), k > 0, µ > 0, σ > 0 are constants. (4.2)

Let the terminal condition be given

V
(
T1, r(T1)

)
=

(
p
(
r(T1), T1, T2

)−K
)+

,

where T2 is the maturity time of the bond and r(T1) ≥ 0.
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4.1.1 The Explicit Finite Difference Method

Let the parameters rmin and rmax be the smallest and largest values of r considered by

the model, and t0 is the current time. Partition [t0, T1] into I subintervals with fixed length

∆t =
T1 − t0

I
.

Also, the partition [rmin, rmax] contain J intervals with a constant change in r

∆r =
rmax − rmin

J
.

Let

Vi,j = V (t0 + i∆t, rj),

where rj = rmin+j∆r, i = 0, 1, · · · , I, and j = 0, 1, · · · , J , that is, partition (I +1)×(J +1)

points of [to, T1]× [rmin, rmax], (see Fig. 4.1).

rj−1

rj

rj+1

t0 tI = T1ti−2 ti−1

Time

Interest rate

Vi−1,j

ti

rmax

rmin

Figure 4.1: The grid of option prices.

By Taylor’s polynomial,

f(x + ∆x) = f(x) + f ′(x)∆x +
1

2!
f ′′(x)(∆x)2 +

1

3!
f ′′′(x)(∆x)3 + O(∆x4),
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and

f(x−∆x) = f(x)− f ′(x)∆x +
1

2!
f ′′(x)(∆x)2 − 1

3!
f ′′′(x)(∆x)3 + O(∆x4).

Then ∂V
∂r

, ∂2V
∂r2 , and ∂V

∂t
with respect to r at node (i− 1, j) are approximated as follows,

∂V

∂r
=

Vi,j+1 − Vi,j−1

2∆r
+ O(∆r2),

∂2V

∂r2
=

Vi,j+1 + Vi,j−1 − 2Vi,j

∆r2
+ O(∆r2),

∂V

∂t
=

Vi,j − Vi−1,j

∆t
+ O(∆t).

(4.3)

Substituting (4.3) into (4.1) gives

Vi−1,j = aj−1Vi,j−1 + ajVi,j + aj+1Vi,j+1 + O(∆t, ∆r2), (4.4)

where

aj−1 =
1

1 + rj∆t

[
−k(µ− rj)∆t

2∆r
+

σ2rj∆t

2∆r2

]
,

aj =
1

1 + rj∆t

[
1− σ2rj∆t

∆r2

]
,

aj+1 =
1

1 + rj∆t

[
k(µ− rj)∆t

2∆r
+

σ2rj∆t

2∆r2

]
.

Define

qj,j−1 = −k(µ− rj)∆t

2∆r
+

σ2rj∆t

2∆r2
,

qj,j = 1− σ2rj∆t

∆r2
,

qj,j+1 =
k(µ− rj)∆t

2∆r
+

σ2rj∆t

2∆r2
,

so that equation (4.4) becomes

Vi−1,j =
1

1 + rj∆t
[qj,j−1Vi,j−1 + qj,jVi,j + qj,j+1Vi,j+1] + O(∆t, ∆r2), (4.5)
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where local truncation error is O(∆t, ∆r2), and accumulated truncation error is O(∆t2, ∆t∆r2).

We can verify that it is always true that

qj,j−1 + qj,j + qj,j+1 = 1. (4.6)

If qj,j−1, qj,j, and qj,j+1 are all positive, then qj,j−1, qj,j, and qj,j+1 can be interpreted as prob-

abilities of moving from rj to rj−1, rj and rj+1, respectively, during time interval ∆t. Thus

the explicit finite difference method is equivalent to a trinomial lattice approach. In Section

4.1.3, this equivalence is used to explain the conditions required to ensure convergence .

4.1.2 The Transformation of Variables

Generalizing from this, we can define a new state variable φ(r(t), t) that has a constant

instantaneous standard deviation. Take

φ(r(t), t) =
√

r(t).

From Itô’s lemma and equation (4.2), the process followed by φ(r(t), t) in a risk-neutral

world is

dφ(r(t), t) = ψ(r(t), t)dt +
1

2
σdW (t), (4.7)

where

ψ(r(t), t) =
k(µ− r(t))

2
√

r(t)
− σ2

8
√

r(t)

=
4kµ− σ2

8φ(r(t), t)
− φ(r(t), t)k

2
.

(4.8)

The state variable φ can be modeled in the same way as r. A grid is constructed for

values of φ equal to φ0, φ1, · · · , φn, where φ0 is the largest multiple of ∆φ less than
√

rmin,

φj = φ0 + j∆φ, and n is the smallest integer such that φn ≥ √
rmax, and the equation in
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(4.5) become

qj,j−1 = −ψj
∆t

2∆φ
+ σ2 ∆t

8∆φ2
,

qj,j = 1− σ2 ∆t

4∆φ2
,

qj,j+1 = ψj
∆t

2∆φ
+ σ2 ∆t

8∆φ2
,

(4.9)

where

ψj =
4kµ− σ2

8φj

− φjk

2
.

In the explicit finite difference method, every node φj is constant, then ψj is also constant.

It has the simplifying property that qj,j−1, qj,j, and qj,j+1 are independent of j.

4.1.3 The Conditions of Convergence and Stability

When using the explicit finite difference method, it is important to ensure that when

∆t and ∆φ → 0, the estimated value of the option converges to its true value .

Let V (r(t), t) be the call option’s true value, and v(r(t), t) be the estimated one. Then,

by equation (4.5), the estimated value v satisfies

vi−1,j =
1

1 + rj∆t
[qj,j−1vi,j−1 + qj,jvi,j + qj,j+1vi,j+1] . (4.10)

Thus the error of the explicit finite difference method is

εi−1,j =
1

1 + rj∆t
[qj,j−1εi,j−1 + qj,jεi,j + qj,j+1εi,j+1] + O(∆t, ∆r2), (4.11)

where εi−1,j = Vi−1,j − vi−1,j and i = 1, 2, · · · , I − 1.

Since v agrees with V on the boundary,

εI,j = 0, j = 0, 1, · · · , J,

εi,0 = εi,J = 0, i = 0, 1, · · · , I − 1.

(4.12)
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Suppose qj,j−1, qj,j, and qj,j+1 are nonnegative, that is, the following equation must hold,

σ2 ∆t

4∆φ2
< 1,

| ψj | < σ2

4∆φ
.

(4.13)

Thus

|εi−1,j| ≤ qj,j−1|εi,j−1|+ qj,j|εi,j|+ qj,j+1|εi,j+1|+ a ·O(∆t2, ∆t∆r2)

≤ ‖εj‖+ a ·O(∆t2, ∆t∆r2), i = 1, 2, ·, I − 1,

(4.14)

where

a ∈ R, ‖εj‖ = max
i=0,··· , I

|εi,j|,

and O(∆t2, ∆t∆r2) is the accumulated truncation error.

By equation (4.14), we get

‖εj+1‖ ≤ ‖εj‖+ a ·O(∆t2, ∆t∆r2), (4.15)

and since ‖ε0‖ = 0 we easily calculate that

‖εj‖ ≤ a ·O(∆t2, ∆t∆r2) · j

= a · j∆t ·O(∆t, ∆r2)

≤ a · T ·O(∆t, ∆r2),

(4.16)

as j∆t ≤ T . When ψj is bounded, equation (4.13) is satisfied and then the convergence

can be ensured.

4.1.4 The Modification of Branches

By equation (4.8), since φ can take on any positive value, ψ may or may not be bounded.

It follows that the explicit finite difference method may diverge. However, the method can
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be modified to overcome this problem. Instead of insisting that we move from φj to one of

φj−1, φj, and φj+1 in time ∆t, we allow a movement from φj to one of φ`−1, φ`, and φ`+1,

where ` is not necessarily equal to j and ` is an integer. In Figure 4.2, (a)-(e) show the

situations where ` = j, ` = j + 1, ` = j − 1, ` < j − 1, and ` > j + 1, respectively.

φj+1

φj−1

φj φj+1

φj+2 φj

φj−2

φ`+1

φ`

φ`−1

φ`−1

φ`

φ`+1

φj

φj−1

(a) (b) (c)

(d) (e)

φj

φj

φj

φj

φj

Figure 4.2: Alternative Branching Procedures.

In all cases, we choose ` so that φ` is the value of φ on the grid closest to φj +ψj∆t.

The probabilities of φj moving to φ`−1, φ`, and φ`+1 are chose to make the first and second

moments of the change in φ in time interval ∆t correct in the limit as ∆t → 0. The

equations that must be satisfied are:





qj,`−1(`− 1)∆φ + qj,` ` ∆φ + qj,`+1(` + 1)∆φ = E(φ)

qj,`−1(`− 1)2∆φ2 + qj,` `2∆φ2 + qj,`+1(` + 1)2∆φ2 =
σ2

4
∆t + E(φ)2,

qj,`−1 + qj,` + qj,`+1 = 1,

(4.17)

where E(φ) is the expected value of φ−φ0 at the end of the time interval, ∆t. The solution
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to these equations is

qj,`−1 =
1

2

[
`2 + `− (1 + 2`)

E(φ)

∆φ
+

E(φ)2

∆φ2
+

σ2

4

∆t

∆φ2

]
,

qj,` = 1− `2 + 2`
E(φ)

∆φ
− E(φ)2

∆φ2
− σ2

4

∆t

∆φ2
,

qj,`+1 =
1

2

[
`2 − ` + (1− 2`)

E(φ)

∆φ
+

E(φ)2

∆φ2
+

σ2

4

∆t

∆φ2

]
.

(4.18)

Recalling equation (4.8), define

α1 =
4kµ− σ2

8
, α2 =

k

2
.

If ψ is small, an examination of the errors in the way in which the differential equation is

approximated suggests that a sensible value for (1
2
σ)2∆t/∆φ2 = 1/3 (see [14]). We find

that this works well. It is easy to show ` = j when

−1

2
≤

[
α1

φ
− α2φ

]
∆t

∆φ
≤ 1

2
. (4.19)

Assuming α1 and α2 are positive, this condition reduces to

φmin ≤ φ ≤ φmax, (4.20)

where equations is

φmin =
−β +

√
β2 + 4α1α2

2α2

,

φmax =
β +

√
β2 + 4α1α2

2α2

,

β =
∆φ

2∆t
.

The values of φ considered on the grid for the explicit finite difference method are

φ0, φ1, · · · , φn, where φ0 is the largest multiple of ∆φ less than φmin, φj = φ0 + j∆φ, and n

is the smallest integer such that φn ≥ φmax. It is assumed that ∆φ is also chosen so that

some multiple of ∆φ equals the current value of φ.

When 1 ≤ j ≤ n− 1, the explicit finite difference method (trinomial lattice) approach

operates in the usual way. When the value φ0 is reached, the three possible values of φ

after a time interval ∆t are φ0, φ1, and φ2. The probabilities of moving to these values are
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calculated from equation (4.18), with j = 0 and ` = 1. Similarly, when the value φn is

reached, the three possible values of φ after a time interval ∆t are φn−2, φn−1, and φn. The

probabilities of moving to these values are calculated from equation (4.18), with j = n and

` = n− 1. Since the short-term interest rate is φ2, the value of the bond prior to maturity

can be calculated using

Vi,j =
1

1 + φ2
j∆t

[qj,j−1Vi+1,j−1 + qj,jVi+1,j + qj,j+1Vi+1,j+1] , (4.21)

for j = 1, 2, · · · , n− 1,

Vi,0 =
1

1 + φ2
0∆t

[q0,0Vi+1,0 + q0,1Vi+1,1 + q0,2Vi+1,2] , (4.22)

and

Vi,n =
1

1 + φ2
n∆t

[qn,n−2Vi+1,n−2 + qn,n−1Vi+1,n−1 + qn,nVi+1,n] . (4.23)

4.2 Valuing Bond Option Prices by the Basic Monte

Carlo Method

From equation 3.28, we know the value at time t of the European call option on a bond

in the CIR model is

V
(
t, r(t)

)
= E

[
e−

R T1
t r(u) du · (p(T1, T2)−K

)+
∣∣∣ F(t)

]
, (4.24)

where K is the expiration value, T1 is the expiration time of the option, T2 is the maturity

time of the bond, 0 ≤ t ≤ T1 ≤ T2, r is a CIR process, and r satisfies

dr(t) = k
(
µ− r(t)

)
dt + σ

√
r(t) dW (t), k > 0, µ > 0, σ > 0 are constants. (4.25)

Take t = t0, and

H(T1, ω) = e−
R T1

t0
r(u) du · (p(T1, T2)−K

)+
, (4.26)

where the measure of r is P , and ω ∈ Ω is a sample point in the path space Ω ≡ Ω(r1, · · · , rJ)

of the interest rate variables r = (r1, · · · , rJ). The expectation is an integral over Ω:

V
(
t0, r(t0)

)
=

∫

Ω

H(T1, ω) dP. (4.27)
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If r is a discrete time process, taking values only at times t0 < t1 < · · · < tI = T1, the

integral will become

V
(
t0, r(t0)

)
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
H(T1, r1(t0), · · · , rJ(tI))g(r1(t0), · · · , rJ(tI)) dr1(t0) · · · drJ(tI)

(4.28)

where rj(ti) is the value of the interest rate variable rj at time ti, for a density function g.

This is a J× (I +1)-dimensional integral. If (4.28) is to be a good approximation to (4.27),

then I must be large and it is not easy to use a numerical integration method to compute

the integral.

In this case a Monte Carlo integration method may be appropriate. The idea is to sam-

ple the joint density of rj(ti)j=1,··· ,J,i=t0,··· ,tI to obtain N sample points, (r
(n)
j (t0), · · · , r

(n)
j (tI)),

n = 1, · · · , N , from the sample space Ω, (r
(n)
1 , · · · , r

(n)
J ). A single sample point is a path of

values of r. The value of the European call option on a bond in the CIR model is estimated

to be

Ṽ
(
t0, r(t0)

)
=

1

N

N∑
n=1

H(r(n)(t0), · · · , r(n)(tI)). (4.29)

This is the Monte Carlo estimate of the value of the derivative.

Since the interest rate r(t) is the only random variable, sampling the density is done

by evolving r from their initial values. Starting from an initial value of r(t0) at time t0, we

use a discrete approximation for the equation (4.25) to evolve r(t) up to T1. The path we

have found is a sample from the space of paths, Ω. H(T1, r(T1)) along this sample path is

compute. The value of H(T1, r(T1)) will depend upon the random numbers generated in

order to evolve r(t), so the simulation must be repeated many times to expect to accurately

reflect the distribution of H(T1, r(T1)). The sampled values of H(T1, r(T1)) are discounted

back to time t0, using the generated values of r(t) as discount rates, and the arithmetic

average of these discounted values is the Monte Carlo estimate of the value of the European

call option on a bond in the CIR model.

The basic Monte Carlo method can be broken up into stages:

1. Divide the period [t0, T1] into I times steps. Set ∆t = T1−t0
I

.

2. Compute N sample paths r(n)(t), n = 1, · · · , N , for t = t0, t0 + ∆t, · · · , T1. For

n = 1, · · · , N , set r(n)(t0) = r(t0), the value of r at time t0. At each time step the

next value of r(n)(t) is found from its discretised process. For instance, the Euler
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discretisation of the equation (4.25) is

r(n)(t + ∆t) = r(n)(t) + k
(
µ− r(n)(t)

)
∆t + σ

√
r(n)(t)

√
∆t y(n)(t + ∆t), (4.30)

where y(n)(t + ∆t)
i.i.d.∼ N(0, 1), t = t0, · · · , T1 − ∆t, is a sequence of independent

standard normal variables.

3. Obtain values r(n)(T1), n = 1, · · · , N , at time T1.

4. Compute H(T1, r
(n)(T1)), n = 1, · · · , N , and discount back to time t0 using the gen-

erated values of the interest rate r(t); that is, compute

V (n)(t0) = exp
{
−

T1∑
t=t0+∆t

r(n)(t)∆t
}
·H(

T1, r
(n)(T1)

)
, n = 1, · · · , N. (4.31)

V (n)(t0) is the value at time t0 of the European call option on a bond in the CIR

model along the n′th sample path.

5. The Monte Carlo estimate Ṽ (t0) of the value V (t0) of the European call option on a

bond in the CIR model at time t0 is the average of the V (n)(t0) that is,

Ṽ (t0) =
1

N

N∑
n=1

V (n)(t0). (4.32)

4.3 Numerical Result

We will shows the results of using the procedure to value a 10-Year bond with face

value of $ 100.

Recalling equation (4.2), the CIR model is

dr(t) = k
(
µ− r(t)

)
dt + σ

√
r(t) dW (t),

where k > 0, µ > 0, and σ > 0 are constants.

The model exhibits mean reversion of the interest rate, causing the rate to be pulled

downward when it is above the long run average rate and be pulled upward when it is

below the long run average rate. The coefficient k is the speed of this mean reversion, µ

is the long run average rate, and σ is the volatility. By the lest squares method, we take

k = 0.205714, µ = 0.058856, and σ = 0.055855 such that the CIR model is similar to the
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real interest rate (see Appendix A). Figure 4.3 shows the estimated interest rate value in

the CIR model when the parameter given above and the real interest rate value.
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Figure 4.3: The estimated interest rate in CIR model for k = 0.205714, µ = 0.058856, and

σ = 0.055855.

4.3.1 Numerical Result by the Explicit Finite Difference Method

By equations (3.10) and (4.1), we know the bond process and the process of the Eu-

ropean call option on bond have the same partial differential equation. Thus using the

explicit finite difference method in Section 4.1, we get Table 4.1 shows the values of the

10-Year zero coupon bond that maturity time is after 6 months in different current interest

rate. And Table 4.2 shows the price of a 5-Year European call option which expiration time

is 6 months early than the maturity time of the bond in different exercise price.
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Current Short-Term Interest Rate

$100 face value 2% 4% 6% 8% 10% 12%

Bond Price 98.9140 97.9812 97.0572 96.1398 95.2279 94.3339

Analytic Solution 98.9127 97.9797 97.0555 96.1401 95.2332 94.3350

Table 4.1: The 10-Year bond prices that maturity time is after 6 months for the Cox,

Ingersoll, and Ross model with k = 0.205714, µ = 0.058856, and σ = 0.055855.

Current Short-Term Interest Rate

Exercise Price 2% 4% 6% 8% 10% 12%

90 6.5468 5.9042 5.3088 4.7707 4.2754 3.8227

93 4.0200 3.5283 3.0761 2.6710 2.3018 1.9675

96 1.4936 1.1522 0.8434 0.5714 0.3281 0.1122

Table 4.2: Prices of a 5-Year call option on a 10-Year bond that maturity time is after 6

months for the the Cox, Ingersoll, and Ross model with k = 0.205714, µ = 0.058856, and

σ = 0.055855.

4.3.2 Numerical Result by the Monte Carlo Method

As usual, we shows the results of using the basic Monte Carlo method to value a 5-

Year European call option which expiration time is 6 months early than maturity time of

10-Year bond with face value of $ 100, and take the same parameter k = 0.205714, µ =

0.058856, σ = 0.055855. We simulate below :

Step1 : We divide 10 years into 521 times steps, then ∆t = 10
521

(year) ≈ 7
365

(year) = 1

(week).

Step2 : Compute N sample paths of CIR interest rate process r(n)(t), n = 1, · · · , N , for

t = 0, ∆t, · · · , 521 (week). For n = 1, · · · , N set r(n)(0) = r(0) = 0.0561, the value of

r at time 0. Figure 4.4 shows N = 5 sample paths of r(n)(t).

Step3 : We have values r(n)(521), n = 1, · · · , N .

Step4 : Compute the bond values p(r(n)(521), 521), n = 1, · · · , N , and discount back to

time that is 6 months remained before maturity (t = 495) using the generated values
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Figure 4.4: 5 sample paths of CIR interest rate process r(t) with k = 0.205714, µ =

0.058856, and σ = 0.055855.

of the interest rate r(t).

Step5 : The Monte Carlo estimate p̃(r(495), 495) of the value p(r(495), 495) at time 495

is

p̃(r(495), 495) =
1

N

N∑
n=1

p(n)(r(495), 495).

Step6 : Compute V (r(n)(495), 495), n = 1, · · · , N , and discount back to time t = 235 (5-

Year call option) using the generated values of the interest rate r(t); that is, compute

V (n)(r(n)(235), 235) = exp
{−

495∑
235

r(n)(t)∆t
}(

p
(
495, r(n)(495)

)−K
)+

, n = 1, · · · , N.

where K is exercise price.

Step7 : The Monte Carlo estimate Ṽ (r(235), 235) of the value V (r(235), 235) at time 235

is

Ṽ (r(235), 235) =
1

N

N∑
n=1

V (n)(r(235), 235).
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Table 4.3 and Figure 4.5 shows the bond prices in different samples N . We can find

that the bond prices change little after N = 5000 samples, but N larger than N = 5000

samples is profligate users of computing time and power. From now on, we take N = 5000.

Table 4.4 shows the bond prices and the values of European call option in different exercise

price are in Table 4.5.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
96.92

96.93

96.94

96.95

96.96

96.97

96.98

96.99

97

97.01

97.02

Sample Number N

B
on

d 
P

ric
e

Figure 4.5: The bond prices in different samples N .

Current Interest Rate Sample Number

6% 1000 3000 5000 7000 9000 10000

Bond Price 96.9489 96.9445 96.9408 96.9439 96.9418 96.9411

CPU Time 0.2970 0.8750 1.4380 1.9850 2.5780 2.8440

Table 4.3: The bond prices and computing time in different samples N .
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5000 Samples Current Short-Term Interest Rate

$100 face value 2% 4% 6% 8% 10% 12%

Bond Price 98.8741 97.9023 96.9452 95.9966 95.0509 94.1227

Analytic Solution 98.9127 97.9797 97.0555 96.1401 95.2332 94.3350

Table 4.4: The 10-Year bond prices that maturity time is after 6 months for the Cox,

Ingersoll, and Ross model with k = 0.205714, µ = 0.058856, and σ = 0.055855.

5000 Samples Current Short-Term Interest Rate

Exercise Price 2% 4% 6% 8% 10% 12%

90 6.4478 5.8267 5.2438 4.6581 4.1804 3.7020

93 3.9528 3.4552 3.0051 2.5683 2.1998 1.8648

96 1.4441 1.0988 0.8389 0.6152 0.4341 0.2938

Table 4.5: Prices of a 5-Year call option on a 10-Year bond that maturity time is after 6

months for the the Cox, Ingersoll, and Ross model with k = 0.205714, µ = 0.058856, and

σ = 0.055855.

61



Chapter 5

Conclusions

In this thesis, we introduce the manner of pricing interest rate derivatives. The explicit

finite difference and Monte Carlo methods are main foundations. The numerical codes are

implemented in Matlab. A numerical example of European call option on a U.S. 10-Y

treasury bond are presented to illustrate. In this example, the computational results of the

explicit finite difference method is better than Monte Carlo method.

We focused our work on particular one-factor interest rate models because of their great

level of popularity among practitioners. However, when there is only one Brownian motion,

the risk doesn’t accurately estimate in the real market. This work can be extended to

encompass multi-factor interest rates models. We believe that the multi-factor interest

rates models are an interested topic for the future study.
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Appendix A

A.1 Estimation Method

The CIR model (1985) represented the dynamics of the short interest rate r by the

stochastic differential equation:

dr(t) = k
(
µ− r(t)

)
dt + σ

√
r(t) dW (t), (A.1)

where k > 0, µ > 0, σ > 0 are constants.

For t < s, the mean and variance of this distribution can be obtained as

E
(
r(s) | r(t)

)
= µ

(
1− e−k(s−t)

)
+

(
1− e−k(s−t)

)
r(t),

V ar
(
r(s) | r(t)

)
=

µσ2

2k

(
1− e−2k(s−t)

)2
+

σ2

k

(
e−k(s−t) − e−2k(s−t)

)2
r(t).

(A.2)

Since the variance is a function of the state variable and is therefore time dependent,

the more complicated variance structure leads to a more complicated estimation procedure

such that the AR(1) process is no longer applicable. The regression model that produces

the least square results can, however, be modified to produce reasonable estimates. For

example, let us adopt the same regression model as the previous section. The model is

expressed as

rt+∆t = a + brt + εt, (A.3)

where a = µ(1− e−k∆t) and b = e−k∆t.

The error term ε is not identically and independently distributed. Rather, it is a

function of the state variable; therefore, ordinary least squares (OLS) does not apply. With

the variance structure specified in equation (A.2), however, equation (A.3) can be viewed
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as a regression model with heterology. By adopting the standard technique in Judge et al.

(1982, 416), we can run weighted least squares as follows:

1. Run an OLS:

rt = β0 + β1rt−1 + ξt, (A.4)

2. The variance of the error term must satisfy equation (A.2):

E
(
ξ2
t

)
=

µσ2

2k

(
1− e−2k∆t

)2
+

σ2

k

(
e−k∆t − e−2k∆t

)2
rt−1. (A.5)

3. Run

E(ξ2
t ) = α0 + α1rt−1 + $t, (A.6)

where α1 =
µσ2

2k
(1− e−2k∆t)2, and α0 =

σ2

k
(e−k∆t − e−2k∆t)2.

4. Solve for k and µ from OLS and use α0 or α1 to solve for σ.

Note that both α0 and α1 can give σ. In this instance, we choose the one that generates

an estimate more consistent with previous studies.

The price of risk is not identified because Treasury bill rates are used as a proxy for the

instantaneous risk-free rate. In the fitting of the term structure, we can use the variable

flexibly to adjust properly for theoretical prices.

A.2 Results

We will illustrate the method presented in the previous section by applying them to

data consisting of (annualized) rates on American Government 10-year treasury note for

522 weeks covering the period of August 1983 until August 1993.

The results for the method of estimation of the parameters of the CIR model are

presented in Table A.1. We chose the starting value r0 = 0.0561, the last rate in our data

set (August 1993). In Figure A.1, the real interest rate and the estimated interest rate

show covering the period of August 1993 until August 2003.
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10-Y Treasury Note

β0 β1 α0 α1 µ k σ

0.0002317 0.9960626 -2.453E-06 5.948E-05 0.058856 0.205714 0.055855

Table A.1: Parameter estimates for the CIR model.
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Figure A.1: The real interest rate v.s. the estimated interest rate with k = 0.205714, µ =

0.058856, and σ = 0.055855.
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